blob: f82ddc3b008b38f849db91cf96a2d4115cb276e1 [file] [log] [blame]
/*
* Copyright (c) 2016-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/debugfs.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/cpu.h>
#include <linux/platform_device.h>
#include <linux/of_platform.h>
#include <linux/pm_opp.h>
#include <linux/pm_qos.h>
#include <linux/interrupt.h>
#include <linux/regulator/driver.h>
#include <linux/regmap.h>
#include <linux/uaccess.h>
#include <linux/sched.h>
#include <soc/qcom/scm.h>
#include <dt-bindings/clock/qcom,cpu-osm.h>
#include "common.h"
#include "clk-regmap.h"
#include "clk-rcg.h"
#include "clk-debug.h"
enum {
LMH_LITE_CLK_SRC,
P_XO,
};
enum clk_osm_bases {
OSM_BASE,
PLL_BASE,
EFUSE_BASE,
ACD_BASE,
NUM_BASES,
};
enum clk_osm_lut_data {
FREQ,
FREQ_DATA,
PLL_OVERRIDES,
SPARE_DATA,
VIRTUAL_CORNER,
NUM_FIELDS,
};
enum clk_osm_trace_method {
XOR_PACKET,
PERIODIC_PACKET,
};
enum clk_osm_trace_packet_id {
TRACE_PACKET0,
TRACE_PACKET1,
TRACE_PACKET2,
TRACE_PACKET3,
};
#define SEQ_REG(n) (0x300 + (n) * 4)
#define MEM_ACC_SEQ_REG_CFG_START(n) (SEQ_REG(12 + (n)))
#define MEM_ACC_SEQ_CONST(n) (n)
#define MEM_ACC_INSTR_COMP(n) (0x67 + ((n) * 0x40))
#define MEM_ACC_SEQ_REG_VAL_START(n) (SEQ_REG(60 + (n)))
#define SEQ_REG1_OFFSET 0x1048
#define VERSION_REG 0x0
#define OSM_TABLE_SIZE 40
#define MAX_CLUSTER_CNT 2
#define LLM_SW_OVERRIDE_CNT 3
#define CORE_COUNT_VAL(val) ((val & GENMASK(18, 16)) >> 16)
#define SINGLE_CORE 1
#define MAX_CORE_COUNT 4
#define DEBUG_REG_NUM 3
#define ENABLE_REG 0x1004
#define INDEX_REG 0x1150
#define FREQ_REG 0x1154
#define VOLT_REG 0x1158
#define OVERRIDE_REG 0x115C
#define SPARE_REG 0x1164
#define OSM_CYCLE_COUNTER_CTRL_REG 0x1F00
#define OSM_CYCLE_COUNTER_STATUS_REG 0x1F04
#define DCVS_PERF_STATE_DESIRED_REG 0x1F10
#define DCVS_PERF_STATE_DEVIATION_INTR_STAT 0x1F14
#define DCVS_PERF_STATE_DEVIATION_INTR_EN 0x1F18
#define DCVS_PERF_STATE_DEVIATION_INTR_CLEAR 0x1F1C
#define DCVS_PERF_STATE_DEVIATION_CORRECTED_INTR_STAT 0x1F20
#define DCVS_PERF_STATE_DEVIATION_CORRECTED_INTR_EN 0x1F24
#define DCVS_PERF_STATE_DEVIATION_CORRECTED_INTR_CLEAR 0x1F28
#define DCVS_PERF_STATE_MET_INTR_STAT 0x1F2C
#define DCVS_PERF_STATE_MET_INTR_EN 0x1F30
#define DCVS_PERF_STATE_MET_INTR_CLR 0x1F34
#define OSM_CORE_TABLE_SIZE 8192
#define OSM_REG_SIZE 32
#define WDOG_DOMAIN_PSTATE_STATUS 0x1c00
#define WDOG_PROGRAM_COUNTER 0x1c74
#define OSM_CYCLE_COUNTER_USE_XO_EDGE_EN BIT(8)
#define PLL_MODE 0x0
#define PLL_L_VAL 0x4
#define PLL_USER_CTRL 0xC
#define PLL_CONFIG_CTL_LO 0x10
#define PLL_TEST_CTL_HI 0x1C
#define PLL_STATUS 0x2C
#define PLL_LOCK_DET_MASK BIT(16)
#define PLL_WAIT_LOCK_TIME_US 10
#define PLL_WAIT_LOCK_TIME_NS (PLL_WAIT_LOCK_TIME_US * 1000)
#define PLL_MIN_LVAL 43
#define L_VAL(freq_data) ((freq_data) & GENMASK(7, 0))
#define CC_ZERO_BEHAV_CTRL 0x100C
#define SPM_CC_DCVS_DISABLE 0x1020
#define SPM_CC_CTRL 0x1028
#define SPM_CC_HYSTERESIS 0x101C
#define SPM_CORE_RET_MAPPING 0x1024
#define CFG_DELAY_VAL_3 0x12C
#define LLM_FREQ_VOTE_HYSTERESIS 0x102C
#define LLM_VOLT_VOTE_HYSTERESIS 0x1030
#define LLM_INTF_DCVS_DISABLE 0x1034
#define ENABLE_OVERRIDE BIT(0)
#define ITM_CL0_DISABLE_CL1_ENABLED 0x2
#define ITM_CL0_ENABLED_CL1_DISABLE 0x1
#define APM_MX_MODE 0
#define APM_APC_MODE BIT(1)
#define APM_MODE_SWITCH_MASK (BVAL(4, 2, 7) | BVAL(1, 0, 3))
#define APM_MX_MODE_VAL 0
#define APM_APC_MODE_VAL 0x3
#define GPLL_SEL 0x400
#define PLL_EARLY_SEL 0x500
#define PLL_MAIN_SEL 0x300
#define RCG_UPDATE 0x3
#define RCG_UPDATE_SUCCESS 0x2
#define PLL_POST_DIV1 0x1F
#define PLL_POST_DIV2 0x11F
#define LLM_SW_OVERRIDE_REG 0x1038
#define VMIN_REDUC_ENABLE_REG 0x103C
#define VMIN_REDUC_TIMER_REG 0x1040
#define PDN_FSM_CTRL_REG 0x1070
#define CC_BOOST_TIMER_REG0 0x1074
#define CC_BOOST_TIMER_REG1 0x1078
#define CC_BOOST_TIMER_REG2 0x107C
#define CC_BOOST_EN_MASK BIT(0)
#define PS_BOOST_EN_MASK BIT(1)
#define DCVS_BOOST_EN_MASK BIT(2)
#define PC_RET_EXIT_DROOP_EN_MASK BIT(3)
#define WFX_DROOP_EN_MASK BIT(4)
#define DCVS_DROOP_EN_MASK BIT(5)
#define LMH_PS_EN_MASK BIT(6)
#define IGNORE_PLL_LOCK_MASK BIT(15)
#define SAFE_FREQ_WAIT_NS 5000
#define DEXT_DECREMENT_WAIT_NS 1000
#define DCVS_BOOST_TIMER_REG0 0x1084
#define DCVS_BOOST_TIMER_REG1 0x1088
#define DCVS_BOOST_TIMER_REG2 0x108C
#define PS_BOOST_TIMER_REG0 0x1094
#define PS_BOOST_TIMER_REG1 0x1098
#define PS_BOOST_TIMER_REG2 0x109C
#define BOOST_PROG_SYNC_DELAY_REG 0x10A0
#define DROOP_CTRL_REG 0x10A4
#define DROOP_RELEASE_TIMER_CTRL 0x10A8
#define DROOP_PROG_SYNC_DELAY_REG 0x10BC
#define DROOP_UNSTALL_TIMER_CTRL_REG 0x10AC
#define DROOP_WAIT_TO_RELEASE_TIMER_CTRL0_REG 0x10B0
#define DROOP_WAIT_TO_RELEASE_TIMER_CTRL1_REG 0x10B4
#define OSM_PLL_SW_OVERRIDE_EN 0x10C0
#define PLL_SW_OVERRIDE_DROOP_EN BIT(0)
#define DCVS_DROOP_TIMER_CTRL 0x10B8
#define SEQ_MEM_ADDR 0x500
#define SEQ_CFG_BR_ADDR 0x170
#define MAX_INSTRUCTIONS 256
#define MAX_BR_INSTRUCTIONS 49
#define MAX_MEM_ACC_LEVELS 3
#define MAX_MEM_ACC_VAL_PER_LEVEL 3
#define MAX_MEM_ACC_VALUES (MAX_MEM_ACC_LEVELS * \
MAX_MEM_ACC_VAL_PER_LEVEL)
#define MEM_ACC_APM_READ_MASK 0xff
#define TRACE_CTRL 0x1F38
#define TRACE_CTRL_EN_MASK BIT(0)
#define TRACE_CTRL_ENABLE 1
#define TRACE_CTRL_DISABLE 0
#define TRACE_CTRL_ENABLE_WDOG_STATUS BIT(30)
#define TRACE_CTRL_PACKET_TYPE_MASK BVAL(2, 1, 3)
#define TRACE_CTRL_PACKET_TYPE_SHIFT 1
#define TRACE_CTRL_PERIODIC_TRACE_EN_MASK BIT(3)
#define TRACE_CTRL_PERIODIC_TRACE_ENABLE BIT(3)
#define PERIODIC_TRACE_TIMER_CTRL 0x1F3C
#define PERIODIC_TRACE_MIN_NS 1000
#define PERIODIC_TRACE_MAX_NS 21474836475ULL
#define PERIODIC_TRACE_DEFAULT_NS 1000000
#define PLL_DD_USER_CTL_LO_ENABLE 0x0f04c408
#define PLL_DD_USER_CTL_LO_DISABLE 0x1f04c41f
#define PLL_DD_D0_USER_CTL_LO 0x17916208
#define PLL_DD_D1_USER_CTL_LO 0x17816208
#define PWRCL_EFUSE_SHIFT 0
#define PWRCL_EFUSE_MASK 0
#define PERFCL_EFUSE_SHIFT 29
#define PERFCL_EFUSE_MASK 0x7
/* ACD registers */
#define ACD_HW_VERSION 0x0
#define ACDCR 0x4
#define ACDTD 0x8
#define ACDSSCR 0x28
#define ACD_EXTINT_CFG 0x30
#define ACD_DCVS_SW 0x34
#define ACD_GFMUX_CFG 0x3c
#define ACD_READOUT_CFG 0x48
#define ACD_AUTOXFER_CFG 0x80
#define ACD_AUTOXFER 0x84
#define ACD_AUTOXFER_CTL 0x88
#define ACD_AUTOXFER_STATUS 0x8c
#define ACD_WRITE_CTL 0x90
#define ACD_WRITE_STATUS 0x94
#define ACD_READOUT 0x98
#define ACD_MASTER_ONLY_REG_ADDR 0x80
#define ACD_WRITE_CTL_UPDATE_EN BIT(0)
#define ACD_WRITE_CTL_SELECT_SHIFT 1
#define ACD_GFMUX_CFG_SELECT BIT(0)
#define ACD_AUTOXFER_START_CLEAR 0
#define ACD_AUTOXFER_START_SET BIT(0)
#define AUTO_XFER_DONE_MASK BIT(0)
#define ACD_DCVS_SW_DCVS_IN_PRGR_SET BIT(0)
#define ACD_DCVS_SW_DCVS_IN_PRGR_CLEAR 0
#define ACD_LOCAL_TRANSFER_TIMEOUT_NS 500
#define ACD_REG_RELATIVE_ADDR(addr) (addr / 4)
#define ACD_REG_RELATIVE_ADDR_BITMASK(addr) \
(1 << (ACD_REG_RELATIVE_ADDR(addr)))
#define F(f, s, h, m, n) { (f), (s), (2 * (h) - 1), (m), (n) }
static u32 seq_instr[] = {
0xc2005000, 0x2c9e3b21, 0xc0ab2cdc, 0xc2882525, 0x359dc491,
0x700a500b, 0x5001aefc, 0xaefd7000, 0x390938c8, 0xcb44c833,
0xce56cd54, 0x341336e0, 0xa4baadba, 0xb480a493, 0x10004000,
0x70005001, 0x1000500c, 0xc792c5a1, 0x501625e1, 0x3da335a2,
0x50170006, 0x50150006, 0x1000c633, 0x1000acb3, 0xc422acb4,
0xaefc1000, 0x700a500b, 0x70005001, 0x5010aefd, 0x5012700b,
0xad41700c, 0x84e5adb9, 0xb3808566, 0x239b0003, 0x856484e3,
0xb9800007, 0x2bad0003, 0xac3aa20b, 0x0003181b, 0x0003bb40,
0xa30d239b, 0x500c181b, 0x5011500f, 0x181b3413, 0x853984b9,
0x0003bd80, 0xa0012ba4, 0x72050803, 0x500e1000, 0x500c1000,
0x1c011c0a, 0x3b181c06, 0x1c073b43, 0x1c061000, 0x1c073983,
0x1c02500c, 0x10001c0a, 0x70015002, 0x81031000, 0x70025003,
0x70035004, 0x3b441000, 0x81553985, 0x70025003, 0x50054003,
0xa1467009, 0x0003b1c0, 0x4005238b, 0x835a1000, 0x855c84db,
0x1000a51f, 0x84de835d, 0xa52c855c, 0x50061000, 0x39cd3a4c,
0x3ad03a8f, 0x10004006, 0x70065007, 0xa00f2c12, 0x08034007,
0xaefc7205, 0xaefd700d, 0xa9641000, 0x40071c1a, 0x700daefc,
0x1000aefd, 0x70065007, 0x50101c16, 0x40075012, 0x700daefc,
0x2411aefd, 0xa8211000, 0x0803a00f, 0x500c7005, 0x1c1591e0,
0x500f5014, 0x10005011, 0x500c2bd4, 0x0803a00f, 0x10007205,
0xa00fa9d1, 0x0803a821, 0xa9d07005, 0x91e0500c, 0x500f1c15,
0x10005011, 0x1c162bce, 0x50125010, 0xa022a82a, 0x70050803,
0x1c1591df, 0x5011500f, 0x5014500c, 0x0803a00f, 0x10007205,
0x501391a4, 0x22172217, 0x70075008, 0xa9634008, 0x1c1a0006,
0x70085009, 0x10004009, 0x00008ed9, 0x3e05c8dd, 0x1c033604,
0xabaf1000, 0x856284e1, 0x0003bb80, 0x1000239f, 0x0803a037,
0x10007205, 0x8dc61000, 0x38a71c2a, 0x1c2a8dc4, 0x100038a6,
0x1c2a8dc5, 0x8dc73867, 0x38681c2a, 0x8c491000, 0x8d4b8cca,
0x10001c00, 0x8ccd8c4c, 0x1c008d4e, 0x8c4f1000, 0x8d518cd0,
0x10001c00, 0xa759a79a, 0x1000a718, 0xbf80af9b, 0x00001000,
};
static u32 seq_br_instr[] = {
0x248, 0x20e, 0x21c, 0xf6, 0x112,
0x11c, 0xe4, 0xea, 0xc6, 0xd6,
0x126, 0x108, 0x184, 0x1a8, 0x1b0,
0x134, 0x158, 0x16e, 0x14a, 0xc2,
0x190, 0x1d2, 0x1cc, 0x1d4, 0x1e8,
0x0, 0x1f6, 0x32, 0x66, 0xb0,
0xa6, 0x1fc, 0x3c, 0x44, 0x5c,
0x60, 0x204, 0x30, 0x22a, 0x234,
0x23e, 0x0, 0x250, 0x0, 0x0, 0x9a,
0x20c,
};
struct osm_entry {
u16 virtual_corner;
u16 open_loop_volt;
u32 freq_data;
u32 override_data;
u32 spare_data;
long frequency;
};
static void __iomem *virt_base;
static struct dentry *osm_debugfs_base;
static struct regulator *vdd_pwrcl;
static struct regulator *vdd_perfcl;
const char *clk_panic_reg_names[] = {"WDOG_DOMAIN_PSTATE_STATUS",
"WDOG_PROGRAM_COUNTER",
"APM_STATUS"};
const int clk_panic_reg_offsets[] = {WDOG_DOMAIN_PSTATE_STATUS,
WDOG_PROGRAM_COUNTER};
static const struct regmap_config osm_qcom_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.fast_io = true,
};
struct clk_osm {
struct clk_hw hw;
struct osm_entry osm_table[OSM_TABLE_SIZE];
struct dentry *debugfs;
struct regulator *vdd_reg;
struct platform_device *vdd_dev;
void *vbases[NUM_BASES];
unsigned long pbases[NUM_BASES];
void __iomem *debug_regs[DEBUG_REG_NUM];
spinlock_t lock;
u32 cpu_reg_mask;
u32 num_entries;
u32 cluster_num;
u32 irq;
u32 apm_crossover_vc;
u32 apm_threshold_vc;
u32 mem_acc_crossover_vc;
u32 mem_acc_threshold_vc;
u32 cycle_counter_reads;
u32 cycle_counter_delay;
u32 cycle_counter_factor;
u64 total_cycle_counter;
u32 prev_cycle_counter;
u32 l_val_base;
u32 apcs_itm_present;
u32 apcs_cfg_rcgr;
u32 apcs_cmd_rcgr;
u32 apcs_pll_user_ctl;
u32 apcs_mem_acc_cfg[MAX_MEM_ACC_VAL_PER_LEVEL];
u32 apcs_mem_acc_val[MAX_MEM_ACC_VALUES];
u32 llm_sw_overr[LLM_SW_OVERRIDE_CNT];
u32 apm_mode_ctl;
u32 apm_ctrl_status;
u32 osm_clk_rate;
u32 xo_clk_rate;
u32 acd_td;
u32 acd_cr;
u32 acd_sscr;
u32 acd_extint0_cfg;
u32 acd_extint1_cfg;
u32 acd_autoxfer_ctl;
u32 acd_debugfs_addr;
bool acd_init;
bool secure_init;
bool red_fsm_en;
bool boost_fsm_en;
bool safe_fsm_en;
bool ps_fsm_en;
bool droop_fsm_en;
bool wfx_fsm_en;
bool pc_fsm_en;
enum clk_osm_trace_method trace_method;
enum clk_osm_trace_packet_id trace_id;
struct notifier_block panic_notifier;
u32 trace_periodic_timer;
bool trace_en;
bool wdog_trace_en;
};
static inline void clk_osm_masked_write_reg(struct clk_osm *c, u32 val,
u32 offset, u32 mask)
{
u32 val2, orig_val;
val2 = orig_val = readl_relaxed((char *)c->vbases[OSM_BASE] + offset);
val2 &= ~mask;
val2 |= val & mask;
if (val2 != orig_val)
writel_relaxed(val2, (char *)c->vbases[OSM_BASE] + offset);
}
static inline void clk_osm_write_reg(struct clk_osm *c, u32 val, u32 offset)
{
writel_relaxed(val, (char *)c->vbases[OSM_BASE] + offset);
}
static inline int clk_osm_read_reg(struct clk_osm *c, u32 offset)
{
return readl_relaxed((char *)c->vbases[OSM_BASE] + offset);
}
static inline int clk_osm_read_reg_no_log(struct clk_osm *c, u32 offset)
{
return readl_relaxed_no_log((char *)c->vbases[OSM_BASE] + offset);
}
static inline int clk_osm_mb(struct clk_osm *c, int base)
{
return readl_relaxed_no_log((char *)c->vbases[base] + VERSION_REG);
}
static inline int clk_osm_acd_mb(struct clk_osm *c)
{
return readl_relaxed_no_log((char *)c->vbases[ACD_BASE] +
ACD_HW_VERSION);
}
static inline void clk_osm_acd_master_write_reg(struct clk_osm *c,
u32 val, u32 offset)
{
writel_relaxed(val, (char *)c->vbases[ACD_BASE] + offset);
}
static int clk_osm_acd_local_read_reg(struct clk_osm *c, u32 offset)
{
u32 reg = 0;
int timeout;
if (offset >= ACD_MASTER_ONLY_REG_ADDR) {
pr_err("ACD register at offset=0x%x not locally readable\n",
offset);
return -EINVAL;
}
/* Set select field in read control register */
writel_relaxed(ACD_REG_RELATIVE_ADDR(offset),
(char *)c->vbases[ACD_BASE] + ACD_READOUT_CFG);
/* Clear write control register */
writel_relaxed(reg, (char *)c->vbases[ACD_BASE] + ACD_WRITE_CTL);
/* Set select and update_en fields in write control register */
reg = (ACD_REG_RELATIVE_ADDR(ACD_READOUT_CFG)
<< ACD_WRITE_CTL_SELECT_SHIFT)
| ACD_WRITE_CTL_UPDATE_EN;
writel_relaxed(reg, (char *)c->vbases[ACD_BASE] + ACD_WRITE_CTL);
/* Ensure writes complete before polling */
clk_osm_acd_mb(c);
/* Poll write status register */
for (timeout = ACD_LOCAL_TRANSFER_TIMEOUT_NS; timeout > 0;
timeout -= 100) {
reg = readl_relaxed((char *)c->vbases[ACD_BASE]
+ ACD_WRITE_STATUS);
if ((reg & (ACD_REG_RELATIVE_ADDR_BITMASK(ACD_READOUT_CFG))))
break;
ndelay(100);
}
if (!timeout) {
pr_err("local read timed out, offset=0x%x status=0x%x\n",
offset, reg);
return -ETIMEDOUT;
}
reg = readl_relaxed((char *)c->vbases[ACD_BASE]
+ ACD_READOUT);
return reg;
}
static int clk_osm_acd_local_write_reg(struct clk_osm *c, u32 val, u32 offset)
{
u32 reg = 0;
int timeout;
if (offset >= ACD_MASTER_ONLY_REG_ADDR) {
pr_err("ACD register at offset=0x%x not transferrable\n",
offset);
return -EINVAL;
}
/* Clear write control register */
writel_relaxed(reg, (char *)c->vbases[ACD_BASE] + ACD_WRITE_CTL);
/* Set select and update_en fields in write control register */
reg = (ACD_REG_RELATIVE_ADDR(offset) << ACD_WRITE_CTL_SELECT_SHIFT)
| ACD_WRITE_CTL_UPDATE_EN;
writel_relaxed(reg, (char *)c->vbases[ACD_BASE] + ACD_WRITE_CTL);
/* Ensure writes complete before polling */
clk_osm_acd_mb(c);
/* Poll write status register */
for (timeout = ACD_LOCAL_TRANSFER_TIMEOUT_NS; timeout > 0;
timeout -= 100) {
reg = readl_relaxed((char *)c->vbases[ACD_BASE]
+ ACD_WRITE_STATUS);
if ((reg & (ACD_REG_RELATIVE_ADDR_BITMASK(offset))))
break;
ndelay(100);
}
if (!timeout) {
pr_err("local write timed out, offset=0x%x val=0x%x status=0x%x\n",
offset, val, reg);
return -ETIMEDOUT;
}
return 0;
}
static int clk_osm_acd_master_write_through_reg(struct clk_osm *c,
u32 val, u32 offset)
{
writel_relaxed(val, (char *)c->vbases[ACD_BASE] + offset);
/* Ensure writes complete before transfer to local copy */
clk_osm_acd_mb(c);
return clk_osm_acd_local_write_reg(c, val, offset);
}
static int clk_osm_acd_auto_local_write_reg(struct clk_osm *c, u32 mask)
{
u32 numregs, bitmask = mask;
u32 reg = 0;
int timeout;
/* count number of bits set in register mask */
for (numregs = 0; bitmask; numregs++)
bitmask &= bitmask - 1;
/* Program auto-transfter mask */
writel_relaxed(mask, (char *)c->vbases[ACD_BASE] + ACD_AUTOXFER_CFG);
/* Clear start field in auto-transfer register */
writel_relaxed(ACD_AUTOXFER_START_CLEAR,
(char *)c->vbases[ACD_BASE] + ACD_AUTOXFER);
/* Set start field in auto-transfer register */
writel_relaxed(ACD_AUTOXFER_START_SET,
(char *)c->vbases[ACD_BASE] + ACD_AUTOXFER);
/* Ensure writes complete before polling */
clk_osm_acd_mb(c);
/* Poll auto-transfer status register */
for (timeout = ACD_LOCAL_TRANSFER_TIMEOUT_NS * numregs;
timeout > 0; timeout -= 100) {
reg = readl_relaxed((char *)c->vbases[ACD_BASE]
+ ACD_AUTOXFER_STATUS);
if (reg & AUTO_XFER_DONE_MASK)
break;
ndelay(100);
}
if (!timeout) {
pr_err("local register auto-transfer timed out, mask=0x%x registers=%d status=0x%x\n",
mask, numregs, reg);
return -ETIMEDOUT;
}
return 0;
}
static inline int clk_osm_count_ns(struct clk_osm *c, u64 nsec)
{
u64 temp;
temp = (u64)c->osm_clk_rate * nsec;
do_div(temp, 1000000000);
return temp;
}
static inline struct clk_osm *to_clk_osm(struct clk_hw *_hw)
{
return container_of(_hw, struct clk_osm, hw);
}
static long clk_osm_list_rate(struct clk_hw *hw, unsigned n,
unsigned long rate_max)
{
if (n >= hw->init->num_rate_max)
return -ENXIO;
return hw->init->rate_max[n];
}
static inline bool is_better_rate(unsigned long req, unsigned long best,
unsigned long new)
{
if (IS_ERR_VALUE(new))
return false;
return (req <= new && new < best) || (best < req && best < new);
}
static long clk_osm_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
int i;
unsigned long rrate = 0;
/*
* If the rate passed in is 0, return the first frequency in the
* FMAX table.
*/
if (!rate)
return hw->init->rate_max[0];
for (i = 0; i < hw->init->num_rate_max; i++) {
if (is_better_rate(rate, rrate, hw->init->rate_max[i])) {
rrate = hw->init->rate_max[i];
if (rate == rrate)
break;
}
}
pr_debug("%s: rate %lu, rrate %ld, Rate max %ld\n", __func__, rate,
rrate, hw->init->rate_max[i]);
return rrate;
}
static int clk_osm_search_table(struct osm_entry *table, int entries, long rate)
{
int quad_core_index, single_core_index = 0;
int core_count;
for (quad_core_index = 0; quad_core_index < entries;
quad_core_index++) {
core_count = CORE_COUNT_VAL(table[quad_core_index].freq_data);
if (rate == table[quad_core_index].frequency &&
core_count == SINGLE_CORE) {
single_core_index = quad_core_index;
continue;
}
if (rate == table[quad_core_index].frequency &&
core_count == MAX_CORE_COUNT)
return quad_core_index;
}
if (single_core_index)
return single_core_index;
return -EINVAL;
}
static int clk_osm_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_osm *cpuclk = to_clk_osm(hw);
int index = 0;
unsigned long r_rate;
r_rate = clk_osm_round_rate(hw, rate, NULL);
if (rate != r_rate) {
pr_err("invalid rate requested rate=%ld\n", rate);
return -EINVAL;
}
/* Convert rate to table index */
index = clk_osm_search_table(cpuclk->osm_table,
cpuclk->num_entries, r_rate);
if (index < 0) {
pr_err("cannot set cluster %u to %lu\n",
cpuclk->cluster_num, rate);
return -EINVAL;
}
pr_debug("rate: %lu --> index %d\n", rate, index);
if (cpuclk->llm_sw_overr[0]) {
clk_osm_write_reg(cpuclk, cpuclk->llm_sw_overr[0],
LLM_SW_OVERRIDE_REG);
clk_osm_write_reg(cpuclk, cpuclk->llm_sw_overr[1],
LLM_SW_OVERRIDE_REG);
udelay(1);
}
/* Choose index and send request to OSM hardware */
clk_osm_write_reg(cpuclk, index, DCVS_PERF_STATE_DESIRED_REG);
if (cpuclk->llm_sw_overr[0]) {
udelay(1);
clk_osm_write_reg(cpuclk, cpuclk->llm_sw_overr[2],
LLM_SW_OVERRIDE_REG);
}
/* Make sure the write goes through before proceeding */
clk_osm_mb(cpuclk, OSM_BASE);
return 0;
}
static int clk_osm_enable(struct clk_hw *hw)
{
struct clk_osm *cpuclk = to_clk_osm(hw);
clk_osm_write_reg(cpuclk, 1, ENABLE_REG);
/* Make sure the write goes through before proceeding */
clk_osm_mb(cpuclk, OSM_BASE);
/* Wait for 5us for OSM hardware to enable */
udelay(5);
pr_debug("OSM clk enabled for cluster=%d\n", cpuclk->cluster_num);
return 0;
}
static unsigned long clk_osm_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_osm *cpuclk = to_clk_osm(hw);
int index = 0;
index = clk_osm_read_reg(cpuclk, DCVS_PERF_STATE_DESIRED_REG);
pr_debug("%s: Index %d, freq %ld\n", __func__, index,
cpuclk->osm_table[index].frequency);
/* Convert index to frequency.
* The frequency corresponding to the index requested might not
* be what the clock is actually running at.
* There are other inputs into OSM(acd, LMH, sequencer)
* which might decide the final rate.
*/
return cpuclk->osm_table[index].frequency;
}
static struct clk_ops clk_ops_cpu_osm = {
.enable = clk_osm_enable,
.set_rate = clk_osm_set_rate,
.round_rate = clk_osm_round_rate,
.list_rate = clk_osm_list_rate,
.recalc_rate = clk_osm_recalc_rate,
.debug_init = clk_debug_measure_add,
};
static const struct parent_map gcc_parent_map_1[] = {
{ P_XO, 0 },
{ LMH_LITE_CLK_SRC, 1 },
};
static const char * const gcc_parent_names_1[] = {
"xo",
"hmss_gpll0_clk_src",
};
static struct freq_tbl ftbl_osm_clk_src[] = {
F(200000000, LMH_LITE_CLK_SRC, 3, 0, 0),
{ }
};
/* APCS_COMMON_LMH_CMD_RCGR */
static struct clk_rcg2 osm_clk_src = {
.cmd_rcgr = 0x0012c,
.mnd_width = 0,
.hid_width = 5,
.parent_map = gcc_parent_map_1,
.freq_tbl = ftbl_osm_clk_src,
.clkr.hw.init = &(struct clk_init_data){
.name = "osm_clk_src",
.parent_names = gcc_parent_names_1,
.num_parents = 2,
.ops = &clk_rcg2_ops,
},
};
static struct clk_fixed_factor sys_apcsaux_clk_gcc = {
.div = 1,
.mult = 1,
.hw.init = &(struct clk_init_data){
.name = "sys_apcsaux_clk_gcc",
.parent_names = (const char *[]){ "hmss_gpll0_clk_src" },
.num_parents = 1,
.ops = &clk_fixed_factor_ops,
},
};
static struct clk_init_data osm_clks_init[] = {
[0] = {
.name = "pwrcl_clk",
.parent_names = (const char *[]){ "cxo_a" },
.num_parents = 1,
.ops = &clk_ops_cpu_osm,
},
[1] = {
.name = "perfcl_clk",
.parent_names = (const char *[]){ "cxo_a" },
.num_parents = 1,
.ops = &clk_ops_cpu_osm,
},
};
static struct clk_osm pwrcl_clk = {
.cluster_num = 0,
.cpu_reg_mask = 0x3,
.hw.init = &osm_clks_init[0],
};
static struct clk_osm perfcl_clk = {
.cluster_num = 1,
.cpu_reg_mask = 0x103,
.hw.init = &osm_clks_init[1],
};
static struct clk_hw *osm_qcom_clk_hws[] = {
[SYS_APCSAUX_CLK_GCC] = &sys_apcsaux_clk_gcc.hw,
[PWRCL_CLK] = &pwrcl_clk.hw,
[PERFCL_CLK] = &perfcl_clk.hw,
[OSM_CLK_SRC] = &osm_clk_src.clkr.hw,
};
static void clk_osm_print_osm_table(struct clk_osm *c)
{
int i;
struct osm_entry *table = c->osm_table;
u32 pll_src, pll_div, lval, core_count;
pr_debug("Index, Frequency, VC, OLV (mv), Core Count, PLL Src, PLL Div, L-Val, ACC Level\n");
for (i = 0; i < c->num_entries; i++) {
pll_src = (table[i].freq_data & GENMASK(27, 26)) >> 26;
pll_div = (table[i].freq_data & GENMASK(25, 24)) >> 24;
lval = L_VAL(table[i].freq_data);
core_count = (table[i].freq_data & GENMASK(18, 16)) >> 16;
pr_debug("%3d, %11lu, %2u, %5u, %2u, %6u, %8u, %7u, %5u\n",
i,
table[i].frequency,
table[i].virtual_corner,
table[i].open_loop_volt,
core_count,
pll_src,
pll_div,
lval,
table[i].spare_data);
}
pr_debug("APM threshold corner=%d, crossover corner=%d\n",
c->apm_threshold_vc, c->apm_crossover_vc);
pr_debug("MEM-ACC threshold corner=%d, crossover corner=%d\n",
c->mem_acc_threshold_vc, c->mem_acc_crossover_vc);
}
static int clk_osm_get_lut(struct platform_device *pdev,
struct clk_osm *c, char *prop_name)
{
struct device_node *of = pdev->dev.of_node;
int prop_len, total_elems, num_rows, i, j, k;
int rc = 0;
u32 *array;
u32 *fmax_temp;
u32 data;
unsigned long abs_fmax = 0;
bool last_entry = false;
if (!of_find_property(of, prop_name, &prop_len)) {
dev_err(&pdev->dev, "missing %s\n", prop_name);
return -EINVAL;
}
total_elems = prop_len / sizeof(u32);
if (total_elems % NUM_FIELDS) {
dev_err(&pdev->dev, "bad length %d\n", prop_len);
return -EINVAL;
}
num_rows = total_elems / NUM_FIELDS;
fmax_temp = devm_kzalloc(&pdev->dev, num_rows * sizeof(unsigned long),
GFP_KERNEL);
if (!fmax_temp)
return -ENOMEM;
array = devm_kzalloc(&pdev->dev, prop_len, GFP_KERNEL);
if (!array)
return -ENOMEM;
rc = of_property_read_u32_array(of, prop_name, array, total_elems);
if (rc) {
dev_err(&pdev->dev, "Unable to parse OSM table, rc=%d\n", rc);
goto exit;
}
pr_debug("%s: Entries in Table: %d\n", __func__, num_rows);
c->num_entries = num_rows;
if (c->num_entries > OSM_TABLE_SIZE) {
pr_err("LUT entries %d exceed maximum size %d\n",
c->num_entries, OSM_TABLE_SIZE);
return -EINVAL;
}
for (i = 0, j = 0, k = 0; j < OSM_TABLE_SIZE; j++) {
c->osm_table[j].frequency = array[i + FREQ];
c->osm_table[j].freq_data = array[i + FREQ_DATA];
c->osm_table[j].override_data = array[i + PLL_OVERRIDES];
c->osm_table[j].spare_data = array[i + SPARE_DATA];
/* Voltage corners are 0 based in the OSM LUT */
c->osm_table[j].virtual_corner = array[i + VIRTUAL_CORNER] - 1;
pr_debug("index=%d freq=%ld virtual_corner=%d freq_data=0x%x override_data=0x%x spare_data=0x%x\n",
j, c->osm_table[j].frequency,
c->osm_table[j].virtual_corner,
c->osm_table[j].freq_data,
c->osm_table[j].override_data,
c->osm_table[j].spare_data);
data = (array[i + FREQ_DATA] & GENMASK(18, 16)) >> 16;
if (!last_entry && data == MAX_CORE_COUNT) {
fmax_temp[k] = array[i];
k++;
}
if (i < total_elems - NUM_FIELDS)
i += NUM_FIELDS;
else {
abs_fmax = array[i];
last_entry = true;
}
}
fmax_temp[k] = abs_fmax;
osm_clks_init[c->cluster_num].rate_max = devm_kzalloc(&pdev->dev,
k * sizeof(unsigned long),
GFP_KERNEL);
if (!osm_clks_init[c->cluster_num].rate_max) {
rc = -ENOMEM;
goto exit;
}
for (i = 0; i < k; i++)
osm_clks_init[c->cluster_num].rate_max[i] = fmax_temp[i];
osm_clks_init[c->cluster_num].num_rate_max = k;
exit:
devm_kfree(&pdev->dev, fmax_temp);
devm_kfree(&pdev->dev, array);
return rc;
}
static int clk_osm_parse_dt_configs(struct platform_device *pdev)
{
struct device_node *of = pdev->dev.of_node;
u32 *array;
int i, rc = 0;
array = devm_kzalloc(&pdev->dev, MAX_CLUSTER_CNT * sizeof(u32),
GFP_KERNEL);
if (!array)
return -ENOMEM;
rc = of_property_read_u32_array(of, "qcom,l-val-base",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,l-val-base property, rc=%d\n",
rc);
return -EINVAL;
}
pwrcl_clk.l_val_base = array[pwrcl_clk.cluster_num];
perfcl_clk.l_val_base = array[perfcl_clk.cluster_num];
rc = of_property_read_u32_array(of, "qcom,apcs-itm-present",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,apcs-itm-present property, rc=%d\n",
rc);
return -EINVAL;
}
pwrcl_clk.apcs_itm_present = array[pwrcl_clk.cluster_num];
perfcl_clk.apcs_itm_present = array[perfcl_clk.cluster_num];
rc = of_property_read_u32_array(of, "qcom,apcs-cfg-rcgr",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,apcs-cfg-rcgr property, rc=%d\n",
rc);
return -EINVAL;
}
pwrcl_clk.apcs_cfg_rcgr = array[pwrcl_clk.cluster_num];
perfcl_clk.apcs_cfg_rcgr = array[perfcl_clk.cluster_num];
rc = of_property_read_u32_array(of, "qcom,apcs-cmd-rcgr",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,apcs-cmd-rcgr property, rc=%d\n",
rc);
return -EINVAL;
}
pwrcl_clk.apcs_cmd_rcgr = array[pwrcl_clk.cluster_num];
perfcl_clk.apcs_cmd_rcgr = array[perfcl_clk.cluster_num];
rc = of_property_read_u32_array(of, "qcom,apcs-pll-user-ctl",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,apcs-pll-user-ctl property, rc=%d\n",
rc);
return -EINVAL;
}
pwrcl_clk.apcs_pll_user_ctl = array[pwrcl_clk.cluster_num];
perfcl_clk.apcs_pll_user_ctl = array[perfcl_clk.cluster_num];
rc = of_property_read_u32_array(of, "qcom,apm-mode-ctl",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,apm-mode-ctl property, rc=%d\n",
rc);
return -EINVAL;
}
pwrcl_clk.apm_mode_ctl = array[pwrcl_clk.cluster_num];
perfcl_clk.apm_mode_ctl = array[perfcl_clk.cluster_num];
rc = of_property_read_u32_array(of, "qcom,apm-ctrl-status",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,apm-ctrl-status property, rc=%d\n",
rc);
return -EINVAL;
}
pwrcl_clk.apm_ctrl_status = array[pwrcl_clk.cluster_num];
perfcl_clk.apm_ctrl_status = array[perfcl_clk.cluster_num];
for (i = 0; i < LLM_SW_OVERRIDE_CNT; i++)
of_property_read_u32_index(of, "qcom,llm-sw-overr",
pwrcl_clk.cluster_num *
LLM_SW_OVERRIDE_CNT + i,
&pwrcl_clk.llm_sw_overr[i]);
for (i = 0; i < LLM_SW_OVERRIDE_CNT; i++)
of_property_read_u32_index(of, "qcom,llm-sw-overr",
perfcl_clk.cluster_num *
LLM_SW_OVERRIDE_CNT + i,
&perfcl_clk.llm_sw_overr[i]);
if (pwrcl_clk.acd_init || perfcl_clk.acd_init) {
rc = of_property_read_u32_array(of, "qcom,acdtd-val",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,acdtd-val property, rc=%d\n",
rc);
return -EINVAL;
}
pwrcl_clk.acd_td = array[pwrcl_clk.cluster_num];
perfcl_clk.acd_td = array[perfcl_clk.cluster_num];
rc = of_property_read_u32_array(of, "qcom,acdcr-val",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,acdcr-val property, rc=%d\n",
rc);
return -EINVAL;
}
pwrcl_clk.acd_cr = array[pwrcl_clk.cluster_num];
perfcl_clk.acd_cr = array[perfcl_clk.cluster_num];
rc = of_property_read_u32_array(of, "qcom,acdsscr-val",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,acdsscr-val property, rc=%d\n",
rc);
return -EINVAL;
}
pwrcl_clk.acd_sscr = array[pwrcl_clk.cluster_num];
perfcl_clk.acd_sscr = array[perfcl_clk.cluster_num];
rc = of_property_read_u32_array(of, "qcom,acdextint0-val",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,acdextint0-val property, rc=%d\n",
rc);
return -EINVAL;
}
pwrcl_clk.acd_extint0_cfg = array[pwrcl_clk.cluster_num];
perfcl_clk.acd_extint0_cfg = array[perfcl_clk.cluster_num];
rc = of_property_read_u32_array(of, "qcom,acdextint1-val",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,acdextint1-val property, rc=%d\n",
rc);
return -EINVAL;
}
pwrcl_clk.acd_extint1_cfg = array[pwrcl_clk.cluster_num];
perfcl_clk.acd_extint1_cfg = array[perfcl_clk.cluster_num];
rc = of_property_read_u32_array(of, "qcom,acdautoxfer-val",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,acdautoxfer-val property, rc=%d\n",
rc);
return -EINVAL;
}
pwrcl_clk.acd_autoxfer_ctl = array[pwrcl_clk.cluster_num];
perfcl_clk.acd_autoxfer_ctl = array[perfcl_clk.cluster_num];
}
rc = of_property_read_u32(of, "qcom,xo-clk-rate",
&pwrcl_clk.xo_clk_rate);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,xo-clk-rate property, rc=%d\n",
rc);
return -EINVAL;
}
perfcl_clk.xo_clk_rate = pwrcl_clk.xo_clk_rate;
rc = of_property_read_u32(of, "qcom,osm-clk-rate",
&pwrcl_clk.osm_clk_rate);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,osm-clk-rate property, rc=%d\n",
rc);
return -EINVAL;
}
perfcl_clk.osm_clk_rate = pwrcl_clk.osm_clk_rate;
rc = of_property_read_u32(of, "qcom,cc-reads",
&pwrcl_clk.cycle_counter_reads);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,cc-reads property, rc=%d\n",
rc);
return -EINVAL;
}
perfcl_clk.cycle_counter_reads = pwrcl_clk.cycle_counter_reads;
rc = of_property_read_u32(of, "qcom,cc-delay",
&pwrcl_clk.cycle_counter_delay);
if (rc)
dev_dbg(&pdev->dev, "no delays between cycle counter reads\n");
else
perfcl_clk.cycle_counter_delay = pwrcl_clk.cycle_counter_delay;
rc = of_property_read_u32(of, "qcom,cc-factor",
&pwrcl_clk.cycle_counter_factor);
if (rc)
dev_dbg(&pdev->dev, "no factor specified for cycle counter estimation\n");
else
perfcl_clk.cycle_counter_factor =
pwrcl_clk.cycle_counter_factor;
perfcl_clk.red_fsm_en = pwrcl_clk.red_fsm_en =
of_property_read_bool(of, "qcom,red-fsm-en");
perfcl_clk.boost_fsm_en = pwrcl_clk.boost_fsm_en =
of_property_read_bool(of, "qcom,boost-fsm-en");
perfcl_clk.safe_fsm_en = pwrcl_clk.safe_fsm_en =
of_property_read_bool(of, "qcom,safe-fsm-en");
perfcl_clk.ps_fsm_en = pwrcl_clk.ps_fsm_en =
of_property_read_bool(of, "qcom,ps-fsm-en");
perfcl_clk.droop_fsm_en = pwrcl_clk.droop_fsm_en =
of_property_read_bool(of, "qcom,droop-fsm-en");
perfcl_clk.wfx_fsm_en = pwrcl_clk.wfx_fsm_en =
of_property_read_bool(of, "qcom,wfx-fsm-en");
perfcl_clk.pc_fsm_en = pwrcl_clk.pc_fsm_en =
of_property_read_bool(of, "qcom,pc-fsm-en");
devm_kfree(&pdev->dev, array);
perfcl_clk.secure_init = pwrcl_clk.secure_init =
of_property_read_bool(pdev->dev.of_node, "qcom,osm-no-tz");
if (!pwrcl_clk.secure_init)
return rc;
rc = of_property_read_u32_array(of, "qcom,pwrcl-apcs-mem-acc-cfg",
pwrcl_clk.apcs_mem_acc_cfg,
MAX_MEM_ACC_VAL_PER_LEVEL);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,pwrcl-apcs-mem-acc-cfg property, rc=%d\n",
rc);
return -EINVAL;
}
of_property_read_u32_array(of, "qcom,perfcl-apcs-mem-acc-cfg",
perfcl_clk.apcs_mem_acc_cfg,
MAX_MEM_ACC_VAL_PER_LEVEL);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,perfcl-apcs-mem-acc-cfg property, rc=%d\n",
rc);
return -EINVAL;
}
rc = of_property_read_u32_array(of, "qcom,pwrcl-apcs-mem-acc-val",
pwrcl_clk.apcs_mem_acc_val,
MAX_MEM_ACC_VALUES);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,pwrcl-apcs-mem-acc-val property, rc=%d\n",
rc);
return -EINVAL;
}
rc = of_property_read_u32_array(of, "qcom,perfcl-apcs-mem-acc-val",
perfcl_clk.apcs_mem_acc_val,
MAX_MEM_ACC_VALUES);
if (rc) {
dev_err(&pdev->dev, "unable to find qcom,perfcl-apcs-mem-acc-val property, rc=%d\n",
rc);
return -EINVAL;
}
return rc;
}
static int clk_osm_resources_init(struct platform_device *pdev)
{
struct device_node *node;
struct resource *res;
unsigned long pbase;
int i, rc = 0;
void *vbase;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "osm");
if (!res) {
dev_err(&pdev->dev,
"Unable to get platform resource for osm");
return -ENOMEM;
}
pwrcl_clk.pbases[OSM_BASE] = (unsigned long)res->start;
pwrcl_clk.vbases[OSM_BASE] = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!pwrcl_clk.vbases[OSM_BASE]) {
dev_err(&pdev->dev, "Unable to map in osm base\n");
return -ENOMEM;
}
perfcl_clk.pbases[OSM_BASE] = pwrcl_clk.pbases[OSM_BASE] +
perfcl_clk.cluster_num * OSM_CORE_TABLE_SIZE;
perfcl_clk.vbases[OSM_BASE] = pwrcl_clk.vbases[OSM_BASE] +
perfcl_clk.cluster_num * OSM_CORE_TABLE_SIZE;
for (i = 0; i < MAX_CLUSTER_CNT; i++) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
i == pwrcl_clk.cluster_num ?
"pwrcl_pll" : "perfcl_pll");
if (!res) {
dev_err(&pdev->dev,
"Unable to get platform resource\n");
return -ENOMEM;
}
pbase = (unsigned long)res->start;
vbase = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!vbase) {
dev_err(&pdev->dev, "Unable to map in base\n");
return -ENOMEM;
}
if (i == pwrcl_clk.cluster_num) {
pwrcl_clk.pbases[PLL_BASE] = pbase;
pwrcl_clk.vbases[PLL_BASE] = vbase;
} else {
perfcl_clk.pbases[PLL_BASE] = pbase;
perfcl_clk.vbases[PLL_BASE] = vbase;
}
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "apcs_common");
if (!res) {
dev_err(&pdev->dev, "Failed to get apcs common base\n");
return -EINVAL;
}
virt_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (!virt_base) {
dev_err(&pdev->dev, "Failed to map apcs common registers\n");
return -ENOMEM;
}
osm_clk_src.clkr.regmap = devm_regmap_init_mmio(&pdev->dev, virt_base,
&osm_qcom_regmap_config);
if (IS_ERR(osm_clk_src.clkr.regmap)) {
dev_err(&pdev->dev, "Couldn't get regmap OSM clock\n");
return PTR_ERR(osm_clk_src.clkr.regmap);
}
/* efuse speed bin fuses are optional */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"pwrcl_efuse");
if (res) {
pbase = (unsigned long)res->start;
vbase = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!vbase) {
dev_err(&pdev->dev, "Unable to map in pwrcl_efuse base\n");
return -ENOMEM;
}
pwrcl_clk.pbases[EFUSE_BASE] = pbase;
pwrcl_clk.vbases[EFUSE_BASE] = vbase;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"perfcl_efuse");
if (res) {
pbase = (unsigned long)res->start;
vbase = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!vbase) {
dev_err(&pdev->dev, "Unable to map in perfcl_efuse base\n");
return -ENOMEM;
}
perfcl_clk.pbases[EFUSE_BASE] = pbase;
perfcl_clk.vbases[EFUSE_BASE] = vbase;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"pwrcl_acd");
if (res) {
pbase = (unsigned long)res->start;
vbase = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!vbase) {
dev_err(&pdev->dev, "Unable to map in pwrcl_acd base\n");
return -ENOMEM;
}
pwrcl_clk.pbases[ACD_BASE] = pbase;
pwrcl_clk.vbases[ACD_BASE] = vbase;
pwrcl_clk.acd_init = true;
} else {
pwrcl_clk.acd_init = false;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"perfcl_acd");
if (res) {
pbase = (unsigned long)res->start;
vbase = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!vbase) {
dev_err(&pdev->dev, "Unable to map in perfcl_acd base\n");
return -ENOMEM;
}
perfcl_clk.pbases[ACD_BASE] = pbase;
perfcl_clk.vbases[ACD_BASE] = vbase;
perfcl_clk.acd_init = true;
} else {
perfcl_clk.acd_init = false;
}
pwrcl_clk.debug_regs[0] = devm_ioremap(&pdev->dev,
pwrcl_clk.pbases[OSM_BASE] +
clk_panic_reg_offsets[0],
0x4);
if (!pwrcl_clk.debug_regs[0]) {
dev_err(&pdev->dev, "Failed to map %s debug register\n",
clk_panic_reg_names[0]);
return -ENOMEM;
}
pwrcl_clk.debug_regs[1] = devm_ioremap(&pdev->dev,
pwrcl_clk.pbases[OSM_BASE] +
clk_panic_reg_offsets[1],
0x4);
if (!pwrcl_clk.debug_regs[1]) {
dev_err(&pdev->dev, "Failed to map %s debug register\n",
clk_panic_reg_names[1]);
return -ENOMEM;
}
pwrcl_clk.debug_regs[2] = devm_ioremap(&pdev->dev,
pwrcl_clk.apm_ctrl_status,
0x4);
if (!pwrcl_clk.debug_regs[2]) {
dev_err(&pdev->dev, "Failed to map %s debug register\n",
clk_panic_reg_names[2]);
return -ENOMEM;
};
perfcl_clk.debug_regs[0] = devm_ioremap(&pdev->dev,
perfcl_clk.pbases[OSM_BASE] +
clk_panic_reg_offsets[0],
0x4);
if (!perfcl_clk.debug_regs[0]) {
dev_err(&pdev->dev, "Failed to map %s debug register\n",
clk_panic_reg_names[0]);
return -ENOMEM;
}
perfcl_clk.debug_regs[1] = devm_ioremap(&pdev->dev,
perfcl_clk.pbases[OSM_BASE] +
clk_panic_reg_offsets[1],
0x4);
if (!perfcl_clk.debug_regs[1]) {
dev_err(&pdev->dev, "Failed to map %s debug register\n",
clk_panic_reg_names[1]);
return -ENOMEM;
}
perfcl_clk.debug_regs[2] = devm_ioremap(&pdev->dev,
perfcl_clk.apm_ctrl_status,
0x4);
if (!perfcl_clk.debug_regs[2]) {
dev_err(&pdev->dev, "Failed to map %s debug register\n",
clk_panic_reg_names[2]);
return -ENOMEM;
};
vdd_pwrcl = devm_regulator_get(&pdev->dev, "vdd-pwrcl");
if (IS_ERR(vdd_pwrcl)) {
rc = PTR_ERR(vdd_pwrcl);
if (rc != -EPROBE_DEFER)
dev_err(&pdev->dev, "Unable to get the pwrcl vreg, rc=%d\n",
rc);
return rc;
}
vdd_perfcl = devm_regulator_get(&pdev->dev, "vdd-perfcl");
if (IS_ERR(vdd_perfcl)) {
rc = PTR_ERR(vdd_perfcl);
if (rc != -EPROBE_DEFER)
dev_err(&pdev->dev, "Unable to get the perfcl vreg, rc=%d\n",
rc);
return rc;
}
pwrcl_clk.vdd_reg = vdd_pwrcl;
perfcl_clk.vdd_reg = vdd_perfcl;
node = of_parse_phandle(pdev->dev.of_node, "vdd-pwrcl-supply", 0);
if (!node) {
pr_err("Unable to find vdd-pwrcl-supply\n");
return -EINVAL;
}
pwrcl_clk.vdd_dev = of_find_device_by_node(node->parent->parent);
if (!pwrcl_clk.vdd_dev) {
pr_err("Unable to find device for vdd-pwrcl-supply node\n");
return -EINVAL;
}
node = of_parse_phandle(pdev->dev.of_node,
"vdd-perfcl-supply", 0);
if (!node) {
pr_err("Unable to find vdd-perfcl-supply\n");
return -EINVAL;
}
perfcl_clk.vdd_dev = of_find_device_by_node(node->parent->parent);
if (!perfcl_clk.vdd_dev) {
pr_err("Unable to find device for vdd-perfcl-supply\n");
return -EINVAL;
}
return 0;
}
static void clk_osm_setup_cluster_pll(struct clk_osm *c)
{
writel_relaxed(0x0, c->vbases[PLL_BASE] + PLL_MODE);
writel_relaxed(0x20, c->vbases[PLL_BASE] + PLL_L_VAL);
writel_relaxed(0x01000008, c->vbases[PLL_BASE] +
PLL_USER_CTRL);
writel_relaxed(0x20004AA8, c->vbases[PLL_BASE] +
PLL_CONFIG_CTL_LO);
writel_relaxed(0x2, c->vbases[PLL_BASE] +
PLL_MODE);
/* Ensure writes complete before delaying */
clk_osm_mb(c, PLL_BASE);
udelay(PLL_WAIT_LOCK_TIME_US);
writel_relaxed(0x6, c->vbases[PLL_BASE] + PLL_MODE);
/* Ensure write completes before delaying */
clk_osm_mb(c, PLL_BASE);
usleep_range(50, 75);
writel_relaxed(0x7, c->vbases[PLL_BASE] + PLL_MODE);
}
static int clk_osm_setup_hw_table(struct clk_osm *c)
{
struct osm_entry *entry = c->osm_table;
int i;
u32 freq_val = 0, volt_val = 0, override_val = 0, spare_val = 0;
u32 table_entry_offset, last_spare, last_virtual_corner = 0;
for (i = 0; i < OSM_TABLE_SIZE; i++) {
if (i < c->num_entries) {
freq_val = entry[i].freq_data;
volt_val = BVAL(21, 16, entry[i].virtual_corner)
| BVAL(11, 0, entry[i].open_loop_volt);
override_val = entry[i].override_data;
spare_val = entry[i].spare_data;
if (last_virtual_corner && last_virtual_corner ==
entry[i].virtual_corner && last_spare !=
entry[i].spare_data) {
pr_err("invalid LUT entry at row=%d virtual_corner=%d, spare_data=%d\n",
i, entry[i].virtual_corner,
entry[i].spare_data);
return -EINVAL;
}
last_virtual_corner = entry[i].virtual_corner;
last_spare = entry[i].spare_data;
}
table_entry_offset = i * OSM_REG_SIZE;
clk_osm_write_reg(c, i, INDEX_REG + table_entry_offset);
clk_osm_write_reg(c, freq_val, FREQ_REG + table_entry_offset);
clk_osm_write_reg(c, volt_val, VOLT_REG + table_entry_offset);
clk_osm_write_reg(c, override_val, OVERRIDE_REG +
table_entry_offset);
clk_osm_write_reg(c, spare_val, SPARE_REG +
table_entry_offset);
}
/* Make sure all writes go through */
clk_osm_mb(c, OSM_BASE);
return 0;
}
static int clk_osm_resolve_open_loop_voltages(struct clk_osm *c)
{
struct regulator *regulator = c->vdd_reg;
u32 vc, mv;
int i;
for (i = 0; i < OSM_TABLE_SIZE; i++) {
vc = c->osm_table[i].virtual_corner + 1;
/* Voltage is in uv. Convert to mv */
mv = regulator_list_corner_voltage(regulator, vc) / 1000;
c->osm_table[i].open_loop_volt = mv;
}
return 0;
}
static int clk_osm_resolve_crossover_corners(struct clk_osm *c,
struct platform_device *pdev,
const char *mem_acc_prop)
{
struct regulator *regulator = c->vdd_reg;
int count, vc, i, apm_threshold;
int mem_acc_threshold = 0;
int rc = 0;
u32 corner_volt;
rc = of_property_read_u32(pdev->dev.of_node,
"qcom,apm-threshold-voltage",
&apm_threshold);
if (rc) {
pr_info("qcom,apm-threshold-voltage property not specified\n");
return rc;
}
if (mem_acc_prop)
of_property_read_u32(pdev->dev.of_node, mem_acc_prop,
&mem_acc_threshold);
/* Determine crossover virtual corner */
count = regulator_count_voltages(regulator);
if (count < 0) {
pr_err("Failed to get the number of virtual corners supported\n");
return count;
}
/*
* CPRh corners (in hardware) are ordered:
* 0 - n-1 - for n functional corners
* APM crossover - required for OSM
* [MEM ACC Crossover] - optional
*
* 'count' corresponds to the total number of corners including n
* functional corners, the APM crossover corner, and potentially the
* MEM ACC cross over corner.
*/
if (mem_acc_threshold) {
c->apm_crossover_vc = count - 2;
c->mem_acc_crossover_vc = count - 1;
} else {
c->apm_crossover_vc = count - 1;
}
/* Determine APM threshold virtual corner */
for (i = 0; i < OSM_TABLE_SIZE; i++) {
vc = c->osm_table[i].virtual_corner + 1;
corner_volt = regulator_list_corner_voltage(regulator, vc);
if (corner_volt >= apm_threshold) {
c->apm_threshold_vc = c->osm_table[i].virtual_corner;
break;
}
}
/* Determine MEM ACC threshold virtual corner */
if (mem_acc_threshold) {
for (i = 0; i < OSM_TABLE_SIZE; i++) {
vc = c->osm_table[i].virtual_corner + 1;
corner_volt =
regulator_list_corner_voltage(regulator, vc);
if (corner_volt >= mem_acc_threshold) {
c->mem_acc_threshold_vc
= c->osm_table[i].virtual_corner;
break;
}
}
}
return 0;
}
static int clk_osm_set_cc_policy(struct platform_device *pdev)
{
int rc = 0, val;
u32 *array;
struct device_node *of = pdev->dev.of_node;
array = devm_kzalloc(&pdev->dev, MAX_CLUSTER_CNT * sizeof(u32),
GFP_KERNEL);
if (!array)
return -ENOMEM;
rc = of_property_read_u32_array(of, "qcom,up-timer", array,
MAX_CLUSTER_CNT);
if (rc) {
dev_dbg(&pdev->dev, "No up timer value, rc=%d\n",
rc);
} else {
val = clk_osm_read_reg(&pwrcl_clk, SPM_CC_HYSTERESIS)
| BVAL(31, 16, clk_osm_count_ns(&pwrcl_clk,
array[pwrcl_clk.cluster_num]));
clk_osm_write_reg(&pwrcl_clk, val, SPM_CC_HYSTERESIS);
val = clk_osm_read_reg(&perfcl_clk, SPM_CC_HYSTERESIS)
| BVAL(31, 16, clk_osm_count_ns(&perfcl_clk,
array[perfcl_clk.cluster_num]));
clk_osm_write_reg(&perfcl_clk, val, SPM_CC_HYSTERESIS);
}
rc = of_property_read_u32_array(of, "qcom,down-timer",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_dbg(&pdev->dev, "No down timer value, rc=%d\n", rc);
} else {
val = clk_osm_read_reg(&pwrcl_clk, SPM_CC_HYSTERESIS)
| BVAL(15, 0, clk_osm_count_ns(&pwrcl_clk,
array[pwrcl_clk.cluster_num]));
clk_osm_write_reg(&pwrcl_clk, val, SPM_CC_HYSTERESIS);
val = clk_osm_read_reg(&perfcl_clk, SPM_CC_HYSTERESIS)
| BVAL(15, 0, clk_osm_count_ns(&perfcl_clk,
array[perfcl_clk.cluster_num]));
clk_osm_write_reg(&perfcl_clk, val, SPM_CC_HYSTERESIS);
}
/* OSM index override for cluster PC */
rc = of_property_read_u32_array(of, "qcom,pc-override-index",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_dbg(&pdev->dev, "No PC override index value, rc=%d\n",
rc);
clk_osm_write_reg(&pwrcl_clk, 0, CC_ZERO_BEHAV_CTRL);
clk_osm_write_reg(&perfcl_clk, 0, CC_ZERO_BEHAV_CTRL);
} else {
val = BVAL(6, 1, array[pwrcl_clk.cluster_num])
| ENABLE_OVERRIDE;
clk_osm_write_reg(&pwrcl_clk, val, CC_ZERO_BEHAV_CTRL);
val = BVAL(6, 1, array[perfcl_clk.cluster_num])
| ENABLE_OVERRIDE;
clk_osm_write_reg(&perfcl_clk, val, CC_ZERO_BEHAV_CTRL);
}
/* Wait for the writes to complete */
clk_osm_mb(&perfcl_clk, OSM_BASE);
rc = of_property_read_bool(pdev->dev.of_node, "qcom,set-ret-inactive");
if (rc) {
dev_dbg(&pdev->dev, "Treat cores in retention as active\n");
val = 0;
} else {
dev_dbg(&pdev->dev, "Treat cores in retention as inactive\n");
val = 1;
}
clk_osm_write_reg(&pwrcl_clk, val, SPM_CORE_RET_MAPPING);
clk_osm_write_reg(&perfcl_clk, val, SPM_CORE_RET_MAPPING);
rc = of_property_read_bool(pdev->dev.of_node, "qcom,disable-cc-dvcs");
if (rc) {
dev_dbg(&pdev->dev, "Disabling CC based DCVS\n");
val = 1;
} else
val = 0;
clk_osm_write_reg(&pwrcl_clk, val, SPM_CC_DCVS_DISABLE);
clk_osm_write_reg(&perfcl_clk, val, SPM_CC_DCVS_DISABLE);
/* Wait for the writes to complete */
clk_osm_mb(&perfcl_clk, OSM_BASE);
devm_kfree(&pdev->dev, array);
return 0;
}
static void clk_osm_setup_itm_to_osm_handoff(void)
{
/* Program address of ITM_PRESENT of CPUSS */
clk_osm_write_reg(&pwrcl_clk, pwrcl_clk.apcs_itm_present,
SEQ_REG(37));
clk_osm_write_reg(&pwrcl_clk, 0, SEQ_REG(38));
clk_osm_write_reg(&perfcl_clk, perfcl_clk.apcs_itm_present,
SEQ_REG(37));
clk_osm_write_reg(&perfcl_clk, 0, SEQ_REG(38));
/*
* Program data to write to ITM_PRESENT assuming ITM for other domain
* is enabled and the ITM for this domain is to be disabled.
*/
clk_osm_write_reg(&pwrcl_clk, ITM_CL0_DISABLE_CL1_ENABLED,
SEQ_REG(39));
clk_osm_write_reg(&perfcl_clk, ITM_CL0_ENABLED_CL1_DISABLE,
SEQ_REG(39));
}
static int clk_osm_set_llm_freq_policy(struct platform_device *pdev)
{
struct device_node *of = pdev->dev.of_node;
u32 *array;
int rc = 0, val, regval;
array = devm_kzalloc(&pdev->dev, MAX_CLUSTER_CNT * sizeof(u32),
GFP_KERNEL);
if (!array)
return -ENOMEM;
/*
* Setup Timer to control how long OSM should wait before performing
* DCVS when a LLM up frequency request is received.
* Time is specified in us.
*/
rc = of_property_read_u32_array(of, "qcom,llm-freq-up-timer", array,
MAX_CLUSTER_CNT);
if (rc) {
dev_dbg(&pdev->dev, "Unable to get CC up timer value: %d\n",
rc);
} else {
val = clk_osm_read_reg(&pwrcl_clk, LLM_FREQ_VOTE_HYSTERESIS)
| BVAL(31, 16, clk_osm_count_ns(&pwrcl_clk,
array[pwrcl_clk.cluster_num]));
clk_osm_write_reg(&pwrcl_clk, val, LLM_FREQ_VOTE_HYSTERESIS);
val = clk_osm_read_reg(&perfcl_clk, LLM_FREQ_VOTE_HYSTERESIS)
| BVAL(31, 16, clk_osm_count_ns(&perfcl_clk,
array[perfcl_clk.cluster_num]));
clk_osm_write_reg(&perfcl_clk, val, LLM_FREQ_VOTE_HYSTERESIS);
}
/*
* Setup Timer to control how long OSM should wait before performing
* DCVS when a LLM down frequency request is received.
* Time is specified in us.
*/
rc = of_property_read_u32_array(of, "qcom,llm-freq-down-timer",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_dbg(&pdev->dev, "No LLM Frequency down timer value: %d\n",
rc);
} else {
val = clk_osm_read_reg(&pwrcl_clk, LLM_FREQ_VOTE_HYSTERESIS)
| BVAL(15, 0, clk_osm_count_ns(&pwrcl_clk,
array[pwrcl_clk.cluster_num]));
clk_osm_write_reg(&pwrcl_clk, val, LLM_FREQ_VOTE_HYSTERESIS);
val = clk_osm_read_reg(&perfcl_clk, LLM_FREQ_VOTE_HYSTERESIS)
| BVAL(15, 0, clk_osm_count_ns(&perfcl_clk,
array[perfcl_clk.cluster_num]));
clk_osm_write_reg(&perfcl_clk, val, LLM_FREQ_VOTE_HYSTERESIS);
}
/* Enable or disable honoring of LLM frequency requests */
rc = of_property_read_bool(pdev->dev.of_node,
"qcom,enable-llm-freq-vote");
if (rc) {
dev_dbg(&pdev->dev, "Honoring LLM Frequency requests\n");
val = 0;
} else
val = 1;
/* Enable or disable LLM FREQ DVCS */
regval = val | clk_osm_read_reg(&pwrcl_clk, LLM_INTF_DCVS_DISABLE);
clk_osm_write_reg(&pwrcl_clk, regval, LLM_INTF_DCVS_DISABLE);
regval = val | clk_osm_read_reg(&perfcl_clk, LLM_INTF_DCVS_DISABLE);
clk_osm_write_reg(&perfcl_clk, regval, LLM_INTF_DCVS_DISABLE);
/* Wait for the write to complete */
clk_osm_mb(&perfcl_clk, OSM_BASE);
devm_kfree(&pdev->dev, array);
return 0;
}
static int clk_osm_set_llm_volt_policy(struct platform_device *pdev)
{
struct device_node *of = pdev->dev.of_node;
u32 *array;
int rc = 0, val, regval;
array = devm_kzalloc(&pdev->dev, MAX_CLUSTER_CNT * sizeof(u32),
GFP_KERNEL);
if (!array)
return -ENOMEM;
/*
* Setup Timer to control how long OSM should wait before performing
* DCVS when a LLM up voltage request is received.
* Time is specified in us.
*/
rc = of_property_read_u32_array(of, "qcom,llm-volt-up-timer",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_dbg(&pdev->dev, "No LLM voltage up timer value, rc=%d\n",
rc);
} else {
val = clk_osm_read_reg(&pwrcl_clk, LLM_VOLT_VOTE_HYSTERESIS)
| BVAL(31, 16, clk_osm_count_ns(&pwrcl_clk,
array[pwrcl_clk.cluster_num]));
clk_osm_write_reg(&pwrcl_clk, val, LLM_VOLT_VOTE_HYSTERESIS);
val = clk_osm_read_reg(&perfcl_clk, LLM_VOLT_VOTE_HYSTERESIS)
| BVAL(31, 16, clk_osm_count_ns(&perfcl_clk,
array[perfcl_clk.cluster_num]));
clk_osm_write_reg(&perfcl_clk, val, LLM_VOLT_VOTE_HYSTERESIS);
}
/*
* Setup Timer to control how long OSM should wait before performing
* DCVS when a LLM down voltage request is received.
* Time is specified in us.
*/
rc = of_property_read_u32_array(of, "qcom,llm-volt-down-timer",
array, MAX_CLUSTER_CNT);
if (rc) {
dev_dbg(&pdev->dev, "No LLM Voltage down timer value: %d\n",
rc);
} else {
val = clk_osm_read_reg(&pwrcl_clk, LLM_VOLT_VOTE_HYSTERESIS)
| BVAL(15, 0, clk_osm_count_ns(&pwrcl_clk,
array[pwrcl_clk.cluster_num]));
clk_osm_write_reg(&pwrcl_clk, val, LLM_VOLT_VOTE_HYSTERESIS);
val = clk_osm_read_reg(&perfcl_clk, LLM_VOLT_VOTE_HYSTERESIS)
| BVAL(15, 0, clk_osm_count_ns(&perfcl_clk,
array[perfcl_clk.cluster_num]));
clk_osm_write_reg(&perfcl_clk, val, LLM_VOLT_VOTE_HYSTERESIS);
}
/* Enable or disable honoring of LLM Voltage requests */
rc = of_property_read_bool(pdev->dev.of_node,
"qcom,enable-llm-volt-vote");
if (rc) {
dev_dbg(&pdev->dev, "Honoring LLM Voltage requests\n");
val = 0;
} else
val = BIT(1);
/* Enable or disable LLM VOLT DVCS */
regval = val | clk_osm_read_reg(&pwrcl_clk, LLM_INTF_DCVS_DISABLE);
clk_osm_write_reg(&pwrcl_clk, regval, LLM_INTF_DCVS_DISABLE);
regval = val | clk_osm_read_reg(&perfcl_clk, LLM_INTF_DCVS_DISABLE);
clk_osm_write_reg(&perfcl_clk, regval, LLM_INTF_DCVS_DISABLE);
/* Wait for the writes to complete */
clk_osm_mb(&perfcl_clk, OSM_BASE);
devm_kfree(&pdev->dev, array);
return 0;
}
static void clk_osm_program_apm_regs(struct clk_osm *c)
{
/*
* Program address of the control register used to configure
* the Array Power Mux controller
*/
clk_osm_write_reg(c, c->apm_mode_ctl, SEQ_REG(2));
/* Program address of controller status register */
clk_osm_write_reg(c, c->apm_ctrl_status, SEQ_REG(3));
/* Program mode value to switch APM from VDD_APCC to VDD_MX */
clk_osm_write_reg(c, APM_MX_MODE, SEQ_REG(77));
/* Program value used to determine current APM power supply is VDD_MX */
clk_osm_write_reg(c, APM_MX_MODE_VAL, SEQ_REG(78));
/* Program mask used to determine status of APM power supply switch */
clk_osm_write_reg(c, APM_MODE_SWITCH_MASK, SEQ_REG(79));
/* Program mode value to switch APM from VDD_MX to VDD_APCC */
clk_osm_write_reg(c, APM_APC_MODE, SEQ_REG(80));
/*
* Program value used to determine current APM power supply
* is VDD_APCC
*/
clk_osm_write_reg(c, APM_APC_MODE_VAL, SEQ_REG(81));
}
static void clk_osm_program_mem_acc_regs(struct clk_osm *c)
{
struct osm_entry *table = c->osm_table;
int i, curr_level, j = 0;
int mem_acc_level_map[MAX_MEM_ACC_LEVELS] = {0, 0, 0};
int threshold_vc[4];
curr_level = c->osm_table[0].spare_data;
for (i = 0; i < c->num_entries; i++) {
if (curr_level == MAX_MEM_ACC_LEVELS)
break;
if (c->osm_table[i].spare_data != curr_level) {
mem_acc_level_map[j++] =
c->osm_table[i].virtual_corner - 1;
curr_level = c->osm_table[i].spare_data;
}
}
threshold_vc[0] = mem_acc_level_map[0];
threshold_vc[1] = mem_acc_level_map[0] + 1;
threshold_vc[2] = mem_acc_level_map[1];
threshold_vc[3] = mem_acc_level_map[1] + 1;
if (c->secure_init) {
clk_osm_write_reg(c, MEM_ACC_SEQ_CONST(1), SEQ_REG(51));
clk_osm_write_reg(c, MEM_ACC_SEQ_CONST(2), SEQ_REG(52));
clk_osm_write_reg(c, MEM_ACC_SEQ_CONST(3), SEQ_REG(53));
clk_osm_write_reg(c, MEM_ACC_SEQ_CONST(4), SEQ_REG(54));
clk_osm_write_reg(c, MEM_ACC_APM_READ_MASK, SEQ_REG(59));
clk_osm_write_reg(c, threshold_vc[0], SEQ_REG(55));
clk_osm_write_reg(c, threshold_vc[1], SEQ_REG(56));
clk_osm_write_reg(c, threshold_vc[2], SEQ_REG(57));
clk_osm_write_reg(c, threshold_vc[3], SEQ_REG(58));
clk_osm_write_reg(c, c->pbases[OSM_BASE] + SEQ_REG(28),
SEQ_REG(49));
for (i = 0; i < MAX_MEM_ACC_VALUES; i++)
clk_osm_write_reg(c, c->apcs_mem_acc_val[i],
MEM_ACC_SEQ_REG_VAL_START(i));
for (i = 0; i < MAX_MEM_ACC_VAL_PER_LEVEL; i++)
clk_osm_write_reg(c, c->apcs_mem_acc_cfg[i],
MEM_ACC_SEQ_REG_CFG_START(i));
} else {
if (c->mem_acc_crossover_vc)
scm_io_write(c->pbases[OSM_BASE] + SEQ_REG(88),
c->mem_acc_crossover_vc);
/*
* Use dynamic MEM ACC threshold voltage based value for the
* highest MEM ACC threshold if it is specified instead of the
* fixed mapping in the LUT.
*/
if (c->mem_acc_threshold_vc) {
threshold_vc[2] = c->mem_acc_threshold_vc - 1;
threshold_vc[3] = c->mem_acc_threshold_vc;
if (threshold_vc[1] >= threshold_vc[2])
threshold_vc[1] = threshold_vc[2] - 1;
if (threshold_vc[0] >= threshold_vc[1])
threshold_vc[0] = threshold_vc[1] - 1;
}
scm_io_write(c->pbases[OSM_BASE] + SEQ_REG(55),
threshold_vc[0]);
scm_io_write(c->pbases[OSM_BASE] + SEQ_REG(56),
threshold_vc[1]);
scm_io_write(c->pbases[OSM_BASE] + SEQ_REG(57),
threshold_vc[2]);
scm_io_write(c->pbases[OSM_BASE] + SEQ_REG(58),
threshold_vc[3]);
/* SEQ_REG(49) = SEQ_REG(28) init by TZ */
}
/*
* Program L_VAL corresponding to the first virtual
* corner with MEM ACC level 3.
*/
for (i = 0; i < c->num_entries; i++)
if (threshold_vc[3] == table[i].virtual_corner)
scm_io_write(c->pbases[OSM_BASE] + SEQ_REG(32),
L_VAL(table[i].freq_data));
}
void clk_osm_setup_sequencer(struct clk_osm *c)
{
u32 i;
pr_debug("Setting up sequencer for cluster=%d\n", c->cluster_num);
for (i = 0; i < ARRAY_SIZE(seq_instr); i++) {
clk_osm_write_reg(c, seq_instr[i],
(long)(SEQ_MEM_ADDR + i * 4));
}
pr_debug("Setting up sequencer branch instructions for cluster=%d\n",
c->cluster_num);
for (i = 0; i < ARRAY_SIZE(seq_br_instr); i++) {
clk_osm_write_reg(c, seq_br_instr[i],
(long)(SEQ_CFG_BR_ADDR + i * 4));
}
}
static void clk_osm_setup_cycle_counters(struct clk_osm *c)
{
u32 ratio = c->osm_clk_rate;
u32 val = 0;
/* Enable cycle counter */
val |= BIT(0);
/* Setup OSM clock to XO ratio */
do_div(ratio, c->xo_clk_rate);
val |= BVAL(5, 1, ratio - 1) | OSM_CYCLE_COUNTER_USE_XO_EDGE_EN;
clk_osm_write_reg(c, val, OSM_CYCLE_COUNTER_CTRL_REG);
c->total_cycle_counter = 0;
c->prev_cycle_counter = 0;
pr_debug("OSM to XO clock ratio: %d\n", ratio);
}
static void clk_osm_setup_fsms(struct clk_osm *c)
{
u32 val;
/* Reduction FSM */
if (c->red_fsm_en) {
val = clk_osm_read_reg(c, VMIN_REDUC_ENABLE_REG) | BIT(0);
clk_osm_write_reg(c, val, VMIN_REDUC_ENABLE_REG);
clk_osm_write_reg(c, BVAL(15, 0, clk_osm_count_ns(c, 10000)),
VMIN_REDUC_TIMER_REG);
}
/* Boost FSM */
if (c->boost_fsm_en) {
val = clk_osm_read_reg(c, PDN_FSM_CTRL_REG);
clk_osm_write_reg(c, val | CC_BOOST_EN_MASK, PDN_FSM_CTRL_REG);
val = clk_osm_read_reg(c, CC_BOOST_TIMER_REG0);
val |= BVAL(15, 0, clk_osm_count_ns(c, PLL_WAIT_LOCK_TIME_NS));
val |= BVAL(31, 16, clk_osm_count_ns(c, SAFE_FREQ_WAIT_NS));
clk_osm_write_reg(c, val, CC_BOOST_TIMER_REG0);
val = clk_osm_read_reg(c, CC_BOOST_TIMER_REG1);
val |= BVAL(15, 0, clk_osm_count_ns(c, PLL_WAIT_LOCK_TIME_NS));
val |= BVAL(31, 16, clk_osm_count_ns(c, PLL_WAIT_LOCK_TIME_NS));
clk_osm_write_reg(c, val, CC_BOOST_TIMER_REG1);
val = clk_osm_read_reg(c, CC_BOOST_TIMER_REG2);
val |= BVAL(15, 0, clk_osm_count_ns(c, DEXT_DECREMENT_WAIT_NS));
clk_osm_write_reg(c, val, CC_BOOST_TIMER_REG2);
}
/* Safe Freq FSM */
if (c->safe_fsm_en) {
val = clk_osm_read_reg(c, PDN_FSM_CTRL_REG);
clk_osm_write_reg(c, val | DCVS_BOOST_EN_MASK,
PDN_FSM_CTRL_REG);
val = clk_osm_read_reg(c, DCVS_BOOST_TIMER_REG0);
val |= BVAL(15, 0, clk_osm_count_ns(c, PLL_WAIT_LOCK_TIME_NS));
val |= BVAL(31, 16, clk_osm_count_ns(c, SAFE_FREQ_WAIT_NS));
clk_osm_write_reg(c, val, DCVS_BOOST_TIMER_REG0);
val = clk_osm_read_reg(c, DCVS_BOOST_TIMER_REG1);
val |= BVAL(15, 0, clk_osm_count_ns(c, PLL_WAIT_LOCK_TIME_NS));
val |= BVAL(31, 16, clk_osm_count_ns(c, PLL_WAIT_LOCK_TIME_NS));
clk_osm_write_reg(c, val, DCVS_BOOST_TIMER_REG1);
val = clk_osm_read_reg(c, DCVS_BOOST_TIMER_REG2);
val |= BVAL(15, 0, clk_osm_count_ns(c, DEXT_DECREMENT_WAIT_NS));
clk_osm_write_reg(c, val, DCVS_BOOST_TIMER_REG2);
}
/* PS FSM */
if (c->ps_fsm_en) {
val = clk_osm_read_reg(c, PDN_FSM_CTRL_REG);
clk_osm_write_reg(c, val | PS_BOOST_EN_MASK, PDN_FSM_CTRL_REG);
val = clk_osm_read_reg(c, PS_BOOST_TIMER_REG0);
val |= BVAL(15, 0, clk_osm_count_ns(c, PLL_WAIT_LOCK_TIME_NS));
val |= BVAL(31, 16, clk_osm_count_ns(c, SAFE_FREQ_WAIT_NS));
clk_osm_write_reg(c, val, PS_BOOST_TIMER_REG0);
val = clk_osm_read_reg(c, PS_BOOST_TIMER_REG1);
val |= BVAL(15, 0, clk_osm_count_ns(c, PLL_WAIT_LOCK_TIME_NS));
val |= BVAL(31, 16, clk_osm_count_ns(c, PLL_WAIT_LOCK_TIME_NS));
clk_osm_write_reg(c, val, PS_BOOST_TIMER_REG1);
val = clk_osm_read_reg(c, PS_BOOST_TIMER_REG2);
val |= BVAL(15, 0, clk_osm_count_ns(c, DEXT_DECREMENT_WAIT_NS));
clk_osm_write_reg(c, val, PS_BOOST_TIMER_REG2);
}
/* PLL signal timing control */
if (c->boost_fsm_en || c->safe_fsm_en || c->ps_fsm_en)
clk_osm_write_reg(c, 0x5, BOOST_PROG_SYNC_DELAY_REG);
/* Droop FSM */
if (c->wfx_fsm_en) {
/* WFx FSM */
val = clk_osm_read_reg(c, PDN_FSM_CTRL_REG);
clk_osm_write_reg(c, val | WFX_DROOP_EN_MASK, PDN_FSM_CTRL_REG);
val = clk_osm_read_reg(c, DROOP_UNSTALL_TIMER_CTRL_REG);
val |= BVAL(31, 16, clk_osm_count_ns(c, 500));
clk_osm_write_reg(c, val, DROOP_UNSTALL_TIMER_CTRL_REG);
val = clk_osm_read_reg(c,
DROOP_WAIT_TO_RELEASE_TIMER_CTRL0_REG);
val |= BVAL(31, 16, clk_osm_count_ns(c, 250));
clk_osm_write_reg(c, val,
DROOP_WAIT_TO_RELEASE_TIMER_CTRL0_REG);
}
/* PC/RET FSM */
if (c->pc_fsm_en) {
val = clk_osm_read_reg(c, PDN_FSM_CTRL_REG);
clk_osm_write_reg(c, val | PC_RET_EXIT_DROOP_EN_MASK,
PDN_FSM_CTRL_REG);
val = clk_osm_read_reg(c, DROOP_UNSTALL_TIMER_CTRL_REG);
val |= BVAL(15, 0, clk_osm_count_ns(c, 500));
clk_osm_write_reg(c, val, DROOP_UNSTALL_TIMER_CTRL_REG);
val = clk_osm_read_reg(c,
DROOP_WAIT_TO_RELEASE_TIMER_CTRL0_REG);
val |= BVAL(15, 0, clk_osm_count_ns(c, 250));
clk_osm_write_reg(c, val,
DROOP_WAIT_TO_RELEASE_TIMER_CTRL0_REG);
}
/* DCVS droop FSM - only if RCGwRC is not used for di/dt control */
if (c->droop_fsm_en) {
val = clk_osm_read_reg(c, PDN_FSM_CTRL_REG);
clk_osm_write_reg(c, val | DCVS_DROOP_EN_MASK,
PDN_FSM_CTRL_REG);
}
if (c->wfx_fsm_en || c->ps_fsm_en || c->droop_fsm_en) {
clk_osm_write_reg(c, 0x1, DROOP_PROG_SYNC_DELAY_REG);
clk_osm_write_reg(c, clk_osm_count_ns(c, 5),
DROOP_RELEASE_TIMER_CTRL);
clk_osm_write_reg(c, clk_osm_count_ns(c, 500),
DCVS_DROOP_TIMER_CTRL);
val = clk_osm_read_reg(c, DROOP_CTRL_REG);
val |= BIT(31) | BVAL(22, 16, 0x2) |
BVAL(6, 0, 0x8);
clk_osm_write_reg(c, val, DROOP_CTRL_REG);
}
/* Enable the PLL Droop Override */
val = clk_osm_read_reg(c, OSM_PLL_SW_OVERRIDE_EN);
val |= PLL_SW_OVERRIDE_DROOP_EN;
clk_osm_write_reg(c, val, OSM_PLL_SW_OVERRIDE_EN);
}
static void clk_osm_do_additional_setup(struct clk_osm *c,
struct platform_device *pdev)
{
if (!c->secure_init)
return;
dev_info(&pdev->dev, "Performing additional OSM setup due to lack of TZ for cluster=%d\n",
c->cluster_num);
clk_osm_write_reg(c, BVAL(23, 16, 0xF), SPM_CC_CTRL);
/* PLL LVAL programming */
clk_osm_write_reg(c, c->l_val_base, SEQ_REG(0));
clk_osm_write_reg(c, PLL_MIN_LVAL, SEQ_REG(21));
/* PLL post-div programming */
clk_osm_write_reg(c, c->apcs_pll_user_ctl, SEQ_REG(18));
clk_osm_write_reg(c, PLL_POST_DIV2, SEQ_REG(19));
clk_osm_write_reg(c, PLL_POST_DIV1, SEQ_REG(29));
/* APM Programming */
clk_osm_program_apm_regs(c);
/* GFMUX Programming */
clk_osm_write_reg(c, c->apcs_cfg_rcgr, SEQ_REG(16));
clk_osm_write_reg(c, c->apcs_cmd_rcgr, SEQ_REG(33));
clk_osm_write_reg(c, RCG_UPDATE, SEQ_REG(34));
clk_osm_write_reg(c, GPLL_SEL, SEQ_REG(17));
clk_osm_write_reg(c, PLL_EARLY_SEL, SEQ_REG(82));
clk_osm_write_reg(c, PLL_MAIN_SEL, SEQ_REG(83));
clk_osm_write_reg(c, RCG_UPDATE_SUCCESS, SEQ_REG(84));
clk_osm_write_reg(c, RCG_UPDATE, SEQ_REG(85));
/* ITM to OSM handoff */
clk_osm_setup_itm_to_osm_handoff();
pr_debug("seq_size: %zu, seqbr_size: %zu\n", ARRAY_SIZE(seq_instr),
ARRAY_SIZE(seq_br_instr));
clk_osm_setup_sequencer(&pwrcl_clk);
clk_osm_setup_sequencer(&perfcl_clk);
}
static void clk_osm_apm_vc_setup(struct clk_osm *c)
{
/*
* APM crossover virtual corner corresponds to switching
* voltage during APM transition. APM threshold virtual
* corner is the first corner which requires switch
* sequence of APM from MX to APC.
*/
if (c->secure_init) {
clk_osm_write_reg(c, c->apm_threshold_vc, SEQ_REG(1));
clk_osm_write_reg(c, c->apm_crossover_vc, SEQ_REG(72));
clk_osm_write_reg(c, c->pbases[OSM_BASE] + SEQ_REG(1),
SEQ_REG(8));
clk_osm_write_reg(c, c->apm_threshold_vc, SEQ_REG(15));
clk_osm_write_reg(c, c->apm_threshold_vc != 0 ?
c->apm_threshold_vc - 1 : 0xff,
SEQ_REG(31));
clk_osm_write_reg(c, 0x3b | c->apm_threshold_vc << 6,
SEQ_REG(73));
clk_osm_write_reg(c, 0x39 | c->apm_threshold_vc << 6,
SEQ_REG(76));
/* Ensure writes complete before returning */
clk_osm_mb(c, OSM_BASE);
} else {
if (c->apm_threshold_vc)
clk_osm_write_reg(c, c->apm_threshold_vc,
SEQ_REG1_OFFSET);
scm_io_write(c->pbases[OSM_BASE] + SEQ_REG(72),
c->apm_crossover_vc);
scm_io_write(c->pbases[OSM_BASE] + SEQ_REG(15),
c->apm_threshold_vc);
scm_io_write(c->pbases[OSM_BASE] + SEQ_REG(31),
c->apm_threshold_vc != 0 ?
c->apm_threshold_vc - 1 : 0xff);
scm_io_write(c->pbases[OSM_BASE] + SEQ_REG(76),
0x39 | c->apm_threshold_vc << 6);
}
}
static irqreturn_t clk_osm_debug_irq_cb(int irq, void *data)
{
struct clk_osm *c = data;
unsigned long first, second, total_delta = 0;
u32 val, factor;
int i;
val = clk_osm_read_reg(c, DCVS_PERF_STATE_DEVIATION_INTR_STAT);
if (val & BIT(0)) {
pr_info("OS DCVS performance state deviated\n");
clk_osm_write_reg(c, BIT(0),
DCVS_PERF_STATE_DEVIATION_INTR_CLEAR);
}
val = clk_osm_read_reg(c,
DCVS_PERF_STATE_DEVIATION_CORRECTED_INTR_STAT);
if (val & BIT(0)) {
pr_info("OS DCVS performance state corrected\n");
clk_osm_write_reg(c, BIT(0),
DCVS_PERF_STATE_DEVIATION_CORRECTED_INTR_CLEAR);
}
val = clk_osm_read_reg(c, DCVS_PERF_STATE_MET_INTR_STAT);
if (val & BIT(0)) {
pr_info("OS DCVS performance state desired reached\n");
clk_osm_write_reg(c, BIT(0), DCVS_PERF_STATE_MET_INTR_CLR);
}
factor = c->cycle_counter_factor ? c->cycle_counter_factor : 1;
for (i = 0; i < c->cycle_counter_reads; i++) {
first = clk_osm_read_reg(c, OSM_CYCLE_COUNTER_STATUS_REG);
if (c->cycle_counter_delay)
udelay(c->cycle_counter_delay);
second = clk_osm_read_reg(c, OSM_CYCLE_COUNTER_STATUS_REG);
total_delta = total_delta + ((second - first) / factor);
}
pr_info("cluster=%d, L_VAL (estimated)=%lu\n",
c->cluster_num, total_delta / c->cycle_counter_factor);
return IRQ_HANDLED;
}
static int clk_osm_setup_irq(struct platform_device *pdev, struct clk_osm *c,
char *irq_name)
{
int rc = 0;
rc = c->irq = platform_get_irq_byname(pdev, irq_name);
if (rc < 0) {
dev_err(&pdev->dev, "%s irq not specified\n", irq_name);
return rc;
}
rc = devm_request_irq(&pdev->dev, c->irq,
clk_osm_debug_irq_cb,
IRQF_TRIGGER_RISING | IRQF_SHARED,
"OSM IRQ", c);
if (rc)
dev_err(&pdev->dev, "Request IRQ failed for OSM IRQ\n");
return rc;
}
static u32 find_voltage(struct clk_osm *c, unsigned long rate)
{
struct osm_entry *table = c->osm_table;
int entries = c->num_entries, i;
for (i = 0; i < entries; i++) {
if (rate == table[i].frequency) {
/* OPP table voltages have units of mV */
return table[i].open_loop_volt * 1000;
}
}
return -EINVAL;
}
static int add_opp(struct clk_osm *c, struct device *dev)
{
unsigned long rate = 0;
u32 uv;
long rc;
int j = 0;
unsigned long min_rate = c->hw.init->rate_max[0];
unsigned long max_rate =
c->hw.init->rate_max[c->hw.init->num_rate_max - 1];
while (1) {
rate = c->hw.init->rate_max[j++];
uv = find_voltage(c, rate);
if (uv <= 0) {
pr_warn("No voltage for %lu.\n", rate);
return -EINVAL;
}
rc = dev_pm_opp_add(dev, rate, uv);
if (rc) {
pr_warn("failed to add OPP for %lu\n", rate);
return rc;
}
/*
* Print the OPP pair for the lowest and highest frequency for
* each device that we're populating. This is important since
* this information will be used by thermal mitigation and the
* scheduler.
*/
if (rate == min_rate)
pr_info("Set OPP pair (%lu Hz, %d uv) on %s\n",
rate, uv, dev_name(dev));
if (rate == max_rate && max_rate != min_rate) {
pr_info("Set OPP pair (%lu Hz, %d uv) on %s\n",
rate, uv, dev_name(dev));
break;
}
if (min_rate == max_rate)
break;
}
return 0;
}
static struct clk *logical_cpu_to_clk(int cpu)
{
struct device_node *cpu_node;
const u32 *cell;
u64 hwid;
static struct clk *cpu_clk_map[NR_CPUS];
if (cpu_clk_map[cpu])
return cpu_clk_map[cpu];
cpu_node = of_get_cpu_node(cpu, NULL);
if (!cpu_node)
goto fail;
cell = of_get_property(cpu_node, "reg", NULL);
if (!cell) {
pr_err("%s: missing reg property\n", cpu_node->full_name);
goto fail;
}
hwid = of_read_number(cell, of_n_addr_cells(cpu_node));
if ((hwid | pwrcl_clk.cpu_reg_mask) == pwrcl_clk.cpu_reg_mask) {
cpu_clk_map[cpu] = pwrcl_clk.hw.clk;
return pwrcl_clk.hw.clk;
}
if ((hwid | perfcl_clk.cpu_reg_mask) == perfcl_clk.cpu_reg_mask) {
cpu_clk_map[cpu] = perfcl_clk.hw.clk;
return perfcl_clk.hw.clk;
}
fail:
return NULL;
}
static u64 clk_osm_get_cpu_cycle_counter(int cpu)
{
struct clk_osm *c;
u32 val;
unsigned long flags;
if (logical_cpu_to_clk(cpu) == pwrcl_clk.hw.clk)
c = &pwrcl_clk;
else if (logical_cpu_to_clk(cpu) == perfcl_clk.hw.clk)
c = &perfcl_clk;
else {
pr_err("no clock device for CPU=%d\n", cpu);
return 0;
}
spin_lock_irqsave(&c->lock, flags);
val = clk_osm_read_reg_no_log(c, OSM_CYCLE_COUNTER_STATUS_REG);
if (val < c->prev_cycle_counter) {
/* Handle counter overflow */
c->total_cycle_counter += UINT_MAX -
c->prev_cycle_counter + val;
c->prev_cycle_counter = val;
} else {
c->total_cycle_counter += val - c->prev_cycle_counter;
c->prev_cycle_counter = val;
}
spin_unlock_irqrestore(&c->lock, flags);
return c->total_cycle_counter;
}
static void populate_opp_table(struct platform_device *pdev)
{
int cpu;
struct device *cpu_dev;
for_each_possible_cpu(cpu) {
if (logical_cpu_to_clk(cpu) == pwrcl_clk.hw.clk) {
cpu_dev = get_cpu_device(cpu);
if (cpu_dev)
WARN(add_opp(&pwrcl_clk, cpu_dev),
"Failed to add OPP levels for power cluster\n");
}
if (logical_cpu_to_clk(cpu) == perfcl_clk.hw.clk) {
cpu_dev = get_cpu_device(cpu);
if (cpu_dev)
WARN(add_opp(&perfcl_clk, cpu_dev),
"Failed to add OPP levels for perf cluster\n");
}
}
}
static int debugfs_get_trace_enable(void *data, u64 *val)
{
struct clk_osm *c = data;
*val = c->trace_en;
return 0;
}
static int debugfs_set_trace_enable(void *data, u64 val)
{
struct clk_osm *c = data;
clk_osm_masked_write_reg(c, val ? TRACE_CTRL_ENABLE :
TRACE_CTRL_DISABLE,
TRACE_CTRL, TRACE_CTRL_EN_MASK);
c->trace_en = val ? true : false;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debugfs_trace_enable_fops,
debugfs_get_trace_enable,
debugfs_set_trace_enable,
"%llu\n");
static int debugfs_get_wdog_trace(void *data, u64 *val)
{
struct clk_osm *c = data;
*val = c->wdog_trace_en;
return 0;
}
static int debugfs_set_wdog_trace(void *data, u64 val)
{
struct clk_osm *c = data;
int regval;
regval = clk_osm_read_reg(c, TRACE_CTRL);
regval = val ? regval | TRACE_CTRL_ENABLE_WDOG_STATUS :
regval & ~TRACE_CTRL_ENABLE_WDOG_STATUS;
clk_osm_write_reg(c, regval, TRACE_CTRL);
c->wdog_trace_en = val ? true : false;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debugfs_trace_wdog_enable_fops,
debugfs_get_wdog_trace,
debugfs_set_wdog_trace,
"%llu\n");
#define MAX_DEBUG_BUF_LEN 15
static DEFINE_MUTEX(debug_buf_mutex);
static char debug_buf[MAX_DEBUG_BUF_LEN];
static ssize_t debugfs_trace_method_set(struct file *file,
const char __user *buf,
size_t count, loff_t *ppos)
{
struct clk_osm *c;
u32 val;
if (IS_ERR(file) || file == NULL) {
pr_err("input error %ld\n", PTR_ERR(file));
return -EINVAL;
}
c = file->private_data;
if (!c) {
pr_err("invalid clk_osm handle\n");
return -EINVAL;
}
if (count < MAX_DEBUG_BUF_LEN) {
mutex_lock(&debug_buf_mutex);
if (copy_from_user(debug_buf, (void __user *) buf, count)) {
mutex_unlock(&debug_buf_mutex);
return -EFAULT;
}
debug_buf[count] = '\0';
mutex_unlock(&debug_buf_mutex);
/* check that user entered a supported packet type */
if (strcmp(debug_buf, "periodic\n") == 0) {
clk_osm_write_reg(c, clk_osm_count_ns(c,
PERIODIC_TRACE_DEFAULT_NS),
PERIODIC_TRACE_TIMER_CTRL);
clk_osm_masked_write_reg(c,
TRACE_CTRL_PERIODIC_TRACE_ENABLE,
TRACE_CTRL, TRACE_CTRL_PERIODIC_TRACE_EN_MASK);
c->trace_method = PERIODIC_PACKET;
c->trace_periodic_timer = PERIODIC_TRACE_DEFAULT_NS;
return count;
} else if (strcmp(debug_buf, "xor\n") == 0) {
val = clk_osm_read_reg(c, TRACE_CTRL);
val &= ~TRACE_CTRL_PERIODIC_TRACE_ENABLE;
clk_osm_write_reg(c, val, TRACE_CTRL);
c->trace_method = XOR_PACKET;
return count;
}
}
pr_err("error, supported trace mode types: 'periodic' or 'xor'\n");
return -EINVAL;
}
static ssize_t debugfs_trace_method_get(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct clk_osm *c;
int len, rc;
if (IS_ERR(file) || file == NULL) {
pr_err("input error %ld\n", PTR_ERR(file));
return -EINVAL;
}
c = file->private_data;
if (!c) {
pr_err("invalid clk_osm handle\n");
return -EINVAL;
}
mutex_lock(&debug_buf_mutex);
if (c->trace_method == PERIODIC_PACKET)
len = snprintf(debug_buf, sizeof(debug_buf), "periodic\n");
else if (c->trace_method == XOR_PACKET)
len = snprintf(debug_buf, sizeof(debug_buf), "xor\n");
rc = simple_read_from_buffer((void __user *) buf, len, ppos,
(void *) debug_buf, len);
mutex_unlock(&debug_buf_mutex);
return rc;
}
static int debugfs_trace_method_open(struct inode *inode, struct file *file)
{
if (IS_ERR(file) || file == NULL) {
pr_err("input error %ld\n", PTR_ERR(file));
return -EINVAL;
}
file->private_data = inode->i_private;
return 0;
}
static const struct file_operations debugfs_trace_method_fops = {
.write = debugfs_trace_method_set,
.open = debugfs_trace_method_open,
.read = debugfs_trace_method_get,
};
static int debugfs_get_trace_packet_id(void *data, u64 *val)
{
struct clk_osm *c = data;
*val = c->trace_id;
return 0;
}
static int debugfs_set_trace_packet_id(void *data, u64 val)
{
struct clk_osm *c = data;
if (val < TRACE_PACKET0 || val > TRACE_PACKET3) {
pr_err("supported trace IDs=%d-%d\n",
TRACE_PACKET0, TRACE_PACKET3);
return 0;
}
clk_osm_masked_write_reg(c, val << TRACE_CTRL_PACKET_TYPE_SHIFT,
TRACE_CTRL, TRACE_CTRL_PACKET_TYPE_MASK);
c->trace_id = val;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debugfs_trace_packet_id_fops,
debugfs_get_trace_packet_id,
debugfs_set_trace_packet_id,
"%llu\n");
static int debugfs_get_trace_periodic_timer(void *data, u64 *val)
{
struct clk_osm *c = data;
*val = c->trace_periodic_timer;
return 0;
}
static int debugfs_set_trace_periodic_timer(void *data, u64 val)
{
struct clk_osm *c = data;
if (val < PERIODIC_TRACE_MIN_NS || val > PERIODIC_TRACE_MAX_NS) {
pr_err("supported periodic trace periods=%d-%lld ns\n",
PERIODIC_TRACE_MIN_NS, PERIODIC_TRACE_MAX_NS);
return 0;
}
clk_osm_write_reg(c, clk_osm_count_ns(c, val),
PERIODIC_TRACE_TIMER_CTRL);
c->trace_periodic_timer = val;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debugfs_trace_periodic_timer_fops,
debugfs_get_trace_periodic_timer,
debugfs_set_trace_periodic_timer,
"%llu\n");
static int debugfs_get_perf_state_met_irq(void *data, u64 *val)
{
struct clk_osm *c = data;
*val = clk_osm_read_reg(c, DCVS_PERF_STATE_MET_INTR_EN);
return 0;
}
static int debugfs_set_perf_state_met_irq(void *data, u64 val)
{
struct clk_osm *c = data;
clk_osm_write_reg(c, val ? 1 : 0,
DCVS_PERF_STATE_MET_INTR_EN);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debugfs_perf_state_met_irq_fops,
debugfs_get_perf_state_met_irq,
debugfs_set_perf_state_met_irq,
"%llu\n");
static int debugfs_get_perf_state_deviation_irq(void *data, u64 *val)
{
struct clk_osm *c = data;
*val = clk_osm_read_reg(c,
DCVS_PERF_STATE_DEVIATION_INTR_EN);
return 0;
}
static int debugfs_set_perf_state_deviation_irq(void *data, u64 val)
{
struct clk_osm *c = data;
clk_osm_write_reg(c, val ? 1 : 0,
DCVS_PERF_STATE_DEVIATION_INTR_EN);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debugfs_perf_state_deviation_irq_fops,
debugfs_get_perf_state_deviation_irq,
debugfs_set_perf_state_deviation_irq,
"%llu\n");
static int debugfs_get_perf_state_deviation_corrected_irq(void *data, u64 *val)
{
struct clk_osm *c = data;
*val = clk_osm_read_reg(c,
DCVS_PERF_STATE_DEVIATION_CORRECTED_INTR_EN);
return 0;
}
static int debugfs_set_perf_state_deviation_corrected_irq(void *data, u64 val)
{
struct clk_osm *c = data;
clk_osm_write_reg(c, val ? 1 : 0,
DCVS_PERF_STATE_DEVIATION_CORRECTED_INTR_EN);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debugfs_perf_state_deviation_corrected_irq_fops,
debugfs_get_perf_state_deviation_corrected_irq,
debugfs_set_perf_state_deviation_corrected_irq,
"%llu\n");
static int debugfs_get_debug_reg(void *data, u64 *val)
{
struct clk_osm *c = data;
if (c->acd_debugfs_addr >= ACD_MASTER_ONLY_REG_ADDR)
*val = readl_relaxed((char *)c->vbases[ACD_BASE] +
c->acd_debugfs_addr);
else
*val = clk_osm_acd_local_read_reg(c, c->acd_debugfs_addr);
return 0;
}
static int debugfs_set_debug_reg(void *data, u64 val)
{
struct clk_osm *c = data;
if (c->acd_debugfs_addr >= ACD_MASTER_ONLY_REG_ADDR)
clk_osm_acd_master_write_reg(c, val, c->acd_debugfs_addr);
else
clk_osm_acd_master_write_through_reg(c, val,
c->acd_debugfs_addr);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debugfs_acd_debug_reg_fops,
debugfs_get_debug_reg,
debugfs_set_debug_reg,
"0x%llx\n");
static int debugfs_get_debug_reg_addr(void *data, u64 *val)
{
struct clk_osm *c = data;
*val = c->acd_debugfs_addr;
return 0;
}
static int debugfs_set_debug_reg_addr(void *data, u64 val)
{
struct clk_osm *c = data;
c->acd_debugfs_addr = val;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debugfs_acd_debug_reg_addr_fops,
debugfs_get_debug_reg_addr,
debugfs_set_debug_reg_addr,
"%llu\n");
static void populate_debugfs_dir(struct clk_osm *c)
{
struct dentry *temp;
if (osm_debugfs_base == NULL) {
osm_debugfs_base = debugfs_create_dir("osm", NULL);
if (IS_ERR_OR_NULL(osm_debugfs_base)) {
pr_err("osm debugfs base directory creation failed\n");
osm_debugfs_base = NULL;
return;
}
}
c->debugfs = debugfs_create_dir(c->hw.init->name, osm_debugfs_base);
if (IS_ERR_OR_NULL(c->debugfs)) {
pr_err("osm debugfs directory creation failed\n");
return;
}
temp = debugfs_create_file("perf_state_met_irq_enable",
S_IRUGO | S_IWUSR,
c->debugfs, c,
&debugfs_perf_state_met_irq_fops);
if (IS_ERR_OR_NULL(temp)) {
pr_err("perf_state_met_irq_enable debugfs file creation failed\n");
goto exit;
}
temp = debugfs_create_file("perf_state_deviation_irq_enable",
S_IRUGO | S_IWUSR,
c->debugfs, c,
&debugfs_perf_state_deviation_irq_fops);
if (IS_ERR_OR_NULL(temp)) {
pr_err("perf_state_deviation_irq_enable debugfs file creation failed\n");
goto exit;
}
temp = debugfs_create_file("perf_state_deviation_corrected_irq_enable",
S_IRUGO | S_IWUSR,
c->debugfs, c,
&debugfs_perf_state_deviation_corrected_irq_fops);
if (IS_ERR_OR_NULL(temp)) {
pr_err("debugfs_perf_state_deviation_corrected_irq_fops debugfs file creation failed\n");
goto exit;
}
temp = debugfs_create_file("wdog_trace_enable",
S_IRUGO | S_IWUSR,
c->debugfs, c,
&debugfs_trace_wdog_enable_fops);
if (IS_ERR_OR_NULL(temp)) {
pr_err("debugfs_trace_wdog_enable_fops debugfs file creation failed\n");
goto exit;
}
temp = debugfs_create_file("trace_enable",
S_IRUGO | S_IWUSR,
c->debugfs, c,
&debugfs_trace_enable_fops);
if (IS_ERR_OR_NULL(temp)) {
pr_err("debugfs_trace_enable_fops debugfs file creation failed\n");
goto exit;
}
temp = debugfs_create_file("trace_method",
S_IRUGO | S_IWUSR,
c->debugfs, c,
&debugfs_trace_method_fops);
if (IS_ERR_OR_NULL(temp)) {
pr_err("debugfs_trace_method_fops debugfs file creation failed\n");
goto exit;
}
temp = debugfs_create_file("trace_packet_id",
S_IRUGO | S_IWUSR,
c->debugfs, c,
&debugfs_trace_packet_id_fops);
if (IS_ERR_OR_NULL(temp)) {
pr_err("debugfs_trace_packet_id_fops debugfs file creation failed\n");
goto exit;
}
temp = debugfs_create_file("trace_periodic_timer",
S_IRUGO | S_IWUSR,
c->debugfs, c,
&debugfs_trace_periodic_timer_fops);
if (IS_ERR_OR_NULL(temp)) {
pr_err("debugfs_trace_periodic_timer_fops debugfs file creation failed\n");
goto exit;
}
temp = debugfs_create_file("acd_debug_reg",
S_IRUGO | S_IWUSR,
c->debugfs, c,
&debugfs_acd_debug_reg_fops);
if (IS_ERR_OR_NULL(temp)) {
pr_err("debugfs_acd_debug_reg_fops debugfs file creation failed\n");
goto exit;
}
temp = debugfs_create_file("acd_debug_reg_addr",
S_IRUGO | S_IWUSR,
c->debugfs, c,
&debugfs_acd_debug_reg_addr_fops);
if (IS_ERR_OR_NULL(temp)) {
pr_err("debugfs_acd_debug_reg_addr_fops debugfs file creation failed\n");
goto exit;
}
exit:
if (IS_ERR_OR_NULL(temp))
debugfs_remove_recursive(c->debugfs);
}
static int clk_osm_panic_callback(struct notifier_block *nfb,
unsigned long event,
void *data)
{
int i;
u32 value;
struct clk_osm *c = container_of(nfb,
struct clk_osm,
panic_notifier);
for (i = 0; i < DEBUG_REG_NUM; i++) {
value = readl_relaxed(c->debug_regs[i]);
pr_err("%s_%d=0x%08x\n", clk_panic_reg_names[i],
c->cluster_num, value);
}
return NOTIFY_OK;
}
static int clk_osm_acd_init(struct clk_osm *c)
{
int rc = 0;
u32 auto_xfer_mask = 0;
if (!c->acd_init)
return 0;
c->acd_debugfs_addr = ACD_HW_VERSION;
/* Program ACD tunable-length delay register */
clk_osm_acd_master_write_reg(c, c->acd_td, ACDTD);
auto_xfer_mask |= ACD_REG_RELATIVE_ADDR_BITMASK(ACDTD);
/* Program ACD control register */
clk_osm_acd_master_write_reg(c, c->acd_cr, ACDCR);
auto_xfer_mask |= ACD_REG_RELATIVE_ADDR_BITMASK(ACDCR);
/* Program ACD soft start control register */
clk_osm_acd_master_write_reg(c, c->acd_sscr, ACDSSCR);
auto_xfer_mask |= ACD_REG_RELATIVE_ADDR_BITMASK(ACDSSCR);
/* Program initial ACD external interface configuration register */
clk_osm_acd_master_write_reg(c, c->acd_extint0_cfg, ACD_EXTINT_CFG);
auto_xfer_mask |= ACD_REG_RELATIVE_ADDR_BITMASK(ACD_EXTINT_CFG);
/* Program ACD auto-register transfer control register */
clk_osm_acd_master_write_reg(c, c->acd_autoxfer_ctl, ACD_AUTOXFER_CTL);
/* Ensure writes complete before transfers to local copy */
clk_osm_acd_mb(c);
/* Transfer master copies */
rc = clk_osm_acd_auto_local_write_reg(c, auto_xfer_mask);
if (rc)
return rc;
/* Switch CPUSS clock source to ACD clock */
rc = clk_osm_acd_master_write_through_reg(c, ACD_GFMUX_CFG_SELECT,
ACD_GFMUX_CFG);
if (rc)
return rc;
/* Program ACD_DCVS_SW */
rc = clk_osm_acd_master_write_through_reg(c,
ACD_DCVS_SW_DCVS_IN_PRGR_SET,
ACD_DCVS_SW);
if (rc)
return rc;
rc = clk_osm_acd_master_write_through_reg(c,
ACD_DCVS_SW_DCVS_IN_PRGR_CLEAR,
ACD_DCVS_SW);
if (rc)
return rc;
udelay(1);
/* Program final ACD external interface configuration register */
rc = clk_osm_acd_master_write_through_reg(c, c->acd_extint1_cfg,
ACD_EXTINT_CFG);
if (rc)
return rc;
/*
* ACDCR, ACDTD, ACDSSCR, ACD_EXTINT_CFG, ACD_GFMUX_CFG
* must be copied from master to local copy on PC exit.
*/
auto_xfer_mask |= ACD_REG_RELATIVE_ADDR_BITMASK(ACD_GFMUX_CFG);
clk_osm_acd_master_write_reg(c, auto_xfer_mask, ACD_AUTOXFER_CFG);
return 0;
}
static unsigned long init_rate = 300000000;
static unsigned long osm_clk_init_rate = 200000000;
static unsigned long pwrcl_boot_rate = 1401600000;
static unsigned long perfcl_boot_rate = 1747200000;
static int clk_cpu_osm_driver_probe(struct platform_device *pdev)
{
int rc = 0, cpu, i;
int speedbin = 0, pvs_ver = 0;
bool is_sdm630 = 0;
u32 pte_efuse;
int num_clks = ARRAY_SIZE(osm_qcom_clk_hws);
struct clk *clk;
struct clk *ext_xo_clk, *ext_hmss_gpll0_clk_src;
struct device *dev = &pdev->dev;
struct clk_onecell_data *clk_data;
char perfclspeedbinstr[] = "qcom,perfcl-speedbin0-v0";
char pwrclspeedbinstr[] = "qcom,pwrcl-speedbin0-v0";
struct cpu_cycle_counter_cb cb = {
.get_cpu_cycle_counter = clk_osm_get_cpu_cycle_counter,
};
/*
* Require the RPM-XO clock and GCC-HMSS-GPLL0 clocks to be registererd
* before OSM.
*/
ext_xo_clk = devm_clk_get(dev, "xo_a");
if (IS_ERR(ext_xo_clk)) {
if (PTR_ERR(ext_xo_clk) != -EPROBE_DEFER)
dev_err(dev, "Unable to get xo clock\n");
return PTR_ERR(ext_xo_clk);
}
ext_hmss_gpll0_clk_src = devm_clk_get(dev, "aux_clk");
if (IS_ERR(ext_hmss_gpll0_clk_src)) {
if (PTR_ERR(ext_hmss_gpll0_clk_src) != -EPROBE_DEFER)
dev_err(dev, "Unable to get aux_clk clock\n");
return PTR_ERR(ext_hmss_gpll0_clk_src);
}
clk_data = devm_kzalloc(&pdev->dev, sizeof(struct clk_onecell_data),
GFP_KERNEL);
if (!clk_data)
goto exit;
clk_data->clks = devm_kzalloc(&pdev->dev, (num_clks *
sizeof(struct clk *)), GFP_KERNEL);
if (!clk_data->clks)
goto clk_err;
clk_data->clk_num = num_clks;
rc = clk_osm_parse_dt_configs(pdev);
if (rc) {
dev_err(&pdev->dev, "Unable to parse device tree configurations\n");
return rc;
}
rc = clk_osm_resources_init(pdev);
if (rc) {
if (rc != -EPROBE_DEFER)
dev_err(&pdev->dev, "resources init failed, rc=%d\n",
rc);
return rc;
}
if (pwrcl_clk.vbases[EFUSE_BASE]) {
/* Multiple speed-bins are supported */
pte_efuse = readl_relaxed(pwrcl_clk.vbases[EFUSE_BASE]);
speedbin = ((pte_efuse >> PWRCL_EFUSE_SHIFT) &
PWRCL_EFUSE_MASK);
snprintf(pwrclspeedbinstr, ARRAY_SIZE(pwrclspeedbinstr),
"qcom,pwrcl-speedbin%d-v%d", speedbin, pvs_ver);
}
dev_info(&pdev->dev, "using pwrcl speed bin %u and pvs_ver %d\n",
speedbin, pvs_ver);
rc = clk_osm_get_lut(pdev, &pwrcl_clk, pwrclspeedbinstr);
if (rc) {
dev_err(&pdev->dev, "Unable to get OSM LUT for power cluster, rc=%d\n",
rc);
return rc;
}
if (perfcl_clk.vbases[EFUSE_BASE]) {
/* Multiple speed-bins are supported */
pte_efuse = readl_relaxed(perfcl_clk.vbases[EFUSE_BASE]);
speedbin = ((pte_efuse >> PERFCL_EFUSE_SHIFT) &
PERFCL_EFUSE_MASK);
snprintf(perfclspeedbinstr, ARRAY_SIZE(perfclspeedbinstr),
"qcom,perfcl-speedbin%d-v%d", speedbin, pvs_ver);
}
dev_info(&pdev->dev, "using perfcl speed bin %u and pvs_ver %d\n",
speedbin, pvs_ver);
rc = clk_osm_get_lut(pdev, &perfcl_clk, perfclspeedbinstr);
if (rc) {
dev_err(&pdev->dev, "Unable to get OSM LUT for perf cluster, rc=%d\n",
rc);
return rc;
}
rc = clk_osm_resolve_open_loop_voltages(&pwrcl_clk);
if (rc) {
if (rc == -EPROBE_DEFER)
return rc;
dev_err(&pdev->dev, "Unable to determine open-loop voltages for power cluster, rc=%d\n",
rc);
return rc;
}
rc = clk_osm_resolve_open_loop_voltages(&perfcl_clk);
if (rc) {
if (rc == -EPROBE_DEFER)
return rc;
dev_err(&pdev->dev, "Unable to determine open-loop voltages for perf cluster, rc=%d\n",
rc);
return rc;
}
rc = clk_osm_resolve_crossover_corners(&pwrcl_clk, pdev, NULL);
if (rc)
dev_info(&pdev->dev, "No APM crossover corner programmed\n");
rc = clk_osm_resolve_crossover_corners(&perfcl_clk, pdev,
"qcom,perfcl-apcs-mem-acc-threshold-voltage");
if (rc)
dev_info(&pdev->dev, "No MEM-ACC crossover corner programmed\n");
clk_osm_setup_cycle_counters(&pwrcl_clk);
clk_osm_setup_cycle_counters(&perfcl_clk);
clk_osm_print_osm_table(&pwrcl_clk);
clk_osm_print_osm_table(&perfcl_clk);
rc = clk_osm_setup_hw_table(&pwrcl_clk);
if (rc) {
dev_err(&pdev->dev, "failed to setup power cluster hardware table\n");
goto exit;
}
rc = clk_osm_setup_hw_table(&perfcl_clk);
if (rc) {
dev_err(&pdev->dev, "failed to setup perf cluster hardware table\n");
goto exit;
}
/* Policy tuning */
rc = clk_osm_set_cc_policy(pdev);
if (rc < 0) {
dev_err(&pdev->dev, "cc policy setup failed");
goto exit;
}
/* LLM Freq Policy Tuning */
rc = clk_osm_set_llm_freq_policy(pdev);
if (rc < 0) {
dev_err(&pdev->dev, "LLM Frequency Policy setup failed");
goto exit;
}
/* LLM Voltage Policy Tuning */
rc = clk_osm_set_llm_volt_policy(pdev);
if (rc < 0) {
dev_err(&pdev->dev, "Failed to set LLM voltage Policy");
goto exit;
}
clk_osm_setup_fsms(&pwrcl_clk);
clk_osm_setup_fsms(&perfcl_clk);
/*
* Perform typical secure-world HW initialization
* as necessary.
*/
clk_osm_do_additional_setup(&pwrcl_clk, pdev);
clk_osm_do_additional_setup(&perfcl_clk, pdev);
/* MEM-ACC Programming */
clk_osm_program_mem_acc_regs(&pwrcl_clk);
clk_osm_program_mem_acc_regs(&perfcl_clk);
/* Program APM crossover corners */
clk_osm_apm_vc_setup(&pwrcl_clk);
clk_osm_apm_vc_setup(&perfcl_clk);
rc = clk_osm_setup_irq(pdev, &pwrcl_clk, "pwrcl-irq");
if (rc)
pr_err("Debug IRQ not set for pwrcl\n");
rc = clk_osm_setup_irq(pdev, &perfcl_clk, "perfcl-irq");
if (rc)
pr_err("Debug IRQ not set for perfcl\n");
if (of_property_read_bool(pdev->dev.of_node, "qcom,osm-pll-setup")) {
clk_osm_setup_cluster_pll(&pwrcl_clk);
clk_osm_setup_cluster_pll(&perfcl_clk);
}
rc = clk_osm_acd_init(&pwrcl_clk);
if (rc) {
pr_err("failed to initialize ACD for pwrcl, rc=%d\n", rc);
return rc;
}
rc = clk_osm_acd_init(&perfcl_clk);
if (rc) {
pr_err("failed to initialize ACD for perfcl, rc=%d\n", rc);
return rc;
}
spin_lock_init(&pwrcl_clk.lock);
spin_lock_init(&perfcl_clk.lock);
pwrcl_clk.panic_notifier.notifier_call = clk_osm_panic_callback;
atomic_notifier_chain_register(&panic_notifier_list,
&pwrcl_clk.panic_notifier);
perfcl_clk.panic_notifier.notifier_call = clk_osm_panic_callback;
atomic_notifier_chain_register(&panic_notifier_list,
&perfcl_clk.panic_notifier);
/* Register OSM pwr and perf clocks with Clock Framework */
for (i = 0; i < num_clks; i++) {
clk = devm_clk_register(&pdev->dev, osm_qcom_clk_hws[i]);
if (IS_ERR(clk)) {
dev_err(&pdev->dev, "Unable to register CPU clock at index %d\n",
i);
return PTR_ERR(clk);
}
clk_data->clks[i] = clk;
}
rc = of_clk_add_provider(pdev->dev.of_node, of_clk_src_onecell_get,
clk_data);
if (rc) {
dev_err(&pdev->dev, "Unable to register CPU clocks\n");
goto provider_err;
}
/*
* The hmss_gpll0 clock runs at 300 MHz. Ensure it is at the correct
* frequency before enabling OSM. LUT index 0 is always sourced from
* this clock.
*/
rc = clk_set_rate(sys_apcsaux_clk_gcc.hw.clk, init_rate);
if (rc) {
dev_err(&pdev->dev, "Unable to set init rate on hmss_gpll0, rc=%d\n",
rc);
return rc;
}
clk_prepare_enable(sys_apcsaux_clk_gcc.hw.clk);
rc = clk_set_rate(osm_clk_src.clkr.hw.clk, osm_clk_init_rate);
if (rc) {
dev_err(&pdev->dev, "Unable to set init rate on osm_clk, rc=%d\n",
rc);
goto exit2;
}
/* Make sure index zero is selected */
rc = clk_set_rate(pwrcl_clk.hw.clk, init_rate);
if (rc) {
dev_err(&pdev->dev, "Unable to set init rate on pwr cluster, rc=%d\n",
rc);
goto exit2;
}
rc = clk_set_rate(perfcl_clk.hw.clk, init_rate);
if (rc) {
dev_err(&pdev->dev, "Unable to set init rate on perf cluster, rc=%d\n",
rc);
goto exit2;
}
get_online_cpus();
/* Enable OSM */
for_each_online_cpu(cpu) {
WARN(clk_prepare_enable(logical_cpu_to_clk(cpu)),
"Failed to enable clock for cpu %d\n", cpu);
}
is_sdm630 = of_device_is_compatible(pdev->dev.of_node,
"qcom,clk-cpu-osm-sdm630");
if (is_sdm630) {
pwrcl_boot_rate = 1382400000;
perfcl_boot_rate = 1670400000;
}
/* Set final boot rate */
rc = clk_set_rate(pwrcl_clk.hw.clk, pwrcl_boot_rate);
if (rc) {
dev_err(&pdev->dev, "Unable to set boot rate on pwr cluster, rc=%d\n",
rc);
goto exit2;
}
rc = clk_set_rate(perfcl_clk.hw.clk, perfcl_boot_rate);
if (rc) {
dev_err(&pdev->dev, "Unable to set boot rate on perf cluster, rc=%d\n",
rc);
goto exit2;
}
populate_opp_table(pdev);
populate_debugfs_dir(&pwrcl_clk);
populate_debugfs_dir(&perfcl_clk);
of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
register_cpu_cycle_counter_cb(&cb);
pr_info("OSM driver inited\n");
put_online_cpus();
return 0;
exit2:
clk_disable_unprepare(sys_apcsaux_clk_gcc.hw.clk);
provider_err:
if (clk_data)
devm_kfree(&pdev->dev, clk_data->clks);
clk_err:
devm_kfree(&pdev->dev, clk_data);
exit:
dev_err(&pdev->dev, "OSM driver failed to initialize, rc=%d\n", rc);
panic("Unable to Setup OSM");
}
static const struct of_device_id match_table[] = {
{ .compatible = "qcom,clk-cpu-osm" },
{ .compatible = "qcom,clk-cpu-osm-sdm630" },
{}
};
static struct platform_driver clk_cpu_osm_driver = {
.probe = clk_cpu_osm_driver_probe,
.driver = {
.name = "clk-cpu-osm",
.of_match_table = match_table,
.owner = THIS_MODULE,
},
};
static int __init clk_cpu_osm_init(void)
{
return platform_driver_register(&clk_cpu_osm_driver);
}
arch_initcall(clk_cpu_osm_init);
static void __exit clk_cpu_osm_exit(void)
{
platform_driver_unregister(&clk_cpu_osm_driver);
}
module_exit(clk_cpu_osm_exit);
MODULE_DESCRIPTION("CPU clock driver for OSM");
MODULE_LICENSE("GPL v2");