blob: 371ef008f717555c98d1191bda13da272defac35 [file] [log] [blame]
/*
* Register/Interrupt access for userspace aDSP library.
*
* Copyright (C) 2008 Google, Inc.
* Copyright (c) 2008-2009,2011-2012 The Linux Foundation. All rights reserved.
* Author: Iliyan Malchev <ibm@android.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/* TODO:
* - move shareable rpc code outside of adsp.c
* - general solution for virt->phys patchup
* - queue IDs should be relative to modules
* - disallow access to non-associated queues
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/wait.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <mach/msm_iomap.h>
#include <mach/msm_adsp.h>
#include "adsp.h"
#include <mach/debug_mm.h>
#include <linux/debugfs.h>
#ifdef CONFIG_DEBUG_FS
static struct dentry *dentry_adsp;
static struct dentry *dentry_wdata;
static struct dentry *dentry_rdata;
static int wdump, rdump;
#endif /* CONFIG_DEBUG_FS */
static struct adsp_info adsp_info;
static struct msm_adsp_module *adsp_modules;
static int adsp_open_count;
static DEFINE_MUTEX(adsp_open_lock);
/* protect interactions with the ADSP command/message queue */
static spinlock_t adsp_cmd_lock;
static spinlock_t adsp_write_lock;
static uint32_t current_image = -1;
void adsp_set_image(struct adsp_info *info, uint32_t image)
{
current_image = image;
}
/*
* Checks whether the module_id is available in the
* module_entries table.If module_id is available returns `0`.
* If module_id is not available returns `-ENXIO`.
*/
static int32_t adsp_validate_module(uint32_t module_id)
{
uint32_t *ptr;
uint32_t module_index;
uint32_t num_mod_entries;
ptr = adsp_info.init_info_ptr->module_entries;
num_mod_entries = adsp_info.init_info_ptr->module_table_size;
for (module_index = 0; module_index < num_mod_entries; module_index++)
if (module_id == ptr[module_index])
return 0;
return -ENXIO;
}
static int32_t adsp_validate_queue(uint32_t mod_id, unsigned q_idx,
uint32_t size)
{
int32_t i;
struct adsp_rtos_mp_mtoa_init_info_type *sptr;
sptr = adsp_info.init_info_ptr;
for (i = 0; i < sptr->mod_to_q_entries; i++)
if (mod_id == sptr->mod_to_q_tbl[i].module)
if (q_idx == sptr->mod_to_q_tbl[i].q_type) {
if (size <= sptr->mod_to_q_tbl[i].q_max_len)
return 0;
MM_ERR("q_idx: %d is not a valid queue \
for module %x\n", q_idx, mod_id);
return -EINVAL;
}
MM_ERR("cmd_buf size is more than allowed size\n");
return -EINVAL;
}
uint32_t adsp_get_module(struct adsp_info *info, uint32_t task)
{
return info->task_to_module[current_image][task];
}
uint32_t adsp_get_queue_offset(struct adsp_info *info, uint32_t queue_id)
{
return info->queue_offset[current_image][queue_id];
}
static int rpc_adsp_rtos_app_to_modem(uint32_t cmd, uint32_t module,
struct msm_adsp_module *adsp_module)
{
struct adsp_rtos_atom_cmd adspsvc_cmd;
int err;
adspsvc_cmd.cmd = cmd;
adspsvc_cmd.proc_id = RPC_ADSP_RTOS_PROC_APPS;
adspsvc_cmd.module = module;
adspsvc_cmd.cb_handle = adsp_info.cb_handle;
err = dalrpc_fcn_5(DALDEVICE_ADSP_CMD_IDX | 0x80000000,
adsp_info.handle,
&adspsvc_cmd, sizeof(adspsvc_cmd));
if (err < 0)
MM_ERR("ADSP command send Failed\n");
return 0;
}
static int get_module_index(uint32_t id)
{
int mod_idx;
for (mod_idx = 0; mod_idx < adsp_info.module_count; mod_idx++)
if (adsp_info.module[mod_idx].id == id)
return mod_idx;
return -ENXIO;
}
static struct msm_adsp_module *find_adsp_module_by_id(
struct adsp_info *info, uint32_t id)
{
int mod_idx;
if (id > info->max_module_id) {
return NULL;
} else {
mod_idx = get_module_index(id);
if (mod_idx < 0)
return NULL;
return info->id_to_module[mod_idx];
}
}
static struct msm_adsp_module *find_adsp_module_by_name(
struct adsp_info *info, const char *name)
{
unsigned n;
for (n = 0; n < info->module_count; n++)
if (!strcmp(name, adsp_modules[n].name))
return adsp_modules + n;
return NULL;
}
/*
* Send RPC_ADSP_RTOS_CMD_GET_INIT_INFO cmd to ARM9 and get
* queue offsets and module entries (init info) as part of the event.
*/
static void msm_get_init_info(void)
{
struct adsp_rtos_atom_cmd cmd;
int err;
cmd.cmd = RPC_ADSP_RTOS_CMD_GET_INIT_INFO;
cmd.proc_id = RPC_ADSP_RTOS_PROC_APPS;
cmd.module = 0;
cmd.cb_handle = adsp_info.cb_handle;
err = dalrpc_fcn_5(DALDEVICE_ADSP_CMD_IDX | 0x80000000,
adsp_info.handle,
&cmd, sizeof(cmd));
if (err < 0)
MM_ERR("INIT_INFO command send Failed\n");
}
int msm_adsp_get(const char *name, struct msm_adsp_module **out,
struct msm_adsp_ops *ops, void *driver_data)
{
struct msm_adsp_module *module;
int rc = 0;
module = find_adsp_module_by_name(&adsp_info, name);
if (!module)
return -ENODEV;
mutex_lock(&module->lock);
MM_DBG("opening module %s\n", module->name);
if (module->ops) {
rc = -EBUSY;
mutex_unlock(&module->lock);
goto done;
}
module->ops = ops;
module->driver_data = driver_data;
*out = module;
mutex_unlock(&module->lock);
rc = rpc_adsp_rtos_app_to_modem(RPC_ADSP_RTOS_CMD_REGISTER_APP,
module->id, module);
if (rc) {
mutex_lock(&module->lock);
module->ops = NULL;
module->driver_data = NULL;
*out = NULL;
MM_ERR("REGISTER_APP failed\n");
mutex_unlock(&module->lock);
goto done;
}
MM_INFO("module %s has been registered\n", module->name);
done:
return rc;
}
EXPORT_SYMBOL(msm_adsp_get);
void msm_adsp_put(struct msm_adsp_module *module)
{
unsigned long flags;
mutex_lock(&module->lock);
if (module->ops) {
MM_INFO("closing module %s\n", module->name);
/* lock to ensure a dsp event cannot be delivered
* during or after removal of the ops and driver_data
*/
spin_lock_irqsave(&adsp_cmd_lock, flags);
module->ops = NULL;
module->driver_data = NULL;
spin_unlock_irqrestore(&adsp_cmd_lock, flags);
if (module->state != ADSP_STATE_DISABLED) {
MM_INFO("disabling module %s\n", module->name);
mutex_unlock(&module->lock);
msm_adsp_disable(module);
return;
}
} else {
MM_INFO("module %s is already closed\n", module->name);
}
mutex_unlock(&module->lock);
}
EXPORT_SYMBOL(msm_adsp_put);
int __msm_adsp_write(struct msm_adsp_module *module, unsigned dsp_queue_addr,
void *cmd_buf, size_t cmd_size)
{
uint32_t ctrl_word;
uint32_t dsp_q_addr;
uint32_t dsp_addr;
uint32_t cmd_id = 0;
int cnt = 0;
int ret_status = 0;
unsigned long flags;
struct adsp_info *info;
if (!module || !cmd_buf) {
MM_ERR("Called with NULL parameters\n");
return -EINVAL;
}
info = module->info;
spin_lock_irqsave(&adsp_write_lock, flags);
if (module->state != ADSP_STATE_ENABLED) {
spin_unlock_irqrestore(&adsp_write_lock, flags);
MM_ERR("module %s not enabled before write\n", module->name);
return -ENODEV;
}
if (adsp_validate_module(module->id)) {
spin_unlock_irqrestore(&adsp_write_lock, flags);
MM_ERR("module id validation failed %s %d\n",
module->name, module->id);
return -ENXIO;
}
if (dsp_queue_addr >= QDSP_MAX_NUM_QUEUES) {
spin_unlock_irqrestore(&adsp_write_lock, flags);
MM_ERR("Invalid Queue Index: %d\n", dsp_queue_addr);
return -ENXIO;
}
if (adsp_validate_queue(module->id, dsp_queue_addr, cmd_size)) {
spin_unlock_irqrestore(&adsp_write_lock, flags);
return -EINVAL;
}
dsp_q_addr = adsp_get_queue_offset(info, dsp_queue_addr);
dsp_q_addr &= ADSP_RTOS_WRITE_CTRL_WORD_DSP_ADDR_M;
/* Poll until the ADSP is ready to accept a command.
* Wait for 100us, return error if it's not responding.
* If this returns an error, we need to disable ALL modules and
* then retry.
*/
while (((ctrl_word = readl(info->write_ctrl)) &
ADSP_RTOS_WRITE_CTRL_WORD_READY_M) !=
ADSP_RTOS_WRITE_CTRL_WORD_READY_V) {
if (cnt > 50) {
MM_ERR("timeout waiting for DSP write ready\n");
ret_status = -EIO;
goto fail;
}
MM_DBG("waiting for DSP write ready\n");
udelay(2);
cnt++;
}
/* Set the mutex bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_M);
ctrl_word |= ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_NAVAIL_V;
/* Clear the command bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_CMD_M);
/* Set the queue address bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_DSP_ADDR_M);
ctrl_word |= dsp_q_addr;
writel(ctrl_word, info->write_ctrl);
/* Generate an interrupt to the DSP. This notifies the DSP that
* we are about to send a command on this particular queue. The
* DSP will in response change its state.
*/
writel(1, info->send_irq);
/* Poll until the adsp responds to the interrupt; this does not
* generate an interrupt from the adsp. This should happen within
* 5ms.
*/
cnt = 0;
while ((readl(info->write_ctrl) &
ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_M) ==
ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_NAVAIL_V) {
if (cnt > 2500) {
MM_ERR("timeout waiting for adsp ack\n");
ret_status = -EIO;
goto fail;
}
udelay(2);
cnt++;
}
/* Read the ctrl word */
ctrl_word = readl(info->write_ctrl);
if ((ctrl_word & ADSP_RTOS_WRITE_CTRL_WORD_STATUS_M) !=
ADSP_RTOS_WRITE_CTRL_WORD_NO_ERR_V) {
ret_status = -EAGAIN;
goto fail;
} else {
/* No error */
/* Get the DSP buffer address */
dsp_addr = (ctrl_word & ADSP_RTOS_WRITE_CTRL_WORD_DSP_ADDR_M) +
(uint32_t)MSM_AD5_BASE;
if (dsp_addr < (uint32_t)(MSM_AD5_BASE + QDSP_RAMC_OFFSET)) {
uint16_t *buf_ptr = (uint16_t *) cmd_buf;
uint16_t *dsp_addr16 = (uint16_t *)dsp_addr;
cmd_size /= sizeof(uint16_t);
/* Save the command ID */
cmd_id = (uint32_t) buf_ptr[0];
/* Copy the command to DSP memory */
cmd_size++;
while (--cmd_size)
*dsp_addr16++ = *buf_ptr++;
} else {
uint32_t *buf_ptr = (uint32_t *) cmd_buf;
uint32_t *dsp_addr32 = (uint32_t *)dsp_addr;
cmd_size /= sizeof(uint32_t);
/* Save the command ID */
cmd_id = buf_ptr[0];
cmd_size++;
while (--cmd_size)
*dsp_addr32++ = *buf_ptr++;
}
/* Set the mutex bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_M);
ctrl_word |= ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_NAVAIL_V;
/* Set the command bits to write done */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_CMD_M);
ctrl_word |= ADSP_RTOS_WRITE_CTRL_WORD_CMD_WRITE_DONE_V;
/* Set the queue address bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_DSP_ADDR_M);
ctrl_word |= dsp_q_addr;
writel(ctrl_word, info->write_ctrl);
/* Generate an interrupt to the DSP. It does not respond with
* an interrupt, and we do not need to wait for it to
* acknowledge, because it will hold the mutex lock until it's
* ready to receive more commands again.
*/
writel(1, info->send_irq);
module->num_commands++;
} /* Ctrl word status bits were 00, no error in the ctrl word */
fail:
spin_unlock_irqrestore(&adsp_write_lock, flags);
return ret_status;
}
EXPORT_SYMBOL(msm_adsp_write);
int msm_adsp_write(struct msm_adsp_module *module, unsigned dsp_queue_addr,
void *cmd_buf, size_t cmd_size)
{
int rc, retries = 0;
#ifdef CONFIG_DEBUG_FS
uint16_t *ptr;
int ii;
if (wdump > 0) {
ptr = cmd_buf;
pr_info("A->D:%x\n", module->id);
pr_info("adsp: %x %d\n", dsp_queue_addr, cmd_size);
for (ii = 0; ii < cmd_size/2; ii++)
pr_info("%x ", ptr[ii]);
pr_info("\n");
}
#endif /* CONFIG_DEBUG_FS */
do {
rc = __msm_adsp_write(module, dsp_queue_addr, cmd_buf,
cmd_size);
if (rc == -EAGAIN)
udelay(50);
} while (rc == -EAGAIN && retries++ < 300);
if (retries > 20)
MM_INFO("%s command took %d attempts: rc %d\n",
module->name, retries, rc);
return rc;
}
#ifdef CONFIG_MSM_ADSP_REPORT_EVENTS
static void *event_addr;
static void read_event(void *buf, size_t len)
{
uint32_t dptr[3];
struct adsp_rtos_mp_mtoa_s_type *sptr;
struct adsp_rtos_mp_mtoa_type *pkt_ptr;
sptr = event_addr;
pkt_ptr = &sptr->adsp_rtos_mp_mtoa_data.mp_mtoa_packet;
dptr[0] = sptr->mp_mtoa_header.event;
dptr[1] = pkt_ptr->module;
dptr[2] = pkt_ptr->image;
if (len > EVENT_LEN)
len = EVENT_LEN;
memcpy(buf, dptr, len);
}
#endif
static void adsp_rtos_mtoa_cb(void *context, uint32_t param,
void *evt_buf, uint32_t len)
{
struct adsp_rtos_mp_mtoa_s_type *args = NULL;
uint32_t event = 0;
uint32_t proc_id = 0;
uint32_t module_id;
uint32_t image;
struct msm_adsp_module *module;
struct adsp_rtos_mp_mtoa_type *pkt_ptr;
struct queue_to_offset_type *qptr;
struct queue_to_offset_type *qtbl;
struct mod_to_queue_offsets *mqptr;
struct mod_to_queue_offsets *mqtbl;
uint32_t *mptr;
uint32_t *mtbl;
uint32_t q_idx;
uint32_t num_entries;
uint32_t entries_per_image;
struct adsp_rtos_mp_mtoa_init_info_type *iptr;
struct adsp_rtos_mp_mtoa_init_info_type *sptr;
int32_t i_no, e_idx;
static uint32_t init_info_completed;
static uint32_t init_info_len =
sizeof(struct adsp_rtos_mp_mtoa_header_type);
static uint32_t next_init_info_byte;
static uint32_t expected_byte = 1;
uint32_t hdr_len = sizeof(struct adsp_rtos_mp_mtoa_header_type);
if (len) {
args = (struct adsp_rtos_mp_mtoa_s_type *) evt_buf;
event = args->mp_mtoa_header.event;
proc_id = args->mp_mtoa_header.proc_id;
}
if (!init_info_completed && event == RPC_ADSP_RTOS_INIT_INFO) {
memcpy(((char *)adsp_info.raw_event) + init_info_len,
(char *)evt_buf + hdr_len + 4,
len - ((hdr_len + 4)));
init_info_len += (len - (hdr_len + 4));
evt_buf += hdr_len;
next_init_info_byte = *(uint32_t *) evt_buf;
expected_byte += len;
if (next_init_info_byte &&
(expected_byte != next_init_info_byte)) {
MM_ERR("INIT_INFO - expecting next byte to be %d\n"
"\tbut ADSPSVC indicated next byte to be %d\n",
expected_byte, next_init_info_byte);
return;
}
if (!next_init_info_byte) {
args = adsp_info.raw_event;
args->mp_mtoa_header.event = event;
args->mp_mtoa_header.proc_id = proc_id;
init_info_completed = 1;
} else
return;
}
if (event == RPC_ADSP_RTOS_INIT_INFO) {
MM_INFO("INIT_INFO Event\n");
sptr = &args->adsp_rtos_mp_mtoa_data.mp_mtoa_init_packet;
iptr = adsp_info.init_info_ptr;
iptr->image_count = sptr->image_count;
if (iptr->image_count > IMG_MAX)
iptr->image_count = IMG_MAX;
iptr->num_queue_offsets = sptr->num_queue_offsets;
num_entries = iptr->num_queue_offsets;
if (num_entries > ENTRIES_MAX) {
num_entries = ENTRIES_MAX;
iptr->num_queue_offsets = ENTRIES_MAX;
}
qptr = &sptr->queue_offsets_tbl[0][0];
for (i_no = 0; i_no < iptr->image_count; i_no++) {
qtbl = &iptr->queue_offsets_tbl[i_no][0];
for (e_idx = 0; e_idx < num_entries; e_idx++) {
qtbl[e_idx].offset = qptr->offset;
qtbl[e_idx].queue = qptr->queue;
q_idx = qptr->queue;
iptr->queue_offsets[i_no][q_idx] =
qtbl[e_idx].offset;
qptr++;
}
}
num_entries = sptr->num_task_module_entries;
if (num_entries > ENTRIES_MAX)
num_entries = ENTRIES_MAX;
iptr->num_task_module_entries = num_entries;
entries_per_image = num_entries / iptr->image_count;
mptr = &sptr->task_to_module_tbl[0][0];
for (i_no = 0; i_no < iptr->image_count; i_no++) {
mtbl = &iptr->task_to_module_tbl[i_no][0];
for (e_idx = 0; e_idx < entries_per_image; e_idx++) {
mtbl[e_idx] = *mptr;
mptr++;
}
}
iptr->module_table_size = sptr->module_table_size;
if (iptr->module_table_size > MODULES_MAX)
iptr->module_table_size = MODULES_MAX;
mptr = &sptr->module_entries[0];
for (i_no = 0; i_no < iptr->module_table_size; i_no++)
iptr->module_entries[i_no] = mptr[i_no];
mqptr = &sptr->mod_to_q_tbl[0];
mqtbl = &iptr->mod_to_q_tbl[0];
iptr->mod_to_q_entries = sptr->mod_to_q_entries;
if (iptr->mod_to_q_entries > ENTRIES_MAX)
iptr->mod_to_q_entries = ENTRIES_MAX;
for (e_idx = 0; e_idx < iptr->mod_to_q_entries; e_idx++) {
mqtbl[e_idx].module = mqptr->module;
mqtbl[e_idx].q_type = mqptr->q_type;
mqtbl[e_idx].q_max_len = mqptr->q_max_len;
mqptr++;
}
adsp_info.init_info_state = ADSP_STATE_INIT_INFO;
kfree(adsp_info.raw_event);
wake_up(&adsp_info.init_info_wait);
return;
}
pkt_ptr = &args->adsp_rtos_mp_mtoa_data.mp_mtoa_packet;
module_id = pkt_ptr->module;
image = pkt_ptr->image;
MM_INFO("rpc event=%d, proc_id=%d, module=%d, image=%d\n",
event, proc_id, module_id, image);
module = find_adsp_module_by_id(&adsp_info, module_id);
if (!module) {
MM_ERR("module %d is not supported!\n", module_id);
return;
}
mutex_lock(&module->lock);
switch (event) {
case RPC_ADSP_RTOS_MOD_READY:
MM_INFO("module %s: READY\n", module->name);
module->state = ADSP_STATE_ENABLED;
wake_up(&module->state_wait);
adsp_set_image(module->info, image);
break;
case RPC_ADSP_RTOS_MOD_DISABLE:
MM_INFO("module %s: DISABLED\n", module->name);
module->state = ADSP_STATE_DISABLED;
wake_up(&module->state_wait);
break;
case RPC_ADSP_RTOS_SERVICE_RESET:
MM_INFO("module %s: SERVICE_RESET\n", module->name);
module->state = ADSP_STATE_DISABLED;
wake_up(&module->state_wait);
break;
case RPC_ADSP_RTOS_CMD_SUCCESS:
MM_INFO("module %s: CMD_SUCCESS\n", module->name);
break;
case RPC_ADSP_RTOS_CMD_FAIL:
MM_INFO("module %s: CMD_FAIL\n", module->name);
break;
case RPC_ADSP_RTOS_DISABLE_FAIL:
MM_INFO("module %s: DISABLE_FAIL\n", module->name);
break;
default:
MM_ERR("unknown event %d\n", event);
mutex_unlock(&module->lock);
return;
}
#ifdef CONFIG_MSM_ADSP_REPORT_EVENTS
event_addr = (uint32_t *)evt_buf;
if (module->ops)
module->ops->event(module->driver_data,
EVENT_MSG_ID,
EVENT_LEN,
read_event);
#endif
mutex_unlock(&module->lock);
}
static size_t read_event_size;
static void *read_event_addr;
static void read_event_16(void *buf, size_t len)
{
uint16_t *dst = buf;
uint16_t *src = read_event_addr;
len /= 2;
if (len > read_event_size)
len = read_event_size;
while (len--)
*dst++ = *src++;
}
static void read_event_32(void *buf, size_t len)
{
uint32_t *dst = buf;
uint32_t *src = read_event_addr;
len /= 2;
if (len > read_event_size)
len = read_event_size;
while (len--)
*dst++ = *src++;
}
static int adsp_rtos_read_ctrl_word_cmd_tast_to_h_v(
struct adsp_info *info, void *dsp_addr)
{
struct msm_adsp_module *module;
unsigned rtos_task_id;
unsigned msg_id;
unsigned msg_length;
#ifdef CONFIG_DEBUG_FS
uint16_t *ptr;
int ii;
#endif /* CONFIG_DEBUG_FS */
void (*func)(void *, size_t);
if (dsp_addr >= (void *)(MSM_AD5_BASE + QDSP_RAMC_OFFSET)) {
uint32_t *dsp_addr32 = dsp_addr;
uint32_t tmp = *dsp_addr32++;
rtos_task_id = (tmp & ADSP_RTOS_READ_CTRL_WORD_TASK_ID_M) >> 8;
msg_id = (tmp & ADSP_RTOS_READ_CTRL_WORD_MSG_ID_M);
read_event_size = tmp >> 16;
read_event_addr = dsp_addr32;
msg_length = read_event_size * sizeof(uint32_t);
func = read_event_32;
} else {
uint16_t *dsp_addr16 = dsp_addr;
uint16_t tmp = *dsp_addr16++;
rtos_task_id = (tmp & ADSP_RTOS_READ_CTRL_WORD_TASK_ID_M) >> 8;
msg_id = tmp & ADSP_RTOS_READ_CTRL_WORD_MSG_ID_M;
read_event_size = *dsp_addr16++;
read_event_addr = dsp_addr16;
msg_length = read_event_size * sizeof(uint16_t);
func = read_event_16;
}
if (rtos_task_id > info->max_task_id) {
MM_ERR("bogus task id %d\n", rtos_task_id);
return 0;
}
module = find_adsp_module_by_id(info,
adsp_get_module(info, rtos_task_id));
if (!module) {
MM_ERR("no module for task id %d\n", rtos_task_id);
return 0;
}
module->num_events++;
if (!module->ops) {
MM_ERR("module %s is not open\n", module->name);
return 0;
}
#ifdef CONFIG_DEBUG_FS
if (rdump > 0) {
ptr = read_event_addr;
pr_info("D->A\n");
pr_info("m_id = %x id = %x\n", module->id, msg_id);
for (ii = 0; ii < msg_length/2; ii++)
pr_info("%x ", ptr[ii]);
pr_info("\n");
}
#endif /* CONFIG_DEBUG_FS */
module->ops->event(module->driver_data, msg_id, msg_length, func);
return 0;
}
static int adsp_get_event(struct adsp_info *info)
{
uint32_t ctrl_word;
uint32_t ready;
void *dsp_addr;
uint32_t cmd_type;
int cnt;
unsigned long flags;
int rc = 0;
spin_lock_irqsave(&adsp_cmd_lock, flags);
/* Whenever the DSP has a message, it updates this control word
* and generates an interrupt. When we receive the interrupt, we
* read this register to find out what ADSP task the command is
* comming from.
*
* The ADSP should *always* be ready on the first call, but the
* irq handler calls us in a loop (to handle back-to-back command
* processing), so we give the DSP some time to return to the
* ready state. The DSP will not issue another IRQ for events
* pending between the first IRQ and the event queue being drained,
* unfortunately.
*/
for (cnt = 0; cnt < 50; cnt++) {
ctrl_word = readl(info->read_ctrl);
if ((ctrl_word & ADSP_RTOS_READ_CTRL_WORD_FLAG_M) ==
ADSP_RTOS_READ_CTRL_WORD_FLAG_UP_CONT_V)
goto ready;
udelay(2);
}
MM_ERR("not ready after 100uS\n");
rc = -EBUSY;
goto done;
ready:
/* Here we check to see if there are pending messages. If there are
* none, we siply return -EAGAIN to indicate that there are no more
* messages pending.
*/
ready = ctrl_word & ADSP_RTOS_READ_CTRL_WORD_READY_M;
if ((ready != ADSP_RTOS_READ_CTRL_WORD_READY_V) &&
(ready != ADSP_RTOS_READ_CTRL_WORD_CONT_V)) {
rc = -EAGAIN;
goto done;
}
/* DSP says that there are messages waiting for the host to read */
/* Get the Command Type */
cmd_type = ctrl_word & ADSP_RTOS_READ_CTRL_WORD_CMD_TYPE_M;
/* Get the DSP buffer address */
dsp_addr = (void *)((ctrl_word &
ADSP_RTOS_READ_CTRL_WORD_DSP_ADDR_M) +
(uint32_t)MSM_AD5_BASE);
/* We can only handle Task-to-Host messages */
if (cmd_type != ADSP_RTOS_READ_CTRL_WORD_CMD_TASK_TO_H_V) {
MM_ERR("unknown dsp cmd_type %d\n", cmd_type);
rc = -EIO;
goto done;
}
adsp_rtos_read_ctrl_word_cmd_tast_to_h_v(info, dsp_addr);
ctrl_word = readl(info->read_ctrl);
ctrl_word &= ~ADSP_RTOS_READ_CTRL_WORD_READY_M;
/* Write ctrl word to the DSP */
writel(ctrl_word, info->read_ctrl);
/* Generate an interrupt to the DSP */
writel(1, info->send_irq);
done:
spin_unlock_irqrestore(&adsp_cmd_lock, flags);
return rc;
}
static irqreturn_t adsp_irq_handler(int irq, void *data)
{
struct adsp_info *info = &adsp_info;
int cnt = 0;
for (cnt = 0; cnt < 15; cnt++)
if (adsp_get_event(info) < 0)
break;
if (cnt > info->event_backlog_max)
info->event_backlog_max = cnt;
info->events_received += cnt;
if (cnt == 15)
MM_ERR("too many (%d) events for single irq!\n", cnt);
return IRQ_HANDLED;
}
int adsp_set_clkrate(struct msm_adsp_module *module, unsigned long clk_rate)
{
if (module->clk && clk_rate)
return clk_set_rate(module->clk, clk_rate);
return -EINVAL;
}
int msm_adsp_enable(struct msm_adsp_module *module)
{
int rc = 0;
MM_INFO("enable '%s'state[%d] id[%d]\n",
module->name, module->state, module->id);
mutex_lock(&module->lock);
switch (module->state) {
case ADSP_STATE_DISABLED:
module->state = ADSP_STATE_ENABLING;
mutex_unlock(&module->lock);
rc = rpc_adsp_rtos_app_to_modem(RPC_ADSP_RTOS_CMD_ENABLE,
module->id, module);
if (rc) {
mutex_lock(&module->lock);
module->state = ADSP_STATE_DISABLED;
break;
}
rc = wait_event_timeout(module->state_wait,
module->state != ADSP_STATE_ENABLING,
1 * HZ);
mutex_lock(&module->lock);
if (module->state == ADSP_STATE_ENABLED) {
rc = 0;
} else {
MM_ERR("module '%s' enable timed out\n", module->name);
rc = -ETIMEDOUT;
}
if (module->open_count++ == 0 && module->clk)
clk_prepare_enable(module->clk);
mutex_lock(&adsp_open_lock);
if (adsp_open_count++ == 0)
enable_irq(adsp_info.int_adsp);
mutex_unlock(&adsp_open_lock);
break;
case ADSP_STATE_ENABLING:
MM_DBG("module '%s' enable in progress\n", module->name);
break;
case ADSP_STATE_ENABLED:
MM_DBG("module '%s' already enabled\n", module->name);
break;
case ADSP_STATE_DISABLING:
MM_ERR("module '%s' disable in progress\n", module->name);
rc = -EBUSY;
break;
}
mutex_unlock(&module->lock);
return rc;
}
EXPORT_SYMBOL(msm_adsp_enable);
int msm_adsp_disable_event_rsp(struct msm_adsp_module *module)
{
int rc = 0;
mutex_lock(&module->lock);
rc = rpc_adsp_rtos_app_to_modem(RPC_ADSP_RTOS_CMD_DISABLE_EVENT_RSP,
module->id, module);
mutex_unlock(&module->lock);
return rc;
}
EXPORT_SYMBOL(msm_adsp_disable_event_rsp);
int msm_adsp_disable(struct msm_adsp_module *module)
{
int rc = 0;
mutex_lock(&module->lock);
switch (module->state) {
case ADSP_STATE_DISABLED:
MM_DBG("module '%s' already disabled\n", module->name);
mutex_unlock(&module->lock);
break;
case ADSP_STATE_ENABLING:
case ADSP_STATE_ENABLED:
mutex_unlock(&module->lock);
rc = rpc_adsp_rtos_app_to_modem(RPC_ADSP_RTOS_CMD_DISABLE,
module->id, module);
mutex_lock(&module->lock);
module->state = ADSP_STATE_DISABLED;
if (--module->open_count == 0 && module->clk)
clk_disable_unprepare(module->clk);
mutex_unlock(&module->lock);
mutex_lock(&adsp_open_lock);
if (--adsp_open_count == 0) {
disable_irq(adsp_info.int_adsp);
MM_INFO("disable interrupt\n");
}
mutex_unlock(&adsp_open_lock);
break;
}
return rc;
}
EXPORT_SYMBOL(msm_adsp_disable);
static int msm_adsp_probe(struct platform_device *pdev)
{
unsigned count;
int rc, i;
adsp_info.int_adsp = platform_get_irq(pdev, 0);
if (adsp_info.int_adsp < 0) {
MM_ERR("no irq resource?\n");
return -ENODEV;
}
adsp_info.init_info_ptr = kzalloc(
(sizeof(struct adsp_rtos_mp_mtoa_init_info_type)), GFP_KERNEL);
if (!adsp_info.init_info_ptr)
return -ENOMEM;
adsp_info.raw_event = kzalloc(
(sizeof(struct adsp_rtos_mp_mtoa_s_type)), GFP_KERNEL);
if (!adsp_info.raw_event) {
kfree(adsp_info.init_info_ptr);
return -ENOMEM;
}
rc = adsp_init_info(&adsp_info);
if (rc) {
kfree(adsp_info.init_info_ptr);
kfree(adsp_info.raw_event);
return rc;
}
adsp_info.send_irq += (uint32_t) MSM_AD5_BASE;
adsp_info.read_ctrl += (uint32_t) MSM_AD5_BASE;
adsp_info.write_ctrl += (uint32_t) MSM_AD5_BASE;
count = adsp_info.module_count;
adsp_modules = kzalloc(
(sizeof(struct msm_adsp_module) + sizeof(void *)) *
count, GFP_KERNEL);
if (!adsp_modules) {
kfree(adsp_info.init_info_ptr);
kfree(adsp_info.raw_event);
return -ENOMEM;
}
adsp_info.id_to_module = (void *) (adsp_modules + count);
spin_lock_init(&adsp_cmd_lock);
spin_lock_init(&adsp_write_lock);
rc = request_irq(adsp_info.int_adsp, adsp_irq_handler,
IRQF_TRIGGER_RISING, "adsp", 0);
if (rc < 0)
goto fail_request_irq;
disable_irq(adsp_info.int_adsp);
for (i = 0; i < count; i++) {
struct msm_adsp_module *mod = adsp_modules + i;
mutex_init(&mod->lock);
init_waitqueue_head(&mod->state_wait);
mod->info = &adsp_info;
mod->name = adsp_info.module[i].name;
mod->id = adsp_info.module[i].id;
if (adsp_info.module[i].clk_name)
mod->clk = clk_get(NULL, adsp_info.module[i].clk_name);
else
mod->clk = NULL;
if (mod->clk && adsp_info.module[i].clk_rate)
clk_set_rate(mod->clk, adsp_info.module[i].clk_rate);
mod->verify_cmd = adsp_info.module[i].verify_cmd;
mod->patch_event = adsp_info.module[i].patch_event;
INIT_HLIST_HEAD(&mod->pmem_regions);
mod->pdev.name = adsp_info.module[i].pdev_name;
mod->pdev.id = -1;
adsp_info.id_to_module[i] = mod;
platform_device_register(&mod->pdev);
}
msm_adsp_publish_cdevs(adsp_modules, count);
rc = daldevice_attach(DALRPC_ADSPSVC_DEVICEID, DALRPC_ADSPSVC_PORT,
DALRPC_ADSPSVC_DEST, &adsp_info.handle);
if (rc) {
MM_ERR("adsp attach failed : %d\n", rc);
goto fail_dal_attach;
}
adsp_info.cb_handle = dalrpc_alloc_cb(adsp_info.handle,
adsp_rtos_mtoa_cb, NULL);
if (adsp_info.cb_handle == NULL) {
MM_ERR("Callback registration failed\n");
goto fail_allocate_cb;
}
/* Get INIT_INFO */
init_waitqueue_head(&adsp_info.init_info_wait);
msm_get_init_info();
rc = wait_event_timeout(adsp_info.init_info_wait,
adsp_info.init_info_state == ADSP_STATE_INIT_INFO,
10 * HZ);
if (!rc) {
MM_ERR("INIT_INFO failed\n");
rc = -ETIMEDOUT;
} else
return 0;
fail_allocate_cb:
daldevice_detach(adsp_info.handle);
adsp_info.handle = NULL;
fail_dal_attach:
enable_irq(adsp_info.int_adsp);
free_irq(adsp_info.int_adsp, 0);
fail_request_irq:
kfree(adsp_modules);
kfree(adsp_info.init_info_ptr);
kfree(adsp_info.raw_event);
return rc;
}
#ifdef CONFIG_DEBUG_FS
static int get_parameters(char *buf, long int *param1, int num_of_par)
{
char *token;
int base, cnt;
token = strsep(&buf, " ");
for (cnt = 0; cnt < num_of_par; cnt++) {
if (token != NULL) {
if ((token[1] == 'x') || (token[1] == 'X'))
base = 16;
else
base = 10;
if (strict_strtoul(token, base, &param1[cnt]) != 0)
return -EINVAL;
token = strsep(&buf, " ");
}
else
return -EINVAL;
}
return 0;
}
static ssize_t adsp_debug_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
pr_debug("adsp debugfs opened\n");
return 0;
}
static ssize_t adsp_debug_write(struct file *file, const char __user *buf,
size_t cnt, loff_t *ppos)
{
char *access_str = file->private_data;
char lbuf[32];
int rc;
long int param[5];
if (cnt > sizeof(lbuf) - 1)
return -EINVAL;
rc = copy_from_user(lbuf, buf, cnt);
if (rc) {
pr_info("Unable to copy data from user space\n");
return -EFAULT;
}
lbuf[cnt] = '\0';
if (!strncmp(access_str, "write_log", 9)) {
if (get_parameters(lbuf, param, 1) == 0) {
switch (param[0]) {
case 1:
if (wdump <= 0)
wdump = 1;
pr_debug("write cmd to DSP(A->D) dump \
started:%d\n", wdump);
break;
case 0:
if (wdump > 0)
wdump = 0;
pr_debug("Stop write cmd to \
DSP(A->D):%d\n", wdump);
break;
default:
rc = -EINVAL;
break;
}
} else
rc = -EINVAL;
} else if (!strncmp(access_str, "read_log", 8)) {
if (get_parameters(lbuf, param, 1) == 0) {
switch (param[0]) {
case 1:
if (rdump <= 0)
rdump = 1;
pr_debug("write cmd from DSP(D->A) dump \
started:%d\n", wdump);
break;
case 0:
if (rdump > 0)
rdump = 0;
pr_debug("Stop write cmd from \
DSP(D->A):%d\n", wdump);
break;
default:
rc = -EINVAL;
break;
}
} else
rc = -EINVAL;
} else {
rc = -EINVAL;
}
if (rc == 0)
rc = cnt;
else {
pr_err("%s: rc = %d\n", __func__, rc);
pr_info("\nWrong command: Use =>\n");
pr_info("-------------------------\n");
pr_info("To Start A->D:: echo \"1\">/sys/kernel/debug/ \
adsp_cmd/write_log\n");
pr_info("To Start D->A:: echo \"1\">/sys/kernel/debug/ \
adsp_cmd/read_log\n");
pr_info("To Stop A->D:: echo \"0\">/sys/kernel/debug/ \
adsp_cmd/write_log\n");
pr_info("To Stop D->A:: echo \"0\">/sys/kernel/debug/ \
adsp_cmd/read_log\n");
pr_info("------------------------\n");
}
return rc;
}
#endif
static struct platform_driver msm_adsp_driver = {
.probe = msm_adsp_probe,
.driver = {
.owner = THIS_MODULE,
},
};
static char msm_adsp_driver_name[] = "msm_adsp";
#ifdef CONFIG_DEBUG_FS
static const struct file_operations adsp_debug_fops = {
.write = adsp_debug_write,
.open = adsp_debug_open,
};
#endif
static int __init adsp_init(void)
{
int rc;
#ifdef CONFIG_DEBUG_FS
dentry_adsp = debugfs_create_dir("adsp_cmd", 0);
if (!IS_ERR(dentry_adsp)) {
dentry_wdata = debugfs_create_file("write_log", \
S_IFREG | S_IRUGO, dentry_adsp,
(void *) "write_log" , &adsp_debug_fops);
dentry_rdata = debugfs_create_file("read_log", \
S_IFREG | S_IRUGO, dentry_adsp,
(void *) "read_log", &adsp_debug_fops);
}
#endif /* CONFIG_DEBUG_FS */
msm_adsp_driver.driver.name = msm_adsp_driver_name;
rc = platform_driver_register(&msm_adsp_driver);
MM_INFO("%s -- %d\n", msm_adsp_driver_name, rc);
return rc;
}
device_initcall(adsp_init);