blob: fd853e7323bbdc1a37ee0d904cbc76efc4854395 [file] [log] [blame]
/*
* Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/cpu_pm.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/msm-ldo-regulator.h>
#include <soc/qcom/spm.h>
#define KRYO_REGULATOR_DRIVER_NAME "kryo-regulator"
#define kvreg_err(kvreg, message, ...) \
pr_err("%s: " message, (kvreg)->name, ##__VA_ARGS__)
#define kvreg_info(kvreg, message, ...) \
pr_info("%s: " message, (kvreg)->name, ##__VA_ARGS__)
#define kvreg_debug(kvreg, message, ...) \
pr_debug("%s: " message, (kvreg)->name, ##__VA_ARGS__)
/* CPUSS power domain register offsets */
#define APCC_PWR_CTL_OVERRIDE 0x38
#define APCC_PGS_RET_STATUS 0xe0
/* APCS CSR register offsets */
#define APCS_VERSION 0xfd0
/* Cluster power domain register offsets */
#define APC_LDO_VREF_SET 0x08
#define APC_RET_VREF_SET 0x10
#define APC_PWR_GATE_MODE 0x18
#define APC_PWR_GATE_DLY 0x28
#define APC_LDO_CFG 0x40
#define APC_APM_CFG 0x50
#define APC_PGSCTL_STS 0x60
/* Register bit mask definitions*/
#define PWR_GATE_SWITCH_MODE_MASK GENMASK(0, 0)
#define VREF_MASK GENMASK(6, 0)
#define APM_CFG_MASK GENMASK(7, 0)
#define FSM_CUR_STATE_MASK GENMASK(5, 4)
#define APC_PWR_GATE_DLY_MASK GENMASK(11, 0)
#define APCC_PGS_MASK(cluster) (0x7 << (0x3 * (cluster)))
/* Register bit definitions */
#define VREF_BIT_POS 0
/* Maximum delay to wait before declaring a Power Gate Switch timed out */
#define PWR_GATE_SWITCH_TIMEOUT_US 5
#define PWR_GATE_SWITCH_MODE_LDO 0
#define PWR_GATE_SWITCH_MODE_BHS 1
#define MSM8996_CPUSS_VER_1P1 0x10010000
#define LDO_N_VOLTAGES 0x80
#define AFFINITY_LEVEL_M3 2
#define SHARED_CPU_REG_NUM 0
#define VDD_SUPPLY_STEP_UV 5000
#define VDD_SUPPLY_MIN_UV 80000
struct kryo_regulator {
struct list_head link;
spinlock_t slock;
struct regulator_desc desc;
struct regulator_dev *rdev;
struct regulator_dev *retention_rdev;
struct regulator_desc retention_desc;
const char *name;
enum msm_ldo_supply_mode mode;
enum msm_ldo_supply_mode retention_mode;
enum msm_ldo_supply_mode pre_lpm_state_mode;
void __iomem *reg_base;
void __iomem *pm_apcc_base;
struct dentry *debugfs;
struct notifier_block cpu_pm_notifier;
unsigned long lpm_enter_count;
unsigned long lpm_exit_count;
int volt;
int retention_volt;
int headroom_volt;
int pre_lpm_state_volt;
int vref_func_step_volt;
int vref_func_min_volt;
int vref_func_max_volt;
int vref_ret_step_volt;
int vref_ret_min_volt;
int vref_ret_max_volt;
int cluster_num;
u32 ldo_config_init;
u32 apm_config_init;
u32 version;
bool vreg_en;
};
static struct dentry *kryo_debugfs_base;
static DEFINE_MUTEX(kryo_regulator_list_mutex);
static LIST_HEAD(kryo_regulator_list);
static bool is_between(int left, int right, int value)
{
if (left >= right && left >= value && value >= right)
return true;
if (left <= right && left <= value && value <= right)
return true;
return false;
}
static void kryo_masked_write(struct kryo_regulator *kvreg,
int reg, u32 mask, u32 val)
{
u32 reg_val;
reg_val = readl_relaxed(kvreg->reg_base + reg);
reg_val &= ~mask;
reg_val |= (val & mask);
writel_relaxed(reg_val, kvreg->reg_base + reg);
/* Ensure write above completes */
mb();
}
static inline void kryo_pm_apcc_masked_write(struct kryo_regulator *kvreg,
int reg, u32 mask, u32 val)
{
u32 reg_val, orig_val;
reg_val = orig_val = readl_relaxed(kvreg->pm_apcc_base + reg);
reg_val &= ~mask;
reg_val |= (val & mask);
if (reg_val != orig_val) {
writel_relaxed(reg_val, kvreg->pm_apcc_base + reg);
/* Ensure write above completes */
mb();
}
}
static inline int kryo_decode_retention_volt(struct kryo_regulator *kvreg,
int reg)
{
return kvreg->vref_ret_min_volt + reg * kvreg->vref_ret_step_volt;
}
static inline int kryo_encode_retention_volt(struct kryo_regulator *kvreg,
int volt)
{
int encoded_volt = DIV_ROUND_UP(volt - kvreg->vref_ret_min_volt,
kvreg->vref_ret_step_volt);
if (encoded_volt >= LDO_N_VOLTAGES || encoded_volt < 0)
return -EINVAL;
else
return encoded_volt;
}
static inline int kryo_decode_functional_volt(struct kryo_regulator *kvreg,
int reg)
{
return kvreg->vref_func_min_volt + reg * kvreg->vref_func_step_volt;
}
static inline int kryo_encode_functional_volt(struct kryo_regulator *kvreg,
int volt)
{
int encoded_volt = DIV_ROUND_UP(volt - kvreg->vref_func_min_volt,
kvreg->vref_func_step_volt);
if (encoded_volt >= LDO_N_VOLTAGES || encoded_volt < 0)
return -EINVAL;
else
return encoded_volt;
}
/* Locks must be held by the caller */
static int kryo_set_retention_volt(struct kryo_regulator *kvreg, int volt)
{
int reg_val;
reg_val = kryo_encode_retention_volt(kvreg, volt);
if (reg_val < 0) {
kvreg_err(kvreg, "unsupported LDO retention voltage, rc=%d\n",
reg_val);
return reg_val;
}
kryo_masked_write(kvreg, APC_RET_VREF_SET, VREF_MASK,
reg_val << VREF_BIT_POS);
kvreg->retention_volt = kryo_decode_retention_volt(kvreg, reg_val);
kvreg_debug(kvreg, "Set LDO retention voltage=%d uV (0x%x)\n",
kvreg->retention_volt, reg_val);
return 0;
}
/* Locks must be held by the caller */
static int kryo_set_ldo_volt(struct kryo_regulator *kvreg, int volt)
{
int reg_val;
/*
* Assume the consumer ensures the requested voltage satisfies the
* headroom and adjustment voltage requirements. The value may be
* rounded up if necessary, to match the LDO resolution. Configure it.
*/
reg_val = kryo_encode_functional_volt(kvreg, volt);
if (reg_val < 0) {
kvreg_err(kvreg, "unsupported LDO functional voltage, rc=%d\n",
reg_val);
return reg_val;
}
kryo_masked_write(kvreg, APC_LDO_VREF_SET, VREF_MASK,
reg_val << VREF_BIT_POS);
kvreg->volt = kryo_decode_functional_volt(kvreg, reg_val);
kvreg_debug(kvreg, "Set LDO voltage=%d uV (0x%x)\n",
kvreg->volt, reg_val);
return 0;
}
/* Locks must be held by the caller */
static int kryo_configure_mode(struct kryo_regulator *kvreg,
enum msm_ldo_supply_mode mode)
{
u32 reg;
int timeout = PWR_GATE_SWITCH_TIMEOUT_US;
/* Configure LDO or BHS mode */
kryo_masked_write(kvreg, APC_PWR_GATE_MODE, PWR_GATE_SWITCH_MODE_MASK,
mode == LDO_MODE ? PWR_GATE_SWITCH_MODE_LDO
: PWR_GATE_SWITCH_MODE_BHS);
/* Complete register write before reading HW status register */
mb();
/* Delay to allow Power Gate Switch FSM to reach idle state */
while (timeout > 0) {
reg = readl_relaxed(kvreg->reg_base + APC_PGSCTL_STS);
if (!(reg & FSM_CUR_STATE_MASK))
break;
udelay(1);
timeout--;
}
if (timeout == 0) {
kvreg_err(kvreg, "PGS switch to %s failed. APC_PGSCTL_STS=0x%x\n",
mode == LDO_MODE ? "LDO" : "BHS", reg);
return -ETIMEDOUT;
}
kvreg->mode = mode;
kvreg_debug(kvreg, "using %s mode\n", mode == LDO_MODE ? "LDO" : "BHS");
return 0;
}
static int kryo_regulator_enable(struct regulator_dev *rdev)
{
struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
int rc;
unsigned long flags;
if (kvreg->vreg_en == true)
return 0;
spin_lock_irqsave(&kvreg->slock, flags);
rc = kryo_set_ldo_volt(kvreg, kvreg->volt);
if (rc) {
kvreg_err(kvreg, "set voltage failed, rc=%d\n", rc);
goto done;
}
kvreg->vreg_en = true;
kvreg_debug(kvreg, "enabled\n");
done:
spin_unlock_irqrestore(&kvreg->slock, flags);
return rc;
}
static int kryo_regulator_disable(struct regulator_dev *rdev)
{
struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
int rc;
unsigned long flags;
if (kvreg->vreg_en == false)
return 0;
spin_lock_irqsave(&kvreg->slock, flags);
kvreg->vreg_en = false;
kvreg_debug(kvreg, "disabled\n");
spin_unlock_irqrestore(&kvreg->slock, flags);
return rc;
}
static int kryo_regulator_is_enabled(struct regulator_dev *rdev)
{
struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
return kvreg->vreg_en;
}
static int kryo_regulator_set_voltage(struct regulator_dev *rdev,
int min_volt, int max_volt, unsigned int *selector)
{
struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
int rc;
unsigned long flags;
spin_lock_irqsave(&kvreg->slock, flags);
if (!kvreg->vreg_en) {
kvreg->volt = min_volt;
spin_unlock_irqrestore(&kvreg->slock, flags);
return 0;
}
rc = kryo_set_ldo_volt(kvreg, min_volt);
if (rc)
kvreg_err(kvreg, "set voltage failed, rc=%d\n", rc);
spin_unlock_irqrestore(&kvreg->slock, flags);
return rc;
}
static int kryo_regulator_get_voltage(struct regulator_dev *rdev)
{
struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
return kvreg->volt;
}
static int kryo_regulator_set_bypass(struct regulator_dev *rdev,
bool enable)
{
struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
int rc;
unsigned long flags;
spin_lock_irqsave(&kvreg->slock, flags);
/*
* LDO Vref voltage must be programmed before switching
* modes to ensure stable operation.
*/
rc = kryo_set_ldo_volt(kvreg, kvreg->volt);
if (rc)
kvreg_err(kvreg, "set voltage failed, rc=%d\n", rc);
rc = kryo_configure_mode(kvreg, enable);
if (rc)
kvreg_err(kvreg, "could not configure to %s mode\n",
enable == LDO_MODE ? "LDO" : "BHS");
spin_unlock_irqrestore(&kvreg->slock, flags);
return rc;
}
static int kryo_regulator_get_bypass(struct regulator_dev *rdev,
bool *enable)
{
struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
*enable = kvreg->mode;
return 0;
}
static int kryo_regulator_list_voltage(struct regulator_dev *rdev,
unsigned int selector)
{
struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
if (selector < kvreg->desc.n_voltages)
return kryo_decode_functional_volt(kvreg, selector);
else
return 0;
}
static int kryo_regulator_retention_set_voltage(struct regulator_dev *rdev,
int min_volt, int max_volt, unsigned int *selector)
{
struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
int rc;
unsigned long flags;
spin_lock_irqsave(&kvreg->slock, flags);
rc = kryo_set_retention_volt(kvreg, min_volt);
if (rc)
kvreg_err(kvreg, "set voltage failed, rc=%d\n", rc);
spin_unlock_irqrestore(&kvreg->slock, flags);
return rc;
}
static int kryo_regulator_retention_get_voltage(struct regulator_dev *rdev)
{
struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
return kvreg->retention_volt;
}
static int kryo_regulator_retention_set_bypass(struct regulator_dev *rdev,
bool enable)
{
struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
int timeout = PWR_GATE_SWITCH_TIMEOUT_US;
int rc = 0;
u32 reg_val;
unsigned long flags;
spin_lock_irqsave(&kvreg->slock, flags);
kryo_pm_apcc_masked_write(kvreg,
APCC_PWR_CTL_OVERRIDE,
APCC_PGS_MASK(kvreg->cluster_num),
enable ?
0 : APCC_PGS_MASK(kvreg->cluster_num));
/* Ensure write above completes before proceeding */
mb();
if (enable == BHS_MODE && kvreg->version < MSM8996_CPUSS_VER_1P1) {
/* No status register, delay worst case */
udelay(PWR_GATE_SWITCH_TIMEOUT_US);
} else if (enable == BHS_MODE) {
while (timeout > 0) {
reg_val = readl_relaxed(kvreg->pm_apcc_base
+ APCC_PGS_RET_STATUS);
if (!(reg_val & APCC_PGS_MASK(kvreg->cluster_num)))
break;
udelay(1);
timeout--;
}
if (timeout == 0) {
kvreg_err(kvreg, "PGS switch timed out. APCC_PGS_RET_STATUS=0x%x\n",
reg_val);
rc = -ETIMEDOUT;
goto done;
}
}
/* Bypassed LDO retention operation == disallow LDO retention */
kvreg_debug(kvreg, "%s LDO retention\n",
enable ? "enabled" : "disabled");
kvreg->retention_mode = enable == LDO_MODE ? LDO_MODE
: BHS_MODE;
done:
spin_unlock_irqrestore(&kvreg->slock, flags);
return rc;
}
static int kryo_regulator_retention_get_bypass(struct regulator_dev *rdev,
bool *enable)
{
struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
*enable = kvreg->retention_mode;
return 0;
}
static int kryo_regulator_retention_list_voltage(struct regulator_dev *rdev,
unsigned int selector)
{
struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
if (selector < kvreg->retention_desc.n_voltages)
return kryo_decode_retention_volt(kvreg, selector);
else
return 0;
}
static struct regulator_ops kryo_regulator_ops = {
.enable = kryo_regulator_enable,
.disable = kryo_regulator_disable,
.is_enabled = kryo_regulator_is_enabled,
.set_voltage = kryo_regulator_set_voltage,
.get_voltage = kryo_regulator_get_voltage,
.set_bypass = kryo_regulator_set_bypass,
.get_bypass = kryo_regulator_get_bypass,
.list_voltage = kryo_regulator_list_voltage,
};
static struct regulator_ops kryo_regulator_retention_ops = {
.set_voltage = kryo_regulator_retention_set_voltage,
.get_voltage = kryo_regulator_retention_get_voltage,
.set_bypass = kryo_regulator_retention_set_bypass,
.get_bypass = kryo_regulator_retention_get_bypass,
.list_voltage = kryo_regulator_retention_list_voltage,
};
static void kryo_ldo_voltage_init(struct kryo_regulator *kvreg)
{
kryo_set_retention_volt(kvreg, kvreg->retention_volt);
kryo_set_ldo_volt(kvreg, kvreg->volt);
}
#define APC_PWR_GATE_DLY_INIT 0x00000101
static int kryo_hw_init(struct kryo_regulator *kvreg)
{
/* Set up VREF_LDO and VREF_RET */
kryo_ldo_voltage_init(kvreg);
/* Program LDO and APM configuration registers */
writel_relaxed(kvreg->ldo_config_init, kvreg->reg_base + APC_LDO_CFG);
kryo_masked_write(kvreg, APC_APM_CFG, APM_CFG_MASK,
kvreg->apm_config_init);
/* Configure power gate sequencer delay */
kryo_masked_write(kvreg, APC_PWR_GATE_DLY, APC_PWR_GATE_DLY_MASK,
APC_PWR_GATE_DLY_INIT);
/* Allow LDO retention mode only when it's safe to do so */
kryo_pm_apcc_masked_write(kvreg,
APCC_PWR_CTL_OVERRIDE,
APCC_PGS_MASK(kvreg->cluster_num),
APCC_PGS_MASK(kvreg->cluster_num));
/* Complete the above writes before other accesses */
mb();
return 0;
}
static ssize_t kryo_dbg_mode_read(struct file *file, char __user *buff,
size_t count, loff_t *ppos)
{
struct kryo_regulator *kvreg = file->private_data;
char buf[10];
int len = 0;
u32 reg_val;
unsigned long flags;
if (!kvreg)
return -ENODEV;
/* Confirm HW state matches Kryo regulator device state */
spin_lock_irqsave(&kvreg->slock, flags);
reg_val = readl_relaxed(kvreg->reg_base + APC_PWR_GATE_MODE);
if (((reg_val & PWR_GATE_SWITCH_MODE_MASK) == PWR_GATE_SWITCH_MODE_LDO
&& kvreg->mode != LDO_MODE) ||
((reg_val & PWR_GATE_SWITCH_MODE_MASK) == PWR_GATE_SWITCH_MODE_BHS
&& kvreg->mode != BHS_MODE)) {
kvreg_err(kvreg, "HW state disagrees on PWR gate mode! reg=0x%x\n",
reg_val);
len = snprintf(buf, sizeof(buf), "ERR\n");
} else {
len = snprintf(buf, sizeof(buf), "%s\n",
kvreg->mode == LDO_MODE ?
"LDO" : "BHS");
}
spin_unlock_irqrestore(&kvreg->slock, flags);
return simple_read_from_buffer(buff, count, ppos, buf, len);
}
static int kryo_dbg_base_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static const struct file_operations kryo_dbg_mode_fops = {
.open = kryo_dbg_base_open,
.read = kryo_dbg_mode_read,
};
static void kryo_debugfs_init(struct kryo_regulator *kvreg)
{
struct dentry *temp;
if (IS_ERR_OR_NULL(kryo_debugfs_base)) {
if (PTR_ERR(kryo_debugfs_base) != -ENODEV)
kvreg_err(kvreg, "Base directory missing, cannot create debugfs nodes rc=%ld\n",
PTR_ERR(kryo_debugfs_base));
return;
}
kvreg->debugfs = debugfs_create_dir(kvreg->name, kryo_debugfs_base);
if (IS_ERR_OR_NULL(kvreg->debugfs)) {
kvreg_err(kvreg, "debugfs directory creation failed rc=%ld\n",
PTR_ERR(kvreg->debugfs));
return;
}
temp = debugfs_create_file("mode", 0444, kvreg->debugfs,
kvreg, &kryo_dbg_mode_fops);
if (IS_ERR_OR_NULL(temp)) {
kvreg_err(kvreg, "mode node creation failed rc=%ld\n",
PTR_ERR(temp));
return;
}
}
static void kryo_debugfs_deinit(struct kryo_regulator *kvreg)
{
debugfs_remove_recursive(kvreg->debugfs);
}
static void kryo_debugfs_base_init(void)
{
kryo_debugfs_base = debugfs_create_dir(KRYO_REGULATOR_DRIVER_NAME,
NULL);
if (IS_ERR_OR_NULL(kryo_debugfs_base)) {
if (PTR_ERR(kryo_debugfs_base) != -ENODEV)
pr_err("%s debugfs base directory creation failed rc=%ld\n",
KRYO_REGULATOR_DRIVER_NAME,
PTR_ERR(kryo_debugfs_base));
}
}
static void kryo_debugfs_base_remove(void)
{
debugfs_remove_recursive(kryo_debugfs_base);
}
static int kryo_regulator_init_data(struct platform_device *pdev,
struct kryo_regulator *kvreg)
{
int rc = 0;
struct device *dev = &pdev->dev;
struct resource *res;
void __iomem *temp;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pm-apc");
if (!res) {
dev_err(dev, "PM APC register address missing\n");
return -EINVAL;
}
kvreg->reg_base = devm_ioremap(dev, res->start, resource_size(res));
if (!kvreg->reg_base) {
dev_err(dev, "failed to map PM APC registers\n");
return -ENOMEM;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pm-apcc");
if (!res) {
dev_err(dev, "PM APCC register address missing\n");
return -EINVAL;
}
kvreg->pm_apcc_base = devm_ioremap(dev, res->start, resource_size(res));
if (!kvreg->pm_apcc_base) {
dev_err(dev, "failed to map PM APCC registers\n");
return -ENOMEM;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "apcs-csr");
if (!res) {
dev_err(dev, "missing APCS CSR physical base address");
return -EINVAL;
}
temp = ioremap(res->start, resource_size(res));
if (!temp) {
dev_err(dev, "failed to map APCS CSR registers\n");
return -ENOMEM;
}
kvreg->version = readl_relaxed(temp + APCS_VERSION);
iounmap(temp);
rc = of_property_read_u32(dev->of_node,
"qcom,vref-functional-step-voltage",
&kvreg->vref_func_step_volt);
if (rc < 0) {
dev_err(dev, "qcom,vref-functional-step-voltage missing rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(dev->of_node,
"qcom,vref-functional-min-voltage",
&kvreg->vref_func_min_volt);
if (rc < 0) {
dev_err(dev, "qcom,vref-functional-min-voltage missing rc=%d\n",
rc);
return rc;
}
kvreg->vref_func_max_volt = kryo_decode_functional_volt(kvreg,
LDO_N_VOLTAGES - 1);
rc = of_property_read_u32(dev->of_node,
"qcom,vref-retention-step-voltage",
&kvreg->vref_ret_step_volt);
if (rc < 0) {
dev_err(dev, "qcom,vref-retention-step-voltage missing rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(dev->of_node,
"qcom,vref-retention-min-voltage",
&kvreg->vref_ret_min_volt);
if (rc < 0) {
dev_err(dev, "qcom,vref-retention-min-voltage missing rc=%d\n",
rc);
return rc;
}
kvreg->vref_ret_max_volt = kryo_decode_retention_volt(kvreg,
LDO_N_VOLTAGES - 1);
rc = of_property_read_u32(dev->of_node, "qcom,ldo-default-voltage",
&kvreg->volt);
if (rc < 0) {
dev_err(dev, "qcom,ldo-default-voltage missing rc=%d\n", rc);
return rc;
}
if (!is_between(kvreg->vref_func_min_volt,
kvreg->vref_func_max_volt,
kvreg->volt)) {
dev_err(dev, "qcom,ldo-default-voltage=%d uV outside allowed range\n",
kvreg->volt);
return -EINVAL;
}
rc = of_property_read_u32(dev->of_node, "qcom,retention-voltage",
&kvreg->retention_volt);
if (rc < 0) {
dev_err(dev, "qcom,retention-voltage missing rc=%d\n", rc);
return rc;
}
if (!is_between(kvreg->vref_ret_min_volt,
kvreg->vref_ret_max_volt,
kvreg->retention_volt)) {
dev_err(dev, "qcom,retention-voltage=%d uV outside allowed range\n",
kvreg->retention_volt);
return -EINVAL;
}
rc = of_property_read_u32(dev->of_node, "qcom,ldo-headroom-voltage",
&kvreg->headroom_volt);
if (rc < 0) {
dev_err(dev, "qcom,ldo-headroom-voltage missing rc=%d\n", rc);
return rc;
}
rc = of_property_read_u32(dev->of_node, "qcom,ldo-config-init",
&kvreg->ldo_config_init);
if (rc < 0) {
dev_err(dev, "qcom,ldo-config-init missing rc=%d\n", rc);
return rc;
}
rc = of_property_read_u32(dev->of_node, "qcom,apm-config-init",
&kvreg->apm_config_init);
if (rc < 0) {
dev_err(dev, "qcom,apm-config-init missing rc=%d\n", rc);
return rc;
}
rc = of_property_read_u32(dev->of_node, "qcom,cluster-num",
&kvreg->cluster_num);
if (rc < 0) {
dev_err(dev, "qcom,cluster-num missing rc=%d\n", rc);
return rc;
}
return rc;
}
static int kryo_regulator_retention_init(struct kryo_regulator *kvreg,
struct platform_device *pdev,
struct device_node *ret_node)
{
struct device *dev = &pdev->dev;
struct regulator_init_data *init_data;
struct regulator_config reg_config = {};
int rc = 0;
init_data = of_get_regulator_init_data(dev, ret_node,
&kvreg->retention_desc);
if (!init_data) {
kvreg_err(kvreg, "regulator init data is missing\n");
return -EINVAL;
}
if (!init_data->constraints.name) {
kvreg_err(kvreg, "regulator name is missing from constraints\n");
return -EINVAL;
}
init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_BYPASS
| REGULATOR_CHANGE_VOLTAGE;
init_data->constraints.input_uV = init_data->constraints.max_uV;
kvreg->retention_desc.name = init_data->constraints.name;
kvreg->retention_desc.n_voltages = LDO_N_VOLTAGES;
kvreg->retention_desc.ops = &kryo_regulator_retention_ops;
kvreg->retention_desc.type = REGULATOR_VOLTAGE;
kvreg->retention_desc.owner = THIS_MODULE;
reg_config.dev = dev;
reg_config.init_data = init_data;
reg_config.driver_data = kvreg;
reg_config.of_node = ret_node;
kvreg->retention_rdev = regulator_register(&kvreg->retention_desc,
&reg_config);
if (IS_ERR(kvreg->retention_rdev)) {
rc = PTR_ERR(kvreg->retention_rdev);
kvreg_err(kvreg, "regulator_register failed, rc=%d\n", rc);
return rc;
}
return rc;
}
static int kryo_regulator_lpm_prepare(struct kryo_regulator *kvreg)
{
int vdd_volt_uv, bhs_volt, vdd_vlvl = 0;
unsigned long flags;
spin_lock_irqsave(&kvreg->slock, flags);
kvreg->pre_lpm_state_mode = kvreg->mode;
kvreg->pre_lpm_state_volt = kvreg->volt;
if (kvreg->mode == LDO_MODE) {
if (!vdd_vlvl) {
vdd_vlvl = msm_spm_get_vdd(SHARED_CPU_REG_NUM);
if (vdd_vlvl < 0) {
kvreg_err(kvreg, "could not get vdd supply voltage level, rc=%d\n",
vdd_vlvl);
spin_unlock_irqrestore(&kvreg->slock, flags);
return NOTIFY_BAD;
}
vdd_volt_uv = vdd_vlvl * VDD_SUPPLY_STEP_UV
+ VDD_SUPPLY_MIN_UV;
}
kvreg_debug(kvreg, "switching to BHS mode, vdd_apcc=%d uV, current LDO Vref=%d, LPM enter count=%lx\n",
vdd_volt_uv, kvreg->volt, kvreg->lpm_enter_count);
/*
* Program vdd supply minus LDO headroom as voltage.
* Cap this value to the maximum physically supported
* LDO voltage, if necessary.
*/
bhs_volt = vdd_volt_uv - kvreg->headroom_volt;
if (bhs_volt > kvreg->vref_func_max_volt) {
kvreg_debug(kvreg, "limited to LDO output of %d uV when switching to BHS mode\n",
kvreg->vref_func_max_volt);
bhs_volt = kvreg->vref_func_max_volt;
}
kryo_set_ldo_volt(kvreg, bhs_volt);
/* Switch Power Gate Mode */
kryo_configure_mode(kvreg, BHS_MODE);
}
kvreg->lpm_enter_count++;
spin_unlock_irqrestore(&kvreg->slock, flags);
return NOTIFY_OK;
}
static int kryo_regulator_lpm_resume(struct kryo_regulator *kvreg)
{
unsigned long flags;
spin_lock_irqsave(&kvreg->slock, flags);
if (kvreg->mode == BHS_MODE &&
kvreg->pre_lpm_state_mode == LDO_MODE) {
kvreg_debug(kvreg, "switching to LDO mode, cached LDO Vref=%d, LPM exit count=%lx\n",
kvreg->pre_lpm_state_volt, kvreg->lpm_exit_count);
/*
* Cached voltage value corresponds to vdd supply minus
* LDO headroom, reprogram it.
*/
kryo_set_ldo_volt(kvreg, kvreg->volt);
/* Switch Power Gate Mode */
kryo_configure_mode(kvreg, LDO_MODE);
/* Request final LDO output voltage */
kryo_set_ldo_volt(kvreg, kvreg->pre_lpm_state_volt);
}
kvreg->lpm_exit_count++;
spin_unlock_irqrestore(&kvreg->slock, flags);
if (kvreg->lpm_exit_count != kvreg->lpm_enter_count) {
kvreg_err(kvreg, "LPM entry/exit counter mismatch, this is not expected: enter=%lx exit=%lx\n",
kvreg->lpm_enter_count, kvreg->lpm_exit_count);
BUG_ON(1);
}
return NOTIFY_OK;
}
static int kryo_regulator_cpu_pm_callback(struct notifier_block *self,
unsigned long cmd, void *v)
{
struct kryo_regulator *kvreg = container_of(self, struct kryo_regulator,
cpu_pm_notifier);
unsigned long aff_level = (unsigned long) v;
int rc = NOTIFY_OK;
switch (cmd) {
case CPU_CLUSTER_PM_ENTER:
if (aff_level == AFFINITY_LEVEL_M3)
rc = kryo_regulator_lpm_prepare(kvreg);
break;
case CPU_CLUSTER_PM_EXIT:
if (aff_level == AFFINITY_LEVEL_M3)
rc = kryo_regulator_lpm_resume(kvreg);
break;
}
return rc;
}
static int kryo_regulator_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct kryo_regulator *kvreg;
struct regulator_config reg_config = {};
struct regulator_init_data *init_data = pdev->dev.platform_data;
struct device_node *child;
int rc = 0;
if (!dev->of_node) {
dev_err(dev, "Device tree node is missing\n");
return -ENODEV;
}
init_data = of_get_regulator_init_data(dev, dev->of_node, NULL);
if (!init_data) {
dev_err(dev, "regulator init data is missing\n");
return -EINVAL;
}
if (!init_data->constraints.name) {
dev_err(dev, "regulator name is missing from constraints\n");
return -EINVAL;
}
init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE
| REGULATOR_CHANGE_BYPASS | REGULATOR_CHANGE_STATUS;
init_data->constraints.input_uV = init_data->constraints.max_uV;
kvreg = devm_kzalloc(dev, sizeof(*kvreg), GFP_KERNEL);
if (!kvreg)
return -ENOMEM;
rc = kryo_regulator_init_data(pdev, kvreg);
if (rc) {
dev_err(dev, "could not parse and ioremap all device tree properties\n");
return rc;
}
spin_lock_init(&kvreg->slock);
kvreg->name = init_data->constraints.name;
kvreg->desc.name = kvreg->name;
kvreg->desc.n_voltages = LDO_N_VOLTAGES;
kvreg->desc.ops = &kryo_regulator_ops;
kvreg->desc.type = REGULATOR_VOLTAGE;
kvreg->desc.owner = THIS_MODULE;
kvreg->mode = BHS_MODE;
for_each_available_child_of_node(dev->of_node, child) {
kryo_regulator_retention_init(kvreg, pdev, child);
if (rc) {
dev_err(dev, "could not initialize retention regulator, rc=%d\n",
rc);
return rc;
}
break;
}
/* CPUSS PM Register Initialization */
rc = kryo_hw_init(kvreg);
if (rc) {
dev_err(dev, "unable to perform CPUSS PM initialization sequence\n");
return rc;
}
reg_config.dev = dev;
reg_config.init_data = init_data;
reg_config.driver_data = kvreg;
reg_config.of_node = dev->of_node;
kvreg->rdev = regulator_register(&kvreg->desc, &reg_config);
if (IS_ERR(kvreg->rdev)) {
rc = PTR_ERR(kvreg->rdev);
kvreg_err(kvreg, "regulator_register failed, rc=%d\n", rc);
return rc;
}
platform_set_drvdata(pdev, kvreg);
kryo_debugfs_init(kvreg);
mutex_lock(&kryo_regulator_list_mutex);
list_add_tail(&kvreg->link, &kryo_regulator_list);
mutex_unlock(&kryo_regulator_list_mutex);
kvreg->cpu_pm_notifier.notifier_call = kryo_regulator_cpu_pm_callback;
cpu_pm_register_notifier(&kvreg->cpu_pm_notifier);
kvreg_debug(kvreg, "registered cpu pm notifier\n");
kvreg_info(kvreg, "default LDO functional volt=%d uV, LDO retention volt=%d uV, Vref func=%d + %d*(val), cluster-num=%d\n",
kvreg->volt, kvreg->retention_volt,
kvreg->vref_func_min_volt,
kvreg->vref_func_step_volt,
kvreg->cluster_num);
return rc;
}
static int kryo_regulator_remove(struct platform_device *pdev)
{
struct kryo_regulator *kvreg = platform_get_drvdata(pdev);
mutex_lock(&kryo_regulator_list_mutex);
list_del(&kvreg->link);
mutex_unlock(&kryo_regulator_list_mutex);
cpu_pm_unregister_notifier(&kvreg->cpu_pm_notifier);
regulator_unregister(kvreg->rdev);
platform_set_drvdata(pdev, NULL);
kryo_debugfs_deinit(kvreg);
return 0;
}
static const struct of_device_id kryo_regulator_match_table[] = {
{ .compatible = "qcom,kryo-regulator", },
{}
};
static struct platform_driver kryo_regulator_driver = {
.probe = kryo_regulator_probe,
.remove = kryo_regulator_remove,
.driver = {
.name = KRYO_REGULATOR_DRIVER_NAME,
.of_match_table = kryo_regulator_match_table,
.owner = THIS_MODULE,
},
};
static int __init kryo_regulator_init(void)
{
kryo_debugfs_base_init();
return platform_driver_register(&kryo_regulator_driver);
}
static void __exit kryo_regulator_exit(void)
{
platform_driver_unregister(&kryo_regulator_driver);
kryo_debugfs_base_remove();
}
MODULE_DESCRIPTION("Kryo regulator driver");
MODULE_LICENSE("GPL v2");
arch_initcall(kryo_regulator_init);
module_exit(kryo_regulator_exit);