blob: 6e0c5a8b70f8148e8aefb321179bc0ff01a1aba6 [file] [log] [blame]
/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/spmi.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/hwmon-sysfs.h>
#include <linux/qpnp/qpnp-adc.h>
#include <linux/platform_device.h>
/* QPNP VADC register definition */
#define QPNP_VADC_REVISION1 0x0
#define QPNP_VADC_REVISION2 0x1
#define QPNP_VADC_REVISION3 0x2
#define QPNP_VADC_REVISION4 0x3
#define QPNP_VADC_PERPH_TYPE 0x4
#define QPNP_VADC_PERH_SUBTYPE 0x5
#define QPNP_VADC_SUPPORTED_REVISION2 1
#define QPNP_VADC_STATUS1 0x8
#define QPNP_VADC_STATUS1_OP_MODE 4
#define QPNP_VADC_STATUS1_MEAS_INTERVAL_EN_STS BIT(2)
#define QPNP_VADC_STATUS1_REQ_STS BIT(1)
#define QPNP_VADC_STATUS1_EOC BIT(0)
#define QPNP_VADC_STATUS1_REQ_STS_EOC_MASK 0x3
#define QPNP_VADC_STATUS2 0x9
#define QPNP_VADC_STATUS2_CONV_SEQ_STATE 6
#define QPNP_VADC_STATUS2_FIFO_NOT_EMPTY_FLAG BIT(1)
#define QPNP_VADC_STATUS2_CONV_SEQ_TIMEOUT_STS BIT(0)
#define QPNP_VADC_STATUS2_CONV_SEQ_STATE_SHIFT 4
#define QPNP_VADC_CONV_TIMEOUT_ERR 2
#define QPNP_VADC_MODE_CTL 0x40
#define QPNP_VADC_OP_MODE_SHIFT 4
#define QPNP_VADC_VREF_XO_THM_FORCE BIT(2)
#define QPNP_VADC_AMUX_TRIM_EN BIT(1)
#define QPNP_VADC_ADC_TRIM_EN BIT(0)
#define QPNP_VADC_EN_CTL1 0x46
#define QPNP_VADC_ADC_EN BIT(7)
#define QPNP_VADC_ADC_CH_SEL_CTL 0x48
#define QPNP_VADC_ADC_DIG_PARAM 0x50
#define QPNP_VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT 3
#define QPNP_VADC_HW_SETTLE_DELAY 0x51
#define QPNP_VADC_CONV_REQ 0x52
#define QPNP_VADC_CONV_REQ_SET BIT(7)
#define QPNP_VADC_CONV_SEQ_CTL 0x54
#define QPNP_VADC_CONV_SEQ_HOLDOFF_SHIFT 4
#define QPNP_VADC_CONV_SEQ_TRIG_CTL 0x55
#define QPNP_VADC_CONV_SEQ_FALLING_EDGE 0x0
#define QPNP_VADC_CONV_SEQ_RISING_EDGE 0x1
#define QPNP_VADC_CONV_SEQ_EDGE_SHIFT 7
#define QPNP_VADC_FAST_AVG_CTL 0x5a
#define QPNP_VADC_M0_LOW_THR_LSB 0x5c
#define QPNP_VADC_M0_LOW_THR_MSB 0x5d
#define QPNP_VADC_M0_HIGH_THR_LSB 0x5e
#define QPNP_VADC_M0_HIGH_THR_MSB 0x5f
#define QPNP_VADC_M1_LOW_THR_LSB 0x69
#define QPNP_VADC_M1_LOW_THR_MSB 0x6a
#define QPNP_VADC_M1_HIGH_THR_LSB 0x6b
#define QPNP_VADC_M1_HIGH_THR_MSB 0x6c
#define QPNP_VADC_ACCESS 0xd0
#define QPNP_VADC_ACCESS_DATA 0xa5
#define QPNP_VADC_PERH_RESET_CTL3 0xda
#define QPNP_FOLLOW_OTST2_RB BIT(3)
#define QPNP_FOLLOW_WARM_RB BIT(2)
#define QPNP_FOLLOW_SHUTDOWN1_RB BIT(1)
#define QPNP_FOLLOW_SHUTDOWN2_RB BIT(0)
#define QPNP_INT_TEST_VAL 0xE1
#define QPNP_VADC_DATA0 0x60
#define QPNP_VADC_DATA1 0x61
#define QPNP_VADC_CONV_TIMEOUT_ERR 2
#define QPNP_VADC_CONV_TIME_MIN 2000
#define QPNP_VADC_CONV_TIME_MAX 2100
#define QPNP_ADC_COMPLETION_TIMEOUT HZ
#define QPNP_VADC_ERR_COUNT 20
struct qpnp_vadc_chip {
struct device *dev;
struct qpnp_adc_drv *adc;
struct list_head list;
struct dentry *dent;
struct device *vadc_hwmon;
bool vadc_init_calib;
int max_channels_available;
bool vadc_iadc_sync_lock;
u8 id;
struct work_struct trigger_completion_work;
bool vadc_poll_eoc;
u8 revision_ana_minor;
u8 revision_dig_major;
struct sensor_device_attribute sens_attr[0];
};
LIST_HEAD(qpnp_vadc_device_list);
static struct qpnp_vadc_scale_fn vadc_scale_fn[] = {
[SCALE_DEFAULT] = {qpnp_adc_scale_default},
[SCALE_BATT_THERM] = {qpnp_adc_scale_batt_therm},
[SCALE_PMIC_THERM] = {qpnp_adc_scale_pmic_therm},
[SCALE_XOTHERM] = {qpnp_adc_tdkntcg_therm},
[SCALE_THERM_100K_PULLUP] = {qpnp_adc_scale_therm_pu2},
[SCALE_THERM_150K_PULLUP] = {qpnp_adc_scale_therm_pu1},
[SCALE_QRD_BATT_THERM] = {qpnp_adc_scale_qrd_batt_therm},
[SCALE_QRD_SKUAA_BATT_THERM] = {qpnp_adc_scale_qrd_skuaa_batt_therm},
[SCALE_SMB_BATT_THERM] = {qpnp_adc_scale_smb_batt_therm},
[SCALE_QRD_SKUG_BATT_THERM] = {qpnp_adc_scale_qrd_skug_batt_therm},
};
static int32_t qpnp_vadc_read_reg(struct qpnp_vadc_chip *vadc, int16_t reg,
u8 *data)
{
int rc;
rc = spmi_ext_register_readl(vadc->adc->spmi->ctrl, vadc->adc->slave,
(vadc->adc->offset + reg), data, 1);
if (rc < 0) {
pr_err("qpnp adc read reg %d failed with %d\n", reg, rc);
return rc;
}
return 0;
}
static int32_t qpnp_vadc_write_reg(struct qpnp_vadc_chip *vadc, int16_t reg,
u8 data)
{
int rc;
u8 *buf;
buf = &data;
rc = spmi_ext_register_writel(vadc->adc->spmi->ctrl, vadc->adc->slave,
(vadc->adc->offset + reg), buf, 1);
if (rc < 0) {
pr_err("qpnp adc write reg %d failed with %d\n", reg, rc);
return rc;
}
return 0;
}
static int32_t qpnp_vadc_warm_rst_configure(struct qpnp_vadc_chip *vadc)
{
int rc = 0;
u8 data = 0;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_ACCESS, QPNP_VADC_ACCESS_DATA);
if (rc < 0) {
pr_err("VADC write access failed\n");
return rc;
}
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_PERH_RESET_CTL3, &data);
if (rc < 0) {
pr_err("VADC perh reset ctl3 read failed\n");
return rc;
}
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_ACCESS, QPNP_VADC_ACCESS_DATA);
if (rc < 0) {
pr_err("VADC write access failed\n");
return rc;
}
data |= QPNP_FOLLOW_WARM_RB;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_PERH_RESET_CTL3, data);
if (rc < 0) {
pr_err("VADC perh reset ctl3 write failed\n");
return rc;
}
return 0;
}
static int32_t qpnp_vadc_enable(struct qpnp_vadc_chip *vadc, bool state)
{
int rc = 0;
u8 data = 0;
data = QPNP_VADC_ADC_EN;
if (state) {
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_EN_CTL1,
data);
if (rc < 0) {
pr_err("VADC enable failed\n");
return rc;
}
} else {
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_EN_CTL1,
(~data & QPNP_VADC_ADC_EN));
if (rc < 0) {
pr_err("VADC disable failed\n");
return rc;
}
}
return 0;
}
static int32_t qpnp_vadc_status_debug(struct qpnp_vadc_chip *vadc)
{
int rc = 0;
u8 mode = 0, status1 = 0, chan = 0, dig = 0, en = 0, status2 = 0;
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_MODE_CTL, &mode);
if (rc < 0) {
pr_err("mode ctl register read failed with %d\n", rc);
return rc;
}
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_ADC_DIG_PARAM, &dig);
if (rc < 0) {
pr_err("digital param read failed with %d\n", rc);
return rc;
}
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_ADC_CH_SEL_CTL, &chan);
if (rc < 0) {
pr_err("channel read failed with %d\n", rc);
return rc;
}
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1);
if (rc < 0) {
pr_err("status1 read failed with %d\n", rc);
return rc;
}
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS2, &status2);
if (rc < 0) {
pr_err("status2 read failed with %d\n", rc);
return rc;
}
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_EN_CTL1, &en);
if (rc < 0) {
pr_err("en read failed with %d\n", rc);
return rc;
}
pr_err("EOC not set - status1/2:%x/%x, dig:%x, ch:%x, mode:%x, en:%x\n",
status1, status2, dig, chan, mode, en);
rc = qpnp_vadc_enable(vadc, false);
if (rc < 0) {
pr_err("VADC disable failed with %d\n", rc);
return rc;
}
return 0;
}
static int32_t qpnp_vadc_configure(struct qpnp_vadc_chip *vadc,
struct qpnp_adc_amux_properties *chan_prop)
{
u8 decimation = 0, conv_sequence = 0, conv_sequence_trig = 0;
u8 mode_ctrl = 0;
int rc = 0;
/* Mode selection */
mode_ctrl |= ((chan_prop->mode_sel << QPNP_VADC_OP_MODE_SHIFT) |
(QPNP_VADC_ADC_TRIM_EN | QPNP_VADC_AMUX_TRIM_EN));
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_MODE_CTL, mode_ctrl);
if (rc < 0) {
pr_err("Mode configure write error\n");
return rc;
}
/* Channel selection */
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_ADC_CH_SEL_CTL,
chan_prop->amux_channel);
if (rc < 0) {
pr_err("Channel configure error\n");
return rc;
}
/* Digital parameter setup */
decimation = chan_prop->decimation <<
QPNP_VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT;
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_ADC_DIG_PARAM, decimation);
if (rc < 0) {
pr_err("Digital parameter configure write error\n");
return rc;
}
/* HW settling time delay */
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_HW_SETTLE_DELAY,
chan_prop->hw_settle_time);
if (rc < 0) {
pr_err("HW settling time setup error\n");
return rc;
}
if (chan_prop->mode_sel == (ADC_OP_NORMAL_MODE <<
QPNP_VADC_OP_MODE_SHIFT)) {
/* Normal measurement mode */
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_FAST_AVG_CTL,
chan_prop->fast_avg_setup);
if (rc < 0) {
pr_err("Fast averaging configure error\n");
return rc;
}
} else if (chan_prop->mode_sel == (ADC_OP_CONVERSION_SEQUENCER <<
QPNP_VADC_OP_MODE_SHIFT)) {
/* Conversion sequence mode */
conv_sequence = ((ADC_SEQ_HOLD_100US <<
QPNP_VADC_CONV_SEQ_HOLDOFF_SHIFT) |
ADC_CONV_SEQ_TIMEOUT_5MS);
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_CONV_SEQ_CTL,
conv_sequence);
if (rc < 0) {
pr_err("Conversion sequence error\n");
return rc;
}
conv_sequence_trig = ((QPNP_VADC_CONV_SEQ_RISING_EDGE <<
QPNP_VADC_CONV_SEQ_EDGE_SHIFT) |
chan_prop->trigger_channel);
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_CONV_SEQ_TRIG_CTL,
conv_sequence_trig);
if (rc < 0) {
pr_err("Conversion trigger error\n");
return rc;
}
}
if (!vadc->vadc_poll_eoc)
INIT_COMPLETION(vadc->adc->adc_rslt_completion);
rc = qpnp_vadc_enable(vadc, true);
if (rc)
return rc;
if (!vadc->vadc_iadc_sync_lock) {
/* Request conversion */
rc = qpnp_vadc_write_reg(vadc, QPNP_VADC_CONV_REQ,
QPNP_VADC_CONV_REQ_SET);
if (rc < 0) {
pr_err("Request conversion failed\n");
return rc;
}
}
return 0;
}
static int32_t qpnp_vadc_read_conversion_result(struct qpnp_vadc_chip *vadc,
int32_t *data)
{
uint8_t rslt_lsb, rslt_msb;
int rc = 0, status = 0;
status = qpnp_vadc_read_reg(vadc, QPNP_VADC_DATA0, &rslt_lsb);
if (status < 0) {
pr_err("qpnp adc result read failed for data0\n");
goto fail;
}
status = qpnp_vadc_read_reg(vadc, QPNP_VADC_DATA1, &rslt_msb);
if (status < 0) {
pr_err("qpnp adc result read failed for data1\n");
goto fail;
}
*data = (rslt_msb << 8) | rslt_lsb;
status = qpnp_vadc_check_result(data);
if (status < 0) {
pr_err("VADC data check failed\n");
goto fail;
}
fail:
rc = qpnp_vadc_enable(vadc, false);
if (rc)
return rc;
return status;
}
static int32_t qpnp_vadc_read_status(struct qpnp_vadc_chip *vadc, int mode_sel)
{
u8 status1, status2, status2_conv_seq_state;
u8 status_err = QPNP_VADC_CONV_TIMEOUT_ERR;
int rc;
switch (mode_sel) {
case (ADC_OP_CONVERSION_SEQUENCER << QPNP_VADC_OP_MODE_SHIFT):
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1);
if (rc) {
pr_err("qpnp_vadc read mask interrupt failed\n");
return rc;
}
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS2, &status2);
if (rc) {
pr_err("qpnp_vadc read mask interrupt failed\n");
return rc;
}
if (!(status2 & ~QPNP_VADC_STATUS2_CONV_SEQ_TIMEOUT_STS) &&
(status1 & (~QPNP_VADC_STATUS1_REQ_STS |
QPNP_VADC_STATUS1_EOC))) {
rc = status_err;
return rc;
}
status2_conv_seq_state = status2 >>
QPNP_VADC_STATUS2_CONV_SEQ_STATE_SHIFT;
if (status2_conv_seq_state != ADC_CONV_SEQ_IDLE) {
pr_err("qpnp vadc seq error with status %d\n",
status2);
rc = -EINVAL;
return rc;
}
}
return 0;
}
static int qpnp_vadc_is_valid(struct qpnp_vadc_chip *vadc)
{
struct qpnp_vadc_chip *vadc_chip = NULL;
list_for_each_entry(vadc_chip, &qpnp_vadc_device_list, list)
if (vadc == vadc_chip)
return 0;
return -EINVAL;
}
static void qpnp_vadc_work(struct work_struct *work)
{
struct qpnp_vadc_chip *vadc = container_of(work,
struct qpnp_vadc_chip, trigger_completion_work);
if (qpnp_vadc_is_valid(vadc) < 0)
return;
complete(&vadc->adc->adc_rslt_completion);
return;
}
static irqreturn_t qpnp_vadc_isr(int irq, void *dev_id)
{
struct qpnp_vadc_chip *vadc = dev_id;
schedule_work(&vadc->trigger_completion_work);
return IRQ_HANDLED;
}
static int32_t qpnp_vadc_version_check(struct qpnp_vadc_chip *dev)
{
uint8_t revision;
int rc;
rc = qpnp_vadc_read_reg(dev, QPNP_VADC_REVISION2, &revision);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
return rc;
}
if (revision < QPNP_VADC_SUPPORTED_REVISION2) {
pr_err("VADC Version not supported\n");
return -EINVAL;
}
return 0;
}
#define QPNP_VBAT_COEFF_1 3000
#define QPNP_VBAT_COEFF_2 45810000
#define QPNP_VBAT_COEFF_3 100000
#define QPNP_VBAT_COEFF_4 3500
#define QPNP_VBAT_COEFF_5 80000000
#define QPNP_VBAT_COEFF_6 4400
#define QPNP_VBAT_COEFF_7 32200000
#define QPNP_VBAT_COEFF_8 3880
#define QPNP_VBAT_COEFF_9 5770
#define QPNP_VBAT_COEFF_10 3660
#define QPNP_VBAT_COEFF_11 5320
#define QPNP_VBAT_COEFF_12 8060000
#define QPNP_VBAT_COEFF_13 102640000
#define QPNP_VBAT_COEFF_14 22220000
#define QPNP_VBAT_COEFF_15 83060000
#define QPNP_VBAT_COEFF_16 2810
#define QPNP_VBAT_COEFF_17 5260
#define QPNP_VBAT_COEFF_18 8027
#define QPNP_VBAT_COEFF_19 2347
#define QPNP_VBAT_COEFF_20 6043
#define QPNP_VBAT_COEFF_21 1914
#define QPNP_VBAT_OFFSET_SMIC 9446
#define QPNP_VBAT_OFFSET_GF 9441
#define QPNP_OCV_OFFSET_SMIC 4596
#define QPNP_OCV_OFFSET_GF 5896
static int32_t qpnp_ocv_comp(int64_t *result,
struct qpnp_vadc_chip *vadc, int64_t die_temp)
{
int64_t temp_var = 0;
int64_t old = *result;
int version;
version = qpnp_adc_get_revid_version(vadc->dev);
if (version == -EINVAL)
return 0;
if (version == QPNP_REV_ID_8110_2_0) {
if (die_temp < -20000)
die_temp = -20000;
} else {
if (die_temp < 25000)
return 0;
if (die_temp > 60000)
die_temp = 60000;
}
switch (version) {
case QPNP_REV_ID_8941_3_1:
switch (vadc->id) {
case COMP_ID_TSMC:
temp_var = (((die_temp *
(-QPNP_VBAT_COEFF_4))
+ QPNP_VBAT_COEFF_5));
break;
default:
case COMP_ID_GF:
temp_var = (((die_temp *
(-QPNP_VBAT_COEFF_1))
+ QPNP_VBAT_COEFF_2));
break;
}
break;
case QPNP_REV_ID_8026_1_0:
switch (vadc->id) {
case COMP_ID_TSMC:
temp_var = (((die_temp *
(-QPNP_VBAT_COEFF_10))
- QPNP_VBAT_COEFF_14));
break;
default:
case COMP_ID_GF:
temp_var = (((die_temp *
(-QPNP_VBAT_COEFF_8))
+ QPNP_VBAT_COEFF_12));
break;
}
break;
case QPNP_REV_ID_8026_2_0:
case QPNP_REV_ID_8026_2_1:
switch (vadc->id) {
case COMP_ID_TSMC:
temp_var = ((die_temp - 25000) *
(-QPNP_VBAT_COEFF_10));
break;
default:
case COMP_ID_GF:
temp_var = ((die_temp - 25000) *
(-QPNP_VBAT_COEFF_8));
break;
}
break;
case QPNP_REV_ID_8110_2_0:
switch (vadc->id) {
case COMP_ID_SMIC:
*result -= QPNP_OCV_OFFSET_SMIC;
if (die_temp < 25000)
temp_var = QPNP_VBAT_COEFF_18;
else
temp_var = QPNP_VBAT_COEFF_19;
temp_var = (die_temp - 25000) * temp_var;
break;
case COMP_ID_TSMC:
pr_debug("No TSMC Comp Info, exiting\n");
return 0;
default:
case COMP_ID_GF:
*result -= QPNP_OCV_OFFSET_GF;
if (die_temp < 25000)
temp_var = QPNP_VBAT_COEFF_20;
else
temp_var = QPNP_VBAT_COEFF_21;
temp_var = (die_temp - 25000) * temp_var;
break;
}
break;
default:
temp_var = 0;
break;
}
temp_var = div64_s64(temp_var, QPNP_VBAT_COEFF_3);
temp_var = 1000000 + temp_var;
*result = *result * temp_var;
*result = div64_s64(*result, 1000000);
pr_debug("%lld compensated into %lld\n", old, *result);
return 0;
}
static int32_t qpnp_vbat_sns_comp(int64_t *result,
struct qpnp_vadc_chip *vadc, int64_t die_temp)
{
int64_t temp_var = 0;
int64_t old = *result;
int version;
version = qpnp_adc_get_revid_version(vadc->dev);
if (version == -EINVAL)
return 0;
if (version == QPNP_REV_ID_8110_2_0) {
if (die_temp < -20000)
die_temp = -20000;
} else {
if (die_temp < 25000)
return 0;
/* min(die_temp_c, 60_degC) */
if (die_temp > 60000)
die_temp = 60000;
}
switch (version) {
case QPNP_REV_ID_8941_3_1:
switch (vadc->id) {
case COMP_ID_TSMC:
temp_var = (die_temp *
(-QPNP_VBAT_COEFF_1));
break;
default:
case COMP_ID_GF:
temp_var = (((die_temp *
(-QPNP_VBAT_COEFF_6))
+ QPNP_VBAT_COEFF_7));
break;
}
break;
case QPNP_REV_ID_8026_1_0:
switch (vadc->id) {
case COMP_ID_TSMC:
temp_var = (((die_temp *
(-QPNP_VBAT_COEFF_11))
+ QPNP_VBAT_COEFF_15));
break;
default:
case COMP_ID_GF:
temp_var = (((die_temp *
(-QPNP_VBAT_COEFF_9))
+ QPNP_VBAT_COEFF_13));
break;
}
break;
case QPNP_REV_ID_8026_2_0:
case QPNP_REV_ID_8026_2_1:
switch (vadc->id) {
case COMP_ID_TSMC:
temp_var = ((die_temp - 25000) *
(-QPNP_VBAT_COEFF_11));
break;
default:
case COMP_ID_GF:
temp_var = ((die_temp - 25000) *
(-QPNP_VBAT_COEFF_9));
break;
}
break;
case QPNP_REV_ID_8110_2_0:
switch (vadc->id) {
case COMP_ID_SMIC:
*result -= QPNP_VBAT_OFFSET_SMIC;
temp_var = ((die_temp - 25000) *
(QPNP_VBAT_COEFF_17));
break;
case COMP_ID_TSMC:
pr_debug("No TSMC Comp Info, exiting\n");
return 0;
default:
case COMP_ID_GF:
*result -= QPNP_VBAT_OFFSET_GF;
temp_var = ((die_temp - 25000) *
(QPNP_VBAT_COEFF_16));
break;
}
break;
default:
temp_var = 0;
break;
}
temp_var = div64_s64(temp_var, QPNP_VBAT_COEFF_3);
temp_var = 1000000 + temp_var;
*result = *result * temp_var;
*result = div64_s64(*result, 1000000);
pr_debug("%lld compensated into %lld\n", old, *result);
return 0;
}
int32_t qpnp_vbat_sns_comp_result(struct qpnp_vadc_chip *vadc,
int64_t *result, bool is_pon_ocv)
{
struct qpnp_vadc_result die_temp_result;
int rc = 0;
rc = qpnp_vadc_is_valid(vadc);
if (rc < 0)
return rc;
rc = qpnp_vadc_conv_seq_request(vadc, ADC_SEQ_NONE,
DIE_TEMP, &die_temp_result);
if (rc < 0) {
pr_err("Error reading die_temp\n");
return rc;
}
if (is_pon_ocv)
rc = qpnp_ocv_comp(result, vadc, die_temp_result.physical);
else
rc = qpnp_vbat_sns_comp(result, vadc,
die_temp_result.physical);
if (rc < 0)
pr_err("Error with vbat compensation\n");
return rc;
}
EXPORT_SYMBOL(qpnp_vbat_sns_comp_result);
static void qpnp_vadc_625mv_channel_sel(struct qpnp_vadc_chip *vadc,
uint32_t *ref_channel_sel)
{
uint32_t dt_index = 0;
/* Check if the buffered 625mV channel exists */
while ((vadc->adc->adc_channels[dt_index].channel_num
!= SPARE1) && (dt_index < vadc->max_channels_available))
dt_index++;
if (dt_index >= vadc->max_channels_available) {
pr_debug("Use default 625mV ref channel\n");
*ref_channel_sel = REF_625MV;
} else {
pr_debug("Use buffered 625mV ref channel\n");
*ref_channel_sel = SPARE1;
}
}
static int32_t qpnp_vadc_calib_device(struct qpnp_vadc_chip *vadc)
{
struct qpnp_adc_amux_properties conv;
int rc, calib_read_1, calib_read_2, count = 0;
u8 status1 = 0;
uint32_t ref_channel_sel = 0;
conv.amux_channel = REF_125V;
conv.decimation = DECIMATION_TYPE2;
conv.mode_sel = ADC_OP_NORMAL_MODE << QPNP_VADC_OP_MODE_SHIFT;
conv.hw_settle_time = ADC_CHANNEL_HW_SETTLE_DELAY_0US;
conv.fast_avg_setup = ADC_FAST_AVG_SAMPLE_1;
rc = qpnp_vadc_configure(vadc, &conv);
if (rc) {
pr_err("qpnp_vadc configure failed with %d\n", rc);
goto calib_fail;
}
while (status1 != QPNP_VADC_STATUS1_EOC) {
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1);
if (rc < 0)
return rc;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
usleep_range(QPNP_VADC_CONV_TIME_MIN,
QPNP_VADC_CONV_TIME_MAX);
count++;
if (count > QPNP_VADC_ERR_COUNT) {
rc = -ENODEV;
goto calib_fail;
}
}
rc = qpnp_vadc_read_conversion_result(vadc, &calib_read_1);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
goto calib_fail;
}
qpnp_vadc_625mv_channel_sel(vadc, &ref_channel_sel);
conv.amux_channel = ref_channel_sel;
conv.decimation = DECIMATION_TYPE2;
conv.mode_sel = ADC_OP_NORMAL_MODE << QPNP_VADC_OP_MODE_SHIFT;
conv.hw_settle_time = ADC_CHANNEL_HW_SETTLE_DELAY_0US;
conv.fast_avg_setup = ADC_FAST_AVG_SAMPLE_1;
rc = qpnp_vadc_configure(vadc, &conv);
if (rc) {
pr_err("qpnp adc configure failed with %d\n", rc);
goto calib_fail;
}
status1 = 0;
count = 0;
while (status1 != QPNP_VADC_STATUS1_EOC) {
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1);
if (rc < 0)
return rc;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
usleep_range(QPNP_VADC_CONV_TIME_MIN,
QPNP_VADC_CONV_TIME_MAX);
count++;
if (count > QPNP_VADC_ERR_COUNT) {
rc = -ENODEV;
goto calib_fail;
}
}
rc = qpnp_vadc_read_conversion_result(vadc, &calib_read_2);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
goto calib_fail;
}
pr_debug("absolute reference raw: 625mV:0x%x 1.25V:0x%x\n",
calib_read_2, calib_read_1);
if (calib_read_1 == calib_read_2) {
pr_err("absolute reference raw: 625mV:0x%x 1.25V:0x%x\n",
calib_read_2, calib_read_1);
rc = -EINVAL;
goto calib_fail;
}
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].dy =
(calib_read_1 - calib_read_2);
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].dx
= QPNP_ADC_625_UV;
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].adc_vref =
calib_read_1;
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].adc_gnd =
calib_read_2;
/* Ratiometric Calibration */
conv.amux_channel = VDD_VADC;
conv.decimation = DECIMATION_TYPE2;
conv.mode_sel = ADC_OP_NORMAL_MODE << QPNP_VADC_OP_MODE_SHIFT;
conv.hw_settle_time = ADC_CHANNEL_HW_SETTLE_DELAY_0US;
conv.fast_avg_setup = ADC_FAST_AVG_SAMPLE_1;
rc = qpnp_vadc_configure(vadc, &conv);
if (rc) {
pr_err("qpnp adc configure failed with %d\n", rc);
goto calib_fail;
}
status1 = 0;
count = 0;
while (status1 != QPNP_VADC_STATUS1_EOC) {
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1);
if (rc < 0)
return rc;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
usleep_range(QPNP_VADC_CONV_TIME_MIN,
QPNP_VADC_CONV_TIME_MAX);
count++;
if (count > QPNP_VADC_ERR_COUNT) {
rc = -ENODEV;
goto calib_fail;
}
}
rc = qpnp_vadc_read_conversion_result(vadc, &calib_read_1);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
goto calib_fail;
}
conv.amux_channel = GND_REF;
conv.decimation = DECIMATION_TYPE2;
conv.mode_sel = ADC_OP_NORMAL_MODE << QPNP_VADC_OP_MODE_SHIFT;
conv.hw_settle_time = ADC_CHANNEL_HW_SETTLE_DELAY_0US;
conv.fast_avg_setup = ADC_FAST_AVG_SAMPLE_1;
rc = qpnp_vadc_configure(vadc, &conv);
if (rc) {
pr_err("qpnp adc configure failed with %d\n", rc);
goto calib_fail;
}
status1 = 0;
count = 0;
while (status1 != QPNP_VADC_STATUS1_EOC) {
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1, &status1);
if (rc < 0)
return rc;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
usleep_range(QPNP_VADC_CONV_TIME_MIN,
QPNP_VADC_CONV_TIME_MAX);
count++;
if (count > QPNP_VADC_ERR_COUNT) {
rc = -ENODEV;
goto calib_fail;
}
}
rc = qpnp_vadc_read_conversion_result(vadc, &calib_read_2);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
goto calib_fail;
}
pr_debug("ratiometric reference raw: VDD:0x%x GND:0x%x\n",
calib_read_1, calib_read_2);
if (calib_read_1 == calib_read_2) {
pr_err("ratiometric reference raw: VDD:0x%x GND:0x%x\n",
calib_read_1, calib_read_2);
rc = -EINVAL;
goto calib_fail;
}
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].dy =
(calib_read_1 - calib_read_2);
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].dx =
vadc->adc->adc_prop->adc_vdd_reference;
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].adc_vref =
calib_read_1;
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].adc_gnd =
calib_read_2;
calib_fail:
return rc;
}
int32_t qpnp_get_vadc_gain_and_offset(struct qpnp_vadc_chip *vadc,
struct qpnp_vadc_linear_graph *param,
enum qpnp_adc_calib_type calib_type)
{
int rc = 0;
rc = qpnp_vadc_is_valid(vadc);
if (rc < 0)
return rc;
switch (calib_type) {
case CALIB_RATIOMETRIC:
param->dy =
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].dy;
param->dx =
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].dx;
param->adc_vref = vadc->adc->adc_prop->adc_vdd_reference;
param->adc_gnd =
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_RATIOMETRIC].adc_gnd;
break;
case CALIB_ABSOLUTE:
param->dy =
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].dy;
param->dx =
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].dx;
param->adc_vref = vadc->adc->adc_prop->adc_vdd_reference;
param->adc_gnd =
vadc->adc->amux_prop->chan_prop->adc_graph[CALIB_ABSOLUTE].adc_gnd;
break;
default:
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(qpnp_get_vadc_gain_and_offset);
struct qpnp_vadc_chip *qpnp_get_vadc(struct device *dev, const char *name)
{
struct qpnp_vadc_chip *vadc;
struct device_node *node = NULL;
char prop_name[QPNP_MAX_PROP_NAME_LEN];
snprintf(prop_name, QPNP_MAX_PROP_NAME_LEN, "qcom,%s-vadc", name);
node = of_parse_phandle(dev->of_node, prop_name, 0);
if (node == NULL)
return ERR_PTR(-ENODEV);
list_for_each_entry(vadc, &qpnp_vadc_device_list, list)
if (vadc->adc->spmi->dev.of_node == node)
return vadc;
return ERR_PTR(-EPROBE_DEFER);
}
EXPORT_SYMBOL(qpnp_get_vadc);
int32_t qpnp_vadc_conv_seq_request(struct qpnp_vadc_chip *vadc,
enum qpnp_vadc_trigger trigger_channel,
enum qpnp_vadc_channels channel,
struct qpnp_vadc_result *result)
{
int rc = 0, scale_type, amux_prescaling, dt_index = 0;
uint32_t ref_channel, count = 0;
u8 status1 = 0;
if (qpnp_vadc_is_valid(vadc))
return -EPROBE_DEFER;
mutex_lock(&vadc->adc->adc_lock);
if (vadc->vadc_poll_eoc) {
pr_debug("requesting vadc eoc stay awake\n");
pm_stay_awake(vadc->dev);
}
if (!vadc->vadc_init_calib) {
rc = qpnp_vadc_version_check(vadc);
if (rc)
goto fail_unlock;
rc = qpnp_vadc_calib_device(vadc);
if (rc) {
pr_err("Calibration failed\n");
goto fail_unlock;
} else
vadc->vadc_init_calib = true;
}
if (channel == REF_625MV) {
qpnp_vadc_625mv_channel_sel(vadc, &ref_channel);
channel = ref_channel;
}
vadc->adc->amux_prop->amux_channel = channel;
while ((vadc->adc->adc_channels[dt_index].channel_num
!= channel) && (dt_index < vadc->max_channels_available))
dt_index++;
if (dt_index >= vadc->max_channels_available) {
pr_err("not a valid VADC channel\n");
rc = -EINVAL;
goto fail_unlock;
}
vadc->adc->amux_prop->decimation =
vadc->adc->adc_channels[dt_index].adc_decimation;
vadc->adc->amux_prop->hw_settle_time =
vadc->adc->adc_channels[dt_index].hw_settle_time;
vadc->adc->amux_prop->fast_avg_setup =
vadc->adc->adc_channels[dt_index].fast_avg_setup;
if (trigger_channel < ADC_SEQ_NONE)
vadc->adc->amux_prop->mode_sel = (ADC_OP_CONVERSION_SEQUENCER
<< QPNP_VADC_OP_MODE_SHIFT);
else if (trigger_channel == ADC_SEQ_NONE)
vadc->adc->amux_prop->mode_sel = (ADC_OP_NORMAL_MODE
<< QPNP_VADC_OP_MODE_SHIFT);
else {
pr_err("Invalid trigger channel:%d\n", trigger_channel);
goto fail_unlock;
}
vadc->adc->amux_prop->trigger_channel = trigger_channel;
rc = qpnp_vadc_configure(vadc, vadc->adc->amux_prop);
if (rc) {
pr_err("qpnp vadc configure failed with %d\n", rc);
goto fail_unlock;
}
if (vadc->vadc_poll_eoc) {
while (status1 != QPNP_VADC_STATUS1_EOC) {
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1,
&status1);
if (rc < 0)
goto fail_unlock;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
usleep_range(QPNP_VADC_CONV_TIME_MIN,
QPNP_VADC_CONV_TIME_MAX);
count++;
if (count > QPNP_VADC_ERR_COUNT) {
pr_err("retry error exceeded\n");
rc = qpnp_vadc_status_debug(vadc);
if (rc < 0)
pr_err("VADC disable failed\n");
rc = -EINVAL;
goto fail_unlock;
}
}
} else {
rc = wait_for_completion_timeout(
&vadc->adc->adc_rslt_completion,
QPNP_ADC_COMPLETION_TIMEOUT);
if (!rc) {
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_STATUS1,
&status1);
if (rc < 0)
goto fail_unlock;
status1 &= QPNP_VADC_STATUS1_REQ_STS_EOC_MASK;
if (status1 == QPNP_VADC_STATUS1_EOC)
pr_debug("End of conversion status set\n");
else {
rc = qpnp_vadc_status_debug(vadc);
if (rc < 0)
pr_err("VADC disable failed\n");
rc = -EINVAL;
goto fail_unlock;
}
}
}
if (trigger_channel < ADC_SEQ_NONE) {
rc = qpnp_vadc_read_status(vadc,
vadc->adc->amux_prop->mode_sel);
if (rc)
pr_debug("Conversion sequence timed out - %d\n", rc);
}
rc = qpnp_vadc_read_conversion_result(vadc, &result->adc_code);
if (rc) {
pr_err("qpnp vadc read adc code failed with %d\n", rc);
goto fail_unlock;
}
amux_prescaling =
vadc->adc->adc_channels[dt_index].chan_path_prescaling;
if (amux_prescaling >= PATH_SCALING_NONE) {
rc = -EINVAL;
goto fail_unlock;
}
vadc->adc->amux_prop->chan_prop->offset_gain_numerator =
qpnp_vadc_amux_scaling_ratio[amux_prescaling].num;
vadc->adc->amux_prop->chan_prop->offset_gain_denominator =
qpnp_vadc_amux_scaling_ratio[amux_prescaling].den;
vadc->adc->amux_prop->chan_prop->calib_type =
vadc->adc->adc_channels[dt_index].calib_type;
scale_type = vadc->adc->adc_channels[dt_index].adc_scale_fn;
if (scale_type >= SCALE_NONE) {
rc = -EBADF;
goto fail_unlock;
}
vadc_scale_fn[scale_type].chan(vadc, result->adc_code,
vadc->adc->adc_prop, vadc->adc->amux_prop->chan_prop, result);
fail_unlock:
if (vadc->vadc_poll_eoc) {
pr_debug("requesting vadc eoc stay awake\n");
pm_relax(vadc->dev);
}
mutex_unlock(&vadc->adc->adc_lock);
return rc;
}
EXPORT_SYMBOL(qpnp_vadc_conv_seq_request);
int32_t qpnp_vadc_read(struct qpnp_vadc_chip *vadc,
enum qpnp_vadc_channels channel,
struct qpnp_vadc_result *result)
{
struct qpnp_vadc_result die_temp_result;
int rc = 0;
if (channel == VBAT_SNS) {
rc = qpnp_vadc_conv_seq_request(vadc, ADC_SEQ_NONE,
channel, result);
if (rc < 0) {
pr_err("Error reading vbatt\n");
return rc;
}
rc = qpnp_vadc_conv_seq_request(vadc, ADC_SEQ_NONE,
DIE_TEMP, &die_temp_result);
if (rc < 0) {
pr_err("Error reading die_temp\n");
return rc;
}
rc = qpnp_vbat_sns_comp(&result->physical, vadc,
die_temp_result.physical);
if (rc < 0)
pr_err("Error with vbat compensation\n");
return 0;
} else
return qpnp_vadc_conv_seq_request(vadc, ADC_SEQ_NONE,
channel, result);
}
EXPORT_SYMBOL(qpnp_vadc_read);
static void qpnp_vadc_lock(struct qpnp_vadc_chip *vadc)
{
mutex_lock(&vadc->adc->adc_lock);
}
static void qpnp_vadc_unlock(struct qpnp_vadc_chip *vadc)
{
mutex_unlock(&vadc->adc->adc_lock);
}
int32_t qpnp_vadc_iadc_sync_request(struct qpnp_vadc_chip *vadc,
enum qpnp_vadc_channels channel)
{
int rc = 0, dt_index = 0;
if (qpnp_vadc_is_valid(vadc))
return -EPROBE_DEFER;
qpnp_vadc_lock(vadc);
if (!vadc->vadc_init_calib) {
rc = qpnp_vadc_version_check(vadc);
if (rc)
goto fail;
rc = qpnp_vadc_calib_device(vadc);
if (rc) {
pr_err("Calibration failed\n");
goto fail;
} else
vadc->vadc_init_calib = true;
}
vadc->adc->amux_prop->amux_channel = channel;
while ((vadc->adc->adc_channels[dt_index].channel_num
!= channel) && (dt_index < vadc->max_channels_available))
dt_index++;
if (dt_index >= vadc->max_channels_available) {
pr_err("not a valid VADC channel\n");
rc = -EINVAL;
goto fail;
}
vadc->adc->amux_prop->decimation =
vadc->adc->adc_channels[dt_index].adc_decimation;
vadc->adc->amux_prop->hw_settle_time =
vadc->adc->adc_channels[dt_index].hw_settle_time;
vadc->adc->amux_prop->fast_avg_setup =
vadc->adc->adc_channels[dt_index].fast_avg_setup;
vadc->adc->amux_prop->mode_sel = (ADC_OP_NORMAL_MODE
<< QPNP_VADC_OP_MODE_SHIFT);
vadc->vadc_iadc_sync_lock = true;
rc = qpnp_vadc_configure(vadc, vadc->adc->amux_prop);
if (rc) {
pr_err("qpnp vadc configure failed with %d\n", rc);
goto fail;
}
return rc;
fail:
vadc->vadc_iadc_sync_lock = false;
qpnp_vadc_unlock(vadc);
return rc;
}
EXPORT_SYMBOL(qpnp_vadc_iadc_sync_request);
int32_t qpnp_vadc_iadc_sync_complete_request(struct qpnp_vadc_chip *vadc,
enum qpnp_vadc_channels channel,
struct qpnp_vadc_result *result)
{
int rc = 0, scale_type, amux_prescaling, dt_index = 0;
vadc->adc->amux_prop->amux_channel = channel;
while ((vadc->adc->adc_channels[dt_index].channel_num
!= channel) && (dt_index < vadc->max_channels_available))
dt_index++;
rc = qpnp_vadc_read_conversion_result(vadc, &result->adc_code);
if (rc) {
pr_err("qpnp vadc read adc code failed with %d\n", rc);
goto fail;
}
amux_prescaling =
vadc->adc->adc_channels[dt_index].chan_path_prescaling;
if (amux_prescaling >= PATH_SCALING_NONE) {
rc = -EINVAL;
goto fail;
}
vadc->adc->amux_prop->chan_prop->offset_gain_numerator =
qpnp_vadc_amux_scaling_ratio[amux_prescaling].num;
vadc->adc->amux_prop->chan_prop->offset_gain_denominator =
qpnp_vadc_amux_scaling_ratio[amux_prescaling].den;
scale_type = vadc->adc->adc_channels[dt_index].adc_scale_fn;
if (scale_type >= SCALE_NONE) {
rc = -EBADF;
goto fail;
}
vadc_scale_fn[scale_type].chan(vadc, result->adc_code,
vadc->adc->adc_prop, vadc->adc->amux_prop->chan_prop, result);
fail:
vadc->vadc_iadc_sync_lock = false;
qpnp_vadc_unlock(vadc);
return rc;
}
EXPORT_SYMBOL(qpnp_vadc_iadc_sync_complete_request);
static ssize_t qpnp_adc_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct qpnp_vadc_chip *vadc = dev_get_drvdata(dev);
struct qpnp_vadc_result result;
int rc = -1;
rc = qpnp_vadc_read(vadc, attr->index, &result);
if (rc) {
pr_err("VADC read error with %d\n", rc);
return 0;
}
return snprintf(buf, QPNP_ADC_HWMON_NAME_LENGTH,
"Result:%lld Raw:%x\n", result.physical, result.adc_code);
}
static struct sensor_device_attribute qpnp_adc_attr =
SENSOR_ATTR(NULL, S_IRUGO, qpnp_adc_show, NULL, 0);
static int32_t qpnp_vadc_init_hwmon(struct qpnp_vadc_chip *vadc,
struct spmi_device *spmi)
{
struct device_node *child;
struct device_node *node = spmi->dev.of_node;
int rc = 0, i = 0, channel;
for_each_child_of_node(node, child) {
channel = vadc->adc->adc_channels[i].channel_num;
qpnp_adc_attr.index = vadc->adc->adc_channels[i].channel_num;
qpnp_adc_attr.dev_attr.attr.name =
vadc->adc->adc_channels[i].name;
memcpy(&vadc->sens_attr[i], &qpnp_adc_attr,
sizeof(qpnp_adc_attr));
sysfs_attr_init(&vadc->sens_attr[i].dev_attr.attr);
rc = device_create_file(&spmi->dev,
&vadc->sens_attr[i].dev_attr);
if (rc) {
dev_err(&spmi->dev,
"device_create_file failed for dev %s\n",
vadc->adc->adc_channels[i].name);
goto hwmon_err_sens;
}
i++;
}
return 0;
hwmon_err_sens:
pr_err("Init HWMON failed for qpnp_adc with %d\n", rc);
return rc;
}
static int qpnp_vadc_probe(struct spmi_device *spmi)
{
struct qpnp_vadc_chip *vadc;
struct qpnp_adc_drv *adc_qpnp;
struct device_node *node = spmi->dev.of_node;
struct device_node *child;
int rc, count_adc_channel_list = 0, i = 0;
u8 fab_id = 0;
for_each_child_of_node(node, child)
count_adc_channel_list++;
if (!count_adc_channel_list) {
pr_err("No channel listing\n");
return -EINVAL;
}
vadc = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_vadc_chip) +
(sizeof(struct sensor_device_attribute) *
count_adc_channel_list), GFP_KERNEL);
if (!vadc) {
dev_err(&spmi->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
vadc->dev = &(spmi->dev);
adc_qpnp = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_adc_drv),
GFP_KERNEL);
if (!adc_qpnp) {
dev_err(&spmi->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
vadc->adc = adc_qpnp;
rc = qpnp_adc_get_devicetree_data(spmi, vadc->adc);
if (rc) {
dev_err(&spmi->dev, "failed to read device tree\n");
return rc;
}
mutex_init(&vadc->adc->adc_lock);
rc = qpnp_vadc_init_hwmon(vadc, spmi);
if (rc) {
dev_err(&spmi->dev, "failed to initialize qpnp hwmon adc\n");
return rc;
}
vadc->vadc_hwmon = hwmon_device_register(&vadc->adc->spmi->dev);
vadc->vadc_init_calib = false;
vadc->max_channels_available = count_adc_channel_list;
rc = qpnp_vadc_read_reg(vadc, QPNP_INT_TEST_VAL, &fab_id);
if (rc < 0) {
pr_err("qpnp adc comp id failed with %d\n", rc);
goto err_setup;
}
vadc->id = fab_id;
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_REVISION2,
&vadc->revision_dig_major);
if (rc < 0) {
pr_err("qpnp adc dig_major rev read failed with %d\n", rc);
goto err_setup;
}
rc = qpnp_vadc_read_reg(vadc, QPNP_VADC_REVISION3,
&vadc->revision_ana_minor);
if (rc < 0) {
pr_err("qpnp adc ana_minor rev read failed with %d\n", rc);
goto err_setup;
}
rc = qpnp_vadc_warm_rst_configure(vadc);
if (rc < 0) {
pr_err("Setting perp reset on warm reset failed %d\n", rc);
goto err_setup;
}
INIT_WORK(&vadc->trigger_completion_work, qpnp_vadc_work);
vadc->vadc_poll_eoc = of_property_read_bool(node,
"qcom,vadc-poll-eoc");
if (!vadc->vadc_poll_eoc) {
rc = devm_request_irq(&spmi->dev, vadc->adc->adc_irq_eoc,
qpnp_vadc_isr, IRQF_TRIGGER_RISING,
"qpnp_vadc_interrupt", vadc);
if (rc) {
dev_err(&spmi->dev,
"failed to request adc irq with error %d\n", rc);
goto err_setup;
} else {
enable_irq_wake(vadc->adc->adc_irq_eoc);
}
} else
device_init_wakeup(vadc->dev, 1);
vadc->vadc_iadc_sync_lock = false;
dev_set_drvdata(&spmi->dev, vadc);
list_add(&vadc->list, &qpnp_vadc_device_list);
return 0;
err_setup:
for_each_child_of_node(node, child) {
device_remove_file(&spmi->dev,
&vadc->sens_attr[i].dev_attr);
i++;
}
hwmon_device_unregister(vadc->vadc_hwmon);
return rc;
}
static int qpnp_vadc_remove(struct spmi_device *spmi)
{
struct qpnp_vadc_chip *vadc = dev_get_drvdata(&spmi->dev);
struct device_node *node = spmi->dev.of_node;
struct device_node *child;
int i = 0;
for_each_child_of_node(node, child) {
device_remove_file(&spmi->dev,
&vadc->sens_attr[i].dev_attr);
i++;
}
hwmon_device_unregister(vadc->vadc_hwmon);
list_del(&vadc->list);
if (vadc->vadc_poll_eoc)
pm_relax(vadc->dev);
dev_set_drvdata(&spmi->dev, NULL);
return 0;
}
static const struct of_device_id qpnp_vadc_match_table[] = {
{ .compatible = "qcom,qpnp-vadc",
},
{}
};
static struct spmi_driver qpnp_vadc_driver = {
.driver = {
.name = "qcom,qpnp-vadc",
.of_match_table = qpnp_vadc_match_table,
},
.probe = qpnp_vadc_probe,
.remove = qpnp_vadc_remove,
};
static int __init qpnp_vadc_init(void)
{
return spmi_driver_register(&qpnp_vadc_driver);
}
module_init(qpnp_vadc_init);
static void __exit qpnp_vadc_exit(void)
{
spmi_driver_unregister(&qpnp_vadc_driver);
}
module_exit(qpnp_vadc_exit);
MODULE_DESCRIPTION("QPNP PMIC Voltage ADC driver");
MODULE_LICENSE("GPL v2");