blob: 0195ed4d876798271f5995554978fb1b2d2c9c4f [file] [log] [blame]
/*
* linux/drivers/mmc/host/msm_sdcc.c - Qualcomm MSM 7X00A SDCC Driver
*
* Copyright (C) 2007 Google Inc,
* Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
* Copyright (c) 2009-2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Based on mmci.c
*
* Author: San Mehat (san@android.com)
*
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/log2.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/clk.h>
#include <linux/scatterlist.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/io.h>
#include <linux/memory.h>
#include <linux/pm_runtime.h>
#include <linux/wakelock.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/mmc/mmc.h>
#include <asm/cacheflush.h>
#include <asm/div64.h>
#include <asm/sizes.h>
#include <asm/mach/mmc.h>
#include <mach/msm_iomap.h>
#include <mach/clk.h>
#include <mach/dma.h>
#include <mach/htc_pwrsink.h>
#include <mach/sdio_al.h>
#include "msm_sdcc.h"
#include "msm_sdcc_dml.h"
#define DRIVER_NAME "msm-sdcc"
#define DBG(host, fmt, args...) \
pr_debug("%s: %s: " fmt "\n", mmc_hostname(host->mmc), __func__ , args)
#define IRQ_DEBUG 0
#define SPS_SDCC_PRODUCER_PIPE_INDEX 1
#define SPS_SDCC_CONSUMER_PIPE_INDEX 2
#define SPS_CONS_PERIPHERAL 0
#define SPS_PROD_PERIPHERAL 1
/* 16 KB */
#define SPS_MAX_DESC_SIZE (16 * 1024)
#if defined(CONFIG_DEBUG_FS)
static void msmsdcc_dbg_createhost(struct msmsdcc_host *);
static struct dentry *debugfs_dir;
static struct dentry *debugfs_file;
static int msmsdcc_dbg_init(void);
#endif
static unsigned int msmsdcc_pwrsave = 1;
static struct mmc_command dummy52cmd;
static struct mmc_request dummy52mrq = {
.cmd = &dummy52cmd,
.data = NULL,
.stop = NULL,
};
static struct mmc_command dummy52cmd = {
.opcode = SD_IO_RW_DIRECT,
.flags = MMC_RSP_PRESENT,
.data = NULL,
.mrq = &dummy52mrq,
};
/*
* An array holding the Tuning pattern to compare with when
* executing a tuning cycle.
*/
static const u32 cmd19_tuning_block[16] = {
0x00FF0FFF, 0xCCC3CCFF, 0xFFCC3CC3, 0xEFFEFFFE,
0xDDFFDFFF, 0xFBFFFBFF, 0xFF7FFFBF, 0xEFBDF777,
0xF0FFF0FF, 0x3CCCFC0F, 0xCFCC33CC, 0xEEFFEFFF,
0xFDFFFDFF, 0xFFBFFFDF, 0xFFF7FFBB, 0xDE7B7FF7
};
#if IRQ_DEBUG == 1
static char *irq_status_bits[] = { "cmdcrcfail", "datcrcfail", "cmdtimeout",
"dattimeout", "txunderrun", "rxoverrun",
"cmdrespend", "cmdsent", "dataend", NULL,
"datablkend", "cmdactive", "txactive",
"rxactive", "txhalfempty", "rxhalffull",
"txfifofull", "rxfifofull", "txfifoempty",
"rxfifoempty", "txdataavlbl", "rxdataavlbl",
"sdiointr", "progdone", "atacmdcompl",
"sdiointrope", "ccstimeout", NULL, NULL,
NULL, NULL, NULL };
static void
msmsdcc_print_status(struct msmsdcc_host *host, char *hdr, uint32_t status)
{
int i;
pr_debug("%s-%s ", mmc_hostname(host->mmc), hdr);
for (i = 0; i < 32; i++) {
if (status & (1 << i))
pr_debug("%s ", irq_status_bits[i]);
}
pr_debug("\n");
}
#endif
static void
msmsdcc_start_command(struct msmsdcc_host *host, struct mmc_command *cmd,
u32 c);
#ifdef CONFIG_MMC_MSM_SPS_SUPPORT
static int msmsdcc_sps_reset_ep(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep);
static int msmsdcc_sps_restore_ep(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep);
#else
static inline int msmsdcc_sps_init_ep_conn(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep,
bool is_producer) { return 0; }
static inline void msmsdcc_sps_exit_ep_conn(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep) { }
static inline int msmsdcc_sps_reset_ep(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep)
{
return 0;
}
static inline int msmsdcc_sps_restore_ep(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep)
{
return 0;
}
static inline int msmsdcc_sps_init(struct msmsdcc_host *host) { return 0; }
static inline void msmsdcc_sps_exit(struct msmsdcc_host *host) {}
#endif /* CONFIG_MMC_MSM_SPS_SUPPORT */
/**
* Apply soft reset
*
* This function applies soft reset to SDCC core and
* BAM, DML core.
*
* This function should be called to recover from error
* conditions encountered with CMD/DATA tranfsers with card.
*
* Soft reset should only be used with SDCC controller v4.
*
* @host - Pointer to driver's host structure
*
*/
static void msmsdcc_soft_reset_and_restore(struct msmsdcc_host *host)
{
int rc;
if (host->is_sps_mode) {
/* Reset DML first */
msmsdcc_dml_reset(host);
/* Now reset all BAM pipes connections */
rc = msmsdcc_sps_reset_ep(host, &host->sps.prod);
if (rc)
pr_err("%s:msmsdcc_sps_reset_ep() error=%d\n",
mmc_hostname(host->mmc), rc);
rc = msmsdcc_sps_reset_ep(host, &host->sps.cons);
if (rc)
pr_err("%s:msmsdcc_sps_reset_ep() error=%d\n",
mmc_hostname(host->mmc), rc);
}
/*
* Reset SDCC controller's DPSM (data path state machine
* and CPSM (command path state machine).
*/
mb();
writel_relaxed(0, host->base + MMCICOMMAND);
writel_relaxed(0, host->base + MMCIDATACTRL);
mb();
pr_debug("%s: Applied soft reset to Controller\n",
mmc_hostname(host->mmc));
if (host->is_sps_mode) {
/* Restore all BAM pipes connections */
rc = msmsdcc_sps_restore_ep(host, &host->sps.prod);
if (rc)
pr_err("%s:msmsdcc_sps_restore_ep() error=%d\n",
mmc_hostname(host->mmc), rc);
rc = msmsdcc_sps_restore_ep(host, &host->sps.cons);
if (rc)
pr_err("%s:msmsdcc_sps_restore_ep() error=%d\n",
mmc_hostname(host->mmc), rc);
msmsdcc_dml_init(host);
}
}
static void msmsdcc_reset_and_restore(struct msmsdcc_host *host)
{
if (host->plat->sdcc_v4_sup) {
msmsdcc_soft_reset_and_restore(host);
} else {
/* Give Clock reset (hard reset) to controller */
u32 mci_clk = 0;
u32 mci_mask0 = 0;
int ret;
/* Save the controller state */
mci_clk = readl_relaxed(host->base + MMCICLOCK);
mci_mask0 = readl_relaxed(host->base + MMCIMASK0);
mb();
/* Reset the controller */
ret = clk_reset(host->clk, CLK_RESET_ASSERT);
if (ret)
pr_err("%s: Clock assert failed at %u Hz"
" with err %d\n", mmc_hostname(host->mmc),
host->clk_rate, ret);
ret = clk_reset(host->clk, CLK_RESET_DEASSERT);
if (ret)
pr_err("%s: Clock deassert failed at %u Hz"
" with err %d\n", mmc_hostname(host->mmc),
host->clk_rate, ret);
pr_debug("%s: Controller has been reinitialized\n",
mmc_hostname(host->mmc));
mb();
/* Restore the contoller state */
writel_relaxed(host->pwr, host->base + MMCIPOWER);
writel_relaxed(mci_clk, host->base + MMCICLOCK);
writel_relaxed(mci_mask0, host->base + MMCIMASK0);
ret = clk_set_rate(host->clk, host->clk_rate);
if (ret)
pr_err("%s: Failed to set clk rate %u Hz. err %d\n",
mmc_hostname(host->mmc),
host->clk_rate, ret);
mb();
}
if (host->dummy_52_needed)
host->dummy_52_needed = 0;
}
static int
msmsdcc_request_end(struct msmsdcc_host *host, struct mmc_request *mrq)
{
int retval = 0;
BUG_ON(host->curr.data);
host->curr.mrq = NULL;
host->curr.cmd = NULL;
del_timer(&host->req_tout_timer);
if (mrq->data)
mrq->data->bytes_xfered = host->curr.data_xfered;
if (mrq->cmd->error == -ETIMEDOUT)
mdelay(5);
/*
* Need to drop the host lock here; mmc_request_done may call
* back into the driver...
*/
spin_unlock(&host->lock);
mmc_request_done(host->mmc, mrq);
spin_lock(&host->lock);
return retval;
}
static inline void msmsdcc_delay(struct msmsdcc_host *host);
static void
msmsdcc_stop_data(struct msmsdcc_host *host)
{
host->curr.data = NULL;
host->curr.got_dataend = 0;
writel_relaxed(readl_relaxed(host->base + MMCIDATACTRL) &
(~(MCI_DPSM_ENABLE)), host->base + MMCIDATACTRL);
msmsdcc_delay(host); /* Allow the DPSM to be reset */
}
static inline uint32_t msmsdcc_fifo_addr(struct msmsdcc_host *host)
{
return host->core_memres->start + MMCIFIFO;
}
static inline unsigned int msmsdcc_get_min_sup_clk_rate(
struct msmsdcc_host *host);
static inline void msmsdcc_delay(struct msmsdcc_host *host)
{
mb();
udelay(1 + ((3 * USEC_PER_SEC) /
(host->clk_rate ? host->clk_rate :
msmsdcc_get_min_sup_clk_rate(host))));
}
static inline void
msmsdcc_start_command_exec(struct msmsdcc_host *host, u32 arg, u32 c)
{
writel_relaxed(arg, host->base + MMCIARGUMENT);
msmsdcc_delay(host);
writel_relaxed(c, host->base + MMCICOMMAND);
mb();
}
static void
msmsdcc_dma_exec_func(struct msm_dmov_cmd *cmd)
{
struct msmsdcc_host *host = (struct msmsdcc_host *)cmd->user;
writel_relaxed(host->cmd_timeout, host->base + MMCIDATATIMER);
writel_relaxed((unsigned int)host->curr.xfer_size,
host->base + MMCIDATALENGTH);
msmsdcc_delay(host); /* Allow data parms to be applied */
writel_relaxed(host->cmd_datactrl, host->base + MMCIDATACTRL);
msmsdcc_delay(host); /* Force delay prior to ADM or command */
if (host->cmd_cmd) {
msmsdcc_start_command_exec(host,
(u32)host->cmd_cmd->arg, (u32)host->cmd_c);
}
}
static void
msmsdcc_dma_complete_tlet(unsigned long data)
{
struct msmsdcc_host *host = (struct msmsdcc_host *)data;
unsigned long flags;
struct mmc_request *mrq;
spin_lock_irqsave(&host->lock, flags);
mrq = host->curr.mrq;
BUG_ON(!mrq);
if (!(host->dma.result & DMOV_RSLT_VALID)) {
pr_err("msmsdcc: Invalid DataMover result\n");
goto out;
}
if (host->dma.result & DMOV_RSLT_DONE) {
host->curr.data_xfered = host->curr.xfer_size;
host->curr.xfer_remain -= host->curr.xfer_size;
} else {
/* Error or flush */
if (host->dma.result & DMOV_RSLT_ERROR)
pr_err("%s: DMA error (0x%.8x)\n",
mmc_hostname(host->mmc), host->dma.result);
if (host->dma.result & DMOV_RSLT_FLUSH)
pr_err("%s: DMA channel flushed (0x%.8x)\n",
mmc_hostname(host->mmc), host->dma.result);
pr_err("Flush data: %.8x %.8x %.8x %.8x %.8x %.8x\n",
host->dma.err.flush[0], host->dma.err.flush[1],
host->dma.err.flush[2], host->dma.err.flush[3],
host->dma.err.flush[4],
host->dma.err.flush[5]);
msmsdcc_reset_and_restore(host);
if (!mrq->data->error)
mrq->data->error = -EIO;
}
dma_unmap_sg(mmc_dev(host->mmc), host->dma.sg, host->dma.num_ents,
host->dma.dir);
if (host->curr.user_pages) {
struct scatterlist *sg = host->dma.sg;
int i;
for (i = 0; i < host->dma.num_ents; i++, sg++)
flush_dcache_page(sg_page(sg));
}
host->dma.sg = NULL;
host->dma.busy = 0;
if (host->curr.got_dataend || mrq->data->error) {
/*
* If we've already gotten our DATAEND / DATABLKEND
* for this request, then complete it through here.
*/
if (!mrq->data->error) {
host->curr.data_xfered = host->curr.xfer_size;
host->curr.xfer_remain -= host->curr.xfer_size;
}
if (host->dummy_52_needed) {
mrq->data->bytes_xfered = host->curr.data_xfered;
host->dummy_52_sent = 1;
msmsdcc_start_command(host, &dummy52cmd,
MCI_CPSM_PROGENA);
goto out;
}
msmsdcc_stop_data(host);
if (!mrq->data->stop || mrq->cmd->error) {
host->curr.mrq = NULL;
host->curr.cmd = NULL;
mrq->data->bytes_xfered = host->curr.data_xfered;
del_timer(&host->req_tout_timer);
spin_unlock_irqrestore(&host->lock, flags);
mmc_request_done(host->mmc, mrq);
return;
} else
msmsdcc_start_command(host, mrq->data->stop, 0);
}
out:
spin_unlock_irqrestore(&host->lock, flags);
return;
}
#ifdef CONFIG_MMC_MSM_SPS_SUPPORT
/**
* Callback notification from SPS driver
*
* This callback function gets triggered called from
* SPS driver when requested SPS data transfer is
* completed.
*
* SPS driver invokes this callback in BAM irq context so
* SDCC driver schedule a tasklet for further processing
* this callback notification at later point of time in
* tasklet context and immediately returns control back
* to SPS driver.
*
* @nofity - Pointer to sps event notify sturcture
*
*/
static void
msmsdcc_sps_complete_cb(struct sps_event_notify *notify)
{
struct msmsdcc_host *host =
(struct msmsdcc_host *)
((struct sps_event_notify *)notify)->user;
host->sps.notify = *notify;
pr_debug("%s: %s: sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
mmc_hostname(host->mmc), __func__, notify->event_id,
notify->data.transfer.iovec.addr,
notify->data.transfer.iovec.size,
notify->data.transfer.iovec.flags);
/* Schedule a tasklet for completing data transfer */
tasklet_schedule(&host->sps.tlet);
}
/**
* Tasklet handler for processing SPS callback event
*
* This function processing SPS event notification and
* checks if the SPS transfer is completed or not and
* then accordingly notifies status to MMC core layer.
*
* This function is called in tasklet context.
*
* @data - Pointer to sdcc driver data
*
*/
static void msmsdcc_sps_complete_tlet(unsigned long data)
{
unsigned long flags;
int i, rc;
u32 data_xfered = 0;
struct mmc_request *mrq;
struct sps_iovec iovec;
struct sps_pipe *sps_pipe_handle;
struct msmsdcc_host *host = (struct msmsdcc_host *)data;
struct sps_event_notify *notify = &host->sps.notify;
spin_lock_irqsave(&host->lock, flags);
if (host->sps.dir == DMA_FROM_DEVICE)
sps_pipe_handle = host->sps.prod.pipe_handle;
else
sps_pipe_handle = host->sps.cons.pipe_handle;
mrq = host->curr.mrq;
if (!mrq) {
spin_unlock_irqrestore(&host->lock, flags);
return;
}
pr_debug("%s: %s: sps event_id=%d\n",
mmc_hostname(host->mmc), __func__,
notify->event_id);
if (msmsdcc_is_dml_busy(host)) {
/* oops !!! this should never happen. */
pr_err("%s: %s: Received SPS EOT event"
" but DML HW is still busy !!!\n",
mmc_hostname(host->mmc), __func__);
}
/*
* Got End of transfer event!!! Check if all of the data
* has been transferred?
*/
for (i = 0; i < host->sps.xfer_req_cnt; i++) {
rc = sps_get_iovec(sps_pipe_handle, &iovec);
if (rc) {
pr_err("%s: %s: sps_get_iovec() failed rc=%d, i=%d",
mmc_hostname(host->mmc), __func__, rc, i);
break;
}
data_xfered += iovec.size;
}
if (data_xfered == host->curr.xfer_size) {
host->curr.data_xfered = host->curr.xfer_size;
host->curr.xfer_remain -= host->curr.xfer_size;
pr_debug("%s: Data xfer success. data_xfered=0x%x",
mmc_hostname(host->mmc),
host->curr.xfer_size);
} else {
pr_err("%s: Data xfer failed. data_xfered=0x%x,"
" xfer_size=%d", mmc_hostname(host->mmc),
data_xfered, host->curr.xfer_size);
msmsdcc_reset_and_restore(host);
if (!mrq->data->error)
mrq->data->error = -EIO;
}
/* Unmap sg buffers */
dma_unmap_sg(mmc_dev(host->mmc), host->sps.sg, host->sps.num_ents,
host->sps.dir);
host->sps.sg = NULL;
host->sps.busy = 0;
if (host->curr.got_dataend || mrq->data->error) {
/*
* If we've already gotten our DATAEND / DATABLKEND
* for this request, then complete it through here.
*/
if (!mrq->data->error) {
host->curr.data_xfered = host->curr.xfer_size;
host->curr.xfer_remain -= host->curr.xfer_size;
}
if (host->dummy_52_needed) {
mrq->data->bytes_xfered = host->curr.data_xfered;
host->dummy_52_sent = 1;
msmsdcc_start_command(host, &dummy52cmd,
MCI_CPSM_PROGENA);
return;
}
msmsdcc_stop_data(host);
if (!mrq->data->stop || mrq->cmd->error) {
host->curr.mrq = NULL;
host->curr.cmd = NULL;
mrq->data->bytes_xfered = host->curr.data_xfered;
del_timer(&host->req_tout_timer);
spin_unlock_irqrestore(&host->lock, flags);
mmc_request_done(host->mmc, mrq);
return;
} else {
msmsdcc_start_command(host, mrq->data->stop, 0);
}
}
spin_unlock_irqrestore(&host->lock, flags);
}
/**
* Exit from current SPS data transfer
*
* This function exits from current SPS data transfer.
*
* This function should be called when error condition
* is encountered during data transfer.
*
* @host - Pointer to sdcc host structure
*
*/
static void msmsdcc_sps_exit_curr_xfer(struct msmsdcc_host *host)
{
struct mmc_request *mrq;
mrq = host->curr.mrq;
BUG_ON(!mrq);
msmsdcc_reset_and_restore(host);
if (!mrq->data->error)
mrq->data->error = -EIO;
/* Unmap sg buffers */
dma_unmap_sg(mmc_dev(host->mmc), host->sps.sg, host->sps.num_ents,
host->sps.dir);
host->sps.sg = NULL;
host->sps.busy = 0;
if (host->curr.data)
msmsdcc_stop_data(host);
if (!mrq->data->stop || mrq->cmd->error)
msmsdcc_request_end(host, mrq);
else
msmsdcc_start_command(host, mrq->data->stop, 0);
}
#else
static inline void msmsdcc_sps_complete_cb(struct sps_event_notify *notify) { }
static inline void msmsdcc_sps_complete_tlet(unsigned long data) { }
static inline void msmsdcc_sps_exit_curr_xfer(struct msmsdcc_host *host) { }
#endif /* CONFIG_MMC_MSM_SPS_SUPPORT */
static void msmsdcc_enable_cdr_cm_sdc4_dll(struct msmsdcc_host *host);
static void
msmsdcc_dma_complete_func(struct msm_dmov_cmd *cmd,
unsigned int result,
struct msm_dmov_errdata *err)
{
struct msmsdcc_dma_data *dma_data =
container_of(cmd, struct msmsdcc_dma_data, hdr);
struct msmsdcc_host *host = dma_data->host;
dma_data->result = result;
if (err)
memcpy(&dma_data->err, err, sizeof(struct msm_dmov_errdata));
tasklet_schedule(&host->dma_tlet);
}
static int msmsdcc_check_dma_op_req(struct mmc_data *data)
{
if (((data->blksz * data->blocks) < MCI_FIFOSIZE) ||
((data->blksz * data->blocks) % MCI_FIFOSIZE))
return -EINVAL;
else
return 0;
}
static int msmsdcc_config_dma(struct msmsdcc_host *host, struct mmc_data *data)
{
struct msmsdcc_nc_dmadata *nc;
dmov_box *box;
uint32_t rows;
unsigned int n;
int i;
struct scatterlist *sg = data->sg;
if ((host->dma.channel == -1) || (host->dma.crci == -1))
return -ENOENT;
BUG_ON((host->pdev_id < 1) || (host->pdev_id > 5));
host->dma.sg = data->sg;
host->dma.num_ents = data->sg_len;
BUG_ON(host->dma.num_ents > NR_SG); /* Prevent memory corruption */
nc = host->dma.nc;
if (data->flags & MMC_DATA_READ)
host->dma.dir = DMA_FROM_DEVICE;
else
host->dma.dir = DMA_TO_DEVICE;
/* host->curr.user_pages = (data->flags & MMC_DATA_USERPAGE); */
host->curr.user_pages = 0;
box = &nc->cmd[0];
for (i = 0; i < host->dma.num_ents; i++) {
box->cmd = CMD_MODE_BOX;
/* Initialize sg dma address */
sg->dma_address = pfn_to_dma(mmc_dev(host->mmc),
page_to_pfn(sg_page(sg)))
+ sg->offset;
if (i == (host->dma.num_ents - 1))
box->cmd |= CMD_LC;
rows = (sg_dma_len(sg) % MCI_FIFOSIZE) ?
(sg_dma_len(sg) / MCI_FIFOSIZE) + 1 :
(sg_dma_len(sg) / MCI_FIFOSIZE) ;
if (data->flags & MMC_DATA_READ) {
box->src_row_addr = msmsdcc_fifo_addr(host);
box->dst_row_addr = sg_dma_address(sg);
box->src_dst_len = (MCI_FIFOSIZE << 16) |
(MCI_FIFOSIZE);
box->row_offset = MCI_FIFOSIZE;
box->num_rows = rows * ((1 << 16) + 1);
box->cmd |= CMD_SRC_CRCI(host->dma.crci);
} else {
box->src_row_addr = sg_dma_address(sg);
box->dst_row_addr = msmsdcc_fifo_addr(host);
box->src_dst_len = (MCI_FIFOSIZE << 16) |
(MCI_FIFOSIZE);
box->row_offset = (MCI_FIFOSIZE << 16);
box->num_rows = rows * ((1 << 16) + 1);
box->cmd |= CMD_DST_CRCI(host->dma.crci);
}
box++;
sg++;
}
/* location of command block must be 64 bit aligned */
BUG_ON(host->dma.cmd_busaddr & 0x07);
nc->cmdptr = (host->dma.cmd_busaddr >> 3) | CMD_PTR_LP;
host->dma.hdr.cmdptr = DMOV_CMD_PTR_LIST |
DMOV_CMD_ADDR(host->dma.cmdptr_busaddr);
host->dma.hdr.complete_func = msmsdcc_dma_complete_func;
host->dma.hdr.crci_mask = msm_dmov_build_crci_mask(1, host->dma.crci);
n = dma_map_sg(mmc_dev(host->mmc), host->dma.sg,
host->dma.num_ents, host->dma.dir);
/* dsb inside dma_map_sg will write nc out to mem as well */
if (n != host->dma.num_ents) {
pr_err("%s: Unable to map in all sg elements\n",
mmc_hostname(host->mmc));
host->dma.sg = NULL;
host->dma.num_ents = 0;
return -ENOMEM;
}
return 0;
}
#ifdef CONFIG_MMC_MSM_SPS_SUPPORT
/**
* Submits data transfer request to SPS driver
*
* This function make sg (scatter gather) data buffers
* DMA ready and then submits them to SPS driver for
* transfer.
*
* @host - Pointer to sdcc host structure
* @data - Pointer to mmc_data structure
*
* @return 0 if success else negative value
*/
static int msmsdcc_sps_start_xfer(struct msmsdcc_host *host,
struct mmc_data *data)
{
int rc = 0;
u32 flags;
int i;
u32 addr, len, data_cnt;
struct scatterlist *sg = data->sg;
struct sps_pipe *sps_pipe_handle;
BUG_ON(data->sg_len > NR_SG); /* Prevent memory corruption */
host->sps.sg = data->sg;
host->sps.num_ents = data->sg_len;
host->sps.xfer_req_cnt = 0;
if (data->flags & MMC_DATA_READ) {
host->sps.dir = DMA_FROM_DEVICE;
sps_pipe_handle = host->sps.prod.pipe_handle;
} else {
host->sps.dir = DMA_TO_DEVICE;
sps_pipe_handle = host->sps.cons.pipe_handle;
}
/* Make sg buffers DMA ready */
rc = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
host->sps.dir);
if (rc != data->sg_len) {
pr_err("%s: Unable to map in all sg elements, rc=%d\n",
mmc_hostname(host->mmc), rc);
host->sps.sg = NULL;
host->sps.num_ents = 0;
rc = -ENOMEM;
goto dma_map_err;
}
pr_debug("%s: %s: %s: pipe=0x%x, total_xfer=0x%x, sg_len=%d\n",
mmc_hostname(host->mmc), __func__,
host->sps.dir == DMA_FROM_DEVICE ? "READ" : "WRITE",
(u32)sps_pipe_handle, host->curr.xfer_size, data->sg_len);
for (i = 0; i < data->sg_len; i++) {
/*
* Check if this is the last buffer to transfer?
* If yes then set the INT and EOT flags.
*/
len = sg_dma_len(sg);
addr = sg_dma_address(sg);
flags = 0;
while (len > 0) {
if (len > SPS_MAX_DESC_SIZE) {
data_cnt = SPS_MAX_DESC_SIZE;
} else {
data_cnt = len;
if (i == data->sg_len - 1)
flags = SPS_IOVEC_FLAG_INT |
SPS_IOVEC_FLAG_EOT;
}
rc = sps_transfer_one(sps_pipe_handle, addr,
data_cnt, host, flags);
if (rc) {
pr_err("%s: sps_transfer_one() error! rc=%d,"
" pipe=0x%x, sg=0x%x, sg_buf_no=%d\n",
mmc_hostname(host->mmc), rc,
(u32)sps_pipe_handle, (u32)sg, i);
goto dma_map_err;
}
addr += data_cnt;
len -= data_cnt;
host->sps.xfer_req_cnt++;
}
sg++;
}
goto out;
dma_map_err:
/* unmap sg buffers */
dma_unmap_sg(mmc_dev(host->mmc), host->sps.sg, host->sps.num_ents,
host->sps.dir);
out:
return rc;
}
#else
static int msmsdcc_sps_start_xfer(struct msmsdcc_host *host,
struct mmc_data *data) { return 0; }
#endif /* CONFIG_MMC_MSM_SPS_SUPPORT */
static void
msmsdcc_start_command_deferred(struct msmsdcc_host *host,
struct mmc_command *cmd, u32 *c)
{
DBG(host, "op %02x arg %08x flags %08x\n",
cmd->opcode, cmd->arg, cmd->flags);
*c |= (cmd->opcode | MCI_CPSM_ENABLE);
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136)
*c |= MCI_CPSM_LONGRSP;
*c |= MCI_CPSM_RESPONSE;
}
if (/*interrupt*/0)
*c |= MCI_CPSM_INTERRUPT;
if ((((cmd->opcode == 17) || (cmd->opcode == 18)) ||
((cmd->opcode == 24) || (cmd->opcode == 25))) ||
(cmd->opcode == 53))
*c |= MCI_CSPM_DATCMD;
/* Check if AUTO CMD19 is required or not? */
if (((cmd->opcode == 17) || (cmd->opcode == 18)) &&
host->tuning_needed) {
msmsdcc_enable_cdr_cm_sdc4_dll(host);
*c |= MCI_CSPM_AUTO_CMD19;
}
if (host->prog_scan && (cmd->opcode == 12)) {
*c |= MCI_CPSM_PROGENA;
host->prog_enable = 1;
}
if (cmd == cmd->mrq->stop)
*c |= MCI_CSPM_MCIABORT;
if (host->curr.cmd != NULL) {
pr_err("%s: Overlapping command requests\n",
mmc_hostname(host->mmc));
}
host->curr.cmd = cmd;
/*
* Kick the software command timeout timer here.
* Timer expires in 10 secs.
*/
mod_timer(&host->req_tout_timer,
(jiffies + msecs_to_jiffies(MSM_MMC_REQ_TIMEOUT)));
}
static void
msmsdcc_start_data(struct msmsdcc_host *host, struct mmc_data *data,
struct mmc_command *cmd, u32 c)
{
unsigned int datactrl = 0, timeout;
unsigned long long clks;
void __iomem *base = host->base;
unsigned int pio_irqmask = 0;
host->curr.data = data;
host->curr.xfer_size = data->blksz * data->blocks;
host->curr.xfer_remain = host->curr.xfer_size;
host->curr.data_xfered = 0;
host->curr.got_dataend = 0;
memset(&host->pio, 0, sizeof(host->pio));
datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
if (!msmsdcc_check_dma_op_req(data)) {
if (host->is_dma_mode && !msmsdcc_config_dma(host, data)) {
datactrl |= MCI_DPSM_DMAENABLE;
} else if (host->is_sps_mode) {
if (!msmsdcc_is_dml_busy(host)) {
if (!msmsdcc_sps_start_xfer(host, data)) {
/* Now kick start DML transfer */
mb();
msmsdcc_dml_start_xfer(host, data);
datactrl |= MCI_DPSM_DMAENABLE;
host->sps.busy = 1;
}
} else {
/*
* Can't proceed with new transfer as
* previous trasnfer is already in progress.
* There is no point of going into PIO mode
* as well. Is this a time to do kernel panic?
*/
pr_err("%s: %s: DML HW is busy!!!"
" Can't perform new SPS transfers"
" now\n", mmc_hostname(host->mmc),
__func__);
}
}
}
/* Is data transfer in PIO mode required? */
if (!(datactrl & MCI_DPSM_DMAENABLE)) {
host->pio.sg = data->sg;
host->pio.sg_len = data->sg_len;
host->pio.sg_off = 0;
if (data->flags & MMC_DATA_READ) {
pio_irqmask = MCI_RXFIFOHALFFULLMASK;
if (host->curr.xfer_remain < MCI_FIFOSIZE)
pio_irqmask |= MCI_RXDATAAVLBLMASK;
} else
pio_irqmask = MCI_TXFIFOHALFEMPTYMASK |
MCI_TXFIFOEMPTYMASK;
}
if (data->flags & MMC_DATA_READ)
datactrl |= (MCI_DPSM_DIRECTION | MCI_RX_DATA_PEND);
clks = (unsigned long long)data->timeout_ns * host->clk_rate;
do_div(clks, 1000000000UL);
timeout = data->timeout_clks + (unsigned int)clks*2 ;
if (host->is_dma_mode && (datactrl & MCI_DPSM_DMAENABLE)) {
/* Use ADM (Application Data Mover) HW for Data transfer */
/* Save parameters for the dma exec function */
host->cmd_timeout = timeout;
host->cmd_pio_irqmask = pio_irqmask;
host->cmd_datactrl = datactrl;
host->cmd_cmd = cmd;
host->dma.hdr.exec_func = msmsdcc_dma_exec_func;
host->dma.hdr.user = (void *)host;
host->dma.busy = 1;
if (data->flags & MMC_DATA_WRITE)
host->prog_scan = 1;
if (cmd) {
msmsdcc_start_command_deferred(host, cmd, &c);
host->cmd_c = c;
}
writel_relaxed((readl_relaxed(host->base + MMCIMASK0) &
(~(MCI_IRQ_PIO))) | host->cmd_pio_irqmask,
host->base + MMCIMASK0);
mb();
msm_dmov_enqueue_cmd_ext(host->dma.channel, &host->dma.hdr);
} else {
/* SPS-BAM mode or PIO mode */
if (data->flags & MMC_DATA_WRITE)
host->prog_scan = 1;
writel_relaxed(timeout, base + MMCIDATATIMER);
writel_relaxed(host->curr.xfer_size, base + MMCIDATALENGTH);
writel_relaxed((readl_relaxed(host->base + MMCIMASK0) &
(~(MCI_IRQ_PIO))) | pio_irqmask,
host->base + MMCIMASK0);
msmsdcc_delay(host); /* Allow parms to be applied */
writel_relaxed(datactrl, base + MMCIDATACTRL);
if (cmd) {
msmsdcc_delay(host); /* Delay between data/command */
/* Daisy-chain the command if requested */
msmsdcc_start_command(host, cmd, c);
}
}
}
static void
msmsdcc_start_command(struct msmsdcc_host *host, struct mmc_command *cmd, u32 c)
{
msmsdcc_start_command_deferred(host, cmd, &c);
msmsdcc_start_command_exec(host, cmd->arg, c);
}
static void
msmsdcc_data_err(struct msmsdcc_host *host, struct mmc_data *data,
unsigned int status)
{
if (status & MCI_DATACRCFAIL) {
if (!(data->mrq->cmd->opcode == MMC_BUS_TEST_W
|| data->mrq->cmd->opcode == MMC_BUS_TEST_R)) {
pr_err("%s: Data CRC error\n",
mmc_hostname(host->mmc));
pr_err("%s: opcode 0x%.8x\n", __func__,
data->mrq->cmd->opcode);
pr_err("%s: blksz %d, blocks %d\n", __func__,
data->blksz, data->blocks);
data->error = -EILSEQ;
}
} else if (status & MCI_DATATIMEOUT) {
/* CRC is optional for the bus test commands, not all
* cards respond back with CRC. However controller
* waits for the CRC and times out. Hence ignore the
* data timeouts during the Bustest.
*/
if (!(data->mrq->cmd->opcode == MMC_BUS_TEST_W
|| data->mrq->cmd->opcode == MMC_BUS_TEST_R)) {
pr_err("%s: Data timeout\n",
mmc_hostname(host->mmc));
data->error = -ETIMEDOUT;
}
} else if (status & MCI_RXOVERRUN) {
pr_err("%s: RX overrun\n", mmc_hostname(host->mmc));
data->error = -EIO;
} else if (status & MCI_TXUNDERRUN) {
pr_err("%s: TX underrun\n", mmc_hostname(host->mmc));
data->error = -EIO;
} else {
pr_err("%s: Unknown error (0x%.8x)\n",
mmc_hostname(host->mmc), status);
data->error = -EIO;
}
/* Dummy CMD52 is not needed when CMD53 has errors */
if (host->dummy_52_needed)
host->dummy_52_needed = 0;
}
static int
msmsdcc_pio_read(struct msmsdcc_host *host, char *buffer, unsigned int remain)
{
void __iomem *base = host->base;
uint32_t *ptr = (uint32_t *) buffer;
int count = 0;
if (remain % 4)
remain = ((remain >> 2) + 1) << 2;
while (readl_relaxed(base + MMCISTATUS) & MCI_RXDATAAVLBL) {
*ptr = readl_relaxed(base + MMCIFIFO + (count % MCI_FIFOSIZE));
ptr++;
count += sizeof(uint32_t);
remain -= sizeof(uint32_t);
if (remain == 0)
break;
}
return count;
}
static int
msmsdcc_pio_write(struct msmsdcc_host *host, char *buffer,
unsigned int remain)
{
void __iomem *base = host->base;
char *ptr = buffer;
unsigned int maxcnt = MCI_FIFOHALFSIZE;
while (readl_relaxed(base + MMCISTATUS) &
(MCI_TXFIFOEMPTY | MCI_TXFIFOHALFEMPTY)) {
unsigned int count, sz;
count = min(remain, maxcnt);
sz = count % 4 ? (count >> 2) + 1 : (count >> 2);
writesl(base + MMCIFIFO, ptr, sz);
ptr += count;
remain -= count;
if (remain == 0)
break;
}
mb();
return ptr - buffer;
}
static irqreturn_t
msmsdcc_pio_irq(int irq, void *dev_id)
{
struct msmsdcc_host *host = dev_id;
void __iomem *base = host->base;
uint32_t status;
status = readl_relaxed(base + MMCISTATUS);
if (((readl_relaxed(host->base + MMCIMASK0) & status) &
(MCI_IRQ_PIO)) == 0)
return IRQ_NONE;
#if IRQ_DEBUG
msmsdcc_print_status(host, "irq1-r", status);
#endif
spin_lock(&host->lock);
do {
unsigned long flags;
unsigned int remain, len;
char *buffer;
if (!(status & (MCI_TXFIFOHALFEMPTY | MCI_TXFIFOEMPTY
| MCI_RXDATAAVLBL)))
break;
/* Map the current scatter buffer */
local_irq_save(flags);
buffer = kmap_atomic(sg_page(host->pio.sg),
KM_BIO_SRC_IRQ) + host->pio.sg->offset;
buffer += host->pio.sg_off;
remain = host->pio.sg->length - host->pio.sg_off;
len = 0;
if (status & MCI_RXACTIVE)
len = msmsdcc_pio_read(host, buffer, remain);
if (status & MCI_TXACTIVE)
len = msmsdcc_pio_write(host, buffer, remain);
/* Unmap the buffer */
kunmap_atomic(buffer, KM_BIO_SRC_IRQ);
local_irq_restore(flags);
host->pio.sg_off += len;
host->curr.xfer_remain -= len;
host->curr.data_xfered += len;
remain -= len;
if (remain) /* Done with this page? */
break; /* Nope */
if (status & MCI_RXACTIVE && host->curr.user_pages)
flush_dcache_page(sg_page(host->pio.sg));
if (!--host->pio.sg_len) {
memset(&host->pio, 0, sizeof(host->pio));
break;
}
/* Advance to next sg */
host->pio.sg++;
host->pio.sg_off = 0;
status = readl_relaxed(base + MMCISTATUS);
} while (1);
if (status & MCI_RXACTIVE && host->curr.xfer_remain < MCI_FIFOSIZE) {
writel_relaxed((readl_relaxed(host->base + MMCIMASK0) &
(~(MCI_IRQ_PIO))) | MCI_RXDATAAVLBLMASK,
host->base + MMCIMASK0);
if (!host->curr.xfer_remain) {
/* Delay needed (same port was just written) */
msmsdcc_delay(host);
writel_relaxed((readl_relaxed(host->base + MMCIMASK0) &
(~(MCI_IRQ_PIO))) | 0, host->base + MMCIMASK0);
}
mb();
} else if (!host->curr.xfer_remain) {
writel_relaxed((readl_relaxed(host->base + MMCIMASK0) &
(~(MCI_IRQ_PIO))) | 0, host->base + MMCIMASK0);
mb();
}
spin_unlock(&host->lock);
return IRQ_HANDLED;
}
static void
msmsdcc_request_start(struct msmsdcc_host *host, struct mmc_request *mrq);
static void msmsdcc_wait_for_rxdata(struct msmsdcc_host *host,
struct mmc_data *data)
{
u32 loop_cnt = 0;
/*
* For read commands with data less than fifo size, it is possible to
* get DATAEND first and RXDATA_AVAIL might be set later because of
* synchronization delay through the asynchronous RX FIFO. Thus, for
* such cases, even after DATAEND interrupt is received software
* should poll for RXDATA_AVAIL until the requested data is read out
* of FIFO. This change is needed to get around this abnormal but
* sometimes expected behavior of SDCC3 controller.
*
* We can expect RXDATAAVAIL bit to be set after 6HCLK clock cycles
* after the data is loaded into RX FIFO. This would amount to less
* than a microsecond and thus looping for 1000 times is good enough
* for that delay.
*/
while (((int)host->curr.xfer_remain > 0) && (++loop_cnt < 1000)) {
if (readl_relaxed(host->base + MMCISTATUS) & MCI_RXDATAAVLBL) {
spin_unlock(&host->lock);
msmsdcc_pio_irq(1, host);
spin_lock(&host->lock);
}
}
if (loop_cnt == 1000) {
pr_info("%s: Timed out while polling for Rx Data\n",
mmc_hostname(host->mmc));
data->error = -ETIMEDOUT;
msmsdcc_reset_and_restore(host);
}
}
static void msmsdcc_do_cmdirq(struct msmsdcc_host *host, uint32_t status)
{
struct mmc_command *cmd = host->curr.cmd;
host->curr.cmd = NULL;
cmd->resp[0] = readl_relaxed(host->base + MMCIRESPONSE0);
cmd->resp[1] = readl_relaxed(host->base + MMCIRESPONSE1);
cmd->resp[2] = readl_relaxed(host->base + MMCIRESPONSE2);
cmd->resp[3] = readl_relaxed(host->base + MMCIRESPONSE3);
if (status & (MCI_CMDTIMEOUT | MCI_AUTOCMD19TIMEOUT)) {
pr_debug("%s: Command timeout\n", mmc_hostname(host->mmc));
cmd->error = -ETIMEDOUT;
} else if ((status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) &&
!host->cmd19_tuning_in_progress) {
pr_err("%s: Command CRC error\n", mmc_hostname(host->mmc));
cmd->error = -EILSEQ;
}
if (!cmd->data || cmd->error) {
if (host->curr.data && host->dma.sg &&
host->is_dma_mode)
msm_dmov_stop_cmd(host->dma.channel,
&host->dma.hdr, 0);
else if (host->curr.data && host->sps.sg &&
host->is_sps_mode){
/* Stop current SPS transfer */
msmsdcc_sps_exit_curr_xfer(host);
}
else if (host->curr.data) { /* Non DMA */
msmsdcc_reset_and_restore(host);
msmsdcc_stop_data(host);
msmsdcc_request_end(host, cmd->mrq);
} else { /* host->data == NULL */
if (!cmd->error && host->prog_enable) {
if (status & MCI_PROGDONE) {
host->prog_scan = 0;
host->prog_enable = 0;
msmsdcc_request_end(host, cmd->mrq);
} else
host->curr.cmd = cmd;
} else {
if (host->prog_enable) {
host->prog_scan = 0;
host->prog_enable = 0;
}
if (host->dummy_52_needed)
host->dummy_52_needed = 0;
if (cmd->data && cmd->error)
msmsdcc_reset_and_restore(host);
msmsdcc_request_end(host, cmd->mrq);
}
}
} else if (cmd->data) {
if (!(cmd->data->flags & MMC_DATA_READ))
msmsdcc_start_data(host, cmd->data, NULL, 0);
}
}
static irqreturn_t
msmsdcc_irq(int irq, void *dev_id)
{
struct msmsdcc_host *host = dev_id;
u32 status;
int ret = 0;
int timer = 0;
spin_lock(&host->lock);
do {
struct mmc_command *cmd;
struct mmc_data *data;
if (timer) {
timer = 0;
msmsdcc_delay(host);
}
if (!host->clks_on) {
pr_debug("%s: %s: SDIO async irq received\n",
mmc_hostname(host->mmc), __func__);
host->mmc->ios.clock = host->clk_rate;
spin_unlock(&host->lock);
host->mmc->ops->set_ios(host->mmc, &host->mmc->ios);
spin_lock(&host->lock);
if (host->plat->cfg_mpm_sdiowakeup &&
(host->mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ))
wake_lock(&host->sdio_wlock);
/* only ansyc interrupt can come when clocks are off */
writel_relaxed(MCI_SDIOINTMASK, host->base + MMCICLEAR);
}
status = readl_relaxed(host->base + MMCISTATUS);
if (((readl_relaxed(host->base + MMCIMASK0) & status) &
(~(MCI_IRQ_PIO))) == 0)
break;
#if IRQ_DEBUG
msmsdcc_print_status(host, "irq0-r", status);
#endif
status &= readl_relaxed(host->base + MMCIMASK0);
writel_relaxed(status, host->base + MMCICLEAR);
mb();
#if IRQ_DEBUG
msmsdcc_print_status(host, "irq0-p", status);
#endif
#ifdef CONFIG_MMC_MSM_SDIO_SUPPORT
if (status & MCI_SDIOINTROPE) {
if (host->sdcc_suspending)
wake_lock(&host->sdio_suspend_wlock);
mmc_signal_sdio_irq(host->mmc);
}
#endif
data = host->curr.data;
if (host->dummy_52_sent) {
if (status & (MCI_PROGDONE | MCI_CMDCRCFAIL |
MCI_CMDTIMEOUT)) {
if (status & MCI_CMDTIMEOUT)
pr_debug("%s: dummy CMD52 timeout\n",
mmc_hostname(host->mmc));
if (status & MCI_CMDCRCFAIL)
pr_debug("%s: dummy CMD52 CRC failed\n",
mmc_hostname(host->mmc));
host->dummy_52_sent = 0;
host->dummy_52_needed = 0;
if (data) {
msmsdcc_stop_data(host);
msmsdcc_request_end(host, data->mrq);
}
WARN(!data, "No data cmd for dummy CMD52\n");
spin_unlock(&host->lock);
return IRQ_HANDLED;
}
break;
}
/*
* Check for proper command response
*/
cmd = host->curr.cmd;
if ((status & (MCI_CMDSENT | MCI_CMDRESPEND | MCI_CMDCRCFAIL |
MCI_CMDTIMEOUT | MCI_PROGDONE |
MCI_AUTOCMD19TIMEOUT)) && host->curr.cmd) {
msmsdcc_do_cmdirq(host, status);
}
if (data) {
/* Check for data errors */
if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|
MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
msmsdcc_data_err(host, data, status);
host->curr.data_xfered = 0;
if (host->dma.sg && host->is_dma_mode)
msm_dmov_stop_cmd(host->dma.channel,
&host->dma.hdr, 0);
else if (host->sps.sg && host->is_sps_mode) {
/* Stop current SPS transfer */
msmsdcc_sps_exit_curr_xfer(host);
}
else {
msmsdcc_reset_and_restore(host);
if (host->curr.data)
msmsdcc_stop_data(host);
if (!data->stop)
timer |=
msmsdcc_request_end(host,
data->mrq);
else {
msmsdcc_start_command(host,
data->stop,
0);
timer = 1;
}
}
}
/* Check for data done */
if (!host->curr.got_dataend && (status & MCI_DATAEND))
host->curr.got_dataend = 1;
if (host->curr.got_dataend) {
/*
* If DMA is still in progress, we complete
* via the completion handler
*/
if (!host->dma.busy && !host->sps.busy) {
/*
* There appears to be an issue in the
* controller where if you request a
* small block transfer (< fifo size),
* you may get your DATAEND/DATABLKEND
* irq without the PIO data irq.
*
* Check to see if theres still data
* to be read, and simulate a PIO irq.
*/
if (data->flags & MMC_DATA_READ)
msmsdcc_wait_for_rxdata(host,
data);
if (!data->error) {
host->curr.data_xfered =
host->curr.xfer_size;
host->curr.xfer_remain -=
host->curr.xfer_size;
}
if (!host->dummy_52_needed) {
msmsdcc_stop_data(host);
if (!data->stop) {
msmsdcc_request_end(
host,
data->mrq);
} else {
msmsdcc_start_command(
host,
data->stop, 0);
timer = 1;
}
} else {
host->dummy_52_sent = 1;
msmsdcc_start_command(host,
&dummy52cmd,
MCI_CPSM_PROGENA);
}
}
}
}
ret = 1;
} while (status);
spin_unlock(&host->lock);
return IRQ_RETVAL(ret);
}
static void
msmsdcc_request_start(struct msmsdcc_host *host, struct mmc_request *mrq)
{
if (mrq->data && mrq->data->flags & MMC_DATA_READ) {
/* Queue/read data, daisy-chain command when data starts */
msmsdcc_start_data(host, mrq->data, mrq->cmd, 0);
} else {
msmsdcc_start_command(host, mrq->cmd, 0);
}
}
static void
msmsdcc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct msmsdcc_host *host = mmc_priv(mmc);
unsigned long flags;
/*
* Get the SDIO AL client out of LPM.
*/
WARN(host->dummy_52_sent, "Dummy CMD52 in progress\n");
if (host->plat->is_sdio_al_client)
msmsdcc_sdio_al_lpm(mmc, false);
spin_lock_irqsave(&host->lock, flags);
WARN(host->curr.mrq, "Request in progress\n");
WARN(!host->pwr, "SDCC power is turned off\n");
WARN(!host->clks_on, "SDCC clocks are turned off\n");
WARN(host->sdcc_irq_disabled, "SDCC IRQ is disabled\n");
if (host->eject) {
if (mrq->data && !(mrq->data->flags & MMC_DATA_READ)) {
mrq->cmd->error = 0;
mrq->data->bytes_xfered = mrq->data->blksz *
mrq->data->blocks;
} else
mrq->cmd->error = -ENOMEDIUM;
spin_unlock_irqrestore(&host->lock, flags);
mmc_request_done(mmc, mrq);
return;
}
host->curr.mrq = mrq;
if (!host->plat->sdcc_v4_sup) {
if (mrq->data && mrq->data->flags == MMC_DATA_WRITE) {
if (mrq->cmd->opcode == SD_IO_RW_EXTENDED ||
mrq->cmd->opcode == 54) {
host->dummy_52_needed = 1;
}
}
}
msmsdcc_request_start(host, mrq);
spin_unlock_irqrestore(&host->lock, flags);
}
static inline int msmsdcc_vreg_set_voltage(struct msm_mmc_reg_data *vreg,
int min_uV, int max_uV)
{
int rc = 0;
if (vreg->set_voltage_sup) {
rc = regulator_set_voltage(vreg->reg, min_uV, max_uV);
if (rc) {
pr_err("%s: regulator_set_voltage(%s) failed."
" min_uV=%d, max_uV=%d, rc=%d\n",
__func__, vreg->name, min_uV, max_uV, rc);
}
}
return rc;
}
static inline int msmsdcc_vreg_set_optimum_mode(struct msm_mmc_reg_data *vreg,
int uA_load)
{
int rc = 0;
rc = regulator_set_optimum_mode(vreg->reg, uA_load);
if (rc < 0)
pr_err("%s: regulator_set_optimum_mode(reg=%s, uA_load=%d)"
" failed. rc=%d\n", __func__, vreg->name,
uA_load, rc);
else
/* regulator_set_optimum_mode() can return non zero value
* even for success case.
*/
rc = 0;
return rc;
}
static inline int msmsdcc_vreg_init_reg(struct msm_mmc_reg_data *vreg,
struct device *dev)
{
int rc = 0;
/* check if regulator is already initialized? */
if (vreg->reg)
goto out;
/* Get the regulator handle */
vreg->reg = regulator_get(dev, vreg->name);
if (IS_ERR(vreg->reg)) {
rc = PTR_ERR(vreg->reg);
pr_err("%s: regulator_get(%s) failed. rc=%d\n",
__func__, vreg->name, rc);
}
out:
return rc;
}
static inline void msmsdcc_vreg_deinit_reg(struct msm_mmc_reg_data *vreg)
{
if (vreg->reg)
regulator_put(vreg->reg);
}
/* This init function should be called only once for each SDCC slot */
static int msmsdcc_vreg_init(struct msmsdcc_host *host, bool is_init)
{
int rc = 0;
struct msm_mmc_slot_reg_data *curr_slot;
struct msm_mmc_reg_data *curr_vdd_reg, *curr_vccq_reg, *curr_vddp_reg;
struct device *dev = mmc_dev(host->mmc);
curr_slot = host->plat->vreg_data;
if (!curr_slot)
goto out;
curr_vdd_reg = curr_slot->vdd_data;
curr_vccq_reg = curr_slot->vccq_data;
curr_vddp_reg = curr_slot->vddp_data;
if (is_init) {
/*
* Get the regulator handle from voltage regulator framework
* and then try to set the voltage level for the regulator
*/
if (curr_vdd_reg) {
rc = msmsdcc_vreg_init_reg(curr_vdd_reg, dev);
if (rc)
goto out;
}
if (curr_vccq_reg) {
rc = msmsdcc_vreg_init_reg(curr_vccq_reg, dev);
if (rc)
goto vdd_reg_deinit;
}
if (curr_vddp_reg) {
rc = msmsdcc_vreg_init_reg(curr_vddp_reg, dev);
if (rc)
goto vccq_reg_deinit;
}
goto out;
} else {
/* Deregister all regulators from regulator framework */
goto vddp_reg_deinit;
}
vddp_reg_deinit:
if (curr_vddp_reg)
msmsdcc_vreg_deinit_reg(curr_vddp_reg);
vccq_reg_deinit:
if (curr_vccq_reg)
msmsdcc_vreg_deinit_reg(curr_vccq_reg);
vdd_reg_deinit:
if (curr_vdd_reg)
msmsdcc_vreg_deinit_reg(curr_vdd_reg);
out:
return rc;
}
static int msmsdcc_vreg_enable(struct msm_mmc_reg_data *vreg)
{
int rc = 0;
/* Put regulator in HPM (high power mode) */
rc = msmsdcc_vreg_set_optimum_mode(vreg, vreg->hpm_uA);
if (rc < 0)
goto out;
if (!vreg->is_enabled) {
/* Set voltage level */
rc = msmsdcc_vreg_set_voltage(vreg, vreg->high_vol_level,
vreg->high_vol_level);
if (rc)
goto out;
rc = regulator_enable(vreg->reg);
if (rc) {
pr_err("%s: regulator_enable(%s) failed. rc=%d\n",
__func__, vreg->name, rc);
goto out;
}
vreg->is_enabled = true;
}
out:
return rc;
}
static int msmsdcc_vreg_disable(struct msm_mmc_reg_data *vreg)
{
int rc = 0;
/* Never disable regulator marked as always_on */
if (vreg->is_enabled && !vreg->always_on) {
rc = regulator_disable(vreg->reg);
if (rc) {
pr_err("%s: regulator_disable(%s) failed. rc=%d\n",
__func__, vreg->name, rc);
goto out;
}
vreg->is_enabled = false;
rc = msmsdcc_vreg_set_optimum_mode(vreg, 0);
if (rc < 0)
goto out;
/* Set min. voltage level to 0 */
rc = msmsdcc_vreg_set_voltage(vreg, 0, vreg->high_vol_level);
if (rc)
goto out;
} else if (vreg->is_enabled && vreg->always_on && vreg->lpm_sup) {
/* Put always_on regulator in LPM (low power mode) */
rc = msmsdcc_vreg_set_optimum_mode(vreg, vreg->lpm_uA);
if (rc < 0)
goto out;
}
out:
return rc;
}
static int msmsdcc_setup_vreg(struct msmsdcc_host *host, bool enable)
{
int rc = 0, i;
struct msm_mmc_slot_reg_data *curr_slot;
struct msm_mmc_reg_data *curr_vdd_reg, *curr_vccq_reg, *curr_vddp_reg;
struct msm_mmc_reg_data *vreg_table[3];
curr_slot = host->plat->vreg_data;
if (!curr_slot)
goto out;
curr_vdd_reg = vreg_table[0] = curr_slot->vdd_data;
curr_vccq_reg = vreg_table[1] = curr_slot->vccq_data;
curr_vddp_reg = vreg_table[2] = curr_slot->vddp_data;
for (i = 0; i < ARRAY_SIZE(vreg_table); i++) {
if (vreg_table[i]) {
if (enable)
rc = msmsdcc_vreg_enable(vreg_table[i]);
else
rc = msmsdcc_vreg_disable(vreg_table[i]);
if (rc)
goto out;
}
}
out:
return rc;
}
static int msmsdcc_set_vddp_level(struct msmsdcc_host *host, int level)
{
int rc = 0;
if (host->plat->vreg_data) {
struct msm_mmc_reg_data *vddp_reg =
host->plat->vreg_data->vddp_data;
if (vddp_reg && vddp_reg->is_enabled)
rc = msmsdcc_vreg_set_voltage(vddp_reg, level, level);
}
return rc;
}
static inline int msmsdcc_set_vddp_low_vol(struct msmsdcc_host *host)
{
struct msm_mmc_slot_reg_data *curr_slot = host->plat->vreg_data;
int rc = 0;
if (curr_slot && curr_slot->vddp_data) {
rc = msmsdcc_set_vddp_level(host,
curr_slot->vddp_data->low_vol_level);
if (rc)
pr_err("%s: %s: failed to change vddp level to %d",
mmc_hostname(host->mmc), __func__,
curr_slot->vddp_data->low_vol_level);
}
return rc;
}
static inline int msmsdcc_set_vddp_high_vol(struct msmsdcc_host *host)
{
struct msm_mmc_slot_reg_data *curr_slot = host->plat->vreg_data;
int rc = 0;
if (curr_slot && curr_slot->vddp_data) {
rc = msmsdcc_set_vddp_level(host,
curr_slot->vddp_data->high_vol_level);
if (rc)
pr_err("%s: %s: failed to change vddp level to %d",
mmc_hostname(host->mmc), __func__,
curr_slot->vddp_data->high_vol_level);
}
return rc;
}
static inline int msmsdcc_is_pwrsave(struct msmsdcc_host *host)
{
if (host->clk_rate > 400000 && msmsdcc_pwrsave)
return 1;
return 0;
}
static inline void msmsdcc_setup_clocks(struct msmsdcc_host *host, bool enable)
{
if (enable) {
if (!IS_ERR_OR_NULL(host->dfab_pclk))
clk_enable(host->dfab_pclk);
if (!IS_ERR(host->pclk))
clk_enable(host->pclk);
clk_enable(host->clk);
} else {
clk_disable(host->clk);
if (!IS_ERR(host->pclk))
clk_disable(host->pclk);
if (!IS_ERR_OR_NULL(host->dfab_pclk))
clk_disable(host->dfab_pclk);
}
}
static inline unsigned int msmsdcc_get_sup_clk_rate(struct msmsdcc_host *host,
unsigned int req_clk)
{
unsigned int sel_clk = -1;
if (host->plat->sup_clk_table && host->plat->sup_clk_cnt) {
unsigned char cnt;
for (cnt = 0; cnt < host->plat->sup_clk_cnt; cnt++) {
if (host->plat->sup_clk_table[cnt] > req_clk)
break;
else if (host->plat->sup_clk_table[cnt] == req_clk) {
sel_clk = host->plat->sup_clk_table[cnt];
break;
} else
sel_clk = host->plat->sup_clk_table[cnt];
}
} else {
if ((req_clk < host->plat->msmsdcc_fmax) &&
(req_clk > host->plat->msmsdcc_fmid))
sel_clk = host->plat->msmsdcc_fmid;
else
sel_clk = req_clk;
}
return sel_clk;
}
static inline unsigned int msmsdcc_get_min_sup_clk_rate(
struct msmsdcc_host *host)
{
if (host->plat->sup_clk_table && host->plat->sup_clk_cnt)
return host->plat->sup_clk_table[0];
else
return host->plat->msmsdcc_fmin;
}
static inline unsigned int msmsdcc_get_max_sup_clk_rate(
struct msmsdcc_host *host)
{
if (host->plat->sup_clk_table && host->plat->sup_clk_cnt)
return host->plat->sup_clk_table[host->plat->sup_clk_cnt - 1];
else
return host->plat->msmsdcc_fmax;
}
static int msmsdcc_setup_gpio(struct msmsdcc_host *host, bool enable)
{
struct msm_mmc_gpio_data *curr;
int i, rc = 0;
curr = host->plat->pin_data->gpio_data;
for (i = 0; i < curr->size; i++) {
if (enable) {
if (curr->gpio[i].is_always_on &&
curr->gpio[i].is_enabled)
continue;
rc = gpio_request(curr->gpio[i].no,
curr->gpio[i].name);
if (rc) {
pr_err("%s: gpio_request(%d, %s) failed %d\n",
mmc_hostname(host->mmc),
curr->gpio[i].no,
curr->gpio[i].name, rc);
goto free_gpios;
}
curr->gpio[i].is_enabled = true;
} else {
if (curr->gpio[i].is_always_on)
continue;
gpio_free(curr->gpio[i].no);
curr->gpio[i].is_enabled = false;
}
}
goto out;
free_gpios:
for (; i >= 0; i--) {
gpio_free(curr->gpio[i].no);
curr->gpio[i].is_enabled = false;
}
out:
return rc;
}
static int msmsdcc_setup_pad(struct msmsdcc_host *host, bool enable)
{
struct msm_mmc_pad_data *curr;
int i;
curr = host->plat->pin_data->pad_data;
for (i = 0; i < curr->drv->size; i++) {
if (enable)
msm_tlmm_set_hdrive(curr->drv->on[i].no,
curr->drv->on[i].val);
else
msm_tlmm_set_hdrive(curr->drv->off[i].no,
curr->drv->off[i].val);
}
for (i = 0; i < curr->pull->size; i++) {
if (enable)
msm_tlmm_set_hdrive(curr->pull->on[i].no,
curr->pull->on[i].val);
else
msm_tlmm_set_hdrive(curr->pull->off[i].no,
curr->pull->off[i].val);
}
return 0;
}
static u32 msmsdcc_setup_pins(struct msmsdcc_host *host, bool enable)
{
int rc = 0;
if (!host->plat->pin_data || host->plat->pin_data->cfg_sts == enable)
return 0;
if (host->plat->pin_data->is_gpio)
rc = msmsdcc_setup_gpio(host, enable);
else
rc = msmsdcc_setup_pad(host, enable);
if (!rc)
host->plat->pin_data->cfg_sts = enable;
return rc;
}
static void msmsdcc_enable_irq_wake(struct msmsdcc_host *host)
{
unsigned int wakeup_irq;
wakeup_irq = (host->plat->sdiowakeup_irq) ?
host->plat->sdiowakeup_irq :
host->core_irqres->start;
if (!host->irq_wake_enabled) {
enable_irq_wake(wakeup_irq);
host->irq_wake_enabled = true;
}
}
static void msmsdcc_disable_irq_wake(struct msmsdcc_host *host)
{
unsigned int wakeup_irq;
wakeup_irq = (host->plat->sdiowakeup_irq) ?
host->plat->sdiowakeup_irq :
host->core_irqres->start;
if (host->irq_wake_enabled) {
disable_irq_wake(wakeup_irq);
host->irq_wake_enabled = false;
}
}
static void
msmsdcc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct msmsdcc_host *host = mmc_priv(mmc);
u32 clk = 0, pwr = 0;
int rc;
unsigned long flags;
unsigned int clock;
DBG(host, "ios->clock = %u\n", ios->clock);
if (ios->clock) {
spin_lock_irqsave(&host->lock, flags);
if (!host->clks_on) {
msmsdcc_setup_clocks(host, true);
host->clks_on = 1;
if (mmc->card && mmc->card->type == MMC_TYPE_SDIO) {
if (!host->plat->sdiowakeup_irq) {
writel_relaxed(host->mci_irqenable,
host->base + MMCIMASK0);
mb();
if (host->plat->cfg_mpm_sdiowakeup &&
(mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ))
host->plat->cfg_mpm_sdiowakeup(
mmc_dev(mmc), SDC_DAT1_DISWAKE);
msmsdcc_disable_irq_wake(host);
} else if (!(mmc->pm_flags &
MMC_PM_WAKE_SDIO_IRQ)) {
writel_relaxed(host->mci_irqenable,
host->base + MMCIMASK0);
}
}
}
spin_unlock_irqrestore(&host->lock, flags);
clock = msmsdcc_get_sup_clk_rate(host, ios->clock);
/*
* For DDR50 mode, controller needs clock rate to be
* double than what is required on the SD card CLK pin.
*/
if (ios->ddr || (ios->timing == MMC_TIMING_UHS_DDR50)) {
/*
* Make sure that we don't double the clock if
* doubled clock rate is already set
*/
if (!host->ddr_doubled_clk_rate ||
(host->ddr_doubled_clk_rate &&
(host->ddr_doubled_clk_rate != ios->clock))) {
host->ddr_doubled_clk_rate =
msmsdcc_get_sup_clk_rate(
host, (ios->clock * 2));
clock = host->ddr_doubled_clk_rate;
}
} else {
host->ddr_doubled_clk_rate = 0;
}
if (clock != host->clk_rate) {
rc = clk_set_rate(host->clk, clock);
if (rc < 0)
pr_debug("%s: failed to set clk rate %u\n",
mmc_hostname(mmc), clock);
host->clk_rate = clock;
}
/*
* give atleast 2 MCLK cycles delay for clocks
* and SDCC core to stabilize
*/
msmsdcc_delay(host);
clk |= MCI_CLK_ENABLE;
}
if (ios->bus_width == MMC_BUS_WIDTH_8)
clk |= MCI_CLK_WIDEBUS_8;
else if (ios->bus_width == MMC_BUS_WIDTH_4)
clk |= MCI_CLK_WIDEBUS_4;
else
clk |= MCI_CLK_WIDEBUS_1;
if (msmsdcc_is_pwrsave(host))
clk |= MCI_CLK_PWRSAVE;
clk |= MCI_CLK_FLOWENA;
host->tuning_needed = 0;
/*
* Select the controller timing mode according
* to current bus speed mode
*/
if ((ios->timing == MMC_TIMING_UHS_SDR104) ||
(ios->timing == MMC_TIMING_UHS_SDR50)) {
clk |= (4 << 14);
host->tuning_needed = 1;
} else if (ios->ddr || ios->timing == MMC_TIMING_UHS_DDR50) {
clk |= (3 << 14);
} else {
clk |= (2 << 14); /* feedback clock */
}
/* Select free running MCLK as input clock of cm_dll_sdc4 */
clk |= (2 << 23);
if (host->io_pad_pwr_switch)
clk |= IO_PAD_PWR_SWITCH;
if (host->plat->translate_vdd && !host->sdio_gpio_lpm)
pwr |= host->plat->translate_vdd(mmc_dev(mmc), ios->vdd);
else if (!host->plat->translate_vdd && !host->sdio_gpio_lpm)
pwr |= msmsdcc_setup_vreg(host, !!ios->vdd);
switch (ios->power_mode) {
case MMC_POWER_OFF:
htc_pwrsink_set(PWRSINK_SDCARD, 0);
if (!host->sdcc_irq_disabled) {
if (host->plat->cfg_mpm_sdiowakeup)
host->plat->cfg_mpm_sdiowakeup(
mmc_dev(mmc), SDC_DAT1_DISABLE);
disable_irq(host->core_irqres->start);
host->sdcc_irq_disabled = 1;
}
/*
* As VDD pad rail is always on, set low voltage for VDD
* pad rail when slot is unused (when card is not present
* or during system suspend).
*/
msmsdcc_set_vddp_low_vol(host);
msmsdcc_setup_pins(host, false);
break;
case MMC_POWER_UP:
pwr |= MCI_PWR_UP;
if (host->sdcc_irq_disabled) {
if (host->plat->cfg_mpm_sdiowakeup)
host->plat->cfg_mpm_sdiowakeup(
mmc_dev(mmc), SDC_DAT1_ENABLE);
enable_irq(host->core_irqres->start);
host->sdcc_irq_disabled = 0;
}
msmsdcc_set_vddp_high_vol(host);
msmsdcc_setup_pins(host, true);
break;
case MMC_POWER_ON:
htc_pwrsink_set(PWRSINK_SDCARD, 100);
pwr |= MCI_PWR_ON;
break;
}
spin_lock_irqsave(&host->lock, flags);
if (!host->clks_on) {
/* force the clocks to be on */
msmsdcc_setup_clocks(host, true);
/*
* give atleast 2 MCLK cycles delay for clocks
* and SDCC core to stabilize
*/
msmsdcc_delay(host);
}
writel_relaxed(clk, host->base + MMCICLOCK);
msmsdcc_delay(host);
if (host->pwr != pwr) {
host->pwr = pwr;
writel_relaxed(pwr, host->base + MMCIPOWER);
mb();
}
if (!host->clks_on) {
/* force the clocks to be off */
msmsdcc_setup_clocks(host, false);
/*
* give atleast 2 MCLK cycles delay for clocks
* and SDCC core to stabilize
*/
msmsdcc_delay(host);
}
if (!(clk & MCI_CLK_ENABLE) && host->clks_on) {
if (mmc->card && mmc->card->type == MMC_TYPE_SDIO) {
if (!host->plat->sdiowakeup_irq) {
writel_relaxed(MCI_SDIOINTMASK,
host->base + MMCIMASK0);
mb();
if (host->plat->cfg_mpm_sdiowakeup &&
(mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ))
host->plat->cfg_mpm_sdiowakeup(
mmc_dev(mmc), SDC_DAT1_ENWAKE);
msmsdcc_enable_irq_wake(host);
} else if (mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ) {
writel_relaxed(0, host->base + MMCIMASK0);
} else {
writel_relaxed(MCI_SDIOINTMASK,
host->base + MMCIMASK0);
}
msmsdcc_delay(host);
}
msmsdcc_setup_clocks(host, false);
host->clks_on = 0;
}
spin_unlock_irqrestore(&host->lock, flags);
}
int msmsdcc_set_pwrsave(struct mmc_host *mmc, int pwrsave)
{
struct msmsdcc_host *host = mmc_priv(mmc);
u32 clk;
clk = readl_relaxed(host->base + MMCICLOCK);
pr_debug("Changing to pwr_save=%d", pwrsave);
if (pwrsave && msmsdcc_is_pwrsave(host))
clk |= MCI_CLK_PWRSAVE;
else
clk &= ~MCI_CLK_PWRSAVE;
writel_relaxed(clk, host->base + MMCICLOCK);
mb();
return 0;
}
static int msmsdcc_get_ro(struct mmc_host *mmc)
{
int status = -ENOSYS;
struct msmsdcc_host *host = mmc_priv(mmc);
if (host->plat->wpswitch) {
status = host->plat->wpswitch(mmc_dev(mmc));
} else if (host->plat->wpswitch_gpio) {
status = gpio_request(host->plat->wpswitch_gpio,
"SD_WP_Switch");
if (status) {
pr_err("%s: %s: Failed to request GPIO %d\n",
mmc_hostname(mmc), __func__,
host->plat->wpswitch_gpio);
} else {
status = gpio_direction_input(
host->plat->wpswitch_gpio);
if (!status) {
/*
* Wait for atleast 300ms as debounce
* time for GPIO input to stabilize.
*/
msleep(300);
status = gpio_get_value_cansleep(
host->plat->wpswitch_gpio);
status ^= !host->plat->wpswitch_polarity;
}
gpio_free(host->plat->wpswitch_gpio);
}
}
if (status < 0)
status = -ENOSYS;
pr_debug("%s: Card read-only status %d\n", __func__, status);
return status;
}
#ifdef CONFIG_MMC_MSM_SDIO_SUPPORT
static void msmsdcc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct msmsdcc_host *host = mmc_priv(mmc);
unsigned long flags;
if (enable) {
spin_lock_irqsave(&host->lock, flags);
host->mci_irqenable |= MCI_SDIOINTOPERMASK;
writel_relaxed(readl_relaxed(host->base + MMCIMASK0) |
MCI_SDIOINTOPERMASK, host->base + MMCIMASK0);
spin_unlock_irqrestore(&host->lock, flags);
} else {
host->mci_irqenable &= ~MCI_SDIOINTOPERMASK;
writel_relaxed(readl_relaxed(host->base + MMCIMASK0) &
~MCI_SDIOINTOPERMASK, host->base + MMCIMASK0);
}
mb();
}
#endif /* CONFIG_MMC_MSM_SDIO_SUPPORT */
#ifdef CONFIG_PM_RUNTIME
static int msmsdcc_enable(struct mmc_host *mmc)
{
int rc = 0;
struct device *dev = mmc->parent;
if (pm_runtime_suspended(dev))
rc = pm_runtime_get_sync(dev);
else
pm_runtime_get_noresume(dev);
if (rc < 0)
pr_info("%s: %s: failed with error %d", mmc_hostname(mmc),
__func__, rc);
return rc;
}
static int msmsdcc_disable(struct mmc_host *mmc, int lazy)
{
int rc;
if (mmc->card && mmc->card->type == MMC_TYPE_SDIO)
return -ENOTSUPP;
rc = pm_runtime_put_sync(mmc->parent);
if (rc < 0)
pr_info("%s: %s: failed with error %d", mmc_hostname(mmc),
__func__, rc);
return rc;
}
#else
#define msmsdcc_enable NULL
#define msmsdcc_disable NULL
#endif
static int msmsdcc_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct msmsdcc_host *host = mmc_priv(mmc);
unsigned long flags;
int rc = 0;
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
/* Change voltage level of VDDPX to high voltage */
rc = msmsdcc_set_vddp_high_vol(host);
goto out;
} else if (ios->signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
/* invalid selection. don't do anything */
rc = -EINVAL;
goto out;
}
spin_lock_irqsave(&host->lock, flags);
/*
* If we are here means voltage switch from high voltage to
* low voltage is required
*/
/*
* Poll on MCIDATIN_3_0 and MCICMDIN bits of MCI_TEST_INPUT
* register until they become all zeros.
*/
if (readl_relaxed(host->base + MCI_TEST_INPUT) & (0xF << 1)) {
rc = -EAGAIN;
pr_err("%s: %s: MCIDATIN_3_0 is still not all zeros",
mmc_hostname(mmc), __func__);
goto out_unlock;
}
/* Stop SD CLK output. */
writel_relaxed((readl_relaxed(host->base + MMCICLOCK) |
MCI_CLK_PWRSAVE), host->base + MMCICLOCK);
spin_unlock_irqrestore(&host->lock, flags);
/*
* Switch VDDPX from high voltage to low voltage
* to change the VDD of the SD IO pads.
*/
rc = msmsdcc_set_vddp_low_vol(host);
if (rc)
goto out;
spin_lock_irqsave(&host->lock, flags);
writel_relaxed((readl_relaxed(host->base + MMCICLOCK) |
IO_PAD_PWR_SWITCH), host->base + MMCICLOCK);
host->io_pad_pwr_switch = 1;
spin_unlock_irqrestore(&host->lock, flags);
/* Wait 5 ms for the voltage regulater in the card to become stable. */
usleep_range(5000, 5500);
spin_lock_irqsave(&host->lock, flags);
/* Start SD CLK output. */
writel_relaxed((readl_relaxed(host->base + MMCICLOCK)
& ~MCI_CLK_PWRSAVE), host->base + MMCICLOCK);
spin_unlock_irqrestore(&host->lock, flags);
/*
* If MCIDATIN_3_0 and MCICMDIN bits of MCI_TEST_INPUT register
* don't become all ones within 1 ms then a Voltage Switch
* sequence has failed and a power cycle to the card is required.
* Otherwise Voltage Switch sequence is completed successfully.
*/
usleep_range(1000, 1500);
spin_lock_irqsave(&host->lock, flags);
if ((readl_relaxed(host->base + MCI_TEST_INPUT) & (0xF << 1))
!= (0xF << 1)) {
pr_err("%s: %s: MCIDATIN_3_0 are still not all ones",
mmc_hostname(mmc), __func__);
rc = -EAGAIN;
goto out_unlock;
}
out_unlock:
spin_unlock_irqrestore(&host->lock, flags);
out:
return rc;
}
static int msmsdcc_config_cm_sdc4_dll_phase(struct msmsdcc_host *host,
u8 phase);
/* Initialize the DLL (Programmable Delay Line ) */
static int msmsdcc_init_cm_sdc4_dll(struct msmsdcc_host *host)
{
int rc = 0;
u32 wait_timeout;
/* Write 0 to DLL_PDN bit of MCI_DLL_CONFIG register */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
& ~MCI_DLL_PDN), host->base + MCI_DLL_CONFIG);
/* Write 1 to DLL_RST bit of MCI_DLL_CONFIG register */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
| MCI_DLL_RST), host->base + MCI_DLL_CONFIG);
msmsdcc_delay(host);
/* Write 0 to DLL_RST bit of MCI_DLL_CONFIG register */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
& ~MCI_DLL_RST), host->base + MCI_DLL_CONFIG);
/* Initialize the phase to 0 */
rc = msmsdcc_config_cm_sdc4_dll_phase(host, 0);
if (rc)
goto out;
wait_timeout = 1000;
/* Wait until DLL_LOCK bit of MCI_DLL_STATUS register becomes '1' */
while (!(readl_relaxed(host->base + MCI_DLL_STATUS) & MCI_DLL_LOCK)) {
/* max. wait for 1 sec for LOCK bit to be set */
if (--wait_timeout == 0) {
pr_err("%s: %s: DLL failed to lock at phase: %d",
mmc_hostname(host->mmc), __func__, 0);
rc = -1;
goto out;
}
/* wait for 1ms */
usleep_range(1000, 1500);
}
out:
return rc;
}
/*
* Enable a CDR circuit in CM_SDC4_DLL block to enable automatic
* calibration sequence. This function should be called before
* enabling AUTO_CMD19 bit in MCI_CMD register for block read
* commands (CMD17/CMD18).
*/
static void msmsdcc_enable_cdr_cm_sdc4_dll(struct msmsdcc_host *host)
{
/* Set CDR_EN bit to 1. */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG) |
MCI_CDR_EN), host->base + MCI_DLL_CONFIG);
/* Set CDR_EXT_EN bit to 0. */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
& ~MCI_CDR_EXT_EN), host->base + MCI_DLL_CONFIG);
/* Set CK_OUT_EN bit to 0. */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
& ~MCI_CK_OUT_EN), host->base + MCI_DLL_CONFIG);
/* Wait until CK_OUT_EN bit of MCI_DLL_CONFIG register becomes '0' */
while (readl_relaxed(host->base + MCI_DLL_CONFIG) & MCI_CK_OUT_EN)
;
/* Set CK_OUT_EN bit of MCI_DLL_CONFIG register to 1. */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
| MCI_CK_OUT_EN), host->base + MCI_DLL_CONFIG);
/* Wait until CK_OUT_EN bit of MCI_DLL_CONFIG register is 1. */
while (!(readl_relaxed(host->base + MCI_DLL_CONFIG) & MCI_CK_OUT_EN))
;
}
static int msmsdcc_config_cm_sdc4_dll_phase(struct msmsdcc_host *host,
u8 phase)
{
int rc = 0;
u32 mclk_freq = 0;
u32 wait_timeout;
/* Set CDR_EN bit to 0. */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
& ~MCI_CDR_EN), host->base + MCI_DLL_CONFIG);
/* Set CDR_EXT_EN bit to 1. */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
| MCI_CDR_EXT_EN), host->base + MCI_DLL_CONFIG);
/* Program the MCLK value to MCLK_FREQ bit field */
if (host->clk_rate <= 112000000)
mclk_freq = 0;
else if (host->clk_rate <= 125000000)
mclk_freq = 1;
else if (host->clk_rate <= 137000000)
mclk_freq = 2;
else if (host->clk_rate <= 150000000)
mclk_freq = 3;
else if (host->clk_rate <= 162000000)
mclk_freq = 4;
else if (host->clk_rate <= 175000000)
mclk_freq = 5;
else if (host->clk_rate <= 187000000)
mclk_freq = 6;
else if (host->clk_rate <= 200000000)
mclk_freq = 7;
writel_relaxed(((readl_relaxed(host->base + MCI_DLL_CONFIG)
& ~(7 << 24)) | (mclk_freq << 24)),
host->base + MCI_DLL_CONFIG);
/* Set CK_OUT_EN bit to 0. */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
& ~MCI_CK_OUT_EN), host->base + MCI_DLL_CONFIG);
/* Set DLL_EN bit to 1. */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
| MCI_DLL_EN), host->base + MCI_DLL_CONFIG);
wait_timeout = 1000;
/* Wait until CK_OUT_EN bit of MCI_DLL_CONFIG register becomes '0' */
while (readl_relaxed(host->base + MCI_DLL_CONFIG) & MCI_CK_OUT_EN) {
/* max. wait for 1 sec for LOCK bit for be set */
if (--wait_timeout == 0) {
pr_err("%s: %s: Failed to set DLL phase: %d, CK_OUT_EN bit is not 0",
mmc_hostname(host->mmc), __func__, phase);
rc = -1;
goto out;
}
/* wait for 1ms */
usleep_range(1000, 1500);
}
/*
* Write the selected DLL clock output phase (0 ... 15)
* to CDR_SELEXT bit field of MCI_DLL_CONFIG register.
*/
writel_relaxed(((readl_relaxed(host->base + MCI_DLL_CONFIG)
& ~(0xF << 20)) | (phase << 20)),
host->base + MCI_DLL_CONFIG);
/* Set CK_OUT_EN bit of MCI_DLL_CONFIG register to 1. */
writel_relaxed((readl_relaxed(host->base + MCI_DLL_CONFIG)
| MCI_CK_OUT_EN), host->base + MCI_DLL_CONFIG);
wait_timeout = 1000;
/* Wait until CK_OUT_EN bit of MCI_DLL_CONFIG register becomes '1' */
while (!(readl_relaxed(host->base + MCI_DLL_CONFIG) & MCI_CK_OUT_EN)) {
/* max. wait for 1 sec for LOCK bit for be set */
if (--wait_timeout == 0) {
pr_err("%s: %s: Failed to set DLL phase: %d, CK_OUT_EN bit is not 1",
mmc_hostname(host->mmc), __func__, phase);
rc = -1;
goto out;
}
/* wait for 1ms */
usleep_range(1000, 1500);
}
out:
return rc;
}
static int msmsdcc_execute_tuning(struct mmc_host *mmc)
{
struct msmsdcc_host *host = mmc_priv(mmc);
u8 phase;
u8 *data_buf;
u8 tuned_phases[16], tuned_phase_cnt = 0;
int rc = 0;
/* Tuning is only required for SDR50 & SDR104 modes */
if (!host->tuning_needed) {
rc = 0;
goto out;
}
host->cmd19_tuning_in_progress = 1;
/*
* Make sure that clock is always enabled when DLL
* tuning is in progress. Keeping PWRSAVE ON may
* turn off the clock. So let's disable the PWRSAVE
* here and re-enable it once tuning is completed.
*/
writel_relaxed((readl_relaxed(host->base + MMCICLOCK)
& ~MCI_CLK_PWRSAVE), host->base + MMCICLOCK);
/* first of all reset the tuning block */
rc = msmsdcc_init_cm_sdc4_dll(host);
if (rc)
goto out;
data_buf = kmalloc(64, GFP_KERNEL);
if (!data_buf) {
rc = -ENOMEM;
goto out;
}
phase = 0;
do {
struct mmc_command cmd = {0};
struct mmc_data data = {0};
struct mmc_request mrq = {
.cmd = &cmd,
.data = &data
};
struct scatterlist sg;
/* set the phase in delay line hw block */
rc = msmsdcc_config_cm_sdc4_dll_phase(host, phase);
if (rc)
goto kfree;
cmd.opcode = MMC_SEND_TUNING_BLOCK;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
data.blksz = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
data.timeout_ns = 1000 * 1000 * 1000; /* 1 sec */
data.sg = &sg;
data.sg_len = 1;
sg_init_one(&sg, data_buf, 64);
memset(data_buf, 0, 64);
mmc_wait_for_req(mmc, &mrq);
if (!cmd.error && !data.error &&
!memcmp(data_buf, cmd19_tuning_block, 64)) {
/* tuning is successful with this tuning point */
tuned_phases[tuned_phase_cnt++] = phase;
}
} while (++phase < 16);
kfree(data_buf);
if (tuned_phase_cnt) {
tuned_phase_cnt--;
tuned_phase_cnt = (tuned_phase_cnt * 3) / 4;
phase = tuned_phases[tuned_phase_cnt];
/*
* Finally set the selected phase in delay
* line hw block.
*/
rc = msmsdcc_config_cm_sdc4_dll_phase(host, phase);
if (rc)
goto out;
} else {
/* tuning failed */
rc = -EAGAIN;
pr_err("%s: %s: no tuning point found",
mmc_hostname(mmc), __func__);
}
goto out;
kfree:
kfree(data_buf);
out:
/* re-enable PWESAVE */
writel_relaxed((readl_relaxed(host->base + MMCICLOCK) |
MCI_CLK_PWRSAVE), host->base + MMCICLOCK);
host->cmd19_tuning_in_progress = 0;
return rc;
}
static const struct mmc_host_ops msmsdcc_ops = {
.enable = msmsdcc_enable,
.disable = msmsdcc_disable,
.request = msmsdcc_request,
.set_ios = msmsdcc_set_ios,
.get_ro = msmsdcc_get_ro,
#ifdef CONFIG_MMC_MSM_SDIO_SUPPORT
.enable_sdio_irq = msmsdcc_enable_sdio_irq,
#endif
.start_signal_voltage_switch = msmsdcc_start_signal_voltage_switch,
.execute_tuning = msmsdcc_execute_tuning
};
static unsigned int
msmsdcc_slot_status(struct msmsdcc_host *host)
{
int status;
unsigned int gpio_no = host->plat->status_gpio;
status = gpio_request(gpio_no, "SD_HW_Detect");
if (status) {
pr_err("%s: %s: Failed to request GPIO %d\n",
mmc_hostname(host->mmc), __func__, gpio_no);
} else {
status = gpio_direction_input(gpio_no);
if (!status)
status = !gpio_get_value_cansleep(gpio_no);
gpio_free(gpio_no);
}
return status;
}
static void
msmsdcc_check_status(unsigned long data)
{
struct msmsdcc_host *host = (struct msmsdcc_host *)data;
unsigned int status;
if (host->plat->status || host->plat->status_gpio) {
if (host->plat->status)
status = host->plat->status(mmc_dev(host->mmc));
else
status = msmsdcc_slot_status(host);
host->eject = !status;
if (status ^ host->oldstat) {
pr_info("%s: Slot status change detected (%d -> %d)\n",
mmc_hostname(host->mmc), host->oldstat, status);
mmc_detect_change(host->mmc, 0);
}
host->oldstat = status;
} else {
mmc_detect_change(host->mmc, 0);
}
}
static irqreturn_t
msmsdcc_platform_status_irq(int irq, void *dev_id)
{
struct msmsdcc_host *host = dev_id;
pr_debug("%s: %d\n", __func__, irq);
msmsdcc_check_status((unsigned long) host);
return IRQ_HANDLED;
}
static irqreturn_t
msmsdcc_platform_sdiowakeup_irq(int irq, void *dev_id)
{
struct msmsdcc_host *host = dev_id;
pr_debug("%s: SDIO Wake up IRQ : %d\n", mmc_hostname(host->mmc), irq);
spin_lock(&host->lock);
if (!host->sdio_irq_disabled) {
disable_irq_nosync(irq);
if (host->mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ) {
wake_lock(&host->sdio_wlock);
msmsdcc_disable_irq_wake(host);
}
host->sdio_irq_disabled = 1;
}
if (host->plat->is_sdio_al_client) {
if (!host->clks_on) {
msmsdcc_setup_clocks(host, true);
host->clks_on = 1;
}
if (host->sdcc_irq_disabled) {
writel_relaxed(host->mci_irqenable,
host->base + MMCIMASK0);
mb();
enable_irq(host->core_irqres->start);
host->sdcc_irq_disabled = 0;
}
wake_lock(&host->sdio_wlock);
}
spin_unlock(&host->lock);
return IRQ_HANDLED;
}
static void
msmsdcc_status_notify_cb(int card_present, void *dev_id)
{
struct msmsdcc_host *host = dev_id;
pr_debug("%s: card_present %d\n", mmc_hostname(host->mmc),
card_present);
msmsdcc_check_status((unsigned long) host);
}
static int
msmsdcc_init_dma(struct msmsdcc_host *host)
{
memset(&host->dma, 0, sizeof(struct msmsdcc_dma_data));
host->dma.host = host;
host->dma.channel = -1;
host->dma.crci = -1;
if (!host->dmares)
return -ENODEV;
host->dma.nc = dma_alloc_coherent(NULL,
sizeof(struct msmsdcc_nc_dmadata),
&host->dma.nc_busaddr,
GFP_KERNEL);
if (host->dma.nc == NULL) {
pr_err("Unable to allocate DMA buffer\n");
return -ENOMEM;
}
memset(host->dma.nc, 0x00, sizeof(struct msmsdcc_nc_dmadata));
host->dma.cmd_busaddr = host->dma.nc_busaddr;
host->dma.cmdptr_busaddr = host->dma.nc_busaddr +
offsetof(struct msmsdcc_nc_dmadata, cmdptr);
host->dma.channel = host->dmares->start;
host->dma.crci = host->dma_crci_res->start;
return 0;
}
#ifdef CONFIG_MMC_MSM_SPS_SUPPORT
/**
* Allocate and Connect a SDCC peripheral's SPS endpoint
*
* This function allocates endpoint context and
* connect it with memory endpoint by calling
* appropriate SPS driver APIs.
*
* Also registers a SPS callback function with
* SPS driver
*
* This function should only be called once typically
* during driver probe.
*
* @host - Pointer to sdcc host structure
* @ep - Pointer to sps endpoint data structure
* @is_produce - 1 means Producer endpoint
* 0 means Consumer endpoint
*
* @return - 0 if successful else negative value.
*
*/
static int msmsdcc_sps_init_ep_conn(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep,
bool is_producer)
{
int rc = 0;
struct sps_pipe *sps_pipe_handle;
struct sps_connect *sps_config = &ep->config;
struct sps_register_event *sps_event = &ep->event;
/* Allocate endpoint context */
sps_pipe_handle = sps_alloc_endpoint();
if (!sps_pipe_handle) {
pr_err("%s: sps_alloc_endpoint() failed!!! is_producer=%d",
mmc_hostname(host->mmc), is_producer);
rc = -ENOMEM;
goto out;
}
/* Get default connection configuration for an endpoint */
rc = sps_get_config(sps_pipe_handle, sps_config);
if (rc) {
pr_err("%s: sps_get_config() failed!!! pipe_handle=0x%x,"
" rc=%d", mmc_hostname(host->mmc),
(u32)sps_pipe_handle, rc);
goto get_config_err;
}
/* Modify the default connection configuration */
if (is_producer) {
/*
* For SDCC producer transfer, source should be
* SDCC peripheral where as destination should
* be system memory.
*/
sps_config->source = host->sps.bam_handle;
sps_config->destination = SPS_DEV_HANDLE_MEM;
/* Producer pipe will handle this connection */
sps_config->mode = SPS_MODE_SRC;
sps_config->options =
SPS_O_AUTO_ENABLE | SPS_O_EOT | SPS_O_ACK_TRANSFERS;
} else {
/*
* For SDCC consumer transfer, source should be
* system memory where as destination should
* SDCC peripheral
*/
sps_config->source = SPS_DEV_HANDLE_MEM;
sps_config->destination = host->sps.bam_handle;
sps_config->mode = SPS_MODE_DEST;
sps_config->options =
SPS_O_AUTO_ENABLE | SPS_O_EOT | SPS_O_ACK_TRANSFERS;
}
/* Producer pipe index */
sps_config->src_pipe_index = host->sps.src_pipe_index;
/* Consumer pipe index */
sps_config->dest_pipe_index = host->sps.dest_pipe_index;
/*
* This event thresold value is only significant for BAM-to-BAM
* transfer. It's ignored for BAM-to-System mode transfer.
*/
sps_config->event_thresh = 0x10;
/*
* Max. no of scatter/gather buffers that can
* be passed by block layer = 32 (NR_SG).
* Each BAM descritor needs 64 bits (8 bytes).
* One BAM descriptor is required per buffer transfer.
* So we would require total 256 (32 * 8) bytes of descriptor FIFO.
* But due to HW limitation we need to allocate atleast one extra
* descriptor memory (256 bytes + 8 bytes). But in order to be
* in power of 2, we are allocating 512 bytes of memory.
*/
sps_config->desc.size = 512;
sps_config->desc.base = dma_alloc_coherent(mmc_dev(host->mmc),
sps_config->desc.size,
&sps_config->desc.phys_base,
GFP_KERNEL);
memset(sps_config->desc.base, 0x00, sps_config->desc.size);
/* Establish connection between peripheral and memory endpoint */
rc = sps_connect(sps_pipe_handle, sps_config);
if (rc) {
pr_err("%s: sps_connect() failed!!! pipe_handle=0x%x,"
" rc=%d", mmc_hostname(host->mmc),
(u32)sps_pipe_handle, rc);
goto sps_connect_err;
}
sps_event->mode = SPS_TRIGGER_CALLBACK;
sps_event->options = SPS_O_EOT;
sps_event->callback = msmsdcc_sps_complete_cb;
sps_event->xfer_done = NULL;
sps_event->user = (void *)host;
/* Register callback event for EOT (End of transfer) event. */
rc = sps_register_event(sps_pipe_handle, sps_event);
if (rc) {
pr_err("%s: sps_connect() failed!!! pipe_handle=0x%x,"
" rc=%d", mmc_hostname(host->mmc),
(u32)sps_pipe_handle, rc);
goto reg_event_err;
}
/* Now save the sps pipe handle */
ep->pipe_handle = sps_pipe_handle;
pr_debug("%s: %s, success !!! %s: pipe_handle=0x%x,"
" desc_fifo.phys_base=0x%x\n", mmc_hostname(host->mmc),
__func__, is_producer ? "READ" : "WRITE",
(u32)sps_pipe_handle, sps_config->desc.phys_base);
goto out;
reg_event_err:
sps_disconnect(sps_pipe_handle);
sps_connect_err:
dma_free_coherent(mmc_dev(host->mmc),
sps_config->desc.size,
sps_config->desc.base,
sps_config->desc.phys_base);
get_config_err:
sps_free_endpoint(sps_pipe_handle);
out:
return rc;
}
/**
* Disconnect and Deallocate a SDCC peripheral's SPS endpoint
*
* This function disconnect endpoint and deallocates
* endpoint context.
*
* This function should only be called once typically
* during driver remove.
*
* @host - Pointer to sdcc host structure
* @ep - Pointer to sps endpoint data structure
*
*/
static void msmsdcc_sps_exit_ep_conn(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep)
{
struct sps_pipe *sps_pipe_handle = ep->pipe_handle;
struct sps_connect *sps_config = &ep->config;
struct sps_register_event *sps_event = &ep->event;
sps_event->xfer_done = NULL;
sps_event->callback = NULL;
sps_register_event(sps_pipe_handle, sps_event);
sps_disconnect(sps_pipe_handle);
dma_free_coherent(mmc_dev(host->mmc),
sps_config->desc.size,
sps_config->desc.base,
sps_config->desc.phys_base);
sps_free_endpoint(sps_pipe_handle);
}
/**
* Reset SDCC peripheral's SPS endpoint
*
* This function disconnects an endpoint.
*
* This function should be called for reseting
* SPS endpoint when data transfer error is
* encountered during data transfer. This
* can be considered as soft reset to endpoint.
*
* This function should only be called if
* msmsdcc_sps_init() is already called.
*
* @host - Pointer to sdcc host structure
* @ep - Pointer to sps endpoint data structure
*
* @return - 0 if successful else negative value.
*/
static int msmsdcc_sps_reset_ep(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep)
{
int rc = 0;
struct sps_pipe *sps_pipe_handle = ep->pipe_handle;
rc = sps_disconnect(sps_pipe_handle);
if (rc) {
pr_err("%s: %s: sps_disconnect() failed!!! pipe_handle=0x%x,"
" rc=%d", mmc_hostname(host->mmc), __func__,
(u32)sps_pipe_handle, rc);
goto out;
}
out:
return rc;
}
/**
* Restore SDCC peripheral's SPS endpoint
*
* This function connects an endpoint.
*
* This function should be called for restoring
* SPS endpoint after data transfer error is
* encountered during data transfer. This
* can be considered as soft reset to endpoint.
*
* This function should only be called if
* msmsdcc_sps_reset_ep() is called before.
*
* @host - Pointer to sdcc host structure
* @ep - Pointer to sps endpoint data structure
*
* @return - 0 if successful else negative value.
*/
static int msmsdcc_sps_restore_ep(struct msmsdcc_host *host,
struct msmsdcc_sps_ep_conn_data *ep)
{
int rc = 0;
struct sps_pipe *sps_pipe_handle = ep->pipe_handle;
struct sps_connect *sps_config = &ep->config;
struct sps_register_event *sps_event = &ep->event;
/* Establish connection between peripheral and memory endpoint */
rc = sps_connect(sps_pipe_handle, sps_config);
if (rc) {
pr_err("%s: %s: sps_connect() failed!!! pipe_handle=0x%x,"
" rc=%d", mmc_hostname(host->mmc), __func__,
(u32)sps_pipe_handle, rc);
goto out;
}
/* Register callback event for EOT (End of transfer) event. */
rc = sps_register_event(sps_pipe_handle, sps_event);
if (rc) {
pr_err("%s: %s: sps_register_event() failed!!!"
" pipe_handle=0x%x, rc=%d",
mmc_hostname(host->mmc), __func__,
(u32)sps_pipe_handle, rc);
goto reg_event_err;
}
goto out;
reg_event_err:
sps_disconnect(sps_pipe_handle);
out:
return rc;
}
/**
* Initialize SPS HW connected with SDCC core
*
* This function register BAM HW resources with
* SPS driver and then initialize 2 SPS endpoints
*
* This function should only be called once typically
* during driver probe.
*
* @host - Pointer to sdcc host structure
*
* @return - 0 if successful else negative value.
*
*/
static int msmsdcc_sps_init(struct msmsdcc_host *host)
{
int rc = 0;
struct sps_bam_props bam = {0};
host->bam_base = ioremap(host->bam_memres->start,
resource_size(host->bam_memres));
if (!host->bam_base) {
pr_err("%s: BAM ioremap() failed!!! phys_addr=0x%x,"
" size=0x%x", mmc_hostname(host->mmc),
host->bam_memres->start,
(host->bam_memres->end -
host->bam_memres->start));
rc = -ENOMEM;
goto out;
}
bam.phys_addr = host->bam_memres->start;
bam.virt_addr = host->bam_base;
/*
* This event thresold value is only significant for BAM-to-BAM
* transfer. It's ignored for BAM-to-System mode transfer.
*/
bam.event_threshold = 0x10; /* Pipe event threshold */
/*
* This threshold controls when the BAM publish
* the descriptor size on the sideband interface.
* SPS HW will only be used when
* data transfer size > MCI_FIFOSIZE (64 bytes).
* PIO mode will be used when
* data transfer size < MCI_FIFOSIZE (64 bytes).
* So set this thresold value to 64 bytes.
*/
bam.summing_threshold = 64;
/* SPS driver wll handle the SDCC BAM IRQ */
bam.irq = (u32)host->bam_irqres->start;
bam.manage = SPS_BAM_MGR_LOCAL;
pr_info("%s: bam physical base=0x%x\n", mmc_hostname(host->mmc),
(u32)bam.phys_addr);
pr_info("%s: bam virtual base=0x%x\n", mmc_hostname(host->mmc),
(u32)bam.virt_addr);
/* Register SDCC Peripheral BAM device to SPS driver */
rc = sps_register_bam_device(&bam, &host->sps.bam_handle);
if (rc) {
pr_err("%s: sps_register_bam_device() failed!!! err=%d",
mmc_hostname(host->mmc), rc);
goto reg_bam_err;
}
pr_info("%s: BAM device registered. bam_handle=0x%x",
mmc_hostname(host->mmc), host->sps.bam_handle);
host->sps.src_pipe_index = SPS_SDCC_PRODUCER_PIPE_INDEX;
host->sps.dest_pipe_index = SPS_SDCC_CONSUMER_PIPE_INDEX;
rc = msmsdcc_sps_init_ep_conn(host, &host->sps.prod,
SPS_PROD_PERIPHERAL);
if (rc)
goto sps_reset_err;
rc = msmsdcc_sps_init_ep_conn(host, &host->sps.cons,
SPS_CONS_PERIPHERAL);
if (rc)
goto cons_conn_err;
pr_info("%s: Qualcomm MSM SDCC-BAM at 0x%016llx irq %d\n",
mmc_hostname(host->mmc),
(unsigned long long)host->bam_memres->start,
(unsigned int)host->bam_irqres->start);
goto out;
cons_conn_err:
msmsdcc_sps_exit_ep_conn(host, &host->sps.prod);
sps_reset_err:
sps_deregister_bam_device(host->sps.bam_handle);
reg_bam_err:
iounmap(host->bam_base);
out:
return rc;
}
/**
* De-initialize SPS HW connected with SDCC core
*
* This function deinitialize SPS endpoints and then
* deregisters BAM resources from SPS driver.
*
* This function should only be called once typically
* during driver remove.
*
* @host - Pointer to sdcc host structure
*
*/
static void msmsdcc_sps_exit(struct msmsdcc_host *host)
{
msmsdcc_sps_exit_ep_conn(host, &host->sps.cons);
msmsdcc_sps_exit_ep_conn(host, &host->sps.prod);
sps_deregister_bam_device(host->sps.bam_handle);
iounmap(host->bam_base);
}
#endif /* CONFIG_MMC_MSM_SPS_SUPPORT */
static ssize_t
show_polling(struct device *dev, struct device_attribute *attr, char *buf)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
int poll;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
poll = !!(mmc->caps & MMC_CAP_NEEDS_POLL);
spin_unlock_irqrestore(&host->lock, flags);
return snprintf(buf, PAGE_SIZE, "%d\n", poll);
}
static ssize_t
set_polling(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
int value;
unsigned long flags;
sscanf(buf, "%d", &value);
spin_lock_irqsave(&host->lock, flags);
if (value) {
mmc->caps |= MMC_CAP_NEEDS_POLL;
mmc_detect_change(host->mmc, 0);
} else {
mmc->caps &= ~MMC_CAP_NEEDS_POLL;
}
#ifdef CONFIG_HAS_EARLYSUSPEND
host->polling_enabled = mmc->caps & MMC_CAP_NEEDS_POLL;
#endif
spin_unlock_irqrestore(&host->lock, flags);
return count;
}
static DEVICE_ATTR(polling, S_IRUGO | S_IWUSR,
show_polling, set_polling);
static struct attribute *dev_attrs[] = {
&dev_attr_polling.attr,
NULL,
};
static struct attribute_group dev_attr_grp = {
.attrs = dev_attrs,
};
#ifdef CONFIG_HAS_EARLYSUSPEND
static void msmsdcc_early_suspend(struct early_suspend *h)
{
struct msmsdcc_host *host =
container_of(h, struct msmsdcc_host, early_suspend);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->polling_enabled = host->mmc->caps & MMC_CAP_NEEDS_POLL;
host->mmc->caps &= ~MMC_CAP_NEEDS_POLL;
spin_unlock_irqrestore(&host->lock, flags);
};
static void msmsdcc_late_resume(struct early_suspend *h)
{
struct msmsdcc_host *host =
container_of(h, struct msmsdcc_host, early_suspend);
unsigned long flags;
if (host->polling_enabled) {
spin_lock_irqsave(&host->lock, flags);
host->mmc->caps |= MMC_CAP_NEEDS_POLL;
mmc_detect_change(host->mmc, 0);
spin_unlock_irqrestore(&host->lock, flags);
}
};
#endif
static void msmsdcc_req_tout_timer_hdlr(unsigned long data)
{
struct msmsdcc_host *host = (struct msmsdcc_host *)data;
struct mmc_request *mrq;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->dummy_52_sent) {
pr_info("%s: %s: dummy CMD52 timeout\n",
mmc_hostname(host->mmc), __func__);
host->dummy_52_sent = 0;
}
mrq = host->curr.mrq;
if (mrq && mrq->cmd) {
pr_info("%s: %s CMD%d\n", mmc_hostname(host->mmc),
__func__, mrq->cmd->opcode);
if (!mrq->cmd->error)
mrq->cmd->error = -ETIMEDOUT;
if (host->dummy_52_needed)
host->dummy_52_needed = 0;
if (host->curr.data) {
pr_info("%s: %s Request timeout\n",
mmc_hostname(host->mmc), __func__);
if (mrq->data && !mrq->data->error)
mrq->data->error = -ETIMEDOUT;
host->curr.data_xfered = 0;
if (host->dma.sg && host->is_dma_mode) {
msm_dmov_stop_cmd(host->dma.channel,
&host->dma.hdr, 0);
} else if (host->sps.sg && host->is_sps_mode) {
/* Stop current SPS transfer */
msmsdcc_sps_exit_curr_xfer(host);
} else {
msmsdcc_reset_and_restore(host);
msmsdcc_stop_data(host);
if (mrq->data && mrq->data->stop)
msmsdcc_start_command(host,
mrq->data->stop, 0);
else
msmsdcc_request_end(host, mrq);
}
} else {
if (host->prog_enable) {
host->prog_scan = 0;
host->prog_enable = 0;
}
msmsdcc_reset_and_restore(host);
msmsdcc_request_end(host, mrq);
}
}
spin_unlock_irqrestore(&host->lock, flags);
}
static int
msmsdcc_probe(struct platform_device *pdev)
{
struct mmc_platform_data *plat = pdev->dev.platform_data;
struct msmsdcc_host *host;
struct mmc_host *mmc;
unsigned long flags;
struct resource *core_irqres = NULL;
struct resource *bam_irqres = NULL;
struct resource *core_memres = NULL;
struct resource *dml_memres = NULL;
struct resource *bam_memres = NULL;
struct resource *dmares = NULL;
struct resource *dma_crci_res = NULL;
int ret;
int i;
/* must have platform data */
if (!plat) {
pr_err("%s: Platform data not available\n", __func__);
ret = -EINVAL;
goto out;
}
if (pdev->id < 1 || pdev->id > 5)
return -EINVAL;
if (plat->is_sdio_al_client)
if (!plat->sdio_lpm_gpio_setup || !plat->sdiowakeup_irq)
return -EINVAL;
if (pdev->resource == NULL || pdev->num_resources < 2) {
pr_err("%s: Invalid resource\n", __func__);
return -ENXIO;
}
for (i = 0; i < pdev->num_resources; i++) {
if (pdev->resource[i].flags & IORESOURCE_MEM) {
if (!strcmp(pdev->resource[i].name,
"sdcc_dml_addr"))
dml_memres = &pdev->resource[i];
else if (!strcmp(pdev->resource[i].name,
"sdcc_bam_addr"))
bam_memres = &pdev->resource[i];
else
core_memres = &pdev->resource[i];
}
if (pdev->resource[i].flags & IORESOURCE_IRQ) {
if (!strcmp(pdev->resource[i].name,
"sdcc_bam_irq"))
bam_irqres = &pdev->resource[i];
else
core_irqres = &pdev->resource[i];
}
if (pdev->resource[i].flags & IORESOURCE_DMA) {
if (!strncmp(pdev->resource[i].name,
"sdcc_dma_chnl",
sizeof("sdcc_dma_chnl")))
dmares = &pdev->resource[i];
else if (!strncmp(pdev->resource[i].name,
"sdcc_dma_crci",
sizeof("sdcc_dma_crci")))
dma_crci_res = &pdev->resource[i];
}
}
if (!core_irqres || !core_memres) {
pr_err("%s: Invalid sdcc core resource\n", __func__);
return -ENXIO;
}
/*
* Both BAM and DML memory resource should be preset.
* BAM IRQ resource should also be present.
*/
if ((bam_memres && !dml_memres) ||
(!bam_memres && dml_memres) ||
((bam_memres && dml_memres) && !bam_irqres)) {
pr_err("%s: Invalid sdcc BAM/DML resource\n", __func__);
return -ENXIO;
}
/*
* Setup our host structure
*/
mmc = mmc_alloc_host(sizeof(struct msmsdcc_host), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto out;
}
host = mmc_priv(mmc);
host->pdev_id = pdev->id;
host->plat = plat;
host->mmc = mmc;
host->curr.cmd = NULL;
if (!plat->disable_bam && bam_memres && dml_memres && bam_irqres)
host->is_sps_mode = 1;
else if (dmares)
host->is_dma_mode = 1;
host->base = ioremap(core_memres->start,
resource_size(core_memres));
if (!host->base) {
ret = -ENOMEM;
goto host_free;
}
host->core_irqres = core_irqres;
host->bam_irqres = bam_irqres;
host->core_memres = core_memres;
host->dml_memres = dml_memres;
host->bam_memres = bam_memres;
host->dmares = dmares;
host->dma_crci_res = dma_crci_res;
spin_lock_init(&host->lock);
#ifdef CONFIG_MMC_EMBEDDED_SDIO
if (plat->embedded_sdio)
mmc_set_embedded_sdio_data(mmc,
&plat->embedded_sdio->cis,
&plat->embedded_sdio->cccr,
plat->embedded_sdio->funcs,
plat->embedded_sdio->num_funcs);
#endif
tasklet_init(&host->dma_tlet, msmsdcc_dma_complete_tlet,
(unsigned long)host);
tasklet_init(&host->sps.tlet, msmsdcc_sps_complete_tlet,
(unsigned long)host);
if (host->is_dma_mode) {
/* Setup DMA */
ret = msmsdcc_init_dma(host);
if (ret)
goto ioremap_free;
} else {
host->dma.channel = -1;
host->dma.crci = -1;
}
/*
* Setup SDCC clock if derived from Dayatona
* fabric core clock.
*/
if (plat->pclk_src_dfab) {
host->dfab_pclk = clk_get(&pdev->dev, "bus_clk");
if (!IS_ERR(host->dfab_pclk)) {
/* Set the clock rate to 64MHz for max. performance */
ret = clk_set_rate(host->dfab_pclk, 64000000);
if (ret)
goto dfab_pclk_put;
ret = clk_enable(host->dfab_pclk);
if (ret)
goto dfab_pclk_put;
} else
goto dma_free;
}
/*
* Setup main peripheral bus clock
*/
host->pclk = clk_get(&pdev->dev, "iface_clk");
if (!IS_ERR(host->pclk)) {
ret = clk_enable(host->pclk);
if (ret)
goto pclk_put;
host->pclk_rate = clk_get_rate(host->pclk);
}
/*
* Setup SDC MMC clock
*/
host->clk = clk_get(&pdev->dev, "core_clk");
if (IS_ERR(host->clk)) {
ret = PTR_ERR(host->clk);
goto pclk_disable;
}
ret = clk_set_rate(host->clk, msmsdcc_get_min_sup_clk_rate(host));
if (ret) {
pr_err("%s: Clock rate set failed (%d)\n", __func__, ret);
goto clk_put;
}
ret = clk_enable(host->clk);
if (ret)
goto clk_put;
host->clk_rate = clk_get_rate(host->clk);
host->clks_on = 1;
ret = msmsdcc_vreg_init(host, true);
if (ret) {
pr_err("%s: msmsdcc_vreg_init() failed (%d)\n", __func__, ret);
goto clk_disable;
}
/* Clocks has to be running before accessing SPS/DML HW blocks */
if (host->is_sps_mode) {
/* Initialize SPS */
ret = msmsdcc_sps_init(host);
if (ret)
goto vreg_deinit;
/* Initialize DML */
ret = msmsdcc_dml_init(host);
if (ret)
goto sps_exit;
}
/*
* Setup MMC host structure
*/
mmc->ops = &msmsdcc_ops;
mmc->f_min = msmsdcc_get_min_sup_clk_rate(host);
mmc->f_max = msmsdcc_get_max_sup_clk_rate(host);
mmc->ocr_avail = plat->ocr_mask;
mmc->pm_caps |= MMC_PM_KEEP_POWER | MMC_PM_WAKE_SDIO_IRQ;
mmc->caps |= plat->mmc_bus_width;
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED;
mmc->caps |= plat->uhs_caps;
/*
* XPC controls the maximum current in the default speed mode of SDXC
* card. XPC=0 means 100mA (max.) but speed class is not supported.
* XPC=1 means 150mA (max.) and speed class is supported.
*/
if (plat->xpc_cap)
mmc->caps |= (MMC_CAP_SET_XPC_330 | MMC_CAP_SET_XPC_300 |
MMC_CAP_SET_XPC_180);
if (plat->nonremovable)
mmc->caps |= MMC_CAP_NONREMOVABLE;
#ifdef CONFIG_MMC_MSM_SDIO_SUPPORT
mmc->caps |= MMC_CAP_SDIO_IRQ;
#endif
if (plat->is_sdio_al_client)
mmc->pm_flags |= MMC_PM_IGNORE_PM_NOTIFY;
mmc->max_segs = NR_SG;
mmc->max_blk_size = 4096; /* MCI_DATA_CTL BLOCKSIZE up to 4096 */
mmc->max_blk_count = 65535;
mmc->max_req_size = 33554432; /* MCI_DATA_LENGTH is 25 bits */
mmc->max_seg_size = mmc->max_req_size;
writel_relaxed(0, host->base + MMCIMASK0);
writel_relaxed(MCI_CLEAR_STATIC_MASK, host->base + MMCICLEAR);
/* Delay needed (MMCIMASK0 was just written above) */
msmsdcc_delay(host);
writel_relaxed(MCI_IRQENABLE, host->base + MMCIMASK0);
mb();
host->mci_irqenable = MCI_IRQENABLE;
ret = request_irq(core_irqres->start, msmsdcc_irq, IRQF_SHARED,
DRIVER_NAME " (cmd)", host);
if (ret)
goto dml_exit;
ret = request_irq(core_irqres->start, msmsdcc_pio_irq, IRQF_SHARED,
DRIVER_NAME " (pio)", host);
if (ret)
goto irq_free;
/*
* Enable SDCC IRQ only when host is powered on. Otherwise, this
* IRQ is un-necessarily being monitored by MPM (Modem power
* management block) during idle-power collapse. The MPM will be
* configured to monitor the DATA1 GPIO line with level-low trigger
* and thus depending on the GPIO status, it prevents TCXO shutdown
* during idle-power collapse.
*/
disable_irq(core_irqres->start);
host->sdcc_irq_disabled = 1;
if (plat->sdiowakeup_irq) {
wake_lock_init(&host->sdio_wlock, WAKE_LOCK_SUSPEND,
mmc_hostname(mmc));
ret = request_irq(plat->sdiowakeup_irq,
msmsdcc_platform_sdiowakeup_irq,
IRQF_SHARED | IRQF_TRIGGER_LOW,
DRIVER_NAME "sdiowakeup", host);
if (ret) {
pr_err("Unable to get sdio wakeup IRQ %d (%d)\n",
plat->sdiowakeup_irq, ret);
goto pio_irq_free;
} else {
spin_lock_irqsave(&host->lock, flags);
if (!host->sdio_irq_disabled) {
disable_irq_nosync(plat->sdiowakeup_irq);
host->sdio_irq_disabled = 1;
}
spin_unlock_irqrestore(&host->lock, flags);
}
}
if (plat->cfg_mpm_sdiowakeup) {
wake_lock_init(&host->sdio_wlock, WAKE_LOCK_SUSPEND,
mmc_hostname(mmc));
}
wake_lock_init(&host->sdio_suspend_wlock, WAKE_LOCK_SUSPEND,
mmc_hostname(mmc));
/*
* Setup card detect change
*/
if (plat->status || plat->status_gpio) {
if (plat->status)
host->oldstat = plat->status(mmc_dev(host->mmc));
else
host->oldstat = msmsdcc_slot_status(host);
host->eject = !host->oldstat;
}
if (plat->status_irq) {
ret = request_threaded_irq(plat->status_irq, NULL,
msmsdcc_platform_status_irq,
plat->irq_flags,
DRIVER_NAME " (slot)",
host);
if (ret) {
pr_err("Unable to get slot IRQ %d (%d)\n",
plat->status_irq, ret);
goto sdiowakeup_irq_free;
}
} else if (plat->register_status_notify) {
plat->register_status_notify(msmsdcc_status_notify_cb, host);
} else if (!plat->status)
pr_err("%s: No card detect facilities available\n",
mmc_hostname(mmc));
mmc_set_drvdata(pdev, mmc);
ret = pm_runtime_set_active(&(pdev)->dev);
if (ret < 0)
pr_info("%s: %s: failed with error %d", mmc_hostname(mmc),
__func__, ret);
/*
* There is no notion of suspend/resume for SD/MMC/SDIO
* cards. So host can be suspended/resumed with out
* worrying about its children.
*/
pm_suspend_ignore_children(&(pdev)->dev, true);
/*
* MMC/SD/SDIO bus suspend/resume operations are defined
* only for the slots that will be used for non-removable
* media or for all slots when CONFIG_MMC_UNSAFE_RESUME is
* defined. Otherwise, they simply become card removal and
* insertion events during suspend and resume respectively.
* Hence, enable run-time PM only for slots for which bus
* suspend/resume operations are defined.
*/
#ifdef CONFIG_MMC_UNSAFE_RESUME
/*
* If this capability is set, MMC core will enable/disable host
* for every claim/release operation on a host. We use this
* notification to increment/decrement runtime pm usage count.
*/
mmc->caps |= MMC_CAP_DISABLE;
pm_runtime_enable(&(pdev)->dev);
#else
if (mmc->caps & MMC_CAP_NONREMOVABLE) {
mmc->caps |= MMC_CAP_DISABLE;
pm_runtime_enable(&(pdev)->dev);
}
#endif
setup_timer(&host->req_tout_timer, msmsdcc_req_tout_timer_hdlr,
(unsigned long)host);
mmc_add_host(mmc);
#ifdef CONFIG_HAS_EARLYSUSPEND
host->early_suspend.suspend = msmsdcc_early_suspend;
host->early_suspend.resume = msmsdcc_late_resume;
host->early_suspend.level = EARLY_SUSPEND_LEVEL_DISABLE_FB;
register_early_suspend(&host->early_suspend);
#endif
pr_info("%s: Qualcomm MSM SDCC-core at 0x%016llx irq %d,%d dma %d"
" dmacrcri %d\n", mmc_hostname(mmc),
(unsigned long long)core_memres->start,
(unsigned int) core_irqres->start,
(unsigned int) plat->status_irq, host->dma.channel,
host->dma.crci);
pr_info("%s: 8 bit data mode %s\n", mmc_hostname(mmc),
(mmc->caps & MMC_CAP_8_BIT_DATA ? "enabled" : "disabled"));
pr_info("%s: 4 bit data mode %s\n", mmc_hostname(mmc),
(mmc->caps & MMC_CAP_4_BIT_DATA ? "enabled" : "disabled"));
pr_info("%s: polling status mode %s\n", mmc_hostname(mmc),
(mmc->caps & MMC_CAP_NEEDS_POLL ? "enabled" : "disabled"));
pr_info("%s: MMC clock %u -> %u Hz, PCLK %u Hz\n",
mmc_hostname(mmc), msmsdcc_get_min_sup_clk_rate(host),
msmsdcc_get_max_sup_clk_rate(host), host->pclk_rate);
pr_info("%s: Slot eject status = %d\n", mmc_hostname(mmc),
host->eject);
pr_info("%s: Power save feature enable = %d\n",
mmc_hostname(mmc), msmsdcc_pwrsave);
if (host->is_dma_mode && host->dma.channel != -1
&& host->dma.crci != -1) {
pr_info("%s: DM non-cached buffer at %p, dma_addr 0x%.8x\n",
mmc_hostname(mmc), host->dma.nc, host->dma.nc_busaddr);
pr_info("%s: DM cmd busaddr 0x%.8x, cmdptr busaddr 0x%.8x\n",
mmc_hostname(mmc), host->dma.cmd_busaddr,
host->dma.cmdptr_busaddr);
} else if (host->is_sps_mode) {
pr_info("%s: SPS-BAM data transfer mode available\n",
mmc_hostname(mmc));
} else
pr_info("%s: PIO transfer enabled\n", mmc_hostname(mmc));
#if defined(CONFIG_DEBUG_FS)
msmsdcc_dbg_createhost(host);
#endif
if (!plat->status_irq) {
ret = sysfs_create_group(&pdev->dev.kobj, &dev_attr_grp);
if (ret)
goto platform_irq_free;
}
return 0;
platform_irq_free:
del_timer_sync(&host->req_tout_timer);
pm_runtime_disable(&(pdev)->dev);
pm_runtime_set_suspended(&(pdev)->dev);
if (plat->status_irq)
free_irq(plat->status_irq, host);
sdiowakeup_irq_free:
wake_lock_destroy(&host->sdio_suspend_wlock);
if (plat->sdiowakeup_irq)
free_irq(plat->sdiowakeup_irq, host);
pio_irq_free:
if (plat->sdiowakeup_irq)
wake_lock_destroy(&host->sdio_wlock);
free_irq(core_irqres->start, host);
irq_free:
free_irq(core_irqres->start, host);
dml_exit:
if (host->is_sps_mode)
msmsdcc_dml_exit(host);
sps_exit:
if (host->is_sps_mode)
msmsdcc_sps_exit(host);
vreg_deinit:
msmsdcc_vreg_init(host, false);
clk_disable:
clk_disable(host->clk);
clk_put:
clk_put(host->clk);
pclk_disable:
if (!IS_ERR(host->pclk))
clk_disable(host->pclk);
pclk_put:
if (!IS_ERR(host->pclk))
clk_put(host->pclk);
if (!IS_ERR_OR_NULL(host->dfab_pclk))
clk_disable(host->dfab_pclk);
dfab_pclk_put:
if (!IS_ERR_OR_NULL(host->dfab_pclk))
clk_put(host->dfab_pclk);
dma_free:
if (host->is_dma_mode) {
if (host->dmares)
dma_free_coherent(NULL,
sizeof(struct msmsdcc_nc_dmadata),
host->dma.nc, host->dma.nc_busaddr);
}
ioremap_free:
iounmap(host->base);
host_free:
mmc_free_host(mmc);
out:
return ret;
}
static int msmsdcc_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = mmc_get_drvdata(pdev);
struct mmc_platform_data *plat;
struct msmsdcc_host *host;
if (!mmc)
return -ENXIO;
if (pm_runtime_suspended(&(pdev)->dev))
pm_runtime_resume(&(pdev)->dev);
host = mmc_priv(mmc);
DBG(host, "Removing SDCC device = %d\n", pdev->id);
plat = host->plat;
if (!plat->status_irq)
sysfs_remove_group(&pdev->dev.kobj, &dev_attr_grp);
del_timer_sync(&host->req_tout_timer);
tasklet_kill(&host->dma_tlet);
tasklet_kill(&host->sps.tlet);
mmc_remove_host(mmc);
if (plat->status_irq)
free_irq(plat->status_irq, host);
wake_lock_destroy(&host->sdio_suspend_wlock);
if (plat->sdiowakeup_irq) {
wake_lock_destroy(&host->sdio_wlock);
irq_set_irq_wake(plat->sdiowakeup_irq, 0);
free_irq(plat->sdiowakeup_irq, host);
}
free_irq(host->core_irqres->start, host);
free_irq(host->core_irqres->start, host);
clk_put(host->clk);
if (!IS_ERR(host->pclk))
clk_put(host->pclk);
if (!IS_ERR_OR_NULL(host->dfab_pclk))
clk_put(host->dfab_pclk);
msmsdcc_vreg_init(host, false);
if (host->is_dma_mode) {
if (host->dmares)
dma_free_coherent(NULL,
sizeof(struct msmsdcc_nc_dmadata),
host->dma.nc, host->dma.nc_busaddr);
}
if (host->is_sps_mode) {
msmsdcc_dml_exit(host);
msmsdcc_sps_exit(host);
}
iounmap(host->base);
mmc_free_host(mmc);
#ifdef CONFIG_HAS_EARLYSUSPEND
unregister_early_suspend(&host->early_suspend);
#endif
pm_runtime_disable(&(pdev)->dev);
pm_runtime_set_suspended(&(pdev)->dev);
return 0;
}
#ifdef CONFIG_MSM_SDIO_AL
int msmsdcc_sdio_al_lpm(struct mmc_host *mmc, bool enable)
{
struct msmsdcc_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
pr_debug("%s: %sabling LPM\n", mmc_hostname(mmc),
enable ? "En" : "Dis");
if (enable) {
if (!host->sdcc_irq_disabled) {
writel_relaxed(0, host->base + MMCIMASK0);
disable_irq_nosync(host->core_irqres->start);
host->sdcc_irq_disabled = 1;
}
if (host->clks_on) {
msmsdcc_setup_clocks(host, false);
host->clks_on = 0;
}
if (!host->sdio_gpio_lpm) {
spin_unlock_irqrestore(&host->lock, flags);
host->plat->sdio_lpm_gpio_setup(mmc_dev(mmc), 0);
spin_lock_irqsave(&host->lock, flags);
host->sdio_gpio_lpm = 1;
}
if (host->sdio_irq_disabled) {
msmsdcc_enable_irq_wake(host);
enable_irq(host->plat->sdiowakeup_irq);
host->sdio_irq_disabled = 0;
}
} else {
if (!host->sdio_irq_disabled) {
disable_irq_nosync(host->plat->sdiowakeup_irq);
host->sdio_irq_disabled = 1;
msmsdcc_disable_irq_wake(host);
}
if (host->sdio_gpio_lpm) {
spin_unlock_irqrestore(&host->lock, flags);
host->plat->sdio_lpm_gpio_setup(mmc_dev(mmc), 1);
spin_lock_irqsave(&host->lock, flags);
host->sdio_gpio_lpm = 0;
}
if (!host->clks_on) {
msmsdcc_setup_clocks(host, true);
host->clks_on = 1;
}
if (host->sdcc_irq_disabled) {
writel_relaxed(host->mci_irqenable,
host->base + MMCIMASK0);
mb();
enable_irq(host->core_irqres->start);
host->sdcc_irq_disabled = 0;
}
wake_lock_timeout(&host->sdio_wlock, 1);
}
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
#else
int msmsdcc_sdio_al_lpm(struct mmc_host *mmc, bool enable)
{
return 0;
}
#endif
#ifdef CONFIG_PM
static int
msmsdcc_runtime_suspend(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
int rc = 0;
if (host->plat->is_sdio_al_client)
return 0;
pr_debug("%s: %s: start\n", mmc_hostname(mmc), __func__);
if (mmc) {
host->sdcc_suspending = 1;
mmc->suspend_task = current;
/*
* If the clocks are already turned off by SDIO clients (as
* part of LPM), then clocks should be turned on before
* calling mmc_suspend_host() because mmc_suspend_host might
* send some commands to the card. The clocks will be turned
* off again after mmc_suspend_host. Thus for SD/MMC/SDIO
* cards, clocks will be turned on before mmc_suspend_host
* and turned off after mmc_suspend_host.
*/
mmc->ios.clock = host->clk_rate;
mmc->ops->set_ios(host->mmc, &host->mmc->ios);
/*
* MMC core thinks that host is disabled by now since
* runtime suspend is scheduled after msmsdcc_disable()
* is called. Thus, MMC core will try to enable the host
* while suspending it. This results in a synchronous
* runtime resume request while in runtime suspending
* context and hence inorder to complete this resume
* requet, it will wait for suspend to be complete,
* but runtime suspend also can not proceed further
* until the host is resumed. Thus, it leads to a hang.
* Hence, increase the pm usage count before suspending
* the host so that any resume requests after this will
* simple become pm usage counter increment operations.
*/
pm_runtime_get_noresume(dev);
rc = mmc_suspend_host(mmc);
pm_runtime_put_noidle(dev);
if (!rc) {
if (mmc->card && (mmc->card->type == MMC_TYPE_SDIO) &&
(mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ)) {
disable_irq(host->core_irqres->start);
host->sdcc_irq_disabled = 1;
/*
* If MMC core level suspend is not supported,
* turn off clocks to allow deep sleep (TCXO
* shutdown).
*/
mmc->ios.clock = 0;
mmc->ops->set_ios(host->mmc, &host->mmc->ios);
enable_irq(host->core_irqres->start);
host->sdcc_irq_disabled = 0;
if (host->plat->sdiowakeup_irq) {
host->sdio_irq_disabled = 0;
msmsdcc_enable_irq_wake(host);
enable_irq(host->plat->sdiowakeup_irq);
}
}
}
host->sdcc_suspending = 0;
mmc->suspend_task = NULL;
if (rc && wake_lock_active(&host->sdio_suspend_wlock))
wake_unlock(&host->sdio_suspend_wlock);
}
pr_debug("%s: %s: end\n", mmc_hostname(mmc), __func__);
return rc;
}
static int
msmsdcc_runtime_resume(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
unsigned long flags;
if (host->plat->is_sdio_al_client)
return 0;
pr_debug("%s: %s: start\n", mmc_hostname(mmc), __func__);
if (mmc) {
if (mmc->card && mmc->card->type == MMC_TYPE_SDIO) {
if (host->sdcc_irq_disabled) {
enable_irq(host->core_irqres->start);
host->sdcc_irq_disabled = 0;
}
}
mmc->ios.clock = host->clk_rate;
mmc->ops->set_ios(host->mmc, &host->mmc->ios);
spin_lock_irqsave(&host->lock, flags);
writel_relaxed(host->mci_irqenable, host->base + MMCIMASK0);
mb();
if (mmc->card && (mmc->card->type == MMC_TYPE_SDIO) &&
(mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ) &&
!host->sdio_irq_disabled) {
if (host->plat->sdiowakeup_irq) {
disable_irq_nosync(
host->plat->sdiowakeup_irq);
msmsdcc_disable_irq_wake(host);
host->sdio_irq_disabled = 1;
}
}
spin_unlock_irqrestore(&host->lock, flags);
mmc_resume_host(mmc);
/*
* FIXME: Clearing of flags must be handled in clients
* resume handler.
*/
spin_lock_irqsave(&host->lock, flags);
mmc->pm_flags = 0;
spin_unlock_irqrestore(&host->lock, flags);
/*
* After resuming the host wait for sometime so that
* the SDIO work will be processed.
*/
if (mmc->card && (mmc->card->type == MMC_TYPE_SDIO)) {
if ((host->plat->cfg_mpm_sdiowakeup ||
host->plat->sdiowakeup_irq) &&
wake_lock_active(&host->sdio_wlock))
wake_lock_timeout(&host->sdio_wlock, 1);
}
wake_unlock(&host->sdio_suspend_wlock);
}
pr_debug("%s: %s: end\n", mmc_hostname(mmc), __func__);
return 0;
}
static int msmsdcc_runtime_idle(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
if (host->plat->is_sdio_al_client)
return 0;
/* Idle timeout is not configurable for now */
pm_schedule_suspend(dev, MSM_MMC_IDLE_TIMEOUT);
return -EAGAIN;
}
static int msmsdcc_pm_suspend(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
int rc = 0;
if (host->plat->is_sdio_al_client)
return 0;
if (host->plat->status_irq)
disable_irq(host->plat->status_irq);
if (!pm_runtime_suspended(dev))
rc = msmsdcc_runtime_suspend(dev);
return rc;
}
static int msmsdcc_pm_resume(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msmsdcc_host *host = mmc_priv(mmc);
int rc = 0;
if (host->plat->is_sdio_al_client)
return 0;
rc = msmsdcc_runtime_resume(dev);
if (host->plat->status_irq) {
msmsdcc_check_status((unsigned long)host);
enable_irq(host->plat->status_irq);
}
/* Update the run-time PM status */
pm_runtime_disable(dev);
rc = pm_runtime_set_active(dev);
if (rc < 0)
pr_info("%s: %s: failed with error %d", mmc_hostname(mmc),
__func__, rc);
pm_runtime_enable(dev);
return rc;
}
#else
#define msmsdcc_runtime_suspend NULL
#define msmsdcc_runtime_resume NULL
#define msmsdcc_runtime_idle NULL
#define msmsdcc_pm_suspend NULL
#define msmsdcc_pm_resume NULL
#endif
static const struct dev_pm_ops msmsdcc_dev_pm_ops = {
.runtime_suspend = msmsdcc_runtime_suspend,
.runtime_resume = msmsdcc_runtime_resume,
.runtime_idle = msmsdcc_runtime_idle,
.suspend = msmsdcc_pm_suspend,
.resume = msmsdcc_pm_resume,
};
static struct platform_driver msmsdcc_driver = {
.probe = msmsdcc_probe,
.remove = msmsdcc_remove,
.driver = {
.name = "msm_sdcc",
.pm = &msmsdcc_dev_pm_ops,
},
};
static int __init msmsdcc_init(void)
{
#if defined(CONFIG_DEBUG_FS)
int ret = 0;
ret = msmsdcc_dbg_init();
if (ret) {
pr_err("Failed to create debug fs dir \n");
return ret;
}
#endif
return platform_driver_register(&msmsdcc_driver);
}
static void __exit msmsdcc_exit(void)
{
platform_driver_unregister(&msmsdcc_driver);
#if defined(CONFIG_DEBUG_FS)
debugfs_remove(debugfs_file);
debugfs_remove(debugfs_dir);
#endif
}
module_init(msmsdcc_init);
module_exit(msmsdcc_exit);
MODULE_DESCRIPTION("Qualcomm Multimedia Card Interface driver");
MODULE_LICENSE("GPL");
#if defined(CONFIG_DEBUG_FS)
static int
msmsdcc_dbg_state_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static ssize_t
msmsdcc_dbg_state_read(struct file *file, char __user *ubuf,
size_t count, loff_t *ppos)
{
struct msmsdcc_host *host = (struct msmsdcc_host *) file->private_data;
char buf[1024];
int max, i;
i = 0;
max = sizeof(buf) - 1;
i += scnprintf(buf + i, max - i, "STAT: %p %p %p\n", host->curr.mrq,
host->curr.cmd, host->curr.data);
if (host->curr.cmd) {
struct mmc_command *cmd = host->curr.cmd;
i += scnprintf(buf + i, max - i, "CMD : %.8x %.8x %.8x\n",
cmd->opcode, cmd->arg, cmd->flags);
}
if (host->curr.data) {
struct mmc_data *data = host->curr.data;
i += scnprintf(buf + i, max - i,
"DAT0: %.8x %.8x %.8x %.8x %.8x %.8x\n",
data->timeout_ns, data->timeout_clks,
data->blksz, data->blocks, data->error,
data->flags);
i += scnprintf(buf + i, max - i, "DAT1: %.8x %.8x %.8x %p\n",
host->curr.xfer_size, host->curr.xfer_remain,
host->curr.data_xfered, host->dma.sg);
}
return simple_read_from_buffer(ubuf, count, ppos, buf, i);
}
static const struct file_operations msmsdcc_dbg_state_ops = {
.read = msmsdcc_dbg_state_read,
.open = msmsdcc_dbg_state_open,
};
static void msmsdcc_dbg_createhost(struct msmsdcc_host *host)
{
if (debugfs_dir) {
debugfs_file = debugfs_create_file(mmc_hostname(host->mmc),
0644, debugfs_dir, host,
&msmsdcc_dbg_state_ops);
}
}
static int __init msmsdcc_dbg_init(void)
{
int err;
debugfs_dir = debugfs_create_dir("msmsdcc", 0);
if (IS_ERR(debugfs_dir)) {
err = PTR_ERR(debugfs_dir);
debugfs_dir = NULL;
return err;
}
return 0;
}
#endif