blob: f87a014b8f95eca9a149c9d5e6314cc3355cf92b [file] [log] [blame]
/* Copyright (c) 2002,2007-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/ioctl.h>
#include <linux/sched.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/of_coresight.h>
#include <linux/input.h>
#include <linux/msm-bus-board.h>
#include <linux/msm-bus.h>
#include "kgsl.h"
#include "kgsl_pwrscale.h"
#include "kgsl_cffdump.h"
#include "kgsl_sharedmem.h"
#include "kgsl_iommu.h"
#include "kgsl_compat.h"
#include "kgsl_trace.h"
#include "adreno.h"
#include "adreno_pm4types.h"
#include "adreno_trace.h"
#include "a3xx_reg.h"
#include "adreno_a3xx_snapshot.h"
/* Include the master list of GPU cores that are supported */
#include "adreno-gpulist.h"
#define DRIVER_VERSION_MAJOR 3
#define DRIVER_VERSION_MINOR 1
/* Number of times to try hard reset */
#define NUM_TIMES_RESET_RETRY 5
#define KGSL_LOG_LEVEL_DEFAULT 3
static void adreno_input_work(struct work_struct *work);
static struct devfreq_msm_adreno_tz_data adreno_tz_data = {
.bus = {
.max = 350,
},
.device_id = KGSL_DEVICE_3D0,
};
static const struct kgsl_functable adreno_functable;
static struct adreno_device device_3d0 = {
.dev = {
KGSL_DEVICE_COMMON_INIT(device_3d0.dev),
.pwrscale = KGSL_PWRSCALE_INIT(&adreno_tz_data),
.name = DEVICE_3D0_NAME,
.id = KGSL_DEVICE_3D0,
.pwrctrl = {
.irq_name = KGSL_3D0_IRQ,
},
.iomemname = KGSL_3D0_REG_MEMORY,
.shadermemname = KGSL_3D0_SHADER_MEMORY,
.ftbl = &adreno_functable,
.cmd_log = KGSL_LOG_LEVEL_DEFAULT,
.ctxt_log = KGSL_LOG_LEVEL_DEFAULT,
.drv_log = KGSL_LOG_LEVEL_DEFAULT,
.mem_log = KGSL_LOG_LEVEL_DEFAULT,
.pwr_log = KGSL_LOG_LEVEL_DEFAULT,
},
.gmem_size = SZ_256K,
.pfp_fw = NULL,
.pm4_fw = NULL,
.wait_timeout = 0, /* in milliseconds, 0 means disabled */
.ib_check_level = 0,
.ft_policy = KGSL_FT_DEFAULT_POLICY,
.ft_pf_policy = KGSL_FT_PAGEFAULT_DEFAULT_POLICY,
.fast_hang_detect = 1,
.long_ib_detect = 1,
.input_work = __WORK_INITIALIZER(device_3d0.input_work,
adreno_input_work),
};
unsigned int ft_detect_regs[FT_DETECT_REGS_COUNT];
/* Nice level for the higher priority GPU start thread */
static int _wake_nice = -7;
/* Number of milliseconds to stay active active after a wake on touch */
static unsigned int _wake_timeout = 100;
/*
* A workqueue callback responsible for actually turning on the GPU after a
* touch event. kgsl_pwrctrl_change_state(ACTIVE) is used without any
* active_count protection to avoid the need to maintain state. Either
* somebody will start using the GPU or the idle timer will fire and put the
* GPU back into slumber.
*/
static void adreno_input_work(struct work_struct *work)
{
struct adreno_device *adreno_dev = container_of(work,
struct adreno_device, input_work);
struct kgsl_device *device = &adreno_dev->dev;
mutex_lock(&device->mutex);
device->flags |= KGSL_FLAG_WAKE_ON_TOUCH;
/*
* Don't schedule adreno_start in a high priority workqueue, we are
* already in a workqueue which should be sufficient
*/
kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE);
/*
* When waking up from a touch event we want to stay active long enough
* for the user to send a draw command. The default idle timer timeout
* is shorter than we want so go ahead and push the idle timer out
* further for this special case
*/
mod_timer(&device->idle_timer,
jiffies + msecs_to_jiffies(_wake_timeout));
mutex_unlock(&device->mutex);
}
/*
* Process input events and schedule work if needed. At this point we are only
* interested in groking EV_ABS touchscreen events
*/
static void adreno_input_event(struct input_handle *handle, unsigned int type,
unsigned int code, int value)
{
struct kgsl_device *device = handle->handler->private;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
/*
* Only queue the work under certain circumstances: we have to be in
* slumber, the event has to be EV_EBS and we had to have processed an
* IB since the last time we called wake on touch.
*/
if ((type == EV_ABS) &&
!(device->flags & KGSL_FLAG_WAKE_ON_TOUCH) &&
(device->state == KGSL_STATE_SLUMBER))
schedule_work(&adreno_dev->input_work);
}
#ifdef CONFIG_INPUT
static int adreno_input_connect(struct input_handler *handler,
struct input_dev *dev, const struct input_device_id *id)
{
struct input_handle *handle;
int ret;
handle = kzalloc(sizeof(*handle), GFP_KERNEL);
if (handle == NULL)
return -ENOMEM;
handle->dev = dev;
handle->handler = handler;
handle->name = handler->name;
ret = input_register_handle(handle);
if (ret) {
kfree(handle);
return ret;
}
ret = input_open_device(handle);
if (ret) {
input_unregister_handle(handle);
kfree(handle);
}
return ret;
}
static void adreno_input_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
#else
static int adreno_input_connect(struct input_handler *handler,
struct input_dev *dev, const struct input_device_id *id)
{
return 0;
}
static void adreno_input_disconnect(struct input_handle *handle) {}
#endif
/*
* We are only interested in EV_ABS events so only register handlers for those
* input devices that have EV_ABS events
*/
static const struct input_device_id adreno_input_ids[] = {
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
.evbit = { BIT_MASK(EV_ABS) },
},
{ },
};
static struct input_handler adreno_input_handler = {
.event = adreno_input_event,
.connect = adreno_input_connect,
.disconnect = adreno_input_disconnect,
.name = "kgsl",
.id_table = adreno_input_ids,
};
static int adreno_init_sysfs(struct kgsl_device *device);
static void adreno_uninit_sysfs(struct kgsl_device *device);
static int adreno_soft_reset(struct kgsl_device *device);
/*
* _soft_reset() - Soft reset GPU
* @adreno_dev: Pointer to adreno device
*
* Soft reset the GPU by doing a AHB write of value 1 to RBBM_SW_RESET
* register. This is used when we want to reset the GPU without
* turning off GFX power rail. The reset when asserted resets
* all the HW logic, restores GPU registers to default state and
* flushes out pending VBIF transactions.
*/
void _soft_reset(struct adreno_device *adreno_dev)
{
unsigned int reg;
adreno_writereg(adreno_dev, ADRENO_REG_RBBM_SW_RESET_CMD, 1);
/*
* Do a dummy read to get a brief read cycle delay for the reset to take
* effect
*/
adreno_readreg(adreno_dev, ADRENO_REG_RBBM_SW_RESET_CMD, &reg);
adreno_writereg(adreno_dev, ADRENO_REG_RBBM_SW_RESET_CMD, 0);
}
static inline void adreno_irqctrl(struct adreno_device *adreno_dev, int state)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
gpudev->irq_control(adreno_dev, state);
}
/**
* adreno_perfcounter_init: Reserve kernel performance counters
* @adreno_dev: Pointer to an adreno_device struct
*
* The kernel needs/wants a certain group of performance counters for
* its own activities. Reserve these performance counters at init time
* to ensure that they are always reserved for the kernel. The performance
* counters used by the kernel can be obtained by the user, but these
* performance counters will remain active as long as the device is alive.
*/
static int adreno_perfcounter_init(struct adreno_device *adreno_dev)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (gpudev->perfcounter_init)
return gpudev->perfcounter_init(adreno_dev);
return 0;
};
/**
* adreno_perfcounter_close() - Release counters initialized by
* adreno_perfcounter_init
* @adreno_dev: Pointer to an adreno_device struct
*/
static void adreno_perfcounter_close(struct adreno_device *adreno_dev)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (gpudev->perfcounter_close)
gpudev->perfcounter_close(adreno_dev);
}
/**
* adreno_perfcounter_start: Enable performance counters
* @adreno_dev: Adreno device to configure
*
* Ensure all performance counters are enabled that are allocated. Since
* the device was most likely stopped, we can't trust that the counters
* are still valid so make it so.
* Returns 0 on success else error code
*/
static int adreno_perfcounter_start(struct adreno_device *adreno_dev)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
struct adreno_perfcounters *counters = gpudev->perfcounters;
struct adreno_perfcount_group *group;
unsigned int i, j;
int ret = 0;
if (NULL == counters)
return 0;
/* group id iter */
for (i = 0; i < counters->group_count; i++) {
group = &(counters->groups[i]);
/* countable iter */
for (j = 0; j < group->reg_count; j++) {
if (group->regs[j].countable ==
KGSL_PERFCOUNTER_NOT_USED ||
group->regs[j].countable ==
KGSL_PERFCOUNTER_BROKEN)
continue;
/*
* The GPU has to be idle before calling the perfcounter
* enable function, but since this function is called
* during start we already know the GPU is idle
*/
if (gpudev->perfcounter_enable)
ret = gpudev->perfcounter_enable(adreno_dev, i,
j, group->regs[j].countable);
if (ret)
goto done;
}
}
done:
return ret;
}
/**
* adreno_perfcounter_read_group() - Determine which countables are in counters
* @adreno_dev: Adreno device to configure
* @reads: List of kgsl_perfcounter_read_groups
* @count: Length of list
*
* Read the performance counters for the groupid/countable pairs and return
* the 64 bit result for each pair
*/
int adreno_perfcounter_read_group(struct adreno_device *adreno_dev,
struct kgsl_perfcounter_read_group __user *reads, unsigned int count)
{
struct kgsl_device *device = &adreno_dev->dev;
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
struct adreno_perfcounters *counters = gpudev->perfcounters;
struct adreno_perfcount_group *group;
struct kgsl_perfcounter_read_group *list = NULL;
unsigned int i, j;
int ret = 0;
if (NULL == counters)
return -EINVAL;
/* sanity check for later */
if (!gpudev->perfcounter_read)
return -EINVAL;
/* sanity check params passed in */
if (reads == NULL || count == 0 || count > 100)
return -EINVAL;
list = kmalloc(sizeof(struct kgsl_perfcounter_read_group) * count,
GFP_KERNEL);
if (!list)
return -ENOMEM;
if (copy_from_user(list, reads,
sizeof(struct kgsl_perfcounter_read_group) * count)) {
ret = -EFAULT;
goto done;
}
mutex_lock(&device->mutex);
ret = kgsl_active_count_get(device);
if (ret) {
mutex_unlock(&device->mutex);
goto done;
}
/* list iterator */
for (j = 0; j < count; j++) {
list[j].value = 0;
/* Verify that the group ID is within range */
if (list[j].groupid >= counters->group_count) {
ret = -EINVAL;
break;
}
group = &(counters->groups[list[j].groupid]);
/* group/counter iterator */
for (i = 0; i < group->reg_count; i++) {
if (group->regs[i].countable == list[j].countable) {
list[j].value = gpudev->perfcounter_read(
adreno_dev, list[j].groupid, i);
break;
}
}
}
kgsl_active_count_put(device);
mutex_unlock(&device->mutex);
/* write the data */
if (ret == 0)
if (copy_to_user(reads, list,
sizeof(struct kgsl_perfcounter_read_group) * count))
ret = -EFAULT;
done:
kfree(list);
return ret;
}
/**
* adreno_perfcounter_get_groupid() - Get the performance counter ID
* @adreno_dev: Adreno device
* @name: Performance counter group name string
*
* Get the groupid based on the name and return this ID
*/
int adreno_perfcounter_get_groupid(struct adreno_device *adreno_dev,
const char *name)
{
struct adreno_perfcounters *counters = ADRENO_PERFCOUNTERS(adreno_dev);
struct adreno_perfcount_group *group;
int i;
if (name == NULL || counters == NULL)
return -EINVAL;
for (i = 0; i < counters->group_count; ++i) {
group = &(counters->groups[i]);
/* make sure there is a name for this group */
if (group->name == NULL)
continue;
/* verify name and length */
if (strlen(name) == strlen(group->name) &&
strcmp(group->name, name) == 0)
return i;
}
return -EINVAL;
}
/**
* adreno_perfcounter_get_name() - Get the group name
* @adreno_dev: Adreno device
* @groupid: Desired performance counter groupid
*
* Get the name based on the groupid and return it
*/
const char *adreno_perfcounter_get_name(struct adreno_device *adreno_dev,
unsigned int groupid)
{
struct adreno_perfcounters *counters = ADRENO_PERFCOUNTERS(adreno_dev);
if (counters != NULL && groupid < counters->group_count)
return counters->groups[groupid].name;
return NULL;
}
/**
* adreno_perfcounter_query_group: Determine which countables are in counters
* @adreno_dev: Adreno device to configure
* @groupid: Desired performance counter group
* @countables: Return list of all countables in the groups counters
* @count: Max length of the array
* @max_counters: max counters for the groupid
*
* Query the current state of counters for the group.
*/
int adreno_perfcounter_query_group(struct adreno_device *adreno_dev,
unsigned int groupid, unsigned int __user *countables,
unsigned int count, unsigned int *max_counters)
{
struct kgsl_device *device = &adreno_dev->dev;
struct adreno_perfcounters *counters = ADRENO_PERFCOUNTERS(adreno_dev);
struct adreno_perfcount_group *group;
unsigned int i, t;
int ret = 0;
unsigned int *buf;
*max_counters = 0;
if (counters == NULL || groupid >= counters->group_count)
return -EINVAL;
mutex_lock(&device->mutex);
group = &(counters->groups[groupid]);
*max_counters = group->reg_count;
/*
* if NULL countable or *count of zero, return max reg_count in
* *max_counters and return success
*/
if (countables == NULL || count == 0) {
mutex_unlock(&device->mutex);
return 0;
}
t = min_t(unsigned int, group->reg_count, count);
buf = kmalloc(t * sizeof(unsigned int), GFP_KERNEL);
if (buf == NULL) {
mutex_unlock(&device->mutex);
return -ENOMEM;
}
for (i = 0; i < t; i++)
buf[i] = group->regs[i].countable;
mutex_unlock(&device->mutex);
if (copy_to_user(countables, buf, sizeof(unsigned int) * t))
ret = -EFAULT;
kfree(buf);
return ret;
}
static inline void refcount_group(struct adreno_perfcount_group *group,
unsigned int reg, unsigned int flags,
unsigned int *lo, unsigned int *hi)
{
if (flags & PERFCOUNTER_FLAG_KERNEL)
group->regs[reg].kernelcount++;
else
group->regs[reg].usercount++;
if (lo)
*lo = group->regs[reg].offset;
if (hi)
*hi = group->regs[reg].offset_hi;
}
/**
* adreno_perfcounter_get: Try to put a countable in an available counter
* @adreno_dev: Adreno device to configure
* @groupid: Desired performance counter group
* @countable: Countable desired to be in a counter
* @offset: Return offset of the LO counter assigned
* @offset_hi: Return offset of the HI counter assigned
* @flags: Used to setup kernel perf counters
*
* Try to place a countable in an available counter. If the countable is
* already in a counter, reference count the counter/countable pair resource
* and return success
*/
int adreno_perfcounter_get(struct adreno_device *adreno_dev,
unsigned int groupid, unsigned int countable, unsigned int *offset,
unsigned int *offset_hi, unsigned int flags)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
struct adreno_perfcounters *counters = gpudev->perfcounters;
struct adreno_perfcount_group *group;
unsigned int empty = -1;
int ret = 0;
/* always clear return variables */
if (offset)
*offset = 0;
if (offset_hi)
*offset_hi = 0;
if (NULL == counters)
return -EINVAL;
if (groupid >= counters->group_count)
return -EINVAL;
group = &(counters->groups[groupid]);
if (group->flags & ADRENO_PERFCOUNTER_GROUP_FIXED) {
/*
* In fixed groups the countable equals the fixed register the
* user wants. First make sure it is in range
*/
if (countable >= group->reg_count)
return -EINVAL;
/* If it is already reserved, just increase the refcounts */
if ((group->regs[countable].kernelcount != 0) ||
(group->regs[countable].usercount != 0)) {
refcount_group(group, countable, flags,
offset, offset_hi);
return 0;
}
empty = countable;
} else {
unsigned int i;
/*
* Check if the countable is already associated with a counter.
* Refcount and return the offset, otherwise, try and find an
* empty counter and assign the countable to it.
*/
for (i = 0; i < group->reg_count; i++) {
if (group->regs[i].countable == countable) {
refcount_group(group, i, flags,
offset, offset_hi);
return 0;
} else if (group->regs[i].countable ==
KGSL_PERFCOUNTER_NOT_USED) {
/* keep track of unused counter */
empty = i;
}
}
}
/* no available counters, so do nothing else */
if (empty == -1)
return -EBUSY;
/* enable the new counter */
ret = gpudev->perfcounter_enable(adreno_dev, groupid, empty, countable);
if (ret)
return ret;
/* initialize the new counter */
group->regs[empty].countable = countable;
/* set initial kernel and user count */
if (flags & PERFCOUNTER_FLAG_KERNEL) {
group->regs[empty].kernelcount = 1;
group->regs[empty].usercount = 0;
} else {
group->regs[empty].kernelcount = 0;
group->regs[empty].usercount = 1;
}
if (offset)
*offset = group->regs[empty].offset;
if (offset_hi)
*offset_hi = group->regs[empty].offset_hi;
return ret;
}
/**
* adreno_perfcounter_put: Release a countable from counter resource
* @adreno_dev: Adreno device to configure
* @groupid: Desired performance counter group
* @countable: Countable desired to be freed from a counter
* @flags: Flag to determine if kernel or user space request
*
* Put a performance counter/countable pair that was previously received. If
* noone else is using the countable, free up the counter for others.
*/
int adreno_perfcounter_put(struct adreno_device *adreno_dev,
unsigned int groupid, unsigned int countable, unsigned int flags)
{
struct adreno_perfcounters *counters = ADRENO_PERFCOUNTERS(adreno_dev);
struct adreno_perfcount_group *group;
unsigned int i;
if (counters == NULL || groupid >= counters->group_count)
return -EINVAL;
group = &(counters->groups[groupid]);
/*
* Find if the counter/countable pair is used currently.
* Start cycling through registers in the bank.
*/
for (i = 0; i < group->reg_count; i++) {
/* check if countable assigned is what we are looking for */
if (group->regs[i].countable == countable) {
/* found pair, book keep count based on request type */
if (flags & PERFCOUNTER_FLAG_KERNEL &&
group->regs[i].kernelcount > 0)
group->regs[i].kernelcount--;
else if (group->regs[i].usercount > 0)
group->regs[i].usercount--;
else
break;
/* mark available if not used anymore */
if (group->regs[i].kernelcount == 0 &&
group->regs[i].usercount == 0)
group->regs[i].countable =
KGSL_PERFCOUNTER_NOT_USED;
return 0;
}
}
return -EINVAL;
}
/**
* adreno_perfcounter_restore() - Restore performance counters
* @adreno_dev: adreno device to configure
*
* Load the physical performance counters with 64 bit value which are
* saved on GPU power collapse.
*/
static inline void adreno_perfcounter_restore(struct adreno_device *adreno_dev)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
/*
* The GPU needs to be idle before writing the perfcounter select
* registers. Since this function gets called during start/resume we
* know the GPU is already idle so we don't need to stop it
*/
if (gpudev->perfcounter_restore)
gpudev->perfcounter_restore(adreno_dev);
}
/**
* adreno_perfcounter_save() - Save performance counters
* @adreno_dev: adreno device to configure
*
* Save the performance counter values before GPU power collapse.
* The saved values are restored on restart.
* This ensures physical counters are coherent across power-collapse.
*/
static inline void adreno_perfcounter_save(struct adreno_device *adreno_dev)
{
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (gpudev->perfcounter_save)
gpudev->perfcounter_save(adreno_dev);
}
static irqreturn_t adreno_irq_handler(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
return gpudev->irq_handler(adreno_dev);
}
static inline bool _rev_match(unsigned int id, unsigned int entry)
{
return (entry == ANY_ID || entry == id);
}
static inline const struct adreno_gpu_core *_get_gpu_core(unsigned int chipid)
{
unsigned int core = ADRENO_CHIPID_CORE(chipid);
unsigned int major = ADRENO_CHIPID_MAJOR(chipid);
unsigned int minor = ADRENO_CHIPID_MINOR(chipid);
unsigned int patchid = ADRENO_CHIPID_PATCH(chipid);
int i;
for (i = 0; i < ARRAY_SIZE(adreno_gpulist); i++) {
if (core == adreno_gpulist[i].core &&
_rev_match(major, adreno_gpulist[i].major) &&
_rev_match(minor, adreno_gpulist[i].minor) &&
_rev_match(patchid, adreno_gpulist[i].patchid))
return &adreno_gpulist[i];
}
return NULL;
}
static void
adreno_identify_gpu(struct adreno_device *adreno_dev)
{
const struct adreno_reg_offsets *reg_offsets;
struct adreno_gpudev *gpudev;
int i;
if (kgsl_property_read_u32(&adreno_dev->dev, "qcom,chipid",
&adreno_dev->chipid))
KGSL_DRV_FATAL(&adreno_dev->dev,
"No GPU chip ID was specified\n");
adreno_dev->gpucore = _get_gpu_core(adreno_dev->chipid);
if (adreno_dev->gpucore == NULL)
KGSL_DRV_FATAL(&adreno_dev->dev, "Unknown GPU chip ID %8.8X\n",
adreno_dev->chipid);
/*
* The gmem size might be dynamic when ocmem is involved so copy it out
* of the gpu device
*/
adreno_dev->gmem_size = adreno_dev->gpucore->gmem_size;
/*
* Initialize uninitialzed gpu registers, only needs to be done once
* Make all offsets that are not initialized to ADRENO_REG_UNUSED
*/
gpudev = ADRENO_GPU_DEVICE(adreno_dev);
reg_offsets = gpudev->reg_offsets;
for (i = 0; i < ADRENO_REG_REGISTER_MAX; i++) {
if (reg_offsets->offset_0 != i && !reg_offsets->offsets[i])
reg_offsets->offsets[i] = ADRENO_REG_UNUSED;
}
}
static const struct platform_device_id adreno_id_table[] = {
{ DEVICE_3D0_NAME, (unsigned long) &device_3d0, },
{},
};
MODULE_DEVICE_TABLE(platform, adreno_id_table);
static const struct of_device_id adreno_match_table[] = {
{ .compatible = "qcom,kgsl-3d0", .data = &device_3d0 },
{}
};
static inline int adreno_of_read_property(struct device_node *node,
const char *prop, unsigned int *ptr)
{
int ret = of_property_read_u32(node, prop, ptr);
if (ret)
KGSL_CORE_ERR("Unable to read '%s'\n", prop);
return ret;
}
static struct device_node *adreno_of_find_subnode(struct device_node *parent,
const char *name)
{
struct device_node *child;
for_each_child_of_node(parent, child) {
if (of_device_is_compatible(child, name))
return child;
}
return NULL;
}
static int adreno_of_get_pwrlevels(struct device_node *parent,
struct kgsl_device_platform_data *pdata)
{
struct device_node *node, *child;
int ret = -EINVAL;
node = adreno_of_find_subnode(parent, "qcom,gpu-pwrlevels");
if (node == NULL) {
KGSL_CORE_ERR("Unable to find 'qcom,gpu-pwrlevels'\n");
return -EINVAL;
}
pdata->num_levels = 0;
for_each_child_of_node(node, child) {
unsigned int index;
struct kgsl_pwrlevel *level;
if (adreno_of_read_property(child, "reg", &index))
goto done;
if (index >= KGSL_MAX_PWRLEVELS) {
KGSL_CORE_ERR("Pwrlevel index %d is out of range\n",
index);
continue;
}
if (index >= pdata->num_levels)
pdata->num_levels = index + 1;
level = &pdata->pwrlevel[index];
if (adreno_of_read_property(child, "qcom,gpu-freq",
&level->gpu_freq))
goto done;
if (adreno_of_read_property(child, "qcom,bus-freq",
&level->bus_freq))
goto done;
if (of_property_read_u32(child, "qcom,bus-min",
&level->bus_min))
level->bus_min = level->bus_freq;
if (of_property_read_u32(child, "qcom,bus-max",
&level->bus_max))
level->bus_max = level->bus_freq;
}
if (of_property_read_u32(parent, "qcom,initial-pwrlevel",
&pdata->init_level))
pdata->init_level = 1;
if (pdata->init_level < 0 || pdata->init_level > pdata->num_levels) {
KGSL_CORE_ERR("Initial power level out of range\n");
pdata->init_level = 1;
}
ret = 0;
done:
return ret;
}
static int adreno_of_get_iommu(struct device_node *parent,
struct kgsl_device_platform_data *pdata)
{
int result = -EINVAL;
struct device_node *node, *child;
struct kgsl_device_iommu_data *data = NULL;
struct kgsl_iommu_ctx *ctxs = NULL;
u32 reg_val[2];
int ctx_index = 0;
node = of_parse_phandle(parent, "iommu", 0);
if (node == NULL)
return -EINVAL;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (data == NULL) {
result = -ENOMEM;
goto err;
}
if (of_property_read_u32_array(node, "reg", reg_val, 2))
goto err;
data->physstart = reg_val[0];
data->physend = data->physstart + reg_val[1] - 1;
data->iommu_ctx_count = 0;
for_each_child_of_node(node, child)
data->iommu_ctx_count++;
ctxs = kzalloc(data->iommu_ctx_count * sizeof(struct kgsl_iommu_ctx),
GFP_KERNEL);
if (ctxs == NULL) {
result = -ENOMEM;
goto err;
}
for_each_child_of_node(node, child) {
int ret = of_property_read_string(child, "label",
&ctxs[ctx_index].iommu_ctx_name);
if (ret) {
KGSL_CORE_ERR("Unable to read KGSL IOMMU 'label'\n");
goto err;
}
if (!strcmp("gfx3d_user", ctxs[ctx_index].iommu_ctx_name)) {
ctxs[ctx_index].ctx_id = 0;
} else if (!strcmp("gfx3d_priv",
ctxs[ctx_index].iommu_ctx_name)) {
ctxs[ctx_index].ctx_id = 1;
} else if (!strcmp("gfx3d_spare",
ctxs[ctx_index].iommu_ctx_name)) {
ctxs[ctx_index].ctx_id = 2;
/*
* Context bank 2 is secure context bank if content protection
* is supported
*/
} else if (!strcmp("gfx3d_secure",
ctxs[ctx_index].iommu_ctx_name)) {
ctxs[ctx_index].ctx_id = 2;
} else {
KGSL_CORE_ERR("dt: IOMMU context %s is invalid\n",
ctxs[ctx_index].iommu_ctx_name);
goto err;
}
ctx_index++;
}
data->iommu_ctxs = ctxs;
pdata->iommu_data = data;
pdata->iommu_count = 1;
return 0;
err:
kfree(ctxs);
kfree(data);
return result;
}
static int adreno_of_get_pdata(struct platform_device *pdev)
{
struct kgsl_device_platform_data *pdata = NULL;
int ret = -EINVAL;
if (of_property_read_string(pdev->dev.of_node, "label", &pdev->name)) {
KGSL_CORE_ERR("Unable to read 'label'\n");
goto err;
}
if (adreno_of_read_property(pdev->dev.of_node, "qcom,id", &pdev->id))
goto err;
pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
if (pdata == NULL) {
ret = -ENOMEM;
goto err;
}
/* pwrlevel Data */
ret = adreno_of_get_pwrlevels(pdev->dev.of_node, pdata);
if (ret)
goto err;
if (of_property_read_u32(pdev->dev.of_node, "qcom,idle-timeout",
&pdata->idle_timeout))
pdata->idle_timeout = HZ/12;
pdata->strtstp_sleepwake = of_property_read_bool(pdev->dev.of_node,
"qcom,strtstp-sleepwake");
pdata->bus_control = of_property_read_bool(pdev->dev.of_node,
"qcom,bus-control");
if (adreno_of_read_property(pdev->dev.of_node, "qcom,clk-map",
&pdata->clk_map))
goto err;
/* Bus Scale Data */
pdata->bus_scale_table = msm_bus_cl_get_pdata(pdev);
if (IS_ERR_OR_NULL(pdata->bus_scale_table)) {
ret = PTR_ERR(pdata->bus_scale_table);
if (!ret)
ret = -EINVAL;
goto err;
}
ret = adreno_of_get_iommu(pdev->dev.of_node, pdata);
if (ret)
goto err;
pdata->coresight_pdata = of_get_coresight_platform_data(&pdev->dev,
pdev->dev.of_node);
pdev->dev.platform_data = pdata;
return 0;
err:
if (pdata) {
if (pdata->iommu_data)
kfree(pdata->iommu_data->iommu_ctxs);
kfree(pdata->iommu_data);
}
kfree(pdata);
return ret;
}
#ifdef CONFIG_MSM_OCMEM
static int
adreno_ocmem_malloc(struct adreno_device *adreno_dev)
{
if (!ADRENO_FEATURE(adreno_dev, ADRENO_USES_OCMEM))
return 0;
if (adreno_dev->ocmem_hdl == NULL) {
adreno_dev->ocmem_hdl =
ocmem_allocate(OCMEM_GRAPHICS, adreno_dev->gmem_size);
if (IS_ERR_OR_NULL(adreno_dev->ocmem_hdl)) {
adreno_dev->ocmem_hdl = NULL;
return -ENOMEM;
}
adreno_dev->gmem_size = adreno_dev->ocmem_hdl->len;
adreno_dev->gmem_base = adreno_dev->ocmem_hdl->addr;
}
return 0;
}
static void
adreno_ocmem_free(struct adreno_device *adreno_dev)
{
if (adreno_dev->ocmem_hdl != NULL) {
ocmem_free(OCMEM_GRAPHICS, adreno_dev->ocmem_hdl);
adreno_dev->ocmem_hdl = NULL;
}
}
#else
static int
adreno_ocmem_malloc(struct adreno_device *adreno_dev)
{
return 0;
}
static void
adreno_ocmem_free(struct adreno_device *adreno_dev)
{
}
#endif
static inline struct adreno_device *adreno_get_dev(struct platform_device *pdev)
{
const struct of_device_id *of_id =
of_match_device(adreno_match_table, &pdev->dev);
return of_id ? (struct adreno_device *) of_id->data : NULL;
}
int adreno_probe(struct platform_device *pdev)
{
struct kgsl_device *device;
struct adreno_device *adreno_dev;
int status;
adreno_dev = adreno_get_dev(pdev);
if (adreno_dev == NULL) {
pr_err("adreno: qcom,kgsl-3d0 does not exist in the device tree");
return -ENODEV;
}
device = &adreno_dev->dev;
device->pdev = pdev;
status = adreno_of_get_pdata(pdev);
if (status) {
device->pdev = NULL;
return status;
}
/* Identify the specific GPU */
adreno_identify_gpu(adreno_dev);
status = kgsl_device_platform_probe(device);
if (status) {
device->pdev = NULL;
return status;
}
status = adreno_ringbuffer_init(device);
if (status)
goto out;
status = adreno_dispatcher_init(adreno_dev);
if (status)
goto out;
adreno_debugfs_init(adreno_dev);
adreno_profile_init(adreno_dev);
adreno_init_sysfs(device);
kgsl_pwrscale_init(&pdev->dev, CONFIG_MSM_ADRENO_DEFAULT_GOVERNOR);
adreno_input_handler.private = device;
#ifdef CONFIG_INPUT
/*
* It isn't fatal if we cannot register the input handler. Sad,
* perhaps, but not fatal
*/
if (input_register_handler(&adreno_input_handler))
KGSL_DRV_ERR(device, "Unable to register the input handler\n");
#endif
out:
if (status) {
adreno_ringbuffer_close(adreno_dev);
kgsl_device_platform_remove(device);
device->pdev = NULL;
}
return status;
}
static int adreno_remove(struct platform_device *pdev)
{
struct adreno_device *adreno_dev = adreno_get_dev(pdev);
struct kgsl_device *device;
if (adreno_dev == NULL)
return 0;
device = &adreno_dev->dev;
#ifdef CONFIG_INPUT
input_unregister_handler(&adreno_input_handler);
#endif
adreno_uninit_sysfs(device);
adreno_coresight_remove(adreno_dev);
adreno_profile_close(adreno_dev);
kgsl_pwrscale_close(device);
adreno_dispatcher_close(adreno_dev);
adreno_ringbuffer_close(adreno_dev);
adreno_perfcounter_close(adreno_dev);
kgsl_device_platform_remove(device);
clear_bit(ADRENO_DEVICE_INITIALIZED, &adreno_dev->priv);
return 0;
}
static int adreno_init(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
int i;
int ret;
kgsl_pwrctrl_change_state(device, KGSL_STATE_INIT);
/*
* initialization only needs to be done once initially until
* device is shutdown
*/
if (test_bit(ADRENO_DEVICE_INITIALIZED, &adreno_dev->priv))
return 0;
/* Power up the device */
ret = kgsl_pwrctrl_enable(device);
if (ret)
return ret;
/* Initialize coresight for the target */
adreno_coresight_init(adreno_dev);
adreno_ringbuffer_read_pm4_ucode(device);
adreno_ringbuffer_read_pfp_ucode(device);
kgsl_pwrctrl_change_state(device, KGSL_STATE_INIT);
/*
* Check if firmware supports the sync lock PM4 packets needed
* for IOMMUv1
*/
if (ADRENO_FEATURE(adreno_dev, ADRENO_HAS_IOMMU_SYNC_LOCK) &&
(adreno_compare_pm4_version(adreno_dev,
adreno_dev->gpucore->sync_lock_pm4_ver) >= 0) &&
(adreno_compare_pfp_version(adreno_dev,
adreno_dev->gpucore->sync_lock_pfp_ver) >= 0))
device->mmu.flags |= KGSL_MMU_FLAGS_IOMMU_SYNC;
/* Initialize ft detection register offsets */
ft_detect_regs[0] = adreno_getreg(adreno_dev,
ADRENO_REG_RBBM_STATUS);
ft_detect_regs[1] = adreno_getreg(adreno_dev,
ADRENO_REG_CP_RB_RPTR);
ft_detect_regs[2] = adreno_getreg(adreno_dev,
ADRENO_REG_CP_IB1_BASE);
ft_detect_regs[3] = adreno_getreg(adreno_dev,
ADRENO_REG_CP_IB1_BUFSZ);
ft_detect_regs[4] = adreno_getreg(adreno_dev,
ADRENO_REG_CP_IB2_BASE);
ft_detect_regs[5] = adreno_getreg(adreno_dev,
ADRENO_REG_CP_IB2_BUFSZ);
for (i = 6; i < FT_DETECT_REGS_COUNT; i++)
ft_detect_regs[i] = 0;
/* turn on hang interrupt for A4XX and a330v2 by default */
if ((adreno_is_a4xx(adreno_dev)) || (adreno_is_a330v2(adreno_dev)))
set_bit(ADRENO_DEVICE_HANG_INTR, &adreno_dev->priv);
if (gpudev->irq_setup)
gpudev->irq_setup(adreno_dev);
ret = adreno_perfcounter_init(adreno_dev);
/* Power down the device */
kgsl_pwrctrl_disable(device);
if (ret)
goto done;
/* Enable the power on shader corruption fix for all A3XX targets */
if (adreno_is_a3xx(adreno_dev))
adreno_a3xx_pwron_fixup_init(adreno_dev);
set_bit(ADRENO_DEVICE_INITIALIZED, &adreno_dev->priv);
/* Use shader offset and length defined in gpudev */
if (adreno_dev->gpucore->shader_offset &&
adreno_dev->gpucore->shader_size) {
if (device->shader_mem_phys || device->shader_mem_virt)
KGSL_DRV_ERR(device,
"Shader memory already specified in device tree\n");
else {
device->shader_mem_phys = device->reg_phys +
adreno_dev->gpucore->shader_offset;
device->shader_mem_virt = device->reg_virt +
adreno_dev->gpucore->shader_offset;
device->shader_mem_len =
adreno_dev->gpucore->shader_size;
}
}
/* Adjust snapshot section sizes according to core */
if ((adreno_is_a330(adreno_dev) || adreno_is_a305b(adreno_dev))) {
gpudev->snapshot_data->sect_sizes->cp_state_deb =
A320_SNAPSHOT_CP_STATE_SECTION_SIZE;
gpudev->snapshot_data->sect_sizes->roq =
A320_SNAPSHOT_ROQ_SECTION_SIZE;
gpudev->snapshot_data->sect_sizes->cp_merciu =
A320_SNAPSHOT_CP_MERCIU_SECTION_SIZE;
}
done:
return ret;
}
/**
* _adreno_start - Power up the GPU and prepare to accept commands
* @adreno_dev: Pointer to an adreno_device structure
*
* The core function that powers up and initalizes the GPU. This function is
* called at init and after coming out of SLUMBER
*/
static int _adreno_start(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = &adreno_dev->dev;
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
int status = -EINVAL;
unsigned int state = device->state;
unsigned int regulator_left_on = 0;
kgsl_cffdump_open(device);
kgsl_pwrctrl_change_state(device, KGSL_STATE_INIT);
regulator_left_on = (regulator_is_enabled(device->pwrctrl.gpu_reg) ||
(device->pwrctrl.gpu_cx &&
regulator_is_enabled(device->pwrctrl.gpu_cx)));
/* Clear any GPU faults that might have been left over */
adreno_clear_gpu_fault(adreno_dev);
/* Power up the device */
status = kgsl_pwrctrl_enable(device);
if (status)
goto error_rail_off;
/* Set the bit to indicate that we've just powered on */
set_bit(ADRENO_DEVICE_PWRON, &adreno_dev->priv);
status = kgsl_mmu_start(device);
if (status)
goto error_clk_off;
status = adreno_ocmem_malloc(adreno_dev);
if (status) {
KGSL_DRV_ERR(device, "OCMEM malloc failed\n");
goto error_mmu_off;
}
/* Soft reset GPU if regulator is stuck on*/
if (regulator_left_on)
_soft_reset(adreno_dev);
/* Restore performance counter registers with saved values */
adreno_perfcounter_restore(adreno_dev);
/* Start the GPU */
gpudev->start(adreno_dev);
/* Re-initialize the coresight registers if applicable */
adreno_coresight_start(adreno_dev);
kgsl_pwrctrl_irq(device, KGSL_PWRFLAGS_ON);
adreno_irqctrl(adreno_dev, 1);
adreno_perfcounter_start(adreno_dev);
/* Enable h/w power collapse feature */
if (gpudev->enable_pc)
gpudev->enable_pc(adreno_dev);
/* Enable peak power detect feature */
if (gpudev->enable_ppd)
gpudev->enable_ppd(adreno_dev);
status = adreno_ringbuffer_cold_start(adreno_dev);
if (status)
goto error_irq_off;
/* Start the dispatcher */
adreno_dispatcher_start(device);
device->reset_counter++;
set_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv);
return 0;
error_irq_off:
kgsl_pwrctrl_irq(device, KGSL_PWRFLAGS_OFF);
error_mmu_off:
kgsl_mmu_stop(&device->mmu);
error_clk_off:
kgsl_pwrctrl_disable(device);
error_rail_off:
/* set the state back to original state */
kgsl_pwrctrl_change_state(device, state);
return status;
}
/**
* adreno_start() - Power up and initialize the GPU
* @device: Pointer to the KGSL device to power up
* @priority: Boolean flag to specify of the start should be scheduled in a low
* latency work queue
*
* Power up the GPU and initialize it. If priority is specified then elevate
* the thread priority for the duration of the start operation
*/
static int adreno_start(struct kgsl_device *device, int priority)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
int nice = task_nice(current);
int ret;
if (priority && (_wake_nice < nice))
set_user_nice(current, _wake_nice);
ret = _adreno_start(adreno_dev);
if (priority)
set_user_nice(current, nice);
return ret;
}
static int adreno_stop(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
adreno_set_active_ctx_null(adreno_dev);
adreno_dispatcher_stop(adreno_dev);
adreno_ringbuffer_stop(adreno_dev);
kgsl_mmu_stop(&device->mmu);
adreno_irqctrl(adreno_dev, 0);
kgsl_pwrctrl_irq(device, KGSL_PWRFLAGS_OFF);
del_timer_sync(&device->idle_timer);
adreno_ocmem_free(adreno_dev);
/* Save active coresight registers if applicable */
adreno_coresight_stop(adreno_dev);
/* Save physical performance counter values before GPU power down*/
adreno_perfcounter_save(adreno_dev);
/* Power down the device */
kgsl_pwrctrl_disable(device);
kgsl_cffdump_close(device);
clear_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv);
return 0;
}
/**
* adreno_reset() - Helper function to reset the GPU
* @device: Pointer to the KGSL device structure for the GPU
*
* Try to reset the GPU to recover from a fault. First, try to do a low latency
* soft reset. If the soft reset fails for some reason, then bring out the big
* guns and toggle the footswitch.
*/
int adreno_reset(struct kgsl_device *device)
{
int ret = -EINVAL;
struct kgsl_mmu *mmu = &device->mmu;
int i = 0;
/* Try soft reset first, for non mmu fault case only */
if (!atomic_read(&mmu->fault)) {
ret = adreno_soft_reset(device);
if (ret)
KGSL_DEV_ERR_ONCE(device, "Device soft reset failed\n");
}
if (ret) {
/* If soft reset failed/skipped, then pull the power */
adreno_stop(device);
/* Keep trying to start the device until it works */
for (i = 0; i < NUM_TIMES_RESET_RETRY; i++) {
ret = adreno_start(device, 0);
if (!ret)
break;
msleep(20);
}
}
if (ret)
return ret;
if (0 != i)
KGSL_DRV_WARN(device, "Device hard reset tried %d tries\n", i);
/*
* If active_cnt is non-zero then the system was active before
* going into a reset - put it back in that state
*/
if (atomic_read(&device->active_cnt))
kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE);
/* Set the page table back to the default page table */
kgsl_mmu_set_pt(&device->mmu, device->mmu.defaultpagetable);
return ret;
}
/**
* _get_adreno_dev() - Routine to get a pointer to adreno dev
* @dev: device ptr
* @attr: Device attribute
* @buf: value to write
* @count: size of the value to write
*/
static struct adreno_device *_get_adreno_dev(struct device *dev)
{
struct kgsl_device *device = kgsl_device_from_dev(dev);
return device ? ADRENO_DEVICE(device) : NULL;
}
/**
* _ft_policy_store() - Routine to configure FT policy
* @dev: device ptr
* @attr: Device attribute
* @buf: value to write
* @count: size of the value to write
*
* FT policy can be set to any of the options below.
* KGSL_FT_DISABLE -> BIT(0) Set to disable FT
* KGSL_FT_REPLAY -> BIT(1) Set to enable replay
* KGSL_FT_SKIPIB -> BIT(2) Set to skip IB
* KGSL_FT_SKIPFRAME -> BIT(3) Set to skip frame
* by default set FT policy to KGSL_FT_DEFAULT_POLICY
*/
static ssize_t _ft_policy_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct adreno_device *adreno_dev = _get_adreno_dev(dev);
int ret;
unsigned int temp;
if (adreno_dev == NULL)
return 0;
mutex_lock(&adreno_dev->dev.mutex);
ret = kgsl_sysfs_store(buf, &temp);
mutex_unlock(&adreno_dev->dev.mutex);
if (!ret) {
temp &= KGSL_FT_POLICY_MASK;
adreno_dev->ft_policy = temp;
}
return ret < 0 ? ret : count;
}
/**
* _ft_policy_show() - Routine to read FT policy
* @dev: device ptr
* @attr: Device attribute
* @buf: value read
*
* This is a routine to read current FT policy
*/
static ssize_t _ft_policy_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct adreno_device *adreno_dev = _get_adreno_dev(dev);
if (adreno_dev == NULL)
return 0;
return snprintf(buf, PAGE_SIZE, "0x%X\n", adreno_dev->ft_policy);
}
/**
* _ft_pagefault_policy_store() - Routine to configure FT
* pagefault policy
* @dev: device ptr
* @attr: Device attribute
* @buf: value to write
* @count: size of the value to write
*
* FT pagefault policy can be set to any of the options below.
* KGSL_FT_PAGEFAULT_INT_ENABLE -> BIT(0) set to enable pagefault INT
* KGSL_FT_PAGEFAULT_GPUHALT_ENABLE -> BIT(1) Set to enable GPU HALT on
* pagefaults. This stalls the GPU on a pagefault on IOMMU v1 HW.
* KGSL_FT_PAGEFAULT_LOG_ONE_PER_PAGE -> BIT(2) Set to log only one
* pagefault per page.
* KGSL_FT_PAGEFAULT_LOG_ONE_PER_INT -> BIT(3) Set to log only one
* pagefault per INT.
*/
static ssize_t _ft_pagefault_policy_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct adreno_device *adreno_dev = _get_adreno_dev(dev);
int ret = 0;
unsigned int policy = 0;
if (adreno_dev == NULL)
return 0;
mutex_lock(&adreno_dev->dev.mutex);
ret = kgsl_sysfs_store(buf, &policy);
if (ret)
goto out;
policy &= (KGSL_FT_PAGEFAULT_INT_ENABLE |
KGSL_FT_PAGEFAULT_GPUHALT_ENABLE |
KGSL_FT_PAGEFAULT_LOG_ONE_PER_PAGE |
KGSL_FT_PAGEFAULT_LOG_ONE_PER_INT);
ret = kgsl_mmu_set_pagefault_policy(&(adreno_dev->dev.mmu),
adreno_dev->ft_pf_policy);
if (!ret)
adreno_dev->ft_pf_policy = policy;
out:
mutex_unlock(&adreno_dev->dev.mutex);
return ret < 0 ? ret : count;
}
/**
* _ft_pagefault_policy_show() - Routine to read FT pagefault
* policy
* @dev: device ptr
* @attr: Device attribute
* @buf: value read
*
* This is a routine to read current FT pagefault policy
*/
static ssize_t _ft_pagefault_policy_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct adreno_device *adreno_dev = _get_adreno_dev(dev);
if (adreno_dev == NULL)
return 0;
return snprintf(buf, PAGE_SIZE, "0x%X\n", adreno_dev->ft_pf_policy);
}
/**
* _ft_fast_hang_detect_store() - Routine to configure FT fast
* hang detect policy
* @dev: device ptr
* @attr: Device attribute
* @buf: value to write
* @count: size of the value to write
*
* 0x1 - Enable fast hang detection
* 0x0 - Disable fast hang detection
*/
static ssize_t _ft_fast_hang_detect_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct adreno_device *adreno_dev = _get_adreno_dev(dev);
struct adreno_gpudev *gpudev;
int ret, tmp;
if (adreno_dev == NULL)
return 0;
gpudev = ADRENO_GPU_DEVICE(adreno_dev);
mutex_lock(&adreno_dev->dev.mutex);
tmp = adreno_dev->fast_hang_detect;
ret = kgsl_sysfs_store(buf, &adreno_dev->fast_hang_detect);
if (tmp != adreno_dev->fast_hang_detect) {
if (adreno_dev->fast_hang_detect) {
if (gpudev->fault_detect_start &&
!kgsl_active_count_get(&adreno_dev->dev)) {
gpudev->fault_detect_start(adreno_dev);
kgsl_active_count_put(&adreno_dev->dev);
}
} else {
if (gpudev->fault_detect_stop)
gpudev->fault_detect_stop(adreno_dev);
}
}
mutex_unlock(&adreno_dev->dev.mutex);
return ret < 0 ? ret : count;
}
/**
* _ft_fast_hang_detect_show() - Routine to read FT fast
* hang detect policy
* @dev: device ptr
* @attr: Device attribute
* @buf: value read
*/
static ssize_t _ft_fast_hang_detect_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct adreno_device *adreno_dev = _get_adreno_dev(dev);
if (adreno_dev == NULL)
return 0;
return snprintf(buf, PAGE_SIZE, "%d\n",
(adreno_dev->fast_hang_detect ? 1 : 0));
}
/**
* _ft_long_ib_detect_store() - Routine to configure FT long IB
* detect policy
* @dev: device ptr
* @attr: Device attribute
* @buf: value to write
* @count: size of the value to write
*
* 0x0 - Enable long IB detection
* 0x1 - Disable long IB detection
*/
static ssize_t _ft_long_ib_detect_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct adreno_device *adreno_dev = _get_adreno_dev(dev);
int ret;
if (adreno_dev == NULL)
return 0;
mutex_lock(&adreno_dev->dev.mutex);
ret = kgsl_sysfs_store(buf, &adreno_dev->long_ib_detect);
mutex_unlock(&adreno_dev->dev.mutex);
return ret < 0 ? ret : count;
}
/**
* _ft_long_ib_detect_show() - Routine to read FT long IB
* detect policy
* @dev: device ptr
* @attr: Device attribute
* @buf: value read
*/
static ssize_t _ft_long_ib_detect_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct adreno_device *adreno_dev = _get_adreno_dev(dev);
if (adreno_dev == NULL)
return 0;
return snprintf(buf, PAGE_SIZE, "%d\n",
(adreno_dev->long_ib_detect ? 1 : 0));
}
/**
* _ft_hang_intr_status_store - Routine to enable/disable h/w hang interrupt
* @dev: device ptr
* @attr: Device attribute
* @buf: value to write
* @count: size of the value to write
*/
static ssize_t _ft_hang_intr_status_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned int new_setting = 0, old_setting;
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct adreno_device *adreno_dev;
int ret;
if (device == NULL)
return 0;
adreno_dev = ADRENO_DEVICE(device);
mutex_lock(&device->mutex);
ret = kgsl_sysfs_store(buf, &new_setting);
if (ret)
goto done;
if (new_setting)
new_setting = 1;
old_setting =
(test_bit(ADRENO_DEVICE_HANG_INTR, &adreno_dev->priv) ? 1 : 0);
if (new_setting != old_setting) {
if (new_setting)
set_bit(ADRENO_DEVICE_HANG_INTR, &adreno_dev->priv);
else
clear_bit(ADRENO_DEVICE_HANG_INTR, &adreno_dev->priv);
/* Set the new setting based on device state */
switch (device->state) {
case KGSL_STATE_NAP:
case KGSL_STATE_SLEEP:
kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE);
case KGSL_STATE_ACTIVE: {
struct adreno_gpudev *gpudev =
ADRENO_GPU_DEVICE(adreno_dev);
gpudev->irq_control(adreno_dev, 1);
}
/*
* For following states setting will be picked up on device
* start. Still need them in switch statement to differentiate
* from default
*/
case KGSL_STATE_SLUMBER:
case KGSL_STATE_SUSPEND:
break;
default:
ret = -EACCES;
/* reset back to old setting on error */
if (new_setting)
clear_bit(ADRENO_DEVICE_HANG_INTR,
&adreno_dev->priv);
else
set_bit(ADRENO_DEVICE_HANG_INTR,
&adreno_dev->priv);
goto done;
}
}
done:
mutex_unlock(&device->mutex);
return ret < 0 ? ret : count;
}
/**
* _ft_hang_intr_status_show() - Routine to read hardware hang interrupt
* enablement
* @dev: device ptr
* @attr: Device attribute
* @buf: value read
*/
static ssize_t _ft_hang_intr_status_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct adreno_device *adreno_dev = _get_adreno_dev(dev);
if (adreno_dev == NULL)
return 0;
return snprintf(buf, PAGE_SIZE, "%d\n",
test_bit(ADRENO_DEVICE_HANG_INTR, &adreno_dev->priv) ? 1 : 0);
}
/**
* _wake_timeout_store() - Store the amount of time to extend idle check after
* wake on touch
* @dev: device ptr
* @attr: Device attribute
* @buf: value to write
* @count: size of the value to write
*
*/
static ssize_t _wake_timeout_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret = kgsl_sysfs_store(buf, &_wake_timeout);
return ret < 0 ? ret : count;
}
/**
* _wake_timeout_show() - Show the amount of time idle check gets extended
* after wake on touch
* detect policy
* @dev: device ptr
* @attr: Device attribute
* @buf: value read
*/
static ssize_t _wake_timeout_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", _wake_timeout);
}
/**
* _sptp_pc_store() - Enable or disable SP/TP power collapse
* @dev: device ptr
* @attr: Device attribute
* @buf: value to write
* @count: size of the value to write
*
*/
static ssize_t _sptp_pc_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct adreno_device *adreno_dev = _get_adreno_dev(dev);
struct kgsl_device *device = kgsl_device_from_dev(dev);
struct adreno_gpudev *gpudev;
int ret, t = 0;
if ((adreno_dev == NULL) || (device == NULL))
return -ENODEV;
gpudev = ADRENO_GPU_DEVICE(adreno_dev);
ret = kgsl_sysfs_store(buf, &t);
if (ret < 0)
return ret;
mutex_lock(&device->mutex);
kgsl_pwrctrl_change_state(device, KGSL_STATE_SUSPEND);
if (t)
set_bit(ADRENO_SPTP_PC_CTRL, &adreno_dev->pwrctrl_flag);
else
clear_bit(ADRENO_SPTP_PC_CTRL, &adreno_dev->pwrctrl_flag);
kgsl_pwrctrl_change_state(device, KGSL_STATE_SLUMBER);
mutex_unlock(&device->mutex);
return count;
}
/**
* _sptp_pc_show() - Show whether SP/TP power collapse is enabled
* @dev: device ptr
* @attr: Device attribute
* @buf: value read
*/
static ssize_t _sptp_pc_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct adreno_device *adreno_dev = _get_adreno_dev(dev);
return snprintf(buf, PAGE_SIZE, "%u\n", test_bit(ADRENO_SPTP_PC_CTRL,
&adreno_dev->pwrctrl_flag));
}
#define ADRENO_DEVICE_ATTR(name) \
DEVICE_ATTR(name, 0644, _ ## name ## _show, _ ## name ## _store);
static ADRENO_DEVICE_ATTR(ft_policy);
static ADRENO_DEVICE_ATTR(ft_pagefault_policy);
static ADRENO_DEVICE_ATTR(ft_fast_hang_detect);
static ADRENO_DEVICE_ATTR(ft_long_ib_detect);
static ADRENO_DEVICE_ATTR(ft_hang_intr_status);
static DEVICE_INT_ATTR(wake_nice, 0644, _wake_nice);
static ADRENO_DEVICE_ATTR(wake_timeout);
static ADRENO_DEVICE_ATTR(sptp_pc);
static const struct device_attribute *_attr_list[] = {
&dev_attr_ft_policy,
&dev_attr_ft_pagefault_policy,
&dev_attr_ft_fast_hang_detect,
&dev_attr_ft_long_ib_detect,
&dev_attr_ft_hang_intr_status,
&dev_attr_wake_nice.attr,
&dev_attr_wake_timeout,
&dev_attr_sptp_pc,
NULL,
};
/* Add a ppd directory for controlling different knobs from sysfs */
struct adreno_ppd_attribute {
struct attribute attr;
ssize_t (*show)(struct kgsl_device *device, char *buf);
ssize_t (*store)(struct kgsl_device *device, const char *buf,
size_t count);
};
#define PPD_ATTR(_name, _mode, _show, _store) \
struct adreno_ppd_attribute attr_##_name = { \
.attr = { .name = __stringify(_name), .mode = _mode }, \
.show = _show, \
.store = _store, \
}
#define to_ppd_attr(a) \
container_of(a, struct adreno_ppd_attribute, attr)
#define kobj_to_device(a) \
container_of(a, struct kgsl_device, ppd_kobj)
/**
* ppd_enable_store() - Enable or disable peak power detection
* @attr: Device attribute
* @buf: value to write
* @count: size of the value to write
*
*/
static ssize_t ppd_enable_store(struct kgsl_device *device,
const char *buf, size_t count)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev;
unsigned int ret;
unsigned int ppd_on = 1;
if ((adreno_dev == NULL) || (device == NULL))
return -ENODEV;
gpudev = ADRENO_GPU_DEVICE(adreno_dev);
ret = kgsl_sysfs_store(buf, &ppd_on);
if (ret < 0)
return ret;
mutex_lock(&device->mutex);
kgsl_pwrctrl_change_state(device, KGSL_STATE_SUSPEND);
if (ppd_on)
set_bit(ADRENO_PPD_CTRL, &adreno_dev->pwrctrl_flag);
else
clear_bit(ADRENO_PPD_CTRL, &adreno_dev->pwrctrl_flag);
kgsl_pwrctrl_change_state(device, KGSL_STATE_SLUMBER);
mutex_unlock(&device->mutex);
return count;
}
/**
* ppd_enable_show() - Show whether ppd is enabled
* @dev: device ptr
* @buf: value read
*/
static ssize_t ppd_enable_show(struct kgsl_device *device,
char *buf)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
return snprintf(buf, PAGE_SIZE, "%u\n", test_bit(ADRENO_PPD_CTRL,
&adreno_dev->pwrctrl_flag));
}
/* Add individual ppd attributes here */
static PPD_ATTR(enable, 0644, ppd_enable_show, ppd_enable_store);
static void ppd_sysfs_release(struct kobject *kobj)
{
}
static ssize_t ppd_sysfs_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct adreno_ppd_attribute *pattr = to_ppd_attr(attr);
struct kgsl_device *device = kobj_to_device(kobj);
ssize_t ret;
if (device && pattr->show)
ret = pattr->show(device, buf);
else
ret = -EIO;
return ret;
}
static ssize_t ppd_sysfs_store(struct kobject *kobj,
struct attribute *attr, const char *buf, size_t count)
{
struct adreno_ppd_attribute *pattr = to_ppd_attr(attr);
struct kgsl_device *device = kobj_to_device(kobj);
ssize_t ret;
if (device && pattr->store)
ret = pattr->store(device, buf, count);
else
ret = -EIO;
return ret;
}
static const struct sysfs_ops ppd_sysfs_ops = {
.show = ppd_sysfs_show,
.store = ppd_sysfs_store,
};
static struct kobj_type ktype_ppd = {
.sysfs_ops = &ppd_sysfs_ops,
.default_attrs = NULL,
.release = ppd_sysfs_release,
};
static int adreno_init_sysfs(struct kgsl_device *device)
{
int ret;
ret = kgsl_create_device_sysfs_files(device->dev, _attr_list);
if (ret)
goto done;
ret = kobject_init_and_add(&device->ppd_kobj, &ktype_ppd,
&device->dev->kobj, "ppd");
if (ret)
goto done;
ret = sysfs_create_file(&device->ppd_kobj, &attr_enable.attr);
done:
return ret;
}
static void adreno_uninit_sysfs(struct kgsl_device *device)
{
sysfs_remove_file(&device->ppd_kobj, &attr_enable.attr);
kobject_put(&device->ppd_kobj);
kgsl_remove_device_sysfs_files(device->dev, _attr_list);
}
static int adreno_getproperty(struct kgsl_device *device,
enum kgsl_property_type type,
void __user *value,
size_t sizebytes)
{
int status = -EINVAL;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
switch (type) {
case KGSL_PROP_DEVICE_INFO:
{
struct kgsl_devinfo devinfo;
if (sizebytes != sizeof(devinfo)) {
status = -EINVAL;
break;
}
memset(&devinfo, 0, sizeof(devinfo));
devinfo.device_id = device->id+1;
devinfo.chip_id = adreno_dev->chipid;
devinfo.mmu_enabled = kgsl_mmu_enabled();
devinfo.gmem_gpubaseaddr = adreno_dev->gmem_base;
devinfo.gmem_sizebytes = adreno_dev->gmem_size;
if (copy_to_user(value, &devinfo, sizeof(devinfo)) !=
0) {
status = -EFAULT;
break;
}
status = 0;
}
break;
case KGSL_PROP_DEVICE_SHADOW:
{
struct kgsl_shadowprop shadowprop;
if (sizebytes != sizeof(shadowprop)) {
status = -EINVAL;
break;
}
memset(&shadowprop, 0, sizeof(shadowprop));
if (device->memstore.hostptr) {
/*NOTE: with mmu enabled, gpuaddr doesn't mean
* anything to mmap().
*/
shadowprop.gpuaddr = device->memstore.gpuaddr;
shadowprop.size = device->memstore.size;
/* GSL needs this to be set, even if it
appears to be meaningless */
shadowprop.flags = KGSL_FLAGS_INITIALIZED |
KGSL_FLAGS_PER_CONTEXT_TIMESTAMPS;
}
if (copy_to_user(value, &shadowprop,
sizeof(shadowprop))) {
status = -EFAULT;
break;
}
status = 0;
}
break;
case KGSL_PROP_MMU_ENABLE:
{
int mmu_prop = kgsl_mmu_enabled();
if (sizebytes != sizeof(int)) {
status = -EINVAL;
break;
}
if (copy_to_user(value, &mmu_prop, sizeof(mmu_prop))) {
status = -EFAULT;
break;
}
status = 0;
}
break;
case KGSL_PROP_INTERRUPT_WAITS:
{
int int_waits = 1;
if (sizebytes != sizeof(int)) {
status = -EINVAL;
break;
}
if (copy_to_user(value, &int_waits, sizeof(int))) {
status = -EFAULT;
break;
}
status = 0;
}
break;
default:
status = -EINVAL;
}
return status;
}
int adreno_set_constraint(struct kgsl_device *device,
struct kgsl_context *context,
struct kgsl_device_constraint *constraint)
{
int status = 0;
switch (constraint->type) {
case KGSL_CONSTRAINT_PWRLEVEL: {
struct kgsl_device_constraint_pwrlevel pwr;
if (constraint->size != sizeof(pwr)) {
status = -EINVAL;
break;
}
if (copy_from_user(&pwr,
(void __user *)constraint->data,
sizeof(pwr))) {
status = -EFAULT;
break;
}
if (pwr.level >= KGSL_CONSTRAINT_PWR_MAXLEVELS) {
status = -EINVAL;
break;
}
context->pwr_constraint.type =
KGSL_CONSTRAINT_PWRLEVEL;
context->pwr_constraint.sub_type = pwr.level;
trace_kgsl_user_pwrlevel_constraint(device,
context->id,
context->pwr_constraint.type,
context->pwr_constraint.sub_type);
}
break;
case KGSL_CONSTRAINT_NONE:
if (context->pwr_constraint.type == KGSL_CONSTRAINT_PWRLEVEL)
trace_kgsl_user_pwrlevel_constraint(device,
context->id,
KGSL_CONSTRAINT_NONE,
context->pwr_constraint.sub_type);
context->pwr_constraint.type = KGSL_CONSTRAINT_NONE;
break;
default:
status = -EINVAL;
break;
}
/* If a new constraint has been set for a context, cancel the old one */
if ((status == 0) &&
(context->id == device->pwrctrl.constraint.owner_id)) {
trace_kgsl_constraint(device, device->pwrctrl.constraint.type,
device->pwrctrl.active_pwrlevel, 0);
device->pwrctrl.constraint.type = KGSL_CONSTRAINT_NONE;
}
return status;
}
static int adreno_setproperty(struct kgsl_device_private *dev_priv,
enum kgsl_property_type type,
void __user *value,
unsigned int sizebytes)
{
int status = -EINVAL;
struct kgsl_device *device = dev_priv->device;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
switch (type) {
case KGSL_PROP_PWRCTRL: {
unsigned int enable;
if (sizebytes != sizeof(enable))
break;
if (copy_from_user(&enable, value, sizeof(enable))) {
status = -EFAULT;
break;
}
mutex_lock(&device->mutex);
if (enable) {
device->pwrctrl.ctrl_flags = 0;
adreno_dev->fast_hang_detect = 1;
if (gpudev->fault_detect_start &&
!kgsl_active_count_get(&adreno_dev->dev)) {
gpudev->fault_detect_start(adreno_dev);
kgsl_active_count_put(&adreno_dev->dev);
}
kgsl_pwrscale_enable(device);
} else {
kgsl_pwrctrl_change_state(device,
KGSL_STATE_ACTIVE);
device->pwrctrl.ctrl_flags = KGSL_PWR_ON;
adreno_dev->fast_hang_detect = 0;
if (gpudev->fault_detect_stop)
gpudev->fault_detect_stop(adreno_dev);
kgsl_pwrscale_disable(device);
}
mutex_unlock(&device->mutex);
status = 0;
}
break;
case KGSL_PROP_PWR_CONSTRAINT: {
struct kgsl_device_constraint constraint;
struct kgsl_context *context;
if (sizebytes != sizeof(constraint))
break;
if (copy_from_user(&constraint, value,
sizeof(constraint))) {
status = -EFAULT;
break;
}
context = kgsl_context_get_owner(dev_priv,
constraint.context_id);
if (context == NULL)
break;
status = adreno_set_constraint(device, context,
&constraint);
kgsl_context_put(context);
}
break;
default:
break;
}
return status;
}
/**
* adreno_hw_isidle() - Check if the GPU core is idle
* @adreno_dev: Pointer to the Adreno device structure for the GPU
*
* Return true if the RBBM status register for the GPU type indicates that the
* hardware is idle
*/
bool adreno_hw_isidle(struct adreno_device *adreno_dev)
{
unsigned int reg_rbbm_status;
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
adreno_readreg(adreno_dev, ADRENO_REG_RBBM_STATUS,
&reg_rbbm_status);
if (reg_rbbm_status & ~0x80000001)
return false;
/* Don't consider ourselves idle if there is an IRQ pending */
if (gpudev->irq_pending(adreno_dev))
return false;
return true;
}
/**
* adreno_soft_reset() - Do a soft reset of the GPU hardware
* @device: KGSL device to soft reset
*
* "soft reset" the GPU hardware - this is a fast path GPU reset
* The GPU hardware is reset but we never pull power so we can skip
* a lot of the standard adreno_stop/adreno_start sequence
*/
static int adreno_soft_reset(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
int ret;
_soft_reset(adreno_dev);
adreno_set_active_ctx_null(adreno_dev);
if (kgsl_pwrctrl_isenabled(device))
adreno_irqctrl(adreno_dev, 0);
kgsl_pwrctrl_irq(device, KGSL_PWRFLAGS_OFF);
adreno_clear_gpu_fault(adreno_dev);
/* Delete the idle timer */
del_timer_sync(&device->idle_timer);
/* Make sure we are totally awake */
kgsl_pwrctrl_enable(device);
/* save physical performance counter values before GPU soft reset */
adreno_perfcounter_save(adreno_dev);
kgsl_cffdump_close(device);
/* Reset the GPU */
_soft_reset(adreno_dev);
/* start of new CFF after reset */
kgsl_cffdump_open(device);
/* Restore physical performance counter values after soft reset */
adreno_perfcounter_restore(adreno_dev);
/* Reinitialize the GPU */
gpudev->start(adreno_dev);
/* Re-initialize the coresight registers if applicable */
adreno_coresight_start(adreno_dev);
/* Enable IRQ */
kgsl_pwrctrl_irq(device, KGSL_PWRFLAGS_ON);
adreno_irqctrl(adreno_dev, 1);
/*
* If we have offsets for the jump tables we can try to do a warm start,
* otherwise do a full ringbuffer restart
*/
if (ADRENO_FEATURE(adreno_dev, ADRENO_WARM_START))
ret = adreno_ringbuffer_warm_start(adreno_dev);
else
ret = adreno_ringbuffer_cold_start(adreno_dev);
if (!ret)
device->reset_counter++;
return ret;
}
/*
* adreno_isidle() - return true if the GPU hardware is idle
* @device: Pointer to the KGSL device structure for the GPU
*
* Return true if the GPU hardware is idle and there are no commands pending in
* the ringbuffer
*/
bool adreno_isidle(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_ringbuffer *rb;
int i;
if (!kgsl_pwrctrl_isenabled(device))
return true;
adreno_get_rptr(ADRENO_CURRENT_RINGBUFFER(adreno_dev));
/*
* wptr is updated when we add commands to ringbuffer, add a barrier
* to make sure updated wptr is compared to rptr
*/
smp_mb();
/*
* ringbuffer is truly idle when all ringbuffers read and write
* pointers are equal
*/
FOR_EACH_RINGBUFFER(adreno_dev, rb, i) {
if (rb->rptr != rb->wptr)
break;
}
if (i == adreno_dev->num_ringbuffers)
return adreno_hw_isidle(adreno_dev);
return false;
}
/**
* adreno_spin_idle() - Spin wait for the GPU to idle
* @device: Pointer to the KGSL device
*
* Spin the CPU waiting for the RBBM status to return idle
*/
int adreno_spin_idle(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
unsigned long wait = jiffies + msecs_to_jiffies(ADRENO_IDLE_TIMEOUT);
kgsl_cffdump_regpoll(device,
adreno_getreg(adreno_dev, ADRENO_REG_RBBM_STATUS) << 2,
0x00000000, 0x80000000);
while (time_before(jiffies, wait)) {
/*
* If we fault, stop waiting and return an error. The dispatcher
* will clean up the fault from the work queue, but we need to
* make sure we don't block it by waiting for an idle that
* will never come.
*/
if (adreno_gpu_fault(adreno_dev) != 0)
return -EDEADLK;
if (adreno_isidle(device))
return 0;
}
return -ETIMEDOUT;
}
/**
* adreno_idle() - wait for the GPU hardware to go idle
* @device: Pointer to the KGSL device structure for the GPU
*
* Wait up to ADRENO_IDLE_TIMEOUT milliseconds for the GPU hardware to go quiet.
*/
int adreno_idle(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
int ret;
/*
* Make sure the device mutex is held so the dispatcher can't send any
* more commands to the hardware
*/
BUG_ON(!mutex_is_locked(&device->mutex));
/* Check if we are already idle before idling dispatcher */
if (adreno_isidle(device))
return 0;
/*
* Wait for dispatcher to finish completing commands
* already submitted
*/
ret = adreno_dispatcher_idle(adreno_dev);
if (ret)
return ret;
return adreno_spin_idle(device);
}
/**
* adreno_drain() - Drain the dispatch queue
* @device: Pointer to the KGSL device structure for the GPU
*
* Drain the dispatcher of existing command batches. This halts
* additional commands from being issued until the gate is completed.
*/
static int adreno_drain(struct kgsl_device *device)
{
INIT_COMPLETION(device->cmdbatch_gate);
return 0;
}
/* Caller must hold the device mutex. */
static int adreno_suspend_context(struct kgsl_device *device)
{
int status = 0;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
/* process any profiling results that are available */
adreno_profile_process_results(adreno_dev);
status = adreno_idle(device);
if (status)
return status;
/* set the device to default pagetable */
kgsl_mmu_set_pt(&device->mmu, device->mmu.defaultpagetable);
/* set ringbuffers to NULL ctxt */
adreno_set_active_ctx_null(adreno_dev);
return status;
}
/**
* adreno_read - General read function to read adreno device memory
* @device - Pointer to the GPU device struct (for adreno device)
* @base - Base address (kernel virtual) where the device memory is mapped
* @offsetwords - Offset in words from the base address, of the memory that
* is to be read
* @value - Value read from the device memory
* @mem_len - Length of the device memory mapped to the kernel
*/
static void adreno_read(struct kgsl_device *device, void *base,
unsigned int offsetwords, unsigned int *value,
unsigned int mem_len)
{
unsigned int *reg;
BUG_ON(offsetwords*sizeof(uint32_t) >= mem_len);
reg = (unsigned int *)(base + (offsetwords << 2));
if (!in_interrupt())
kgsl_pre_hwaccess(device);
/*ensure this read finishes before the next one.
* i.e. act like normal readl() */
*value = __raw_readl(reg);
rmb();
}
/**
* adreno_regread - Used to read adreno device registers
* @offsetwords - Word (4 Bytes) offset to the register to be read
* @value - Value read from device register
*/
static void adreno_regread(struct kgsl_device *device, unsigned int offsetwords,
unsigned int *value)
{
adreno_read(device, device->reg_virt, offsetwords, value,
device->reg_len);
}
/**
* adreno_shadermem_regread - Used to read GPU (adreno) shader memory
* @device - GPU device whose shader memory is to be read
* @offsetwords - Offset in words, of the shader memory address to be read
* @value - Pointer to where the read shader mem value is to be stored
*/
void adreno_shadermem_regread(struct kgsl_device *device,
unsigned int offsetwords, unsigned int *value)
{
adreno_read(device, device->shader_mem_virt, offsetwords, value,
device->shader_mem_len);
}
static void adreno_regwrite(struct kgsl_device *device,
unsigned int offsetwords,
unsigned int value)
{
unsigned int *reg;
BUG_ON(offsetwords*sizeof(uint32_t) >= device->reg_len);
if (!in_interrupt())
kgsl_pre_hwaccess(device);
trace_kgsl_regwrite(device, offsetwords, value);
kgsl_cffdump_regwrite(device, offsetwords << 2, value);
reg = (unsigned int *)(device->reg_virt + (offsetwords << 2));
/*ensure previous writes post before this one,
* i.e. act like normal writel() */
wmb();
__raw_writel(value, reg);
}
/**
* adreno_waittimestamp - sleep while waiting for the specified timestamp
* @device - pointer to a KGSL device structure
* @context - pointer to the active kgsl context
* @timestamp - GPU timestamp to wait for
* @msecs - amount of time to wait (in milliseconds)
*
* Wait up to 'msecs' milliseconds for the specified timestamp to expire.
*/
static int adreno_waittimestamp(struct kgsl_device *device,
struct kgsl_context *context,
unsigned int timestamp,
unsigned int msecs)
{
int ret;
if (context == NULL) {
/* If they are doing then complain once */
dev_WARN_ONCE(device->dev, 1,
"IOCTL_KGSL_DEVICE_WAITTIMESTAMP is deprecated\n");
return -ENOTTY;
}
/* Return -EINVAL if the context has been detached */
if (kgsl_context_detached(context))
return -EINVAL;
ret = adreno_drawctxt_wait(ADRENO_DEVICE(device), context,
timestamp, msecs);
/* If the context got invalidated then return a specific error */
if (kgsl_context_invalid(context))
ret = -EDEADLK;
/*
* Return -EPROTO if the device has faulted since the last time we
* checked. Userspace uses this as a marker for performing post
* fault activities
*/
if (!ret && test_and_clear_bit(ADRENO_CONTEXT_FAULT, &context->priv))
ret = -EPROTO;
return ret;
}
/**
* __adreno_readtimestamp() - Reads the timestamp from memstore memory
* @device: Pointer to device whose memstore is read
* @index: Index into the memstore memory
* @type: Type of timestamp to read
* @timestamp: The out parameter where the timestamp is read
*/
int __adreno_readtimestamp(struct kgsl_device *device, int index, int type,
unsigned int *timestamp)
{
int status = 0;
switch (type) {
case KGSL_TIMESTAMP_CONSUMED:
kgsl_sharedmem_readl(&device->memstore, timestamp,
KGSL_MEMSTORE_OFFSET(index, soptimestamp));
break;
case KGSL_TIMESTAMP_RETIRED:
kgsl_sharedmem_readl(&device->memstore, timestamp,
KGSL_MEMSTORE_OFFSET(index, eoptimestamp));
break;
default:
status = -EINVAL;
*timestamp = 0;
break;
}
return status;
}
/**
* adreno_rb_readtimestamp(): Return the value of given type of timestamp
* for a RB
* @device: GPU device whose timestamp values are being queried
* @priv: The object being queried for a timestamp (expected to be a rb pointer)
* @type: The type of timestamp (one of 3) to be read
* @timestamp: Pointer to where the read timestamp is to be written to
*
* CONSUMED and RETIRED type timestamps are sorted by id and are constantly
* updated by the GPU through shared memstore memory. QUEUED type timestamps
* are read directly from context struct.
* The function returns 0 on success and timestamp value at the *timestamp
* address and returns -EINVAL on any read error/invalid type and timestamp = 0.
*/
int adreno_rb_readtimestamp(struct kgsl_device *device,
void *priv, enum kgsl_timestamp_type type,
unsigned int *timestamp)
{
int status = 0;
struct adreno_ringbuffer *rb = priv;
/*
* If user passed in a NULL pointer for timestamp, return without
* doing anything.
*/
if (!timestamp)
return status;
if (KGSL_TIMESTAMP_QUEUED == type)
*timestamp = rb->timestamp;
else
status = __adreno_readtimestamp(device,
rb->id + KGSL_MEMSTORE_MAX,
type, timestamp);
return status;
}
/**
* adreno_readtimestamp(): Return the value of given type of timestamp
* @device: GPU device whose timestamp values are being queried
* @priv: The object being queried for a timestamp (expected to be a context)
* @type: The type of timestamp (one of 3) to be read
* @timestamp: Pointer to where the read timestamp is to be written to
*
* CONSUMED and RETIRED type timestamps are sorted by id and are constantly
* updated by the GPU through shared memstore memory. QUEUED type timestamps
* are read directly from context struct.
* The function returns 0 on success and timestamp value at the *timestamp
* address and returns -EINVAL on any read error/invalid type and timestamp = 0.
*/
static int adreno_readtimestamp(struct kgsl_device *device,
void *priv, enum kgsl_timestamp_type type,
unsigned int *timestamp)
{
int status = 0;
struct kgsl_context *context = priv;
unsigned int id = KGSL_CONTEXT_ID(context);
BUG_ON(NULL == context || id >= KGSL_MEMSTORE_MAX);
/*
* If user passed in a NULL pointer for timestamp, return without
* doing anything.
*/
if (!timestamp)
return status;
if (KGSL_TIMESTAMP_QUEUED == type)
*timestamp = adreno_context_timestamp(context);
else
status = __adreno_readtimestamp(device,
context->id, type, timestamp);
return status;
}
static long adreno_ioctl(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_device *device = dev_priv->device;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
int result = 0;
switch (cmd) {
case IOCTL_KGSL_PERFCOUNTER_GET: {
struct kgsl_perfcounter_get *get = data;
mutex_lock(&device->mutex);
/*
* adreno_perfcounter_get() is called by kernel clients
* during start(), so it is not safe to take an
* active count inside this function.
*/
result = kgsl_active_count_get(device);
if (result == 0) {
result = adreno_perfcounter_get(adreno_dev,
get->groupid, get->countable, &get->offset,
&get->offset_hi, PERFCOUNTER_FLAG_NONE);
kgsl_active_count_put(device);
}
mutex_unlock(&device->mutex);
break;
}
case IOCTL_KGSL_PERFCOUNTER_PUT: {
struct kgsl_perfcounter_put *put = data;
mutex_lock(&device->mutex);
result = adreno_perfcounter_put(adreno_dev, put->groupid,
put->countable, PERFCOUNTER_FLAG_NONE);
mutex_unlock(&device->mutex);
break;
}
case IOCTL_KGSL_PERFCOUNTER_QUERY: {
struct kgsl_perfcounter_query *query = data;
result = adreno_perfcounter_query_group(adreno_dev,
query->groupid, query->countables,
query->count, &query->max_counters);
break;
}
case IOCTL_KGSL_PERFCOUNTER_READ: {
struct kgsl_perfcounter_read *read = data;
result = adreno_perfcounter_read_group(adreno_dev,
read->reads, read->count);
break;
}
default:
KGSL_DRV_INFO(dev_priv->device,
"invalid ioctl code %08x\n", cmd);
result = -ENOIOCTLCMD;
break;
}
return result;
}
static inline s64 adreno_ticks_to_us(u32 ticks, u32 freq)
{
freq /= 1000000;
return ticks / freq;
}
static void adreno_power_stats(struct kgsl_device *device,
struct kgsl_power_stats *stats)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
struct adreno_busy_data busy_data;
memset(stats, 0, sizeof(*stats));
/*
* If we're not currently active, there shouldn't have been
* any cycles since the last time this function was called.
*/
if (device->state != KGSL_STATE_ACTIVE)
return;
/* Get the busy cycles counted since the counter was last reset */
gpudev->busy_cycles(adreno_dev, &busy_data);
stats->busy_time = adreno_ticks_to_us(busy_data.gpu_busy,
kgsl_pwrctrl_active_freq(pwr));
stats->ram_time = busy_data.vbif_ram_cycles;
stats->ram_wait = busy_data.vbif_starved_ram;
}
static unsigned int adreno_gpuid(struct kgsl_device *device,
unsigned int *chipid)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
/* Some applications need to know the chip ID too, so pass
* that as a parameter */
if (chipid != NULL)
*chipid = adreno_dev->chipid;
/* Standard KGSL gpuid format:
* top word is 0x0002 for 2D or 0x0003 for 3D
* Bottom word is core specific identifer
*/
return (0x0003 << 16) | ADRENO_GPUREV(adreno_dev);
}
static void adreno_regulator_enable(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (gpudev->regulator_enable)
gpudev->regulator_enable(adreno_dev);
}
static bool adreno_is_hw_collapsible(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
return adreno_isidle(device) && (gpudev->is_sptp_idle ?
gpudev->is_sptp_idle(adreno_dev) : true);
}
static void adreno_regulator_disable(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (gpudev->regulator_disable)
gpudev->regulator_disable(adreno_dev);
}
static const struct kgsl_functable adreno_functable = {
/* Mandatory functions */
.regread = adreno_regread,
.regwrite = adreno_regwrite,
.idle = adreno_idle,
.isidle = adreno_isidle,
.suspend_context = adreno_suspend_context,
.init = adreno_init,
.start = adreno_start,
.stop = adreno_stop,
.getproperty = adreno_getproperty,
.getproperty_compat = adreno_getproperty_compat,
.waittimestamp = adreno_waittimestamp,
.readtimestamp = adreno_readtimestamp,
.issueibcmds = adreno_ringbuffer_issueibcmds,
.ioctl = adreno_ioctl,
.compat_ioctl = adreno_compat_ioctl,
.power_stats = adreno_power_stats,
.gpuid = adreno_gpuid,
.snapshot = adreno_snapshot,
.irq_handler = adreno_irq_handler,
.drain = adreno_drain,
/* Optional functions */
.drawctxt_create = adreno_drawctxt_create,
.drawctxt_detach = adreno_drawctxt_detach,
.drawctxt_destroy = adreno_drawctxt_destroy,
.setproperty = adreno_setproperty,
.setproperty_compat = adreno_setproperty_compat,
.drawctxt_sched = adreno_drawctxt_sched,
.resume = adreno_dispatcher_start,
.regulator_enable = adreno_regulator_enable,
.is_hw_collapsible = adreno_is_hw_collapsible,
.regulator_disable = adreno_regulator_disable,
};
static struct platform_driver adreno_platform_driver = {
.probe = adreno_probe,
.remove = adreno_remove,
.suspend = kgsl_suspend_driver,
.resume = kgsl_resume_driver,
.id_table = adreno_id_table,
.driver = {
.owner = THIS_MODULE,
.name = DEVICE_3D_NAME,
.pm = &kgsl_pm_ops,
.of_match_table = adreno_match_table,
}
};
static int __init kgsl_3d_init(void)
{
return platform_driver_register(&adreno_platform_driver);
}
static void __exit kgsl_3d_exit(void)
{
platform_driver_unregister(&adreno_platform_driver);
}
module_init(kgsl_3d_init);
module_exit(kgsl_3d_exit);
static struct of_device_id busmon_match_table[] = {
{ .compatible = "qcom,kgsl-busmon", .data = &device_3d0 },
{}
};
static int kgsl_busmon_probe(struct platform_device *pdev)
{
struct kgsl_device *device;
const struct of_device_id *pdid =
of_match_device(busmon_match_table, &pdev->dev);
device = (struct kgsl_device *)pdid->data;
device->busmondev = &pdev->dev;
dev_set_drvdata(device->busmondev, device);
return 0;
}
static struct platform_driver kgsl_bus_platform_driver = {
.probe = kgsl_busmon_probe,
.driver = {
.owner = THIS_MODULE,
.name = "kgsl-busmon",
.of_match_table = busmon_match_table,
}
};
static int __init kgsl_busmon_init(void)
{
return platform_driver_register(&kgsl_bus_platform_driver);
}
static void __exit kgsl_busmon_exit(void)
{
platform_driver_unregister(&kgsl_bus_platform_driver);
}
module_init(kgsl_busmon_init);
module_exit(kgsl_busmon_exit);
MODULE_DESCRIPTION("3D Graphics driver");
MODULE_VERSION("1.2");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:kgsl_3d");