blob: a5c66ec30bbdef8d2d2af1facdd3272e36737cff [file] [log] [blame]
/* arch/arm/mach-msm/memory.c
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2009-2012, The Linux Foundation. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/mm.h>
#include <linux/mm_types.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <linux/memory_alloc.h>
#include <linux/memblock.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/mach/map.h>
#include <asm/cacheflush.h>
#include <asm/setup.h>
#include <asm/mach-types.h>
#include <mach/msm_memtypes.h>
#include <linux/hardirq.h>
#if defined(CONFIG_MSM_NPA_REMOTE)
#include "npa_remote.h"
#include <linux/completion.h>
#include <linux/err.h>
#endif
#include <linux/android_pmem.h>
#include <mach/msm_iomap.h>
#include <mach/socinfo.h>
#include <linux/sched.h>
#include <linux/of_fdt.h>
/* fixme */
#include <asm/tlbflush.h>
#include <../../mm/mm.h>
#include <linux/fmem.h>
void *strongly_ordered_page;
char strongly_ordered_mem[PAGE_SIZE*2-4];
void map_page_strongly_ordered(void)
{
#if defined(CONFIG_ARCH_MSM7X27) && !defined(CONFIG_ARCH_MSM7X27A)
long unsigned int phys;
struct map_desc map;
if (strongly_ordered_page)
return;
strongly_ordered_page = (void*)PFN_ALIGN((int)&strongly_ordered_mem);
phys = __pa(strongly_ordered_page);
map.pfn = __phys_to_pfn(phys);
map.virtual = MSM_STRONGLY_ORDERED_PAGE;
map.length = PAGE_SIZE;
map.type = MT_DEVICE_STRONGLY_ORDERED;
create_mapping(&map);
printk(KERN_ALERT "Initialized strongly ordered page successfully\n");
#endif
}
EXPORT_SYMBOL(map_page_strongly_ordered);
void write_to_strongly_ordered_memory(void)
{
#if defined(CONFIG_ARCH_MSM7X27) && !defined(CONFIG_ARCH_MSM7X27A)
if (!strongly_ordered_page) {
if (!in_interrupt())
map_page_strongly_ordered();
else {
printk(KERN_ALERT "Cannot map strongly ordered page in "
"Interrupt Context\n");
/* capture it here before the allocation fails later */
BUG();
}
}
*(int *)MSM_STRONGLY_ORDERED_PAGE = 0;
#endif
}
EXPORT_SYMBOL(write_to_strongly_ordered_memory);
/* These cache related routines make the assumption (if outer cache is
* available) that the associated physical memory is contiguous.
* They will operate on all (L1 and L2 if present) caches.
*/
void clean_and_invalidate_caches(unsigned long vstart,
unsigned long length, unsigned long pstart)
{
dmac_flush_range((void *)vstart, (void *) (vstart + length));
outer_flush_range(pstart, pstart + length);
}
void clean_caches(unsigned long vstart,
unsigned long length, unsigned long pstart)
{
dmac_clean_range((void *)vstart, (void *) (vstart + length));
outer_clean_range(pstart, pstart + length);
}
void invalidate_caches(unsigned long vstart,
unsigned long length, unsigned long pstart)
{
dmac_inv_range((void *)vstart, (void *) (vstart + length));
outer_inv_range(pstart, pstart + length);
}
void * __init alloc_bootmem_aligned(unsigned long size, unsigned long alignment)
{
void *unused_addr = NULL;
unsigned long addr, tmp_size, unused_size;
/* Allocate maximum size needed, see where it ends up.
* Then free it -- in this path there are no other allocators
* so we can depend on getting the same address back
* when we allocate a smaller piece that is aligned
* at the end (if necessary) and the piece we really want,
* then free the unused first piece.
*/
tmp_size = size + alignment - PAGE_SIZE;
addr = (unsigned long)alloc_bootmem(tmp_size);
free_bootmem(__pa(addr), tmp_size);
unused_size = alignment - (addr % alignment);
if (unused_size)
unused_addr = alloc_bootmem(unused_size);
addr = (unsigned long)alloc_bootmem(size);
if (unused_size)
free_bootmem(__pa(unused_addr), unused_size);
return (void *)addr;
}
int (*change_memory_power)(u64, u64, int);
int platform_physical_remove_pages(u64 start, u64 size)
{
if (!change_memory_power)
return 0;
return change_memory_power(start, size, MEMORY_DEEP_POWERDOWN);
}
int platform_physical_active_pages(u64 start, u64 size)
{
if (!change_memory_power)
return 0;
return change_memory_power(start, size, MEMORY_ACTIVE);
}
int platform_physical_low_power_pages(u64 start, u64 size)
{
if (!change_memory_power)
return 0;
return change_memory_power(start, size, MEMORY_SELF_REFRESH);
}
char *memtype_name[] = {
"SMI_KERNEL",
"SMI",
"EBI0",
"EBI1"
};
struct reserve_info *reserve_info;
static unsigned long stable_size(struct membank *mb,
unsigned long unstable_limit)
{
unsigned long upper_limit = mb->start + mb->size;
if (!unstable_limit)
return mb->size;
/* Check for 32 bit roll-over */
if (upper_limit >= mb->start) {
/* If we didn't roll over we can safely make the check below */
if (upper_limit <= unstable_limit)
return mb->size;
}
if (mb->start >= unstable_limit)
return 0;
return unstable_limit - mb->start;
}
/* stable size of all memory banks contiguous to and below this one */
static unsigned long total_stable_size(unsigned long bank)
{
int i;
struct membank *mb = &meminfo.bank[bank];
int memtype = reserve_info->paddr_to_memtype(mb->start);
unsigned long size;
size = stable_size(mb, reserve_info->low_unstable_address);
for (i = bank - 1, mb = &meminfo.bank[bank - 1]; i >= 0; i--, mb--) {
if (mb->start + mb->size != (mb + 1)->start)
break;
if (reserve_info->paddr_to_memtype(mb->start) != memtype)
break;
size += stable_size(mb, reserve_info->low_unstable_address);
}
return size;
}
static void __init calculate_reserve_limits(void)
{
int i;
struct membank *mb;
int memtype;
struct memtype_reserve *mt;
unsigned long size;
for (i = 0, mb = &meminfo.bank[0]; i < meminfo.nr_banks; i++, mb++) {
memtype = reserve_info->paddr_to_memtype(mb->start);
if (memtype == MEMTYPE_NONE) {
pr_warning("unknown memory type for bank at %lx\n",
(long unsigned int)mb->start);
continue;
}
mt = &reserve_info->memtype_reserve_table[memtype];
size = total_stable_size(i);
mt->limit = max(mt->limit, size);
}
}
static void __init adjust_reserve_sizes(void)
{
int i;
struct memtype_reserve *mt;
mt = &reserve_info->memtype_reserve_table[0];
for (i = 0; i < MEMTYPE_MAX; i++, mt++) {
if (mt->flags & MEMTYPE_FLAGS_1M_ALIGN)
mt->size = (mt->size + SECTION_SIZE - 1) & SECTION_MASK;
if (mt->size > mt->limit) {
pr_warning("%lx size for %s too large, setting to %lx\n",
mt->size, memtype_name[i], mt->limit);
mt->size = mt->limit;
}
}
}
static void __init reserve_memory_for_mempools(void)
{
int i, memtype, membank_type;
struct memtype_reserve *mt;
struct membank *mb;
int ret;
unsigned long size;
mt = &reserve_info->memtype_reserve_table[0];
for (memtype = 0; memtype < MEMTYPE_MAX; memtype++, mt++) {
if (mt->flags & MEMTYPE_FLAGS_FIXED || !mt->size)
continue;
/* We know we will find memory bank(s) of the proper size
* as we have limited the size of the memory pool for
* each memory type to the largest total size of the memory
* banks which are contiguous and of the correct memory type.
* Choose the memory bank with the highest physical
* address which is large enough, so that we will not
* take memory from the lowest memory bank which the kernel
* is in (and cause boot problems) and so that we might
* be able to steal memory that would otherwise become
* highmem. However, do not use unstable memory.
*/
for (i = meminfo.nr_banks - 1; i >= 0; i--) {
mb = &meminfo.bank[i];
membank_type =
reserve_info->paddr_to_memtype(mb->start);
if (memtype != membank_type)
continue;
size = total_stable_size(i);
if (size >= mt->size) {
size = stable_size(mb,
reserve_info->low_unstable_address);
if (!size)
continue;
/* mt->size may be larger than size, all this
* means is that we are carving the memory pool
* out of multiple contiguous memory banks.
*/
mt->start = mb->start + (size - mt->size);
ret = memblock_remove(mt->start, mt->size);
BUG_ON(ret);
break;
}
}
}
}
static void __init initialize_mempools(void)
{
struct mem_pool *mpool;
int memtype;
struct memtype_reserve *mt;
mt = &reserve_info->memtype_reserve_table[0];
for (memtype = 0; memtype < MEMTYPE_MAX; memtype++, mt++) {
if (!mt->size)
continue;
mpool = initialize_memory_pool(mt->start, mt->size, memtype);
if (!mpool)
pr_warning("failed to create %s mempool\n",
memtype_name[memtype]);
}
}
#define MAX_FIXED_AREA_SIZE 0x11000000
void __init msm_reserve(void)
{
unsigned long msm_fixed_area_size;
unsigned long msm_fixed_area_start;
memory_pool_init();
reserve_info->calculate_reserve_sizes();
msm_fixed_area_size = reserve_info->fixed_area_size;
msm_fixed_area_start = reserve_info->fixed_area_start;
if (msm_fixed_area_size)
if (msm_fixed_area_start > reserve_info->low_unstable_address
- MAX_FIXED_AREA_SIZE)
reserve_info->low_unstable_address =
msm_fixed_area_start;
calculate_reserve_limits();
adjust_reserve_sizes();
reserve_memory_for_mempools();
initialize_mempools();
}
static int get_ebi_memtype(void)
{
/* on 7x30 and 8x55 "EBI1 kernel PMEM" is really on EBI0 */
if (cpu_is_msm7x30() || cpu_is_msm8x55())
return MEMTYPE_EBI0;
return MEMTYPE_EBI1;
}
void *allocate_contiguous_ebi(unsigned long size,
unsigned long align, int cached)
{
return allocate_contiguous_memory(size, get_ebi_memtype(),
align, cached);
}
EXPORT_SYMBOL(allocate_contiguous_ebi);
unsigned long allocate_contiguous_ebi_nomap(unsigned long size,
unsigned long align)
{
return _allocate_contiguous_memory_nomap(size, get_ebi_memtype(),
align, __builtin_return_address(0));
}
EXPORT_SYMBOL(allocate_contiguous_ebi_nomap);
unsigned int msm_ttbr0;
void store_ttbr0(void)
{
/* Store TTBR0 for post-mortem debugging purposes. */
asm("mrc p15, 0, %0, c2, c0, 0\n"
: "=r" (msm_ttbr0));
}
int request_fmem_c_region(void *unused)
{
return fmem_set_state(FMEM_C_STATE);
}
int release_fmem_c_region(void *unused)
{
return fmem_set_state(FMEM_T_STATE);
}
static char * const memtype_names[] = {
[MEMTYPE_SMI_KERNEL] = "SMI_KERNEL",
[MEMTYPE_SMI] = "SMI",
[MEMTYPE_EBI0] = "EBI0",
[MEMTYPE_EBI1] = "EBI1",
};
int msm_get_memory_type_from_name(const char *memtype_name)
{
int i;
for (i = 0; i < ARRAY_SIZE(memtype_names); i++) {
if (memtype_names[i] &&
strcmp(memtype_name, memtype_names[i]) == 0)
return i;
}
pr_err("Could not find memory type %s\n", memtype_name);
return -EINVAL;
}
static int reserve_memory_type(const char *mem_name,
struct memtype_reserve *reserve_table,
int size)
{
int ret = msm_get_memory_type_from_name(mem_name);
if (ret >= 0) {
reserve_table[ret].size += size;
ret = 0;
}
return ret;
}
static int check_for_compat(unsigned long node)
{
char **start = __compat_exports_start;
for ( ; start < __compat_exports_end; start++)
if (of_flat_dt_is_compatible(node, *start))
return 1;
return 0;
}
int __init dt_scan_for_memory_reserve(unsigned long node, const char *uname,
int depth, void *data)
{
char *memory_name_prop;
unsigned int *memory_remove_prop;
unsigned long memory_name_prop_length;
unsigned long memory_remove_prop_length;
unsigned long memory_size_prop_length;
unsigned int *memory_size_prop;
unsigned int memory_size;
unsigned int memory_start;
int ret;
memory_name_prop = of_get_flat_dt_prop(node,
"qcom,memory-reservation-type",
&memory_name_prop_length);
memory_remove_prop = of_get_flat_dt_prop(node,
"qcom,memblock-remove",
&memory_remove_prop_length);
if (memory_name_prop || memory_remove_prop) {
if (!check_for_compat(node))
goto out;
} else {
goto out;
}
if (memory_name_prop) {
if (strnlen(memory_name_prop, memory_name_prop_length) == 0) {
WARN(1, "Memory name was malformed\n");
goto mem_remove;
}
memory_size_prop = of_get_flat_dt_prop(node,
"qcom,memory-reservation-size",
&memory_size_prop_length);
if (memory_size_prop &&
(memory_size_prop_length == sizeof(unsigned int))) {
memory_size = be32_to_cpu(*memory_size_prop);
if (reserve_memory_type(memory_name_prop,
data, memory_size) == 0)
pr_info("%s reserved %s size %x\n",
uname, memory_name_prop, memory_size);
else
WARN(1, "Node %s reserve failed\n",
uname);
} else {
WARN(1, "Node %s specified bad/nonexistent size\n",
uname);
}
}
mem_remove:
if (memory_remove_prop) {
if (memory_remove_prop_length != (2*sizeof(unsigned int))) {
WARN(1, "Memory remove malformed\n");
goto out;
}
memory_start = be32_to_cpu(memory_remove_prop[0]);
memory_size = be32_to_cpu(memory_remove_prop[1]);
ret = memblock_remove(memory_start, memory_size);
if (ret)
WARN(1, "Failed to remove memory %x-%x\n",
memory_start, memory_start+memory_size);
else
pr_info("Node %s removed memory %x-%x\n", uname,
memory_start, memory_start+memory_size);
}
out:
return 0;
}
unsigned long get_ddr_size(void)
{
unsigned int i;
unsigned long ret = 0;
for (i = 0; i < meminfo.nr_banks; i++)
ret += meminfo.bank[i].size;
return ret;
}