blob: b4bd9d975b69f0dc61f1e1ca6cf3deecc99972e1 [file] [log] [blame]
/* Copyright (c) 2012-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/spmi.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/hwmon-sysfs.h>
#include <linux/qpnp/qpnp-adc.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/thermal.h>
/* QPNP VADC register definition */
#define QPNP_VADC_REVISION1 0x0
#define QPNP_VADC_REVISION2 0x1
#define QPNP_VADC_REVISION3 0x2
#define QPNP_VADC_REVISION4 0x3
#define QPNP_VADC_PERPH_TYPE 0x4
#define QPNP_VADC_PERH_SUBTYPE 0x5
#define QPNP_VADC_SUPPORTED_REVISION2 1
#define QPNP_VADC_STATUS1 0x8
#define QPNP_VADC_STATUS1_OP_MODE 4
#define QPNP_VADC_STATUS1_MEAS_INTERVAL_EN_STS BIT(2)
#define QPNP_VADC_STATUS1_REQ_STS BIT(1)
#define QPNP_VADC_STATUS1_EOC BIT(0)
#define QPNP_VADC_STATUS1_REQ_STS_EOC_MASK 0x3
#define QPNP_VADC_STATUS1_OP_MODE_MASK 0x18
#define QPNP_VADC_MEAS_INT_MODE 0x2
#define QPNP_VADC_MEAS_INT_MODE_MASK 0x10
#define QPNP_VADC_STATUS2 0x9
#define QPNP_VADC_STATUS2_CONV_SEQ_STATE 6
#define QPNP_VADC_STATUS2_FIFO_NOT_EMPTY_FLAG BIT(1)
#define QPNP_VADC_STATUS2_CONV_SEQ_TIMEOUT_STS BIT(0)
#define QPNP_VADC_STATUS2_CONV_SEQ_STATE_SHIFT 4
#define QPNP_VADC_CONV_TIMEOUT_ERR 2
#define QPNP_VADC_MODE_CTL 0x40
#define QPNP_VADC_OP_MODE_SHIFT 3
#define QPNP_VADC_VREF_XO_THM_FORCE BIT(2)
#define QPNP_VADC_AMUX_TRIM_EN BIT(1)
#define QPNP_VADC_TRIM_EN BIT(0)
#define QPNP_VADC_EN_CTL1 0x46
#define QPNP_VADC_EN BIT(7)
#define QPNP_VADC_CH_SEL_CTL 0x48
#define QPNP_VADC_DIG_PARAM 0x50
#define QPNP_VADC_DIG_DEC_RATIO_SEL_SHIFT 3
#define QPNP_VADC_HW_SETTLE_DELAY 0x51
#define QPNP_VADC_CONV_REQ 0x52
#define QPNP_VADC_CONV_REQ_SET BIT(7)
#define QPNP_VADC_CONV_SEQ_CTL 0x54
#define QPNP_VADC_CONV_SEQ_HOLDOFF_SHIFT 4
#define QPNP_VADC_CONV_SEQ_TRIG_CTL 0x55
#define QPNP_VADC_MEAS_INTERVAL_CTL 0x57
#define QPNP_VADC_MEAS_INTERVAL_OP_CTL 0x59
#define QPNP_VADC_MEAS_INTERVAL_OP_SET BIT(7)
#define QPNP_VADC_CONV_SEQ_FALLING_EDGE 0x0
#define QPNP_VADC_CONV_SEQ_RISING_EDGE 0x1
#define QPNP_VADC_CONV_SEQ_EDGE_SHIFT 7
#define QPNP_VADC_FAST_AVG_CTL 0x5a
#define QPNP_VADC_LOW_THR_LSB 0x5c
#define QPNP_VADC_LOW_THR_MSB 0x5d
#define QPNP_VADC_HIGH_THR_LSB 0x5e
#define QPNP_VADC_HIGH_THR_MSB 0x5f
#define QPNP_VADC_ACCESS 0xd0
#define QPNP_VADC_ACCESS_DATA 0xa5
#define QPNP_VADC_PERH_RESET_CTL3 0xda
#define QPNP_FOLLOW_OTST2_RB BIT(3)
#define QPNP_FOLLOW_WARM_RB BIT(2)
#define QPNP_FOLLOW_SHUTDOWN1_RB BIT(1)
#define QPNP_FOLLOW_SHUTDOWN2_RB BIT(0)
#define QPNP_INT_TEST_VAL 0xE1
#define QPNP_VADC_DATA0 0x60
#define QPNP_VADC_DATA1 0x61
#define QPNP_VADC_CONV_TIMEOUT_ERR 2
#define QPNP_VADC_CONV_TIME_MIN 1000
#define QPNP_VADC_CONV_TIME_MAX 1100
#define QPNP_ADC_COMPLETION_TIMEOUT HZ
#define QPNP_VADC_ERR_COUNT 20
#define QPNP_OP_MODE_SHIFT 3
#define QPNP_VADC_THR_LSB_MASK(val) (val & 0xff)
#define QPNP_VADC_THR_MSB_MASK(val) ((val & 0xff00) >> 8)
#define QPNP_MIN_TIME 2000
#define QPNP_MAX_TIME 2000
#define QPNP_RETRY 100
#define QPNP_VADC_ABSOLUTE_RECALIB_OFFSET 8
#define QPNP_VADC_RATIOMETRIC_RECALIB_OFFSET 12
#define QPNP_VADC_RECALIB_MAXCNT 10
#define QPNP_VADC_OFFSET_DUMP 8
#define QPNP_VADC_REG_DUMP 14
/* QPNP VADC refreshed register set */
#define QPNP_VADC_HC1_STATUS1 0x8
#define QPNP_VADC_HC1_DATA_HOLD_CTL 0x3f
#define QPNP_VADC_HC1_DATA_HOLD_CTL_FIELD BIT(1)
#define QPNP_VADC_HC1_ADC_DIG_PARAM 0x42
#define QPNP_VADC_HC1_CAL_VAL BIT(6)
#define QPNP_VADC_HC1_CAL_VAL_SHIFT 6
#define QPNP_VADC_HC1_CAL_SEL_MASK 0x30
#define QPNP_VADC_HC1_CAL_SEL_SHIFT 4
#define QPNP_VADC_HC1_DEC_RATIO_SEL 0xc
#define QPNP_VADC_HC1_DEC_RATIO_SHIFT 2
#define QPNP_VADC_HC1_FAST_AVG_CTL 0x43
#define QPNP_VADC_HC1_FAST_AVG_SAMPLES_MASK 0xfff
#define QPNP_VADC_HC1_ADC_CH_SEL_CTL 0x44
#define QPNP_VADC_HC1_DELAY_CTL 0x45
#define QPNP_VADC_HC1_DELAY_CTL_MASK 0xfff
#define QPNP_VADC_MC1_EN_CTL1 0x46
#define QPNP_VADC_HC1_ADC_EN BIT(7)
#define QPNP_VADC_MC1_CONV_REQ 0x47
#define QPNP_VADC_HC1_CONV_REQ_START BIT(7)
#define QPNP_VADC_HC1_VBAT_MIN_THR0 0x48
#define QPNP_VADC_HC1_VBAT_MIN_THR1 0x49
#define QPNP_VADC_HC1_DATA0 0x50
#define QPNP_VADC_HC1_DATA1 0x51
#define QPNP_VADC_HC1_DATA_CHECK_USR 0x8000
#define QPNP_VADC_HC1_VBAT_MIN_DATA0 0x52
#define QPNP_VADC_MC1_VBAT_MIN_DATA1 0x53
/*
* Conversion time varies between 213uS to 6827uS based on the decimation,
* clock rate, fast average samples with no measurement in queue.
*/
#define QPNP_VADC_HC1_CONV_TIME_MIN_US 213
#define QPNP_VADC_HC1_CONV_TIME_MAX_US 214
#define QPNP_VADC_HC1_ERR_COUNT 1600
struct qpnp_vadc_mode_state {
bool meas_int_mode;
bool meas_int_request_in_queue;
bool vadc_meas_int_enable;
struct qpnp_adc_tm_btm_param *param;
struct qpnp_adc_amux vadc_meas_amux;
};
struct qpnp_vadc_thermal_data {
bool thermal_node;
int thermal_chan;
enum qpnp_vadc_channels vadc_channel;
struct thermal_zone_device *tz_dev;
struct qpnp_vadc_chip *vadc_dev;
};
struct qpnp_vadc_chip {
struct device *dev;
struct qpnp_adc_drv *adc;
struct list_head list;
struct dentry *dent;
struct device *vadc_hwmon;
bool vadc_init_calib;
int max_channels_available;
bool vadc_iadc_sync_lock;
u8 id;
struct work_struct trigger_completion_work;
bool vadc_poll_eoc;
bool vadc_recalib_check;
u8 revision_ana_minor;
u8 revision_dig_major;
struct workqueue_struct *high_thr_wq;
struct workqueue_struct *low_thr_wq;
struct work_struct trigger_high_thr_work;
struct work_struct trigger_low_thr_work;
struct qpnp_vadc_mode_state *state_copy;
struct qpnp_vadc_thermal_data *vadc_therm_chan;
struct power_supply *vadc_chg_vote;
bool vadc_hc;
int vadc_debug_count;
struct sensor_device_attribute sens_attr[0];
};
LIST_HEAD(qpnp_vadc_device_list);
static struct qpnp_vadc_scale_fn vadc_scale_fn[] = {
[SCALE_DEFAULT] = {qpnp_adc_scale_default},
[SCALE_BATT_THERM] = {qpnp_adc_scale_batt_therm},
[SCALE_PMIC_THERM] = {qpnp_adc_scale_pmic_therm},
[SCALE_XOTHERM] = {qpnp_adc_tdkntcg_therm},
[SCALE_THERM_100K_PULLUP] = {qpnp_adc_scale_therm_pu2},
[SCALE_THERM_150K_PULLUP] = {qpnp_adc_scale_therm_pu1},
[SCALE_QRD_BATT_THERM] = {qpnp_adc_scale_qrd_batt_therm},
[SCALE_QRD_SKUAA_BATT_THERM] = {qpnp_adc_scale_qrd_skuaa_batt_therm},
[SCALE_SMB_BATT_THERM] = {qpnp_adc_scale_smb_batt_therm},
[SCALE_QRD_SKUG_BATT_THERM] = {qpnp_adc_scale_qrd_skug_batt_therm},
[SCALE_QRD_SKUH_BATT_THERM] = {qpnp_adc_scale_qrd_skuh_batt_therm},
[SCALE_NCP_03WF683_THERM] = {qpnp_adc_scale_therm_ncp03},
[SCALE_QRD_SKUT1_BATT_THERM] = {qpnp_adc_scale_qrd_skut1_batt_therm},
[SCALE_PMI_CHG_TEMP] = {qpnp_adc_scale_pmi_chg_temp},
};
static struct qpnp_vadc_rscale_fn adc_vadc_rscale_fn[] = {
[SCALE_RVADC_ABSOLUTE] = {qpnp_vadc_absolute_rthr},
};
static int32_t qpnp_vadc_read_reg(struct qpnp_vadc_chip *vadc, int16_t reg,
u8 *data, int len)
{
int rc;
rc = spmi_ext_register_readl(vadc->adc->spmi->ctrl, vadc->adc->slave,
(vadc->adc->offset + reg), data, len);
if (rc < 0) {
pr_err("qpnp adc read reg %d failed with %d\n", reg, rc);
return rc;
}
return 0;
}
static int32_t qpnp_vadc_write_reg(struct qpnp_vadc_chip *vadc, int16_t reg,
u8 *buf, int len)
{
int rc;
rc = spmi_ext_register_writel(vadc->adc->spmi->ctrl, vadc->adc->slave,
(vadc->adc->offset + reg), buf, len);
if (rc < 0) {
pr_err("qpnp adc write reg %d failed with %d\n", reg, rc);
return rc;
}
return 0;
}
static int32_t qpnp_vadc_warm_rst_configure(struct qpnp_vadc_chip *vadc)
{
int rc = 0;
u8 data = 0, buf = 0;
buf = QPNP_VADC_ACCESS_DATA;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_ACCESS, &buf, 1);
if (rc < 0) {
pr_err("VADC write access failed\n");
return rc;
}
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_PERH_RESET_CTL3, &data, 1);
if (rc < 0) {
pr_err("VADC perh reset ctl3 read failed\n");
return rc;
}
buf = QPNP_VADC_ACCESS_DATA;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_ACCESS, &buf, 1);
if (rc < 0) {
pr_err("VADC write access failed\n");
return rc;
}
data |= QPNP_FOLLOW_WARM_RB;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_PERH_RESET_CTL3, &data, 1);
if (rc < 0) {
pr_err("VADC perh reset ctl3 write failed\n");
return rc;
}
return 0;
}
static int32_t qpnp_vadc_mode_select(struct qpnp_vadc_chip *vadc, u8 mode_ctl)
{
int rc;
mode_ctl |= (QPNP_VADC_TRIM_EN | QPNP_VADC_AMUX_TRIM_EN);
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_MODE_CTL, &mode_ctl, 1);
if (rc < 0)
pr_err("vadc write mode selection err:%d\n", rc);
return rc;
}
static int32_t qpnp_vadc_enable(struct qpnp_vadc_chip *vadc, bool state)
{
int rc = 0;
u8 data = 0;
data = QPNP_VADC_EN;
if (state) {
if (vadc->adc->hkadc_ldo && vadc->adc->hkadc_ldo_ok) {
rc = qpnp_adc_enable_voltage(vadc->adc);
if (rc) {
pr_err("failed enabling VADC LDO\n");
return rc;
}
}
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_EN_CTL1, &data, 1);
if (rc < 0) {
pr_err("VADC enable failed\n");
return rc;
}
} else {
data = (~data & QPNP_VADC_EN);
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_EN_CTL1, &data, 1);
if (rc < 0) {
pr_err("VADC disable failed\n");
return rc;
}
if (vadc->adc->hkadc_ldo && vadc->adc->hkadc_ldo_ok)
qpnp_adc_disable_voltage(vadc->adc);
}
return 0;
}
static int32_t qpnp_vadc_status_debug(struct qpnp_vadc_chip *vadc)
{
int rc = 0, i = 0;
u8 buf[8], offset = 0;
if (vadc->vadc_debug_count < 3) {
for (i = 0; i < QPNP_VADC_REG_DUMP; i++) {
rc = qpnp_vadc_read_reg(vadc, offset, buf, 8);
if (rc) {
pr_err("debug register dump failed\n");
return rc;
}
offset += QPNP_VADC_OFFSET_DUMP;
pr_err("row%d: 0%x 0%x 0%x 0%x 0%x 0%x 0%x 0%x\n",
i, buf[0], buf[1], buf[2], buf[3], buf[4],
buf[5], buf[6], buf[7]);
}
} else
pr_debug("VADC peripheral dumps got printed before\n");
vadc->vadc_debug_count++;
rc = qpnp_vadc_enable(vadc, false);
if (rc < 0) {
pr_err("VADC disable failed with %d\n", rc);
return rc;
}
return 0;
}
static int32_t qpnp_vadc_configure(struct qpnp_vadc_chip *vadc,
struct qpnp_adc_amux_properties *chan_prop)
{
u8 decimation = 0, conv_sequence = 0, conv_sequence_trig = 0;
u8 mode_ctrl = 0, meas_int_op_ctl_data = 0, buf = 0;
int rc = 0;
/* Mode selection */
mode_ctrl |= ((chan_prop->mode_sel << QPNP_VADC_OP_MODE_SHIFT) |
(QPNP_VADC_TRIM_EN | QPNP_VADC_AMUX_TRIM_EN));
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_MODE_CTL, &mode_ctrl, 1);
if (rc < 0) {
pr_err("Mode configure write error\n");
return rc;
}
/* Channel selection */
buf = chan_prop->amux_channel;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_CH_SEL_CTL, &buf, 1);
if (rc < 0) {
pr_err("Channel configure error\n");
return rc;
}
/* Digital parameter setup */
decimation = chan_prop->decimation <<
QPNP_VADC_DIG_DEC_RATIO_SEL_SHIFT;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_DIG_PARAM, &decimation, 1);
if (rc < 0) {
pr_err("Digital parameter configure write error\n");
return rc;
}
/* HW settling time delay */
buf = chan_prop->hw_settle_time;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_HW_SETTLE_DELAY, &buf, 1);
if (rc < 0) {
pr_err("HW settling time setup error\n");
return rc;
}
pr_debug("mode:%d, channel:%d, decimation:%d, hw_settle:%d\n",
mode_ctrl, chan_prop->amux_channel, decimation,
chan_prop->hw_settle_time);
if (chan_prop->mode_sel == (ADC_OP_NORMAL_MODE <<
QPNP_VADC_OP_MODE_SHIFT)) {
/* Normal measurement mode */
buf = chan_prop->fast_avg_setup;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_FAST_AVG_CTL,
&buf, 1);
if (rc < 0) {
pr_err("Fast averaging configure error\n");
return rc;
}
/* Ensure MEAS_INTERVAL_OP_CTL is set to 0 */
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_MEAS_INTERVAL_OP_CTL,
&meas_int_op_ctl_data, 1);
if (rc < 0) {
pr_err("Measurement interval OP configure error\n");
return rc;
}
} else if (chan_prop->mode_sel == (ADC_OP_CONVERSION_SEQUENCER <<
QPNP_VADC_OP_MODE_SHIFT)) {
/* Conversion sequence mode */
conv_sequence = ((ADC_SEQ_HOLD_100US <<
QPNP_VADC_CONV_SEQ_HOLDOFF_SHIFT) |
ADC_CONV_SEQ_TIMEOUT_5MS);
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_CONV_SEQ_CTL,
&conv_sequence, 1);
if (rc < 0) {
pr_err("Conversion sequence error\n");
return rc;
}
conv_sequence_trig = ((QPNP_VADC_CONV_SEQ_RISING_EDGE <<
QPNP_VADC_CONV_SEQ_EDGE_SHIFT) |
chan_prop->trigger_channel);
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_CONV_SEQ_TRIG_CTL,
&conv_sequence_trig, 1);
if (rc < 0) {
pr_err("Conversion trigger error\n");
return rc;
}
} else if (chan_prop->mode_sel == ADC_OP_MEASUREMENT_INTERVAL) {
buf = QPNP_VADC_MEAS_INTERVAL_OP_SET;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_MEAS_INTERVAL_OP_CTL,
&buf, 1);
if (rc < 0) {
pr_err("Measurement interval OP configure error\n");
return rc;
}
}
if (!vadc->vadc_poll_eoc)
reinit_completion(&vadc->adc->adc_rslt_completion);
rc = qpnp_vadc_enable(vadc, true);
if (rc)
return rc;
if (!vadc->vadc_iadc_sync_lock) {
/* Request conversion */
buf = QPNP_VADC_CONV_REQ_SET;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_CONV_REQ, &buf, 1);
if (rc < 0) {
pr_err("Request conversion failed\n");
return rc;
}
}
return 0;
}
static int32_t qpnp_vadc_read_conversion_result(struct qpnp_vadc_chip *vadc,
int32_t *data)
{
uint8_t rslt_lsb, rslt_msb;
int rc = 0, status = 0;
status = qpnp_vadc_read_reg(vadc, QPNP_VADC_DATA0, &rslt_lsb, 1);
if (status < 0) {
pr_err("qpnp adc result read failed for data0\n");
goto fail;
}
status = qpnp_vadc_read_reg(vadc, QPNP_VADC_DATA1, &rslt_msb, 1);
if (status < 0) {
pr_err("qpnp adc result read failed for data1\n");
goto fail;
}
*data = (rslt_msb << 8) | rslt_lsb;
fail:
rc = qpnp_vadc_enable(vadc, false);
if (rc)
return rc;
return status;
}
static int32_t qpnp_vadc_read_status(struct qpnp_vadc_chip *vadc, int mode_sel)
{
u8 status1, status2, status2_conv_seq_state;
u8 status_err = QPNP_VADC_CONV_TIMEOUT_ERR;
int rc;
switch (mode_sel) {
case (ADC_OP_CONVERSION_SEQUENCER << QPNP_VADC_OP_MODE_SHIFT):
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1, 1);
if (rc) {
pr_err("qpnp_vadc read mask interrupt failed\n");
return rc;
}
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS2, &status2, 1);
if (rc) {
pr_err("qpnp_vadc read mask interrupt failed\n");
return rc;
}
if (!(status2 & ~QPNP_VADC_STATUS2_CONV_SEQ_TIMEOUT_STS) &&
(status1 & (~QPNP_VADC_STATUS1_REQ_STS |
QPNP_VADC_STATUS1_EOC))) {
rc = status_err;
return rc;
}
status2_conv_seq_state = status2 >>
QPNP_VADC_STATUS2_CONV_SEQ_STATE_SHIFT;
if (status2_conv_seq_state != ADC_CONV_SEQ_IDLE) {
pr_err("qpnp vadc seq error with status %d\n",
status2);
rc = -EINVAL;
return rc;
}
}
return 0;
}
static int qpnp_vadc_is_valid(struct qpnp_vadc_chip *vadc)
{
struct qpnp_vadc_chip *vadc_chip = NULL;
list_for_each_entry(vadc_chip, &qpnp_vadc_device_list, list)
if (vadc == vadc_chip)
return 0;
return -EINVAL;
}
static void qpnp_vadc_work(struct work_struct *work)
{
struct qpnp_vadc_chip *vadc = container_of(work,
struct qpnp_vadc_chip, trigger_completion_work);
if (qpnp_vadc_is_valid(vadc) < 0)
return;
complete(&vadc->adc->adc_rslt_completion);
}
static void qpnp_vadc_low_thr_fn(struct work_struct *work)
{
struct qpnp_vadc_chip *vadc = container_of(work,
struct qpnp_vadc_chip, trigger_low_thr_work);
vadc->state_copy->meas_int_mode = false;
vadc->state_copy->meas_int_request_in_queue = false;
vadc->state_copy->param->threshold_notification(
ADC_TM_LOW_STATE,
vadc->state_copy->param->btm_ctx);
}
static void qpnp_vadc_high_thr_fn(struct work_struct *work)
{
struct qpnp_vadc_chip *vadc = container_of(work,
struct qpnp_vadc_chip, trigger_high_thr_work);
vadc->state_copy->meas_int_mode = false;
vadc->state_copy->meas_int_request_in_queue = false;
vadc->state_copy->param->threshold_notification(
ADC_TM_HIGH_STATE,
vadc->state_copy->param->btm_ctx);
}
static irqreturn_t qpnp_vadc_isr(int irq, void *dev_id)
{
struct qpnp_vadc_chip *vadc = dev_id;
schedule_work(&vadc->trigger_completion_work);
return IRQ_HANDLED;
}
static irqreturn_t qpnp_vadc_low_thr_isr(int irq, void *data)
{
struct qpnp_vadc_chip *vadc = data;
u8 mode_ctl = 0, mode = 0;
int rc = 0;
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_MODE_CTL, &mode, 1);
if (rc < 0) {
pr_err("mode ctl register read failed with %d\n", rc);
return rc;
}
if (!(mode & QPNP_VADC_MEAS_INT_MODE_MASK)) {
pr_debug("Spurious VADC threshold 0x%x\n", mode);
return IRQ_HANDLED;
}
mode_ctl = ADC_OP_NORMAL_MODE;
/* Set measurement in single measurement mode */
qpnp_vadc_mode_select(vadc, mode_ctl);
qpnp_vadc_enable(vadc, false);
schedule_work(&vadc->trigger_low_thr_work);
return IRQ_HANDLED;
}
static irqreturn_t qpnp_vadc_high_thr_isr(int irq, void *data)
{
struct qpnp_vadc_chip *vadc = data;
u8 mode_ctl = 0, mode = 0;
int rc = 0;
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_MODE_CTL, &mode, 1);
if (rc < 0) {
pr_err("mode ctl register read failed with %d\n", rc);
return rc;
}
if (!(mode & QPNP_VADC_MEAS_INT_MODE_MASK)) {
pr_debug("Spurious VADC threshold 0x%x\n", mode);
return IRQ_HANDLED;
}
mode_ctl = ADC_OP_NORMAL_MODE;
/* Set measurement in single measurement mode */
qpnp_vadc_mode_select(vadc, mode_ctl);
qpnp_vadc_enable(vadc, false);
schedule_work(&vadc->trigger_high_thr_work);
return IRQ_HANDLED;
}
static int32_t qpnp_vadc_version_check(struct qpnp_vadc_chip *dev)
{
uint8_t revision;
int rc;
rc = qpnp_vadc_read_reg(dev, QPNP_VADC_REVISION2, &revision, 1);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
return rc;
}
if (revision < QPNP_VADC_SUPPORTED_REVISION2) {
pr_err("VADC Version not supported\n");
return -EINVAL;
}
return 0;
}
static int32_t
qpnp_vadc_channel_post_scaling_calib_check(struct qpnp_vadc_chip *vadc,
int channel)
{
int version, rc = 0;
version = qpnp_adc_get_revid_version(vadc->dev);
if (version == QPNP_REV_ID_PM8950_1_0) {
if ((channel == LR_MUX7_HW_ID) ||
(channel == P_MUX2_1_1) ||
(channel == LR_MUX3_XO_THERM) ||
(channel == LR_MUX3_BUF_XO_THERM_BUF) ||
(channel == P_MUX4_1_1)) {
vadc->adc->amux_prop->chan_prop->calib_type =
CALIB_ABSOLUTE;
return rc;
}
}
return -EINVAL;
}
#define QPNP_VBAT_COEFF_1 3000
#define QPNP_VBAT_COEFF_2 45810000
#define QPNP_VBAT_COEFF_3 100000
#define QPNP_VBAT_COEFF_4 3500
#define QPNP_VBAT_COEFF_5 80000000
#define QPNP_VBAT_COEFF_6 4400
#define QPNP_VBAT_COEFF_7 32200000
#define QPNP_VBAT_COEFF_8 3880
#define QPNP_VBAT_COEFF_9 5770
#define QPNP_VBAT_COEFF_10 3660
#define QPNP_VBAT_COEFF_11 5320
#define QPNP_VBAT_COEFF_12 8060000
#define QPNP_VBAT_COEFF_13 102640000
#define QPNP_VBAT_COEFF_14 22220000
#define QPNP_VBAT_COEFF_15 83060000
#define QPNP_VBAT_COEFF_16 2810
#define QPNP_VBAT_COEFF_17 5260
#define QPNP_VBAT_COEFF_18 8027
#define QPNP_VBAT_COEFF_19 2347
#define QPNP_VBAT_COEFF_20 6043
#define QPNP_VBAT_COEFF_21 1914
#define QPNP_VBAT_OFFSET_SMIC 9446
#define QPNP_VBAT_OFFSET_GF 9441
#define QPNP_OCV_OFFSET_SMIC 4596
#define QPNP_OCV_OFFSET_GF 5896
#define QPNP_VBAT_COEFF_22 6800
#define QPNP_VBAT_COEFF_23 3500
#define QPNP_VBAT_COEFF_24 4360
#define QPNP_VBAT_COEFF_25 8060
#define QPNP_VBAT_COEFF_26 7895
#define QPNP_VBAT_COEFF_27 5658
#define QPNP_VBAT_COEFF_28 5760
#define QPNP_VBAT_COEFF_29 7900
#define QPNP_VBAT_COEFF_30 5660
#define QPNP_VBAT_COEFF_31 3620
#define QPNP_VBAT_COEFF_32 1230
#define QPNP_VBAT_COEFF_33 5760
#define QPNP_VBAT_COEFF_34 4080
#define QPNP_VBAT_COEFF_35 7000
#define QPNP_VBAT_COEFF_36 3040
#define QPNP_VBAT_COEFF_37 3850
#define QPNP_VBAT_COEFF_38 5000
#define QPNP_VBAT_COEFF_39 2610
#define QPNP_VBAT_COEFF_40 4190
#define QPNP_VBAT_COEFF_41 5800
#define QPNP_VBAT_COEFF_42 2620
#define QPNP_VBAT_COEFF_43 4030
#define QPNP_VBAT_COEFF_44 3230
#define QPNP_VBAT_COEFF_45 3450
#define QPNP_VBAT_COEFF_46 2120
#define QPNP_VBAT_COEFF_47 3560
#define QPNP_VBAT_COEFF_48 2190
#define QPNP_VBAT_COEFF_49 4180
#define QPNP_VBAT_COEFF_50 27800000
#define QPNP_VBAT_COEFF_51 5110
#define QPNP_VBAT_COEFF_52 34444000
static int32_t qpnp_ocv_comp(int64_t *result,
struct qpnp_vadc_chip *vadc, int64_t die_temp)
{
int64_t temp_var = 0, offset = 0;
int64_t old = *result;
int version;
version = qpnp_adc_get_revid_version(vadc->dev);
if (version == -EINVAL)
return 0;
if (version == QPNP_REV_ID_8026_2_2) {
if (die_temp > 25000)
return 0;
}
switch (version) {
case QPNP_REV_ID_8941_3_1:
switch (vadc->id) {
case COMP_ID_TSMC:
temp_var = ((die_temp - 25000) *
(-QPNP_VBAT_COEFF_4));
break;
default:
case COMP_ID_GF:
temp_var = ((die_temp - 25000) *
(-QPNP_VBAT_COEFF_1));
break;
}
break;
case QPNP_REV_ID_8026_1_0:
switch (vadc->id) {
case COMP_ID_TSMC:
temp_var = (((die_temp *
(-QPNP_VBAT_COEFF_10))
- QPNP_VBAT_COEFF_14));
break;
default:
case COMP_ID_GF:
temp_var = (((die_temp *
(-QPNP_VBAT_COEFF_8))
+ QPNP_VBAT_COEFF_12));
break;
}
break;
case QPNP_REV_ID_8026_2_0:
case QPNP_REV_ID_8026_2_1:
switch (vadc->id) {
case COMP_ID_TSMC:
temp_var = ((die_temp - 25000) *
(-QPNP_VBAT_COEFF_10));
break;
default:
case COMP_ID_GF:
temp_var = ((die_temp - 25000) *
(-QPNP_VBAT_COEFF_8));
break;
}
break;
case QPNP_REV_ID_8026_2_2:
switch (vadc->id) {
case COMP_ID_TSMC:
*result -= QPNP_VBAT_COEFF_22;
temp_var = (die_temp - 25000) *
QPNP_VBAT_COEFF_24;
break;
default:
case COMP_ID_GF:
*result -= QPNP_VBAT_COEFF_22;
temp_var = (die_temp - 25000) *
QPNP_VBAT_COEFF_25;
break;
}
break;
case QPNP_REV_ID_8110_2_0:
switch (vadc->id) {
case COMP_ID_SMIC:
*result -= QPNP_OCV_OFFSET_SMIC;
if (die_temp < 25000)
temp_var = QPNP_VBAT_COEFF_18;
else
temp_var = QPNP_VBAT_COEFF_19;
temp_var = (die_temp - 25000) * temp_var;
break;
default:
case COMP_ID_GF:
*result -= QPNP_OCV_OFFSET_GF;
if (die_temp < 25000)
temp_var = QPNP_VBAT_COEFF_20;
else
temp_var = QPNP_VBAT_COEFF_21;
temp_var = (die_temp - 25000) * temp_var;
break;
}
break;
case QPNP_REV_ID_8916_1_0:
switch (vadc->id) {
case COMP_ID_SMIC:
if (die_temp < 25000)
temp_var = QPNP_VBAT_COEFF_26;
else
temp_var = QPNP_VBAT_COEFF_27;
temp_var = (die_temp - 25000) * temp_var;
break;
default:
case COMP_ID_GF:
offset = QPNP_OCV_OFFSET_GF;
if (die_temp < 25000)
temp_var = QPNP_VBAT_COEFF_26;
else
temp_var = QPNP_VBAT_COEFF_27;
temp_var = (die_temp - 25000) * temp_var;
break;
}
break;
case QPNP_REV_ID_8916_1_1:
switch (vadc->id) {
/* FAB_ID is zero */
case COMP_ID_GF:
if (die_temp < 25000)
temp_var = QPNP_VBAT_COEFF_29;
else
temp_var = QPNP_VBAT_COEFF_30;
temp_var = (die_temp - 25000) * temp_var;
break;
/* FAB_ID is non-zero */
default:
if (die_temp < 25000)
temp_var = QPNP_VBAT_COEFF_31;
else
temp_var = (-QPNP_VBAT_COEFF_32);
temp_var = (die_temp - 25000) * temp_var;
break;
}
break;
case QPNP_REV_ID_8916_2_0:
switch (vadc->id) {
case COMP_ID_SMIC:
offset = (-QPNP_VBAT_COEFF_38);
if (die_temp < 0)
temp_var = die_temp * QPNP_VBAT_COEFF_36;
else if (die_temp > 40000)
temp_var = ((die_temp - 40000) *
(-QPNP_VBAT_COEFF_37));
break;
case COMP_ID_TSMC:
if (die_temp < 10000)
temp_var = ((die_temp - 10000) *
QPNP_VBAT_COEFF_41);
else if (die_temp > 50000)
temp_var = ((die_temp - 50000) *
(-QPNP_VBAT_COEFF_42));
break;
default:
case COMP_ID_GF:
if (die_temp < 20000)
temp_var = ((die_temp - 20000) *
QPNP_VBAT_COEFF_45);
else if (die_temp > 40000)
temp_var = ((die_temp - 40000) *
(-QPNP_VBAT_COEFF_46));
break;
}
break;
case QPNP_REV_ID_8909_1_0:
switch (vadc->id) {
case COMP_ID_SMIC:
temp_var = (-QPNP_VBAT_COEFF_50);
break;
}
break;
case QPNP_REV_ID_8909_1_1:
switch (vadc->id) {
case COMP_ID_SMIC:
temp_var = (QPNP_VBAT_COEFF_52);
break;
}
break;
default:
temp_var = 0;
break;
}
temp_var = div64_s64(temp_var, QPNP_VBAT_COEFF_3);
temp_var = 1000000 + temp_var;
*result = *result * temp_var;
if (offset)
*result -= offset;
*result = div64_s64(*result, 1000000);
pr_debug("%lld compensated into %lld\n", old, *result);
return 0;
}
static int32_t qpnp_vbat_sns_comp(int64_t *result,
struct qpnp_vadc_chip *vadc, int64_t die_temp)
{
int64_t temp_var = 0, offset = 0;
int64_t old = *result;
int version;
version = qpnp_adc_get_revid_version(vadc->dev);
if (version == -EINVAL)
return 0;
if (version != QPNP_REV_ID_8941_3_1) {
/* min(die_temp_c, 60_degC) */
if (die_temp > 60000)
die_temp = 60000;
}
switch (version) {
case QPNP_REV_ID_8941_3_1:
switch (vadc->id) {
case COMP_ID_TSMC:
temp_var = ((die_temp - 25000) *
(-QPNP_VBAT_COEFF_1));
break;
default:
case COMP_ID_GF:
/* min(die_temp_c, 60_degC) */
if (die_temp > 60000)
die_temp = 60000;
temp_var = ((die_temp - 25000) *
(-QPNP_VBAT_COEFF_1));
break;
}
break;
case QPNP_REV_ID_8026_1_0:
switch (vadc->id) {
case COMP_ID_TSMC:
temp_var = (((die_temp *
(-QPNP_VBAT_COEFF_11))
+ QPNP_VBAT_COEFF_15));
break;
default:
case COMP_ID_GF:
temp_var = (((die_temp *
(-QPNP_VBAT_COEFF_9))
+ QPNP_VBAT_COEFF_13));
break;
}
break;
case QPNP_REV_ID_8026_2_0:
case QPNP_REV_ID_8026_2_1:
switch (vadc->id) {
case COMP_ID_TSMC:
temp_var = ((die_temp - 25000) *
(-QPNP_VBAT_COEFF_11));
break;
default:
case COMP_ID_GF:
temp_var = ((die_temp - 25000) *
(-QPNP_VBAT_COEFF_9));
break;
}
break;
case QPNP_REV_ID_8026_2_2:
switch (vadc->id) {
case COMP_ID_TSMC:
*result -= QPNP_VBAT_COEFF_23;
temp_var = 0;
break;
default:
case COMP_ID_GF:
*result -= QPNP_VBAT_COEFF_23;
temp_var = 0;
break;
}
break;
case QPNP_REV_ID_8110_2_0:
switch (vadc->id) {
case COMP_ID_SMIC:
*result -= QPNP_VBAT_OFFSET_SMIC;
temp_var = ((die_temp - 25000) *
(QPNP_VBAT_COEFF_17));
break;
default:
case COMP_ID_GF:
*result -= QPNP_VBAT_OFFSET_GF;
temp_var = ((die_temp - 25000) *
(QPNP_VBAT_COEFF_16));
break;
}
break;
case QPNP_REV_ID_8916_1_0:
switch (vadc->id) {
case COMP_ID_SMIC:
temp_var = ((die_temp - 25000) *
(QPNP_VBAT_COEFF_28));
break;
default:
case COMP_ID_GF:
temp_var = ((die_temp - 25000) *
(QPNP_VBAT_COEFF_28));
break;
}
break;
case QPNP_REV_ID_8916_1_1:
switch (vadc->id) {
/* FAB_ID is zero */
case COMP_ID_GF:
temp_var = ((die_temp - 25000) *
(QPNP_VBAT_COEFF_33));
break;
/* FAB_ID is non-zero */
default:
offset = QPNP_VBAT_COEFF_35;
if (die_temp > 50000) {
temp_var = ((die_temp - 25000) *
(QPNP_VBAT_COEFF_34));
}
break;
}
break;
case QPNP_REV_ID_8916_2_0:
switch (vadc->id) {
case COMP_ID_SMIC:
if (die_temp < 0) {
temp_var = (die_temp *
QPNP_VBAT_COEFF_39);
} else if (die_temp > 40000) {
temp_var = ((die_temp - 40000) *
(-QPNP_VBAT_COEFF_40));
}
break;
case COMP_ID_TSMC:
if (die_temp < 10000)
temp_var = ((die_temp - 10000) *
QPNP_VBAT_COEFF_43);
else if (die_temp > 50000)
temp_var = ((die_temp - 50000) *
(-QPNP_VBAT_COEFF_44));
break;
default:
case COMP_ID_GF:
if (die_temp < 20000)
temp_var = ((die_temp - 20000) *
QPNP_VBAT_COEFF_47);
else if (die_temp > 40000)
temp_var = ((die_temp - 40000) *
(-QPNP_VBAT_COEFF_48));
break;
}
break;
case QPNP_REV_ID_8909_1_0:
switch (vadc->id) {
case COMP_ID_SMIC:
if (die_temp < 30000)
temp_var = (-QPNP_VBAT_COEFF_50);
else if (die_temp > 30000)
temp_var = (((die_temp - 30000) *
(-QPNP_VBAT_COEFF_49)) +
(-QPNP_VBAT_COEFF_50));
break;
}
break;
case QPNP_REV_ID_8909_1_1:
switch (vadc->id) {
case COMP_ID_SMIC:
if (die_temp < 30000)
temp_var = (QPNP_VBAT_COEFF_52);
else if (die_temp > 30000)
temp_var = (((die_temp - 30000) *
(-QPNP_VBAT_COEFF_51)) +
(QPNP_VBAT_COEFF_52));
break;
}
break;
default:
temp_var = 0;
break;
}
temp_var = div64_s64(temp_var, QPNP_VBAT_COEFF_3);
temp_var = 1000000 + temp_var;
*result = *result * temp_var;
if (offset)
*result -= offset;
*result = div64_s64(*result, 1000000);
pr_debug("%lld compensated into %lld\n", old, *result);
return 0;
}
int32_t qpnp_vbat_sns_comp_result(struct qpnp_vadc_chip *vadc,
int64_t *result, bool is_pon_ocv)
{
struct qpnp_vadc_result die_temp_result;
int rc = 0;
rc = qpnp_vadc_is_valid(vadc);
if (rc < 0)
return rc;
rc = qpnp_vadc_conv_seq_request(vadc, ADC_SEQ_NONE,
DIE_TEMP, &die_temp_result);
if (rc < 0) {
pr_err("Error reading die_temp\n");
return rc;
}
pr_debug("die-temp = %lld\n", die_temp_result.physical);
if (is_pon_ocv)
rc = qpnp_ocv_comp(result, vadc, die_temp_result.physical);
else
rc = qpnp_vbat_sns_comp(result, vadc,
die_temp_result.physical);
if (rc < 0)
pr_err("Error with vbat compensation\n");
return rc;
}
EXPORT_SYMBOL(qpnp_vbat_sns_comp_result);
static void qpnp_vadc_625mv_channel_sel(struct qpnp_vadc_chip *vadc,
uint32_t *ref_channel_sel)
{
uint32_t dt_index = 0;
/* Check if the buffered 625mV channel exists */
while ((vadc->adc->adc_channels[dt_index].channel_num
!= SPARE1) && (dt_index < vadc->max_channels_available))
dt_index++;
if (dt_index >= vadc->max_channels_available) {
pr_debug("Use default 625mV ref channel\n");
*ref_channel_sel = REF_625MV;
} else {
pr_debug("Use buffered 625mV ref channel\n");
*ref_channel_sel = SPARE1;
}
}
int32_t qpnp_vadc_calib_vref(struct qpnp_vadc_chip *vadc,
enum qpnp_adc_calib_type calib_type,
int *calib_data)
{
struct qpnp_adc_amux_properties conv;
int rc, count = 0, calib_read = 0;
u8 status1 = 0;
if (calib_type == CALIB_ABSOLUTE)
conv.amux_channel = REF_125V;
else if (calib_type == CALIB_RATIOMETRIC)
conv.amux_channel = VDD_VADC;
conv.decimation = DECIMATION_TYPE2;
conv.mode_sel = ADC_OP_NORMAL_MODE << QPNP_VADC_OP_MODE_SHIFT;
conv.hw_settle_time = ADC_CHANNEL_HW_SETTLE_DELAY_0US;
conv.fast_avg_setup = ADC_FAST_AVG_SAMPLE_1;
rc = qpnp_vadc_configure(vadc, &conv);
if (rc) {
pr_err("qpnp_vadc configure failed with %d\n", rc);
goto calib_fail;
}
while (status1 != QPNP_VADC_STATUS1_EOC) {
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1, 1);
if (rc < 0)
return rc;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
usleep_range(QPNP_VADC_CONV_TIME_MIN,
QPNP_VADC_CONV_TIME_MAX);
count++;
if (count > QPNP_VADC_ERR_COUNT) {
rc = -ENODEV;
goto calib_fail;
}
}
rc = qpnp_vadc_read_conversion_result(vadc, &calib_read);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
goto calib_fail;
}
*calib_data = calib_read;
calib_fail:
return rc;
}
int32_t qpnp_vadc_calib_gnd(struct qpnp_vadc_chip *vadc,
enum qpnp_adc_calib_type calib_type,
int *calib_data)
{
struct qpnp_adc_amux_properties conv;
int rc, count = 0, calib_read = 0;
u8 status1 = 0;
uint32_t ref_channel_sel = 0;
if (calib_type == CALIB_ABSOLUTE) {
qpnp_vadc_625mv_channel_sel(vadc, &ref_channel_sel);
conv.amux_channel = ref_channel_sel;
} else if (calib_type == CALIB_RATIOMETRIC)
conv.amux_channel = GND_REF;
conv.decimation = DECIMATION_TYPE2;
conv.mode_sel = ADC_OP_NORMAL_MODE << QPNP_VADC_OP_MODE_SHIFT;
conv.hw_settle_time = ADC_CHANNEL_HW_SETTLE_DELAY_0US;
conv.fast_avg_setup = ADC_FAST_AVG_SAMPLE_1;
rc = qpnp_vadc_configure(vadc, &conv);
if (rc) {
pr_err("qpnp_vadc configure failed with %d\n", rc);
goto calib_fail;
}
while (status1 != QPNP_VADC_STATUS1_EOC) {
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1, 1);
if (rc < 0)
return rc;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
usleep_range(QPNP_VADC_CONV_TIME_MIN,
QPNP_VADC_CONV_TIME_MAX);
count++;
if (count > QPNP_VADC_ERR_COUNT) {
rc = -ENODEV;
goto calib_fail;
}
}
rc = qpnp_vadc_read_conversion_result(vadc, &calib_read);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
goto calib_fail;
}
*calib_data = calib_read;
calib_fail:
return rc;
}
static int32_t qpnp_vadc_calib_device(struct qpnp_vadc_chip *vadc)
{
int rc, calib_read_1 = 0, calib_read_2 = 0;
rc = qpnp_vadc_calib_vref(vadc, CALIB_ABSOLUTE, &calib_read_1);
if (rc) {
pr_err("qpnp adc absolute vref calib failed with %d\n", rc);
goto calib_fail;
}
rc = qpnp_vadc_calib_gnd(vadc, CALIB_ABSOLUTE, &calib_read_2);
if (rc) {
pr_err("qpnp adc absolute gnd calib failed with %d\n", rc);
goto calib_fail;
}
pr_debug("absolute reference raw: 625mV:0x%x 1.25V:0x%x\n",
calib_read_2, calib_read_1);
if (calib_read_1 == calib_read_2) {
pr_err("absolute reference raw: 625mV:0x%x 1.25V:0x%x\n",
calib_read_2, calib_read_1);
rc = -EINVAL;
goto calib_fail;
}
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].dy =
(calib_read_1 - calib_read_2);
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].dx
= QPNP_ADC_625_UV;
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].adc_vref =
calib_read_1;
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].adc_gnd =
calib_read_2;
calib_read_1 = 0;
calib_read_2 = 0;
rc = qpnp_vadc_calib_vref(vadc, CALIB_RATIOMETRIC, &calib_read_1);
if (rc) {
pr_err("qpnp adc ratiometric vref calib failed with %d\n", rc);
goto calib_fail;
}
rc = qpnp_vadc_calib_gnd(vadc, CALIB_RATIOMETRIC, &calib_read_2);
if (rc) {
pr_err("qpnp adc ratiometric gnd calib failed with %d\n", rc);
goto calib_fail;
}
pr_debug("ratiometric reference raw: VDD:0x%x GND:0x%x\n",
calib_read_1, calib_read_2);
if (calib_read_1 == calib_read_2) {
pr_err("ratiometric reference raw: VDD:0x%x GND:0x%x\n",
calib_read_1, calib_read_2);
rc = -EINVAL;
goto calib_fail;
}
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].dy =
(calib_read_1 - calib_read_2);
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].dx =
vadc->adc->adc_prop->adc_vdd_reference;
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].adc_vref
= calib_read_1;
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].adc_gnd
= calib_read_2;
calib_fail:
return rc;
}
int32_t qpnp_get_vadc_gain_and_offset(struct qpnp_vadc_chip *vadc,
struct qpnp_vadc_linear_graph *param,
enum qpnp_adc_calib_type calib_type)
{
int rc = 0;
struct qpnp_vadc_result result;
rc = qpnp_vadc_is_valid(vadc);
if (rc < 0)
return rc;
if (!vadc->vadc_init_calib) {
rc = qpnp_vadc_read(vadc, REF_125V, &result);
if (rc) {
pr_debug("vadc read failed with rc = %d\n", rc);
return rc;
}
}
switch (calib_type) {
case CALIB_RATIOMETRIC:
param->dy =
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].dy;
param->dx =
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].dx;
param->adc_vref = vadc->adc->adc_prop->adc_vdd_reference;
param->adc_gnd =
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].adc_gnd;
break;
case CALIB_ABSOLUTE:
param->dy =
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].dy;
param->dx =
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].dx;
param->adc_vref = vadc->adc->adc_prop->adc_vdd_reference;
param->adc_gnd =
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].adc_gnd;
break;
default:
rc = -EINVAL;
}
return rc;
}
EXPORT_SYMBOL(qpnp_get_vadc_gain_and_offset);
static int32_t qpnp_vadc_wait_for_req_sts_check(struct qpnp_vadc_chip *vadc)
{
u8 status1 = 0;
int rc, count = 0;
/* Re-enable the peripheral */
rc = qpnp_vadc_enable(vadc, true);
if (rc) {
pr_err("vadc re-enable peripheral failed with %d\n", rc);
return rc;
}
/* The VADC_TM bank needs to be disabled for new conversion request */
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1, 1);
if (rc) {
pr_err("vadc read status1 failed with %d\n", rc);
return rc;
}
/* Disable the bank if a conversion is occuring */
while ((status1 & QPNP_VADC_STATUS1_REQ_STS) && (count < QPNP_RETRY)) {
/* Wait time is based on the optimum sampling rate
* and adding enough time buffer to account for ADC conversions
* occuring on different peripheral banks */
usleep_range(QPNP_MIN_TIME, QPNP_MAX_TIME);
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1, 1);
if (rc < 0) {
pr_err("vadc disable failed with %d\n", rc);
return rc;
}
count++;
}
if (count >= QPNP_RETRY)
pr_err("QPNP vadc status req bit did not fall low!!\n");
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1, 1);
/* Disable the peripheral */
rc = qpnp_vadc_enable(vadc, false);
if (rc < 0)
pr_err("vadc peripheral disable failed with %d\n", rc);
return rc;
}
static int32_t qpnp_vadc_manage_meas_int_requests(struct qpnp_vadc_chip *chip)
{
struct qpnp_vadc_chip *vadc = dev_get_drvdata(chip->dev);
int rc = 0, dt_index = 0;
u8 mode_ctl = 0;
pr_debug("meas_int_mode:0x%x, mode_ctl:%0x\n",
vadc->state_copy->meas_int_mode, mode_ctl);
if (vadc->state_copy->meas_int_mode) {
pr_debug("meas interval in progress. Procced to disable it\n");
/* measurement interval in progress. Proceed to disable it */
mode_ctl = ADC_OP_NORMAL_MODE;
rc = qpnp_vadc_mode_select(vadc, mode_ctl);
if (rc < 0) {
pr_err("NORM mode select failed with %d\n", rc);
return rc;
}
/* Disable bank */
rc = qpnp_vadc_enable(vadc, false);
if (rc) {
pr_err("Disable bank failed with %d\n", rc);
return rc;
}
/* Check if a conversion is in progress */
rc = qpnp_vadc_wait_for_req_sts_check(vadc);
if (rc < 0) {
pr_err("req_sts check failed with %d\n", rc);
return rc;
}
vadc->state_copy->meas_int_mode = false;
vadc->state_copy->meas_int_request_in_queue = true;
} else if (vadc->state_copy->meas_int_request_in_queue) {
/* put the meas interval back in queue */
pr_debug("put meas interval back in queue\n");
vadc->adc->amux_prop->amux_channel =
vadc->state_copy->vadc_meas_amux.channel_num;
while ((vadc->adc->adc_channels[dt_index].channel_num
!= vadc->adc->amux_prop->amux_channel) &&
(dt_index < vadc->max_channels_available))
dt_index++;
if (dt_index >= vadc->max_channels_available) {
pr_err("not a valid VADC channel\n");
rc = -EINVAL;
return rc;
}
vadc->adc->amux_prop->decimation =
vadc->adc->amux_prop->decimation;
vadc->adc->amux_prop->hw_settle_time =
vadc->adc->amux_prop->hw_settle_time;
vadc->adc->amux_prop->fast_avg_setup =
vadc->adc->amux_prop->fast_avg_setup;
vadc->adc->amux_prop->mode_sel = ADC_OP_MEASUREMENT_INTERVAL;
rc = qpnp_vadc_configure(vadc, vadc->adc->amux_prop);
if (rc) {
pr_err("vadc configure failed with %d\n", rc);
return rc;
}
vadc->state_copy->meas_int_mode = true;
vadc->state_copy->meas_int_request_in_queue = false;
}
dev_set_drvdata(vadc->dev, vadc);
return 0;
}
struct qpnp_vadc_chip *qpnp_get_vadc(struct device *dev, const char *name)
{
struct qpnp_vadc_chip *vadc;
struct device_node *node = NULL;
char prop_name[QPNP_MAX_PROP_NAME_LEN];
snprintf(prop_name, QPNP_MAX_PROP_NAME_LEN, "qcom,%s-vadc", name);
node = of_parse_phandle(dev->of_node, prop_name, 0);
if (node == NULL)
return ERR_PTR(-ENODEV);
list_for_each_entry(vadc, &qpnp_vadc_device_list, list)
if (vadc->adc->spmi->dev.of_node == node)
return vadc;
return ERR_PTR(-EPROBE_DEFER);
}
EXPORT_SYMBOL(qpnp_get_vadc);
int32_t qpnp_vadc_conv_seq_request(struct qpnp_vadc_chip *vadc,
enum qpnp_vadc_trigger trigger_channel,
enum qpnp_vadc_channels channel,
struct qpnp_vadc_result *result)
{
int rc = 0, scale_type, amux_prescaling, dt_index = 0, calib_type = 0;
uint32_t ref_channel, count = 0, local_idx = 0;
int32_t vref_calib = 0, gnd_calib = 0, new_vref_calib = 0, offset = 0;
int32_t calib_offset = 0;
u8 status1 = 0;
if (qpnp_vadc_is_valid(vadc))
return -EPROBE_DEFER;
mutex_lock(&vadc->adc->adc_lock);
if (vadc->state_copy->vadc_meas_int_enable)
qpnp_vadc_manage_meas_int_requests(vadc);
if (channel == REF_625MV) {
qpnp_vadc_625mv_channel_sel(vadc, &ref_channel);
channel = ref_channel;
}
vadc->adc->amux_prop->amux_channel = channel;
while ((vadc->adc->adc_channels[dt_index].channel_num
!= channel) && (dt_index < vadc->max_channels_available))
dt_index++;
if (dt_index >= vadc->max_channels_available) {
pr_err("not a valid VADC channel\n");
rc = -EINVAL;
goto fail_unlock;
}
calib_type = vadc->adc->adc_channels[dt_index].calib_type;
if (calib_type >= CALIB_NONE) {
pr_err("not a valid calib_type\n");
rc = -EINVAL;
goto fail_unlock;
}
calib_offset = (calib_type == CALIB_ABSOLUTE) ?
QPNP_VADC_ABSOLUTE_RECALIB_OFFSET :
QPNP_VADC_RATIOMETRIC_RECALIB_OFFSET;
rc = qpnp_vadc_version_check(vadc);
if (rc)
goto fail_unlock;
if (vadc->vadc_recalib_check) {
rc = qpnp_vadc_calib_vref(vadc, calib_type, &vref_calib);
if (rc) {
pr_err("Calibration failed\n");
goto fail_unlock;
}
} else if (!vadc->vadc_init_calib) {
rc = qpnp_vadc_calib_device(vadc);
if (rc) {
pr_err("Calibration failed\n");
goto fail_unlock;
} else {
vadc->vadc_init_calib = true;
}
}
recalibrate:
status1 = 0;
vadc->adc->amux_prop->decimation =
vadc->adc->adc_channels[dt_index].adc_decimation;
vadc->adc->amux_prop->hw_settle_time =
vadc->adc->adc_channels[dt_index].hw_settle_time;
vadc->adc->amux_prop->fast_avg_setup =
vadc->adc->adc_channels[dt_index].fast_avg_setup;
if (trigger_channel < ADC_SEQ_NONE)
vadc->adc->amux_prop->mode_sel = (ADC_OP_CONVERSION_SEQUENCER
<< QPNP_VADC_OP_MODE_SHIFT);
else if (trigger_channel == ADC_SEQ_NONE)
vadc->adc->amux_prop->mode_sel = (ADC_OP_NORMAL_MODE
<< QPNP_VADC_OP_MODE_SHIFT);
else {
pr_err("Invalid trigger channel:%d\n", trigger_channel);
goto fail_unlock;
}
vadc->adc->amux_prop->trigger_channel = trigger_channel;
rc = qpnp_vadc_configure(vadc, vadc->adc->amux_prop);
if (rc) {
pr_err("qpnp vadc configure failed with %d\n", rc);
goto fail_unlock;
}
if (vadc->vadc_poll_eoc) {
while (status1 != QPNP_VADC_STATUS1_EOC) {
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1,
&status1, 1);
if (rc < 0)
goto fail_unlock;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
if (status1 == QPNP_VADC_STATUS1_EOC)
break;
usleep_range(QPNP_VADC_CONV_TIME_MIN,
QPNP_VADC_CONV_TIME_MAX);
count++;
if (count > QPNP_VADC_ERR_COUNT) {
pr_err("retry error exceeded\n");
rc = qpnp_vadc_status_debug(vadc);
if (rc < 0)
pr_err("VADC disable failed\n");
rc = -EINVAL;
goto fail_unlock;
}
}
} else {
rc = wait_for_completion_timeout(
&vadc->adc->adc_rslt_completion,
QPNP_ADC_COMPLETION_TIMEOUT);
if (!rc) {
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1,
&status1, 1);
if (rc < 0)
goto fail_unlock;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
if (status1 == QPNP_VADC_STATUS1_EOC)
pr_debug("End of conversion status set\n");
else {
rc = qpnp_vadc_status_debug(vadc);
if (rc < 0)
pr_err("VADC disable failed\n");
rc = -EINVAL;
goto fail_unlock;
}
}
}
if (trigger_channel < ADC_SEQ_NONE) {
rc = qpnp_vadc_read_status(vadc,
vadc->adc->amux_prop->mode_sel);
if (rc)
pr_debug("Conversion sequence timed out - %d\n", rc);
}
rc = qpnp_vadc_read_conversion_result(vadc, &result->adc_code);
if (rc) {
pr_err("qpnp vadc read adc code failed with %d\n", rc);
goto fail_unlock;
}
if (vadc->vadc_recalib_check) {
rc = qpnp_vadc_calib_gnd(vadc, calib_type, &gnd_calib);
if (rc) {
pr_err("Calibration failed\n");
goto fail_unlock;
}
rc = qpnp_vadc_calib_vref(vadc, calib_type, &new_vref_calib);
if (rc < 0) {
pr_err("qpnp vadc calib read failed with %d\n", rc);
goto fail_unlock;
}
if (local_idx >= QPNP_VADC_RECALIB_MAXCNT) {
pr_err("invalid recalib count=%d\n", local_idx);
rc = -EINVAL;
goto fail_unlock;
}
pr_debug(
"chan=%d, calib=%s, vref_calib=0x%x, gnd_calib=0x%x, new_vref_calib=0x%x\n",
channel,
((calib_type == CALIB_ABSOLUTE) ?
"ABSOLUTE" : "RATIOMETRIC"),
vref_calib, gnd_calib, new_vref_calib);
offset = (new_vref_calib - vref_calib);
if (offset < 0)
offset = -offset;
if (offset <= calib_offset) {
pr_debug(
"qpnp vadc recalibration not required,offset:%d\n",
offset);
local_idx = 0;
vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].dy =
(vref_calib - gnd_calib);
vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].dx =
(calib_type == CALIB_ABSOLUTE) ? QPNP_ADC_625_UV :
vadc->adc->adc_prop->adc_vdd_reference;
vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].adc_vref
= vref_calib;
vadc->adc->amux_prop->chan_prop->adc_graph[calib_type].adc_gnd
= gnd_calib;
} else {
vref_calib = new_vref_calib;
local_idx = local_idx + 1;
if (local_idx >= QPNP_VADC_RECALIB_MAXCNT) {
pr_err(
"qpnp_vadc recalibration failed, count=%d",
local_idx);
} else {
pr_debug(
"qpnp vadc recalibration requested,offset:%d\n",
offset);
offset = 0;
goto recalibrate;
}
}
}
amux_prescaling =
vadc->adc->adc_channels[dt_index].chan_path_prescaling;
if (amux_prescaling >= PATH_SCALING_NONE) {
rc = -EINVAL;
goto fail_unlock;
}
vadc->adc->amux_prop->chan_prop->offset_gain_numerator =
qpnp_vadc_amux_scaling_ratio[amux_prescaling].num;
vadc->adc->amux_prop->chan_prop->offset_gain_denominator =
qpnp_vadc_amux_scaling_ratio[amux_prescaling].den;
vadc->adc->amux_prop->chan_prop->calib_type =
vadc->adc->adc_channels[dt_index].calib_type;
scale_type = vadc->adc->adc_channels[dt_index].adc_scale_fn;
if (scale_type >= SCALE_NONE) {
rc = -EBADF;
goto fail_unlock;
}
if ((qpnp_vadc_channel_post_scaling_calib_check(vadc, channel)) < 0)
pr_debug("Post scaling calib type not updated\n");
vadc_scale_fn[scale_type].chan(vadc, result->adc_code,
vadc->adc->adc_prop, vadc->adc->amux_prop->chan_prop, result);
pr_debug("channel=%d, adc_code=%d adc_result=%lld\n",
channel, result->adc_code, result->physical);
fail_unlock:
if (vadc->state_copy->vadc_meas_int_enable)
qpnp_vadc_manage_meas_int_requests(vadc);
mutex_unlock(&vadc->adc->adc_lock);
return rc;
}
EXPORT_SYMBOL(qpnp_vadc_conv_seq_request);
int32_t qpnp_vadc_read(struct qpnp_vadc_chip *vadc,
enum qpnp_vadc_channels channel,
struct qpnp_vadc_result *result)
{
struct qpnp_vadc_result die_temp_result;
int rc = 0;
enum power_supply_property prop;
union power_supply_propval ret = {0, };
if (vadc->vadc_hc) {
rc = qpnp_vadc_hc_read(vadc, channel, result);
if (rc < 0) {
pr_err("Error reading vadc_hc channel %d\n", channel);
return rc;
}
return 0;
}
if (channel == VBAT_SNS) {
rc = qpnp_vadc_conv_seq_request(vadc, ADC_SEQ_NONE,
channel, result);
if (rc < 0) {
pr_err("Error reading vbatt\n");
return rc;
}
rc = qpnp_vadc_conv_seq_request(vadc, ADC_SEQ_NONE,
DIE_TEMP, &die_temp_result);
if (rc < 0) {
pr_err("Error reading die_temp\n");
return rc;
}
rc = qpnp_vbat_sns_comp(&result->physical, vadc,
die_temp_result.physical);
if (rc < 0)
pr_err("Error with vbat compensation\n");
return 0;
} else if (channel == SPARE2) {
/* chg temp channel */
if (!vadc->vadc_chg_vote) {
vadc->vadc_chg_vote =
power_supply_get_by_name("battery");
if (!vadc->vadc_chg_vote) {
pr_err("no vadc_chg_vote found\n");
return -EINVAL;
}
}
prop = POWER_SUPPLY_PROP_FORCE_TLIM;
ret.intval = 1;
rc = vadc->vadc_chg_vote->set_property(vadc->vadc_chg_vote,
prop, &ret);
if (rc) {
pr_err("error enabling the charger circuitry vote\n");
return rc;
}
rc = qpnp_vadc_conv_seq_request(vadc, ADC_SEQ_NONE,
channel, result);
if (rc < 0)
pr_err("Error reading die_temp\n");
ret.intval = 0;
rc = vadc->vadc_chg_vote->set_property(vadc->vadc_chg_vote,
prop, &ret);
if (rc) {
pr_err("error enabling the charger circuitry vote\n");
return rc;
}
return 0;
} else
return qpnp_vadc_conv_seq_request(vadc, ADC_SEQ_NONE,
channel, result);
}
EXPORT_SYMBOL(qpnp_vadc_read);
static void qpnp_vadc_lock(struct qpnp_vadc_chip *vadc)
{
mutex_lock(&vadc->adc->adc_lock);
}
static void qpnp_vadc_unlock(struct qpnp_vadc_chip *vadc)
{
mutex_unlock(&vadc->adc->adc_lock);
}
int32_t qpnp_vadc_iadc_sync_request(struct qpnp_vadc_chip *vadc,
enum qpnp_vadc_channels channel)
{
int rc = 0, dt_index = 0, calib_type = 0;
if (qpnp_vadc_is_valid(vadc))
return -EPROBE_DEFER;
qpnp_vadc_lock(vadc);
vadc->adc->amux_prop->amux_channel = channel;
while ((vadc->adc->adc_channels[dt_index].channel_num
!= channel) && (dt_index < vadc->max_channels_available))
dt_index++;
if (dt_index >= vadc->max_channels_available) {
pr_err("not a valid VADC channel\n");
rc = -EINVAL;
goto fail;
}
calib_type = vadc->adc->adc_channels[dt_index].calib_type;
if (!vadc->vadc_init_calib) {
rc = qpnp_vadc_version_check(vadc);
if (rc)
goto fail;
rc = qpnp_vadc_calib_device(vadc);
if (rc) {
pr_err("Calibration failed\n");
goto fail;
} else
vadc->vadc_init_calib = true;
}
vadc->adc->amux_prop->decimation =
vadc->adc->adc_channels[dt_index].adc_decimation;
vadc->adc->amux_prop->hw_settle_time =
vadc->adc->adc_channels[dt_index].hw_settle_time;
vadc->adc->amux_prop->fast_avg_setup =
vadc->adc->adc_channels[dt_index].fast_avg_setup;
vadc->adc->amux_prop->mode_sel = (ADC_OP_NORMAL_MODE
<< QPNP_VADC_OP_MODE_SHIFT);
vadc->vadc_iadc_sync_lock = true;
rc = qpnp_vadc_configure(vadc, vadc->adc->amux_prop);
if (rc) {
pr_err("qpnp vadc configure failed with %d\n", rc);
goto fail;
}
return rc;
fail:
vadc->vadc_iadc_sync_lock = false;
qpnp_vadc_unlock(vadc);
return rc;
}
EXPORT_SYMBOL(qpnp_vadc_iadc_sync_request);
int32_t qpnp_vadc_iadc_sync_complete_request(struct qpnp_vadc_chip *vadc,
enum qpnp_vadc_channels channel,
struct qpnp_vadc_result *result)
{
int rc = 0, scale_type, amux_prescaling, dt_index = 0;
vadc->adc->amux_prop->amux_channel = channel;
while ((vadc->adc->adc_channels[dt_index].channel_num
!= channel) && (dt_index < vadc->max_channels_available))
dt_index++;
rc = qpnp_vadc_read_conversion_result(vadc, &result->adc_code);
if (rc) {
pr_err("qpnp vadc read adc code failed with %d\n", rc);
goto fail;
}
amux_prescaling =
vadc->adc->adc_channels[dt_index].chan_path_prescaling;
if (amux_prescaling >= PATH_SCALING_NONE) {
rc = -EINVAL;
goto fail;
}
vadc->adc->amux_prop->chan_prop->offset_gain_numerator =
qpnp_vadc_amux_scaling_ratio[amux_prescaling].num;
vadc->adc->amux_prop->chan_prop->offset_gain_denominator =
qpnp_vadc_amux_scaling_ratio[amux_prescaling].den;
scale_type = vadc->adc->adc_channels[dt_index].adc_scale_fn;
if (scale_type >= SCALE_NONE) {
rc = -EBADF;
goto fail;
}
vadc_scale_fn[scale_type].chan(vadc, result->adc_code,
vadc->adc->adc_prop, vadc->adc->amux_prop->chan_prop, result);
fail:
vadc->vadc_iadc_sync_lock = false;
qpnp_vadc_unlock(vadc);
return rc;
}
EXPORT_SYMBOL(qpnp_vadc_iadc_sync_complete_request);
static int32_t qpnp_vadc_thr_update(struct qpnp_vadc_chip *vadc,
int32_t high_thr, int32_t low_thr)
{
int rc = 0;
u8 buf = 0;
pr_debug("client requested high:%d and low:%d\n",
high_thr, low_thr);
buf = QPNP_VADC_THR_LSB_MASK(low_thr);
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_LOW_THR_LSB, &buf, 1);
if (rc < 0) {
pr_err("low threshold lsb setting failed, err:%d\n", rc);
return rc;
}
buf = QPNP_VADC_THR_MSB_MASK(low_thr);
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_LOW_THR_MSB, &buf, 1);
if (rc < 0) {
pr_err("low threshold msb setting failed, err:%d\n", rc);
return rc;
}
buf = QPNP_VADC_THR_LSB_MASK(high_thr);
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_HIGH_THR_LSB, &buf, 1);
if (rc < 0) {
pr_err("high threshold lsb setting failed, err:%d\n", rc);
return rc;
}
buf = QPNP_VADC_THR_MSB_MASK(high_thr);
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_HIGH_THR_MSB, &buf, 1);
if (rc < 0) {
pr_err("high threshold msb setting failed, err:%d\n", rc);
return rc;
}
pr_debug("client requested high:%d and low:%d\n", high_thr, low_thr);
return rc;
}
int32_t qpnp_vadc_channel_monitor(struct qpnp_vadc_chip *chip,
struct qpnp_adc_tm_btm_param *param)
{
uint32_t channel, scale_type = 0;
uint32_t low_thr = 0, high_thr = 0;
int rc = 0, idx = 0, amux_prescaling = 0;
struct qpnp_vadc_chip *vadc = dev_get_drvdata(chip->dev);
u8 buf = 0;
if (qpnp_vadc_is_valid(vadc))
return -EPROBE_DEFER;
if (!vadc->state_copy->vadc_meas_int_enable) {
pr_err("Recurring measurement interval not available\n");
return -EINVAL;
}
if (param->threshold_notification == NULL) {
pr_debug("No notification for high/low temp??\n");
return -EINVAL;
}
mutex_lock(&vadc->adc->adc_lock);
channel = param->channel;
while (idx < vadc->max_channels_available) {
if (vadc->adc->adc_channels[idx].channel_num == channel)
break;
else
idx++;
}
if (idx >= vadc->max_channels_available) {
pr_err("not a valid VADC channel\n");
rc = -EINVAL;
goto fail_unlock;
}
scale_type = vadc->adc->adc_channels[idx].adc_scale_fn;
if (scale_type >= SCALE_RVADC_SCALE_NONE) {
rc = -EBADF;
goto fail_unlock;
}
amux_prescaling =
vadc->adc->adc_channels[idx].chan_path_prescaling;
if (amux_prescaling >= PATH_SCALING_NONE) {
rc = -EINVAL;
goto fail_unlock;
}
vadc->adc->amux_prop->chan_prop->offset_gain_numerator =
qpnp_vadc_amux_scaling_ratio[amux_prescaling].num;
vadc->adc->amux_prop->chan_prop->offset_gain_denominator =
qpnp_vadc_amux_scaling_ratio[amux_prescaling].den;
vadc->adc->amux_prop->chan_prop->calib_type =
vadc->adc->adc_channels[idx].calib_type;
pr_debug("channel:%d, scale_type:%d, dt_idx:%d",
channel, scale_type, idx);
vadc->adc->amux_prop->amux_channel = channel;
vadc->adc->amux_prop->decimation =
vadc->adc->adc_channels[idx].adc_decimation;
vadc->adc->amux_prop->hw_settle_time =
vadc->adc->adc_channels[idx].hw_settle_time;
vadc->adc->amux_prop->fast_avg_setup =
vadc->adc->adc_channels[idx].fast_avg_setup;
vadc->adc->amux_prop->mode_sel = ADC_OP_MEASUREMENT_INTERVAL;
adc_vadc_rscale_fn[scale_type].chan(vadc,
vadc->adc->amux_prop->chan_prop, param,
&low_thr, &high_thr);
if (param->timer_interval >= ADC_MEAS1_INTERVAL_NONE) {
pr_err("Invalid timer interval :%d\n", param->timer_interval);
goto fail_unlock;
}
buf = param->timer_interval;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_MEAS_INTERVAL_CTL, &buf, 1);
if (rc) {
pr_err("vadc meas timer failed with %d\n", rc);
goto fail_unlock;
}
rc = qpnp_vadc_thr_update(vadc, high_thr, low_thr);
if (rc) {
pr_err("vadc thr update failed with %d\n", rc);
goto fail_unlock;
}
rc = qpnp_vadc_configure(vadc, vadc->adc->amux_prop);
if (rc) {
pr_err("vadc configure failed with %d\n", rc);
goto fail_unlock;
}
vadc->state_copy->meas_int_mode = true;
vadc->state_copy->param = param;
vadc->state_copy->vadc_meas_amux.channel_num = channel;
vadc->state_copy->vadc_meas_amux.adc_decimation =
vadc->adc->amux_prop->decimation;
vadc->state_copy->vadc_meas_amux.hw_settle_time =
vadc->adc->amux_prop->hw_settle_time;
vadc->state_copy->vadc_meas_amux.fast_avg_setup =
vadc->adc->amux_prop->fast_avg_setup;
vadc->state_copy->meas_int_request_in_queue = false;
dev_set_drvdata(vadc->dev, vadc);
fail_unlock:
mutex_unlock(&vadc->adc->adc_lock);
return rc;
}
EXPORT_SYMBOL(qpnp_vadc_channel_monitor);
int32_t qpnp_vadc_end_channel_monitor(struct qpnp_vadc_chip *chip)
{
struct qpnp_vadc_chip *vadc = dev_get_drvdata(chip->dev);
u8 mode_ctl = 0;
if (qpnp_vadc_is_valid(vadc))
return -EPROBE_DEFER;
if (!vadc->state_copy->vadc_meas_int_enable) {
pr_err("Recurring measurement interval not available\n");
return -EINVAL;
}
vadc->state_copy->meas_int_mode = false;
vadc->state_copy->meas_int_request_in_queue = false;
dev_set_drvdata(vadc->dev, vadc);
mode_ctl = ADC_OP_NORMAL_MODE;
/* Set measurement in single measurement mode */
qpnp_vadc_mode_select(vadc, mode_ctl);
qpnp_vadc_enable(vadc, false);
return 0;
}
EXPORT_SYMBOL(qpnp_vadc_end_channel_monitor);
static int qpnp_vadc_hc_check_conversion_status(struct qpnp_vadc_chip *vadc)
{
int rc = 0, count = 0;
u8 status1 = 0;
while (status1 != QPNP_VADC_STATUS1_EOC) {
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1, 1);
if (rc < 0)
return rc;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
if (status1 == QPNP_VADC_STATUS1_EOC)
break;
usleep_range(QPNP_VADC_HC1_CONV_TIME_MIN_US,
QPNP_VADC_HC1_CONV_TIME_MAX_US);
count++;
if (count > QPNP_VADC_HC1_ERR_COUNT) {
pr_err("retry error exceeded\n");
rc = qpnp_vadc_status_debug(vadc);
if (rc < 0)
pr_err("VADC disable failed\n");
return -EINVAL;
}
}
return rc;
}
static int qpnp_vadc_hc_read_data(struct qpnp_vadc_chip *vadc, int *data)
{
int rc = 0;
u8 buf = 0, rslt_lsb = 0, rslt_msb = 0;
/* Set hold bit */
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_HC1_DATA_HOLD_CTL, &buf, 1);
if (rc) {
pr_err("debug register dump failed\n");
return rc;
}
buf |= QPNP_VADC_HC1_DATA_HOLD_CTL_FIELD;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_HC1_DATA_HOLD_CTL, &buf, 1);
if (rc) {
pr_err("debug register dump failed\n");
return rc;
}
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_HC1_DATA0, &rslt_lsb, 1);
if (rc < 0) {
pr_err("qpnp adc result read failed for data0\n");
return rc;
}
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_HC1_DATA1, &rslt_msb, 1);
if (rc < 0) {
pr_err("qpnp adc result read failed for data1\n");
return rc;
}
*data = (rslt_msb << 8) | rslt_lsb;
if (*data == QPNP_VADC_HC1_DATA_CHECK_USR) {
pr_err("Invalid data :0x%x\n", *data);
return -EINVAL;
}
rc = qpnp_vadc_enable(vadc, false);
if (rc) {
pr_err("VADC disable failed\n");
return rc;
}
/* De-assert hold bit */
buf &= ~QPNP_VADC_HC1_DATA_HOLD_CTL_FIELD;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_HC1_DATA_HOLD_CTL, &buf, 1);
if (rc)
pr_err("de-asserting hold bit failed\n");
return rc;
}
static void qpnp_vadc_hc_update_adc_dig_param(struct qpnp_vadc_chip *vadc,
struct qpnp_adc_amux *amux_prop, u8 *data)
{
/* Update CAL value */
*data &= ~QPNP_VADC_HC1_CAL_VAL;
*data |= (amux_prop->cal_val << QPNP_VADC_HC1_CAL_VAL_SHIFT);
/* Update CAL select */
*data &= ~QPNP_VADC_HC1_CAL_SEL_MASK;
*data |= (amux_prop->calib_type << QPNP_VADC_HC1_CAL_SEL_SHIFT);
/* Update Decimation ratio select */
*data &= ~QPNP_VADC_HC1_DEC_RATIO_SEL;
*data |= (amux_prop->adc_decimation << QPNP_VADC_HC1_DEC_RATIO_SHIFT);
pr_debug("VADC_DIG_PARAM value:0x%x\n", *data);
}
static int qpnp_vadc_hc_configure(struct qpnp_vadc_chip *vadc,
struct qpnp_adc_amux *amux_prop)
{
int rc = 0;
u8 buf[6];
/* Read registers 0x42 through 0x46 */
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_HC1_ADC_DIG_PARAM, buf, 6);
if (rc < 0) {
pr_err("qpnp adc configure block read failed\n");
return rc;
}
/* ADC Digital param selection */
qpnp_vadc_hc_update_adc_dig_param(vadc, amux_prop, &buf[0]);
/* Update fast average sample value */
buf[1] &= (u8) ~QPNP_VADC_HC1_FAST_AVG_SAMPLES_MASK;
buf[1] |= amux_prop->fast_avg_setup;
/* Select ADC channel */
buf[2] = amux_prop->channel_num;
/* Select hw settle delay for the channel */
buf[3] &= (u8) ~QPNP_VADC_HC1_DELAY_CTL_MASK;
buf[3] |= amux_prop->hw_settle_time;
/* Select ADC enable */
buf[4] |= QPNP_VADC_HC1_ADC_EN;
/* Select CONV request */
buf[5] |= QPNP_VADC_HC1_CONV_REQ_START;
if (!vadc->vadc_poll_eoc)
reinit_completion(&vadc->adc->adc_rslt_completion);
pr_debug("dig:0x%x, fast_avg:0x%x, channel:0x%x, hw_settle:0x%x\n",
buf[0], buf[1], buf[2], buf[3]);
/* Block register write from 0x42 through 0x46 */
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_HC1_ADC_DIG_PARAM, buf, 6);
if (rc < 0) {
pr_err("qpnp adc block register configure failed\n");
return rc;
}
return 0;
}
int32_t qpnp_vadc_hc_read(struct qpnp_vadc_chip *vadc,
enum qpnp_vadc_channels channel,
struct qpnp_vadc_result *result)
{
int rc = 0, scale_type, amux_prescaling, dt_index = 0, calib_type = 0;
struct qpnp_adc_amux amux_prop;
if (qpnp_vadc_is_valid(vadc))
return -EPROBE_DEFER;
mutex_lock(&vadc->adc->adc_lock);
while ((vadc->adc->adc_channels[dt_index].channel_num
!= channel) && (dt_index < vadc->max_channels_available))
dt_index++;
if (dt_index >= vadc->max_channels_available) {
pr_err("not a valid VADC channel:%d\n", channel);
rc = -EINVAL;
goto fail_unlock;
}
calib_type = vadc->adc->adc_channels[dt_index].calib_type;
if (calib_type >= ADC_HC_CAL_SEL_NONE) {
pr_err("not a valid calib_type\n");
rc = -EINVAL;
goto fail_unlock;
}
amux_prop.adc_decimation =
vadc->adc->adc_channels[dt_index].adc_decimation;
amux_prop.calib_type = vadc->adc->adc_channels[dt_index].calib_type;
amux_prop.cal_val = vadc->adc->adc_channels[dt_index].cal_val;
amux_prop.fast_avg_setup =
vadc->adc->adc_channels[dt_index].fast_avg_setup;
amux_prop.channel_num = channel;
amux_prop.hw_settle_time =
vadc->adc->adc_channels[dt_index].hw_settle_time;
rc = qpnp_vadc_hc_configure(vadc, &amux_prop);
if (rc < 0) {
pr_err("Configuring VADC channel failed with %d\n", rc);
goto fail_unlock;
}
if (vadc->vadc_poll_eoc) {
rc = qpnp_vadc_hc_check_conversion_status(vadc);
if (rc < 0) {
pr_err("polling mode conversion failed\n");
goto fail_unlock;
}
} else {
rc = wait_for_completion_timeout(
&vadc->adc->adc_rslt_completion,
QPNP_ADC_COMPLETION_TIMEOUT);
if (!rc) {
rc = qpnp_vadc_hc_check_conversion_status(vadc);
if (rc < 0) {
pr_err("interrupt mode conversion failed\n");
goto fail_unlock;
}
pr_debug("End of conversion status set\n");
}
}
rc = qpnp_vadc_hc_read_data(vadc, &result->adc_code);
if (rc) {
pr_err("qpnp vadc read adc code failed with %d\n", rc);
goto fail_unlock;
}
amux_prescaling =
vadc->adc->adc_channels[dt_index].chan_path_prescaling;
if (amux_prescaling >= PATH_SCALING_NONE) {
rc = -EINVAL;
goto fail_unlock;
}
vadc->adc->amux_prop->chan_prop->offset_gain_numerator =
qpnp_vadc_amux_scaling_ratio[amux_prescaling].num;
vadc->adc->amux_prop->chan_prop->offset_gain_denominator =
qpnp_vadc_amux_scaling_ratio[amux_prescaling].den;
scale_type = vadc->adc->adc_channels[dt_index].adc_scale_fn;
if (scale_type >= SCALE_NONE) {
rc = -EBADF;
goto fail_unlock;
}
/* Note: Scaling functions for VADC_HC do not need offset/gain */
vadc_scale_fn[scale_type].chan(vadc, result->adc_code,
vadc->adc->adc_prop, vadc->adc->amux_prop->chan_prop, result);
pr_debug("channel=0x%x, adc_code=0x%x adc_result=%lld\n",
channel, result->adc_code, result->physical);
fail_unlock:
mutex_unlock(&vadc->adc->adc_lock);
return rc;
}
EXPORT_SYMBOL(qpnp_vadc_hc_read);
static ssize_t qpnp_adc_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct qpnp_vadc_chip *vadc = dev_get_drvdata(dev);
struct qpnp_vadc_result result;
int rc = -1;
rc = qpnp_vadc_read(vadc, attr->index, &result);
if (rc) {
pr_err("VADC read error with %d\n", rc);
return 0;
}
return snprintf(buf, QPNP_ADC_HWMON_NAME_LENGTH,
"Result:%lld Raw:%x\n", result.physical, result.adc_code);
}
static struct sensor_device_attribute qpnp_adc_attr =
SENSOR_ATTR(NULL, S_IRUGO, qpnp_adc_show, NULL, 0);
static int32_t qpnp_vadc_init_hwmon(struct qpnp_vadc_chip *vadc,
struct spmi_device *spmi)
{
struct device_node *child;
struct device_node *node = spmi->dev.of_node;
int rc = 0, i = 0, channel;
for_each_child_of_node(node, child) {
channel = vadc->adc->adc_channels[i].channel_num;
qpnp_adc_attr.index = vadc->adc->adc_channels[i].channel_num;
qpnp_adc_attr.dev_attr.attr.name =
vadc->adc->adc_channels[i].name;
memcpy(&vadc->sens_attr[i], &qpnp_adc_attr,
sizeof(qpnp_adc_attr));
sysfs_attr_init(&vadc->sens_attr[i].dev_attr.attr);
rc = device_create_file(&spmi->dev,
&vadc->sens_attr[i].dev_attr);
if (rc) {
dev_err(&spmi->dev,
"device_create_file failed for dev %s\n",
vadc->adc->adc_channels[i].name);
goto hwmon_err_sens;
}
i++;
}
return 0;
hwmon_err_sens:
pr_err("Init HWMON failed for qpnp_adc with %d\n", rc);
return rc;
}
static int qpnp_vadc_get_temp(struct thermal_zone_device *thermal,
unsigned long *temp)
{
struct qpnp_vadc_thermal_data *vadc_therm = thermal->devdata;
struct qpnp_vadc_chip *vadc = vadc_therm->vadc_dev;
struct qpnp_vadc_result result;
int rc = 0;
rc = qpnp_vadc_read(vadc,
vadc_therm->vadc_channel, &result);
if (rc) {
if (rc != -EPROBE_DEFER)
pr_err("VADC read error with %d\n", rc);
return rc;
}
*temp = result.physical;
return rc;
}
static struct thermal_zone_device_ops qpnp_vadc_thermal_ops = {
.get_temp = qpnp_vadc_get_temp,
};
static int32_t qpnp_vadc_init_thermal(struct qpnp_vadc_chip *vadc,
struct spmi_device *spmi)
{
struct device_node *child;
struct device_node *node = spmi->dev.of_node;
int rc = 0, i = 0;
bool thermal_node = false;
if (node == NULL)
goto thermal_err_sens;
for_each_child_of_node(node, child) {
char name[QPNP_THERMALNODE_NAME_LENGTH];
vadc->vadc_therm_chan[i].vadc_channel =
vadc->adc->adc_channels[i].channel_num;
vadc->vadc_therm_chan[i].thermal_chan = i;
thermal_node = of_property_read_bool(child,
"qcom,vadc-thermal-node");
if (thermal_node) {
/* Register with the thermal zone */
vadc->vadc_therm_chan[i].thermal_node = true;
snprintf(name, sizeof(name), "%s",
vadc->adc->adc_channels[i].name);
vadc->vadc_therm_chan[i].vadc_dev = vadc;
vadc->vadc_therm_chan[i].tz_dev =
thermal_zone_device_register(name,
0, 0, &vadc->vadc_therm_chan[i],
&qpnp_vadc_thermal_ops, NULL, 0, 0);
if (IS_ERR(vadc->vadc_therm_chan[i].tz_dev)) {
pr_err("thermal device register failed.\n");
goto thermal_err_sens;
}
}
i++;
thermal_node = false;
}
return 0;
thermal_err_sens:
pr_err("Init HWMON failed for qpnp_adc with %d\n", rc);
return rc;
}
static const struct of_device_id qpnp_vadc_match_table[] = {
{ .compatible = "qcom,qpnp-vadc",
},
{ .compatible = "qcom,qpnp-vadc-hc",
},
{}
};
static int qpnp_vadc_probe(struct spmi_device *spmi)
{
struct qpnp_vadc_chip *vadc;
struct qpnp_adc_drv *adc_qpnp;
struct qpnp_vadc_thermal_data *adc_thermal;
struct device_node *node = spmi->dev.of_node;
struct device_node *child;
const struct of_device_id *id;
int rc, count_adc_channel_list = 0, i = 0;
u8 fab_id = 0;
for_each_child_of_node(node, child)
count_adc_channel_list++;
if (!count_adc_channel_list) {
pr_err("No channel listing\n");
return -EINVAL;
}
id = of_match_node(qpnp_vadc_match_table, node);
if (id == NULL) {
pr_err("qpnp_vadc_match of_node prop not present\n");
return -ENODEV;
}
vadc = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_vadc_chip) +
(sizeof(struct sensor_device_attribute) *
count_adc_channel_list), GFP_KERNEL);
if (!vadc) {
dev_err(&spmi->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
vadc->dev = &(spmi->dev);
adc_qpnp = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_adc_drv),
GFP_KERNEL);
if (!adc_qpnp)
return -ENOMEM;
vadc->state_copy = devm_kzalloc(&spmi->dev,
sizeof(struct qpnp_vadc_mode_state), GFP_KERNEL);
if (!vadc->state_copy)
return -ENOMEM;
vadc->adc = adc_qpnp;
adc_thermal = devm_kzalloc(&spmi->dev,
(sizeof(struct qpnp_vadc_thermal_data) *
count_adc_channel_list), GFP_KERNEL);
if (!adc_thermal) {
dev_err(&spmi->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
vadc->vadc_therm_chan = adc_thermal;
if (!strcmp(id->compatible, "qcom,qpnp-vadc-hc")) {
vadc->vadc_hc = true;
vadc->adc->adc_hc = true;
}
rc = qpnp_adc_get_devicetree_data(spmi, vadc->adc);
if (rc) {
dev_err(&spmi->dev, "failed to read device tree\n");
return rc;
}
mutex_init(&vadc->adc->adc_lock);
rc = qpnp_vadc_init_hwmon(vadc, spmi);
if (rc) {
dev_err(&spmi->dev, "failed to initialize qpnp hwmon adc\n");
return rc;
}
vadc->vadc_hwmon = hwmon_device_register(&vadc->adc->spmi->dev);
rc = qpnp_vadc_init_thermal(vadc, spmi);
if (rc) {
dev_err(&spmi->dev, "failed to initialize qpnp thermal adc\n");
return rc;
}
vadc->vadc_init_calib = false;
vadc->max_channels_available = count_adc_channel_list;
rc = qpnp_vadc_read_reg(vadc, QPNP_INT_TEST_VAL, &fab_id, 1);
if (rc < 0) {
pr_err("qpnp adc comp id failed with %d\n", rc);
goto err_setup;
}
vadc->id = fab_id;
pr_debug("fab_id = %d\n", fab_id);
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_REVISION2,
&vadc->revision_dig_major, 1);
if (rc < 0) {
pr_err("qpnp adc dig_major rev read failed with %d\n", rc);
goto err_setup;
}
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_REVISION3,
&vadc->revision_ana_minor, 1);
if (rc < 0) {
pr_err("qpnp adc ana_minor rev read failed with %d\n", rc);
goto err_setup;
}
rc = qpnp_vadc_warm_rst_configure(vadc);
if (rc < 0) {
pr_err("Setting perp reset on warm reset failed %d\n", rc);
goto err_setup;
}
INIT_WORK(&vadc->trigger_completion_work, qpnp_vadc_work);
vadc->vadc_recalib_check = of_property_read_bool(node,
"qcom,vadc-recalib-check");
vadc->vadc_poll_eoc = of_property_read_bool(node,
"qcom,vadc-poll-eoc");
if (!vadc->vadc_poll_eoc) {
rc = devm_request_irq(&spmi->dev, vadc->adc->adc_irq_eoc,
qpnp_vadc_isr, IRQF_TRIGGER_RISING,
"qpnp_vadc_interrupt", vadc);
if (rc) {
dev_err(&spmi->dev,
"failed to request adc irq with error %d\n", rc);
goto err_setup;
} else {
enable_irq_wake(vadc->adc->adc_irq_eoc);
}
} else
device_init_wakeup(vadc->dev, 1);
vadc->state_copy->vadc_meas_int_enable = of_property_read_bool(node,
"qcom,vadc-meas-int-mode");
if (vadc->state_copy->vadc_meas_int_enable) {
vadc->adc->adc_high_thr_irq = spmi_get_irq_byname(spmi,
NULL, "high-thr-en-set");
if (vadc->adc->adc_high_thr_irq < 0) {
pr_err("Invalid irq\n");
rc = -ENXIO;
goto err_setup;
}
vadc->adc->adc_low_thr_irq = spmi_get_irq_byname(spmi,
NULL, "low-thr-en-set");
if (vadc->adc->adc_low_thr_irq < 0) {
pr_err("Invalid irq\n");
rc = -ENXIO;
goto err_setup;
}
rc = devm_request_irq(&spmi->dev, vadc->adc->adc_high_thr_irq,
qpnp_vadc_high_thr_isr,
IRQF_TRIGGER_RISING, "qpnp_vadc_high_interrupt", vadc);
if (rc) {
dev_err(&spmi->dev, "failed to request adc irq\n");
goto err_setup;
} else {
enable_irq_wake(vadc->adc->adc_high_thr_irq);
}
rc = devm_request_irq(&spmi->dev, vadc->adc->adc_low_thr_irq,
qpnp_vadc_low_thr_isr,
IRQF_TRIGGER_RISING, "qpnp_vadc_low_interrupt", vadc);
if (rc) {
dev_err(&spmi->dev, "failed to request adc irq\n");
goto err_setup;
} else {
enable_irq_wake(vadc->adc->adc_low_thr_irq);
}
INIT_WORK(&vadc->trigger_high_thr_work,
qpnp_vadc_high_thr_fn);
INIT_WORK(&vadc->trigger_low_thr_work, qpnp_vadc_low_thr_fn);
}
vadc->vadc_iadc_sync_lock = false;
dev_set_drvdata(&spmi->dev, vadc);
list_add(&vadc->list, &qpnp_vadc_device_list);
return 0;
err_setup:
for_each_child_of_node(node, child) {
device_remove_file(&spmi->dev,
&vadc->sens_attr[i].dev_attr);
if (vadc->vadc_therm_chan[i].thermal_node)
thermal_zone_device_unregister(
vadc->vadc_therm_chan[i].tz_dev);
i++;
}
hwmon_device_unregister(vadc->vadc_hwmon);
return rc;
}
static int qpnp_vadc_remove(struct spmi_device *spmi)
{
struct qpnp_vadc_chip *vadc = dev_get_drvdata(&spmi->dev);
struct device_node *node = spmi->dev.of_node;
struct device_node *child;
int i = 0;
for_each_child_of_node(node, child) {
device_remove_file(&spmi->dev,
&vadc->sens_attr[i].dev_attr);
if (vadc->vadc_therm_chan[i].thermal_node)
thermal_zone_device_unregister(
vadc->vadc_therm_chan[i].tz_dev);
i++;
}
hwmon_device_unregister(vadc->vadc_hwmon);
list_del(&vadc->list);
if (vadc->adc->hkadc_ldo && vadc->adc->hkadc_ldo_ok)
qpnp_adc_free_voltage_resource(vadc->adc);
dev_set_drvdata(&spmi->dev, NULL);
return 0;
}
static int qpnp_vadc_suspend_noirq(struct device *dev)
{
struct qpnp_vadc_chip *vadc = dev_get_drvdata(dev);
u8 status = 0;
qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status, 1);
if (((status & QPNP_VADC_STATUS1_OP_MODE_MASK) >>
QPNP_VADC_OP_MODE_SHIFT) == QPNP_VADC_MEAS_INT_MODE) {
pr_debug("Meas interval in progress\n");
} else if (vadc->vadc_poll_eoc) {
status &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
pr_debug("vadc conversion status=%d\n", status);
if (status != QPNP_VADC_STATUS1_EOC) {
pr_err(
"Aborting suspend, adc conversion requested while suspending\n");
return -EBUSY;
}
}
return 0;
}
static const struct dev_pm_ops qpnp_vadc_pm_ops = {
.suspend_noirq = qpnp_vadc_suspend_noirq,
};
static struct spmi_driver qpnp_vadc_driver = {
.driver = {
.name = "qcom,qpnp-vadc",
.of_match_table = qpnp_vadc_match_table,
.pm = &qpnp_vadc_pm_ops,
},
.probe = qpnp_vadc_probe,
.remove = qpnp_vadc_remove,
};
static int __init qpnp_vadc_init(void)
{
return spmi_driver_register(&qpnp_vadc_driver);
}
module_init(qpnp_vadc_init);
static void __exit qpnp_vadc_exit(void)
{
spmi_driver_unregister(&qpnp_vadc_driver);
}
module_exit(qpnp_vadc_exit);
MODULE_DESCRIPTION("QPNP PMIC Voltage ADC driver");
MODULE_LICENSE("GPL v2");