blob: c39394042865f416c970ac9016da90ee8b184948 [file] [log] [blame]
/*
* Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include "cpr3-regulator.h"
#define MSM8998_KBSS_FUSE_CORNERS 4
#define SDM660_KBSS_FUSE_CORNERS 5
#define SDM845_KBSS_POWER_CLUSTER_FUSE_CORNERS 4
#define SDM845_V1_KBSS_PERF_CLUSTER_FUSE_CORNERS 3
#define SDM845_V2_KBSS_PERF_CLUSTER_FUSE_CORNERS 5
/* This must be set to the largest of SDM845 FUSE_CORNERS values. */
#define SDM845_KBSS_MAX_FUSE_CORNERS 5
/**
* struct cprh_kbss_fuses - KBSS specific fuse data
* @ro_sel: Ring oscillator select fuse parameter value for each
* fuse corner
* @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value
* for each fuse corner (raw, not converted to a voltage)
* @target_quot: CPR target quotient fuse parameter value for each fuse
* corner
* @quot_offset: CPR target quotient offset fuse parameter value for each
* fuse corner (raw, not unpacked) used for target quotient
* interpolation
* @speed_bin: Application processor speed bin fuse parameter value for
* the given chip
* @cpr_fusing_rev: CPR fusing revision fuse parameter value
* @force_highest_corner: Flag indicating that all corners must operate
* at the voltage of the highest corner. This is
* applicable to MSM8998 only.
* @aging_init_quot_diff: Initial quotient difference between CPR aging
* min and max sensors measured at time of manufacturing
*
* This struct holds the values for all of the fuses read from memory.
*/
struct cprh_kbss_fuses {
u64 *ro_sel;
u64 *init_voltage;
u64 *target_quot;
u64 *quot_offset;
u64 speed_bin;
u64 cpr_fusing_rev;
u64 force_highest_corner;
u64 aging_init_quot_diff;
};
/*
* Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 with speed bin fuse = 0.
* Fuse combos 8 - 15 map to CPR fusing revision 0 - 7 with speed bin fuse = 1.
* Fuse combos 16 - 23 map to CPR fusing revision 0 - 7 with speed bin fuse = 2.
* Fuse combos 24 - 31 map to CPR fusing revision 0 - 7 with speed bin fuse = 3.
*/
#define CPRH_MSM8998_KBSS_FUSE_COMBO_COUNT 32
#define CPRH_SDM660_KBSS_FUSE_COMBO_COUNT 16
#define CPRH_SDM845_KBSS_FUSE_COMBO_COUNT 24
/*
* Constants which define the name of each fuse corner.
*/
enum cprh_msm8998_kbss_fuse_corner {
CPRH_MSM8998_KBSS_FUSE_CORNER_LOWSVS = 0,
CPRH_MSM8998_KBSS_FUSE_CORNER_SVS = 1,
CPRH_MSM8998_KBSS_FUSE_CORNER_NOM = 2,
CPRH_MSM8998_KBSS_FUSE_CORNER_TURBO_L1 = 3,
};
static const char * const cprh_msm8998_kbss_fuse_corner_name[] = {
[CPRH_MSM8998_KBSS_FUSE_CORNER_LOWSVS] = "LowSVS",
[CPRH_MSM8998_KBSS_FUSE_CORNER_SVS] = "SVS",
[CPRH_MSM8998_KBSS_FUSE_CORNER_NOM] = "NOM",
[CPRH_MSM8998_KBSS_FUSE_CORNER_TURBO_L1] = "TURBO_L1",
};
enum cprh_sdm660_power_kbss_fuse_corner {
CPRH_SDM660_POWER_KBSS_FUSE_CORNER_LOWSVS = 0,
CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVS = 1,
CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVSPLUS = 2,
CPRH_SDM660_POWER_KBSS_FUSE_CORNER_NOM = 3,
CPRH_SDM660_POWER_KBSS_FUSE_CORNER_TURBO_L1 = 4,
};
static const char * const cprh_sdm660_power_kbss_fuse_corner_name[] = {
[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_LOWSVS] = "LowSVS",
[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVS] = "SVS",
[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVSPLUS] = "SVSPLUS",
[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_NOM] = "NOM",
[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_TURBO_L1] = "TURBO_L1",
};
enum cprh_sdm660_perf_kbss_fuse_corner {
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVS = 0,
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVSPLUS = 1,
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_NOM = 2,
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO = 3,
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO_L2 = 4,
};
static const char * const cprh_sdm660_perf_kbss_fuse_corner_name[] = {
[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVS] = "SVS",
[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVSPLUS] = "SVSPLUS",
[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_NOM] = "NOM",
[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO] = "TURBO",
[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO_L2] = "TURBO_L2",
};
/* KBSS cluster IDs */
#define CPRH_KBSS_POWER_CLUSTER_ID 0
#define CPRH_KBSS_PERFORMANCE_CLUSTER_ID 1
/* KBSS controller IDs */
#define CPRH_KBSS_MIN_CONTROLLER_ID 0
#define CPRH_KBSS_MAX_CONTROLLER_ID 1
/* SDM845 KBSS cluster 0 thread IDs */
#define CPRH_KBSS_POWER_CLUSTER_THREAD_ID 0
#define CPRH_KBSS_L3_THREAD_ID 1
/* SDM845 KBSS cluster 1 thread IDs */
#define CPRH_KBSS_PERFORMANCE_CLUSTER_THREAD_ID 0
static const char * const
cprh_sdm845_v1_kbss_fuse_corner_name[2][SDM845_KBSS_MAX_FUSE_CORNERS] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
"LowSVS",
"SVS_L1",
"NOM_L1",
"TURBO",
"",
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
"SVS",
"NOM",
"TURBO_L2",
"",
"",
},
};
static const char * const
cprh_sdm845_v2_kbss_fuse_corner_name[2][SDM845_KBSS_MAX_FUSE_CORNERS] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
"LowSVS",
"SVS_L1",
"NOM",
"TURBO",
"",
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
"LowSVS",
"SVS",
"NOM_L1",
"TURBO_L2",
"BINNING",
},
};
/*
* MSM8998 KBSS fuse parameter locations:
*
* Structs are organized with the following dimensions:
* Outer: 0 or 1 for power or performance cluster
* Middle: 0 to 3 for fuse corners from lowest to highest corner
* Inner: large enough to hold the longest set of parameter segments which
* fully defines a fuse parameter, +1 (for NULL termination).
* Each segment corresponds to a contiguous group of bits from a
* single fuse row. These segments are concatentated together in
* order to form the full fuse parameter value. The segments for
* a given parameter may correspond to different fuse rows.
*
*/
static const struct cpr3_fuse_param
msm8998_kbss_ro_sel_param[2][MSM8998_KBSS_FUSE_CORNERS][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{67, 12, 15}, {} },
{{67, 8, 11}, {} },
{{67, 4, 7}, {} },
{{67, 0, 3}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{69, 26, 29}, {} },
{{69, 22, 25}, {} },
{{69, 18, 21}, {} },
{{69, 14, 17}, {} },
},
};
static const struct cpr3_fuse_param
sdm660_kbss_ro_sel_param[2][SDM660_KBSS_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{67, 12, 15}, {} },
{{67, 8, 11}, {} },
{{65, 56, 59}, {} },
{{67, 4, 7}, {} },
{{67, 0, 3}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{68, 61, 63}, {69, 0, 0} },
{{69, 1, 4}, {} },
{{68, 57, 60}, {} },
{{68, 53, 56}, {} },
{{66, 14, 17}, {} },
},
};
static const struct cpr3_fuse_param
msm8998_kbss_init_voltage_param[2][MSM8998_KBSS_FUSE_CORNERS][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{67, 34, 39}, {} },
{{67, 28, 33}, {} },
{{67, 22, 27}, {} },
{{67, 16, 21}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{69, 48, 53}, {} },
{{69, 42, 47}, {} },
{{69, 36, 41}, {} },
{{69, 30, 35}, {} },
},
};
static const struct cpr3_fuse_param
sdm660_kbss_init_voltage_param[2][SDM660_KBSS_FUSE_CORNERS][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{67, 34, 39}, {} },
{{67, 28, 33}, {} },
{{71, 3, 8}, {} },
{{67, 22, 27}, {} },
{{67, 16, 21}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{69, 17, 22}, {} },
{{69, 23, 28}, {} },
{{69, 11, 16}, {} },
{{69, 5, 10}, {} },
{{70, 42, 47}, {} },
},
};
static const struct cpr3_fuse_param
msm8998_kbss_target_quot_param[2][MSM8998_KBSS_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{68, 18, 29}, {} },
{{68, 6, 17}, {} },
{{67, 58, 63}, {68, 0, 5} },
{{67, 46, 57}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{70, 32, 43}, {} },
{{70, 20, 31}, {} },
{{70, 8, 19}, {} },
{{69, 60, 63}, {70, 0, 7}, {} },
},
};
static const struct cpr3_fuse_param
sdm660_kbss_target_quot_param[2][SDM660_KBSS_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{68, 12, 23}, {} },
{{68, 0, 11}, {} },
{{71, 9, 20}, {} },
{{67, 52, 63}, {} },
{{67, 40, 51}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{69, 53, 63}, {70, 0, 0}, {} },
{{70, 1, 12}, {} },
{{69, 41, 52}, {} },
{{69, 29, 40}, {} },
{{70, 48, 59}, {} },
},
};
static const struct cpr3_fuse_param
msm8998_kbss_quot_offset_param[2][MSM8998_KBSS_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{} },
{{68, 63, 63}, {69, 0, 5}, {} },
{{68, 56, 62}, {} },
{{68, 49, 55}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{} },
{{71, 13, 15}, {71, 21, 24}, {} },
{{71, 6, 12}, {} },
{{70, 63, 63}, {71, 0, 5}, {} },
},
};
static const struct cpr3_fuse_param
sdm660_kbss_quot_offset_param[2][SDM660_KBSS_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{{} },
{{68, 38, 44}, {} },
{{71, 21, 27}, {} },
{{68, 31, 37}, {} },
{{68, 24, 30}, {} },
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{{} },
{{70, 27, 33}, {} },
{{70, 20, 26}, {} },
{{70, 13, 19}, {} },
{{70, 60, 63}, {71, 0, 2}, {} },
},
};
/*
* SDM845 KBSS fuse parameter locations:
*
* Structs are organized with the following dimensions:
* Outer: 0 or 1 for power or performance cluster
* Outer-1: 0 or 1 for power cluster or L3 cache
* Inner+1: 0 to 3 for fuse corners from lowest to highest corner
* Inner: large enough to hold the longest set of parameter segments
* which fully defines a fuse parameter, +1 (for NULL
* termination). Each segment corresponds to a contiguous group
* of bits from a single fuse row. These segments are
* concatentated together in order to form the full fuse parameter
* value. The segments for a given parameter may correspond to
* different fuse rows.
*/
static const struct cpr3_fuse_param
sdm845_v1_kbss_ro_sel_param[2][2][SDM845_KBSS_MAX_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
[CPRH_KBSS_POWER_CLUSTER_THREAD_ID] = {
{{66, 52, 55}, {} },
{{66, 48, 51}, {} },
{{66, 44, 47}, {} },
{{66, 40, 43}, {} },
},
[CPRH_KBSS_L3_THREAD_ID] = {
{{66, 52, 55}, {} },
{{66, 48, 51}, {} },
{{66, 44, 47}, {} },
{{66, 40, 43}, {} },
},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
[CPRH_KBSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{70, 6, 9}, {} },
{{70, 2, 5}, {} },
{{69, 62, 63}, {70, 0, 1}, {} },
},
},
};
static const struct cpr3_fuse_param
sdm845_v2_kbss_ro_sel_param[2][2][SDM845_KBSS_MAX_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
[CPRH_KBSS_POWER_CLUSTER_THREAD_ID] = {
{{66, 52, 55}, {} },
{{66, 48, 51}, {} },
{{66, 44, 47}, {} },
{{66, 40, 43}, {} },
},
[CPRH_KBSS_L3_THREAD_ID] = {
{{66, 52, 55}, {} },
{{66, 48, 51}, {} },
{{66, 44, 47}, {} },
{{66, 40, 43}, {} },
},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
[CPRH_KBSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{73, 5, 8}, {} },
{{70, 12, 15}, {} },
{{70, 8, 11}, {} },
{{70, 4, 7}, {} },
{{70, 0, 3}, {} },
},
},
};
static const struct cpr3_fuse_param
sdm845_v1_kbss_init_voltage_param[2][2][SDM845_KBSS_MAX_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
[CPRH_KBSS_POWER_CLUSTER_THREAD_ID] = {
{{67, 10, 15}, {} },
{{67, 4, 9}, {} },
{{66, 62, 63}, {67, 0, 3}, {} },
{{66, 56, 61}, {} },
},
[CPRH_KBSS_L3_THREAD_ID] = {
{{68, 47, 52}, {} },
{{68, 41, 46}, {} },
{{68, 35, 40}, {} },
{{68, 29, 34}, {} },
},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
[CPRH_KBSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{70, 28, 33}, {} },
{{70, 22, 27}, {} },
{{70, 16, 21}, {} },
},
},
};
static const struct cpr3_fuse_param
sdm845_v2_kbss_init_voltage_param[2][2][SDM845_KBSS_MAX_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
[CPRH_KBSS_POWER_CLUSTER_THREAD_ID] = {
{{67, 10, 15}, {} },
{{67, 4, 9}, {} },
{{66, 62, 63}, {67, 0, 3}, {} },
{{66, 56, 61}, {} },
},
[CPRH_KBSS_L3_THREAD_ID] = {
{{68, 50, 55}, {} },
{{68, 44, 49}, {} },
{{68, 38, 43}, {} },
{{68, 32, 37}, {} },
},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
[CPRH_KBSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{72, 10, 15}, {} },
{{70, 34, 39}, {} },
{{70, 28, 33}, {} },
{{70, 22, 27}, {} },
{{70, 16, 21}, {} },
},
},
};
static const struct cpr3_fuse_param
sdm845_v1_kbss_target_quot_param[2][2][SDM845_KBSS_MAX_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
[CPRH_KBSS_POWER_CLUSTER_THREAD_ID] = {
{{67, 52, 63}, {} },
{{67, 40, 51}, {} },
{{67, 28, 39}, {} },
{{67, 16, 27}, {} },
},
[CPRH_KBSS_L3_THREAD_ID] = {
{{69, 25, 36}, {} },
{{69, 13, 24}, {} },
{{69, 1, 12}, {} },
{{68, 53, 63}, {69, 0, 0}, {} },
},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
[CPRH_KBSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{71, 6, 17}, {} },
{{70, 58, 63}, {71, 0, 5}, {} },
{{70, 46, 57}, {} },
},
},
};
static const struct cpr3_fuse_param
sdm845_v2_kbss_target_quot_param[2][2][SDM845_KBSS_MAX_FUSE_CORNERS][3] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
[CPRH_KBSS_POWER_CLUSTER_THREAD_ID] = {
{{67, 52, 63}, {} },
{{67, 40, 51}, {} },
{{67, 28, 39}, {} },
{{67, 16, 27}, {} },
},
[CPRH_KBSS_L3_THREAD_ID] = {
{{69, 28, 39}, {} },
{{69, 16, 27}, {} },
{{69, 4, 15}, {} },
{{68, 56, 63}, {69, 0, 3}, {} },
},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
[CPRH_KBSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{72, 16, 27}, {} },
{{71, 12, 23}, {} },
{{71, 0, 11}, {} },
{{70, 52, 63}, {} },
{{70, 40, 51}, {} },
},
},
};
static const struct cpr3_fuse_param
sdm845_v1_kbss_quot_offset_param[2][2][SDM845_KBSS_MAX_FUSE_CORNERS][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
[CPRH_KBSS_POWER_CLUSTER_THREAD_ID] = {
{{} },
{{68, 14, 20}, {} },
{{68, 7, 13}, {} },
{{68, 0, 6}, {} },
},
[CPRH_KBSS_L3_THREAD_ID] = {
{{} },
{{69, 51, 57}, {} },
{{69, 44, 50}, {} },
{{69, 37, 43}, {} },
},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
[CPRH_KBSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{} },
{{71, 32, 38}, {} },
{{71, 25, 31}, {} },
},
},
};
static const struct cpr3_fuse_param
sdm845_v2_kbss_quot_offset_param[2][2][SDM845_KBSS_MAX_FUSE_CORNERS][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
[CPRH_KBSS_POWER_CLUSTER_THREAD_ID] = {
{{} },
{{68, 16, 23}, {} },
{{68, 8, 15}, {} },
{{68, 0, 7}, {} },
},
[CPRH_KBSS_L3_THREAD_ID] = {
{{} },
{{69, 56, 63}, {} },
{{69, 48, 55}, {} },
{{69, 40, 47}, {} },
},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
[CPRH_KBSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{} },
{{72, 28, 35}, {} },
{{71, 40, 47}, {} },
{{71, 32, 39}, {} },
{{71, 24, 31}, {} },
},
},
};
static const struct cpr3_fuse_param msm8998_cpr_fusing_rev_param[] = {
{39, 51, 53},
{},
};
static const struct cpr3_fuse_param sdm660_cpr_fusing_rev_param[] = {
{71, 28, 30},
{},
};
static const struct cpr3_fuse_param sdm845_v1_cpr_fusing_rev_param[] = {
{73, 3, 5},
{},
};
static const struct cpr3_fuse_param sdm845_v2_cpr_fusing_rev_param[] = {
{75, 34, 36},
{},
};
static const struct cpr3_fuse_param kbss_speed_bin_param[] = {
{38, 29, 31},
{},
};
static const struct cpr3_fuse_param
msm8998_cpr_force_highest_corner_param[] = {
{100, 45, 45},
{},
};
static const struct cpr3_fuse_param
sdm845_cpr_force_highest_corner_param[] = {
{100, 45, 45},
{},
};
static const struct cpr3_fuse_param
msm8998_kbss_aging_init_quot_diff_param[2][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{69, 6, 13},
{},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{71, 25, 32},
{},
},
};
static const struct cpr3_fuse_param
sdm660_kbss_aging_init_quot_diff_param[2][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{68, 45, 52},
{},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{70, 34, 41},
{},
},
};
static const struct cpr3_fuse_param
sdm845_v1_kbss_aging_init_quot_diff_param[2][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{68, 21, 28},
{},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{71, 39, 46},
{},
},
};
static const struct cpr3_fuse_param
sdm845_v2_kbss_aging_init_quot_diff_param[2][2] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
{68, 24, 31},
{},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
{71, 48, 55},
{},
},
};
/*
* Open loop voltage fuse reference voltages in microvolts for MSM8998 v1
*/
static const int
msm8998_v1_kbss_fuse_ref_volt[MSM8998_KBSS_FUSE_CORNERS] = {
696000,
768000,
896000,
1112000,
};
/*
* Open loop voltage fuse reference voltages in microvolts for MSM8998 v2
*/
static const int
msm8998_v2_kbss_fuse_ref_volt[2][MSM8998_KBSS_FUSE_CORNERS] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
688000,
756000,
828000,
1056000,
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
756000,
756000,
828000,
1056000,
},
};
/*
* Open loop voltage fuse reference voltages in microvolts for SDM660
*/
static const int
sdm660_kbss_fuse_ref_volt[2][SDM660_KBSS_FUSE_CORNERS] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
644000,
724000,
788000,
868000,
1068000,
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
724000,
788000,
868000,
988000,
1068000,
},
};
/*
* Open loop voltage fuse reference voltages in microvolts for SDM845
*/
static const int
sdm845_v1_kbss_fuse_ref_volt[2][2][SDM845_KBSS_MAX_FUSE_CORNERS] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
[CPRH_KBSS_POWER_CLUSTER_THREAD_ID] = {
688000,
812000,
896000,
900000,
},
[CPRH_KBSS_L3_THREAD_ID] = {
688000,
812000,
896000,
900000,
},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
[CPRH_KBSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
756000,
828000,
1000000,
},
},
};
static const int
sdm845_v2_kbss_fuse_ref_volt[2][2][SDM845_KBSS_MAX_FUSE_CORNERS] = {
[CPRH_KBSS_POWER_CLUSTER_ID] = {
[CPRH_KBSS_POWER_CLUSTER_THREAD_ID] = {
688000,
812000,
828000,
952000,
},
[CPRH_KBSS_L3_THREAD_ID] = {
688000,
812000,
828000,
952000,
},
},
[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
[CPRH_KBSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
688000,
812000,
884000,
1000000,
1000000,
},
},
};
#define CPRH_KBSS_FUSE_STEP_VOLT 10000
#define CPRH_SDM845_KBSS_FUSE_STEP_VOLT 8000
#define CPRH_KBSS_VOLTAGE_FUSE_SIZE 6
#define CPRH_KBSS_QUOT_OFFSET_SCALE 5
#define CPRH_KBSS_AGING_INIT_QUOT_DIFF_SIZE 8
#define CPRH_KBSS_AGING_INIT_QUOT_DIFF_SCALE 1
#define CPRH_KBSS_CPR_CLOCK_RATE 19200000
#define CPRH_KBSS_MAX_CORNER_BAND_COUNT 4
#define CPRH_KBSS_MAX_CORNER_COUNT 40
#define CPRH_KBSS_CPR_SDELTA_CORE_COUNT 4
#define CPRH_KBSS_MAX_TEMP_POINTS 3
/*
* msm8998 configuration
*/
#define MSM8998_KBSS_POWER_CPR_SENSOR_COUNT 6
#define MSM8998_KBSS_PERFORMANCE_CPR_SENSOR_COUNT 9
#define MSM8998_KBSS_POWER_TEMP_SENSOR_ID_START 1
#define MSM8998_KBSS_POWER_TEMP_SENSOR_ID_END 5
#define MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START 6
#define MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END 10
#define MSM8998_KBSS_POWER_AGING_SENSOR_ID 0
#define MSM8998_KBSS_POWER_AGING_BYPASS_MASK0 0
#define MSM8998_KBSS_PERFORMANCE_AGING_SENSOR_ID 0
#define MSM8998_KBSS_PERFORMANCE_AGING_BYPASS_MASK0 0
/*
* sdm660 configuration
*/
#define SDM660_KBSS_POWER_CPR_SENSOR_COUNT 6
#define SDM660_KBSS_PERFORMANCE_CPR_SENSOR_COUNT 9
#define SDM660_KBSS_POWER_TEMP_SENSOR_ID_START 10
#define SDM660_KBSS_POWER_TEMP_SENSOR_ID_END 11
#define SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START 4
#define SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END 9
#define SDM660_KBSS_POWER_AGING_SENSOR_ID 0
#define SDM660_KBSS_POWER_AGING_BYPASS_MASK0 0
#define SDM660_KBSS_PERFORMANCE_AGING_SENSOR_ID 0
#define SDM660_KBSS_PERFORMANCE_AGING_BYPASS_MASK0 0
/*
* sdm845 configuration
*/
#define SDM845_KBSS_POWER_CPR_SENSOR_COUNT 8
#define SDM845_KBSS_L3_THREAD_CPR_SENSOR_ID_START 0
#define SDM845_KBSS_L3_THREAD_CPR_SENSOR_ID_END 3
#define SDM845_KBSS_POWER_THREAD_CPR_SENSOR_ID_START 4
#define SDM845_KBSS_POWER_THREAD_CPR_SENSOR_ID_END 7
#define SDM845_KBSS_PERFORMANCE_CPR_SENSOR_COUNT 14
#define SDM845_KBSS_POWER_TEMP_SENSOR_ID_START 1
#define SDM845_KBSS_POWER_TEMP_SENSOR_ID_END 5
#define SDM845_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START 6
#define SDM845_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END 10
#define SDM845_KBSS_POWER_AGING_SENSOR_ID 0
#define SDM845_KBSS_POWER_AGING_BYPASS_MASK0 0
#define SDM845_KBSS_PERFORMANCE_AGING_SENSOR_ID 0
#define SDM845_KBSS_PERFORMANCE_AGING_BYPASS_MASK0 0
/*
* SOC IDs
*/
enum soc_id {
MSM8998_V1_SOC_ID = 1,
MSM8998_V2_SOC_ID = 2,
SDM660_SOC_ID = 3,
SDM845_V1_SOC_ID = 4,
SDM845_V2_SOC_ID = 5,
};
/**
* cprh_kbss_get_thread_id() - get the logical fusing thread ID for a CPR3
* thread
* @thread: Pointer to the CPR3 thread
*
* Return: CPR3 thread's thread ID fuse parameter index
*/
static u32 cprh_kbss_get_thread_id(struct cpr3_thread *thread)
{
int thread_id = thread->thread_id;
/* Power cluster and L3 cache CPR threads are swapped on SDM845 v1 */
if (thread->ctrl->soc_revision == SDM845_V1_SOC_ID
&& thread->ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID)
thread_id = thread_id == CPRH_KBSS_POWER_CLUSTER_THREAD_ID
? CPRH_KBSS_L3_THREAD_ID
: CPRH_KBSS_POWER_CLUSTER_THREAD_ID;
return thread_id;
}
/**
* cprh_msm8998_kbss_read_fuse_data() - load msm8998 KBSS specific fuse
* parameter values
* @vreg: Pointer to the CPR3 regulator
* @fuse: KBSS specific fuse data
*
* This function fills cprh_kbss_fuses struct with values read out of hardware
* fuses.
*
* Return: 0 on success, errno on failure
*/
static int cprh_msm8998_kbss_read_fuse_data(struct cpr3_regulator *vreg,
struct cprh_kbss_fuses *fuse)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
int i, id, rc;
rc = cpr3_read_fuse_param(base, msm8998_cpr_fusing_rev_param,
&fuse->cpr_fusing_rev);
if (rc) {
cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
id = vreg->thread->ctrl->ctrl_id;
for (i = 0; i < MSM8998_KBSS_FUSE_CORNERS; i++) {
rc = cpr3_read_fuse_param(base,
msm8998_kbss_init_voltage_param[id][i],
&fuse->init_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
msm8998_kbss_target_quot_param[id][i],
&fuse->target_quot[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
msm8998_kbss_ro_sel_param[id][i],
&fuse->ro_sel[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
msm8998_kbss_quot_offset_param[id][i],
&fuse->quot_offset[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
i, rc);
return rc;
}
}
rc = cpr3_read_fuse_param(base,
msm8998_kbss_aging_init_quot_diff_param[id],
&fuse->aging_init_quot_diff);
if (rc) {
cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n",
rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
msm8998_cpr_force_highest_corner_param,
&fuse->force_highest_corner);
if (rc) {
cpr3_err(vreg, "Unable to read CPR force highest corner fuse, rc=%d\n",
rc);
return rc;
}
if (fuse->force_highest_corner)
cpr3_info(vreg, "Fusing requires all operation at the highest corner\n");
vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
if (vreg->fuse_combo >= CPRH_MSM8998_KBSS_FUSE_COMBO_COUNT) {
cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
vreg->fuse_combo);
return -EINVAL;
}
return rc;
};
/**
* cprh_sdm660_kbss_read_fuse_data() - load SDM660 KBSS specific fuse parameter
* values
* @vreg: Pointer to the CPR3 regulator
* @fuse: KBSS specific fuse data
*
* This function fills cprh_kbss_fuses struct with values read out of hardware
* fuses.
*
* Return: 0 on success, errno on failure
*/
static int cprh_sdm660_kbss_read_fuse_data(struct cpr3_regulator *vreg,
struct cprh_kbss_fuses *fuse)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
int i, id, rc;
rc = cpr3_read_fuse_param(base, sdm660_cpr_fusing_rev_param,
&fuse->cpr_fusing_rev);
if (rc) {
cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
id = vreg->thread->ctrl->ctrl_id;
for (i = 0; i < SDM660_KBSS_FUSE_CORNERS; i++) {
rc = cpr3_read_fuse_param(base,
sdm660_kbss_init_voltage_param[id][i],
&fuse->init_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm660_kbss_target_quot_param[id][i],
&fuse->target_quot[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm660_kbss_ro_sel_param[id][i],
&fuse->ro_sel[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm660_kbss_quot_offset_param[id][i],
&fuse->quot_offset[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
i, rc);
return rc;
}
}
rc = cpr3_read_fuse_param(base,
sdm660_kbss_aging_init_quot_diff_param[id],
&fuse->aging_init_quot_diff);
if (rc) {
cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n",
rc);
return rc;
}
vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
if (vreg->fuse_combo >= CPRH_SDM660_KBSS_FUSE_COMBO_COUNT) {
cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
vreg->fuse_combo);
return -EINVAL;
}
return rc;
};
/**
* cprh_sdm845_kbss_read_fuse_data() - load sdm845 KBSS specific fuse parameter
* values
* @vreg: Pointer to the CPR3 regulator
* @fuse: KBSS specific fuse data
*
* This function fills cprh_kbss_fuses struct with values read out of hardware
* fuses.
*
* Return: 0 on success, errno on failure
*/
static int cprh_sdm845_kbss_read_fuse_data(struct cpr3_regulator *vreg,
struct cprh_kbss_fuses *fuse)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
bool is_v1 = (vreg->thread->ctrl->soc_revision == SDM845_V1_SOC_ID);
int i, cid, tid, rc;
rc = cpr3_read_fuse_param(base, is_v1 ? sdm845_v1_cpr_fusing_rev_param
: sdm845_v2_cpr_fusing_rev_param,
&fuse->cpr_fusing_rev);
if (rc) {
cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
tid = cprh_kbss_get_thread_id(vreg->thread);
cid = vreg->thread->ctrl->ctrl_id;
for (i = 0; i < vreg->fuse_corner_count; i++) {
rc = cpr3_read_fuse_param(base, is_v1 ?
sdm845_v1_kbss_init_voltage_param[cid][tid][i] :
sdm845_v2_kbss_init_voltage_param[cid][tid][i],
&fuse->init_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base, is_v1 ?
sdm845_v1_kbss_target_quot_param[cid][tid][i] :
sdm845_v2_kbss_target_quot_param[cid][tid][i],
&fuse->target_quot[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base, is_v1 ?
sdm845_v1_kbss_ro_sel_param[cid][tid][i] :
sdm845_v2_kbss_ro_sel_param[cid][tid][i],
&fuse->ro_sel[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base, is_v1 ?
sdm845_v1_kbss_quot_offset_param[cid][tid][i] :
sdm845_v2_kbss_quot_offset_param[cid][tid][i],
&fuse->quot_offset[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
i, rc);
return rc;
}
}
rc = cpr3_read_fuse_param(base, is_v1 ?
sdm845_v1_kbss_aging_init_quot_diff_param[cid] :
sdm845_v2_kbss_aging_init_quot_diff_param[cid],
&fuse->aging_init_quot_diff);
if (rc) {
cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n",
rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
sdm845_cpr_force_highest_corner_param,
&fuse->force_highest_corner);
if (rc) {
cpr3_err(vreg, "Unable to read CPR force highest corner fuse, rc=%d\n",
rc);
return rc;
}
if (fuse->force_highest_corner)
cpr3_info(vreg, "Fusing requires all operation at the highest corner\n");
vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
if (vreg->fuse_combo >= CPRH_SDM845_KBSS_FUSE_COMBO_COUNT) {
cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
vreg->fuse_combo);
return -EINVAL;
}
return rc;
};
/**
* cprh_kbss_read_fuse_data() - load KBSS specific fuse parameter values
* @vreg: Pointer to the CPR3 regulator
*
* This function allocates a cprh_kbss_fuses struct, fills it with values
* read out of hardware fuses, and finally copies common fuse values
* into the CPR3 regulator struct.
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_read_fuse_data(struct cpr3_regulator *vreg)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
struct cprh_kbss_fuses *fuse;
int rc, fuse_corners;
enum soc_id soc_revision;
fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
if (!fuse)
return -ENOMEM;
soc_revision = vreg->thread->ctrl->soc_revision;
switch (soc_revision) {
case SDM660_SOC_ID:
fuse_corners = SDM660_KBSS_FUSE_CORNERS;
break;
case MSM8998_V1_SOC_ID:
case MSM8998_V2_SOC_ID:
fuse_corners = MSM8998_KBSS_FUSE_CORNERS;
break;
case SDM845_V1_SOC_ID:
fuse_corners = vreg->thread->ctrl->ctrl_id
== CPRH_KBSS_POWER_CLUSTER_ID
? SDM845_KBSS_POWER_CLUSTER_FUSE_CORNERS
: SDM845_V1_KBSS_PERF_CLUSTER_FUSE_CORNERS;
break;
case SDM845_V2_SOC_ID:
fuse_corners = vreg->thread->ctrl->ctrl_id
== CPRH_KBSS_POWER_CLUSTER_ID
? SDM845_KBSS_POWER_CLUSTER_FUSE_CORNERS
: SDM845_V2_KBSS_PERF_CLUSTER_FUSE_CORNERS;
break;
default:
cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision);
return -EINVAL;
}
vreg->fuse_corner_count = fuse_corners;
vreg->platform_fuses = fuse;
fuse->ro_sel = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
sizeof(*fuse->ro_sel), GFP_KERNEL);
fuse->init_voltage = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
sizeof(*fuse->init_voltage), GFP_KERNEL);
fuse->target_quot = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
sizeof(*fuse->target_quot), GFP_KERNEL);
fuse->quot_offset = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
sizeof(*fuse->quot_offset), GFP_KERNEL);
if (!fuse->ro_sel || !fuse->init_voltage || !fuse->target_quot
|| !fuse->quot_offset)
return -ENOMEM;
rc = cpr3_read_fuse_param(base, kbss_speed_bin_param, &fuse->speed_bin);
if (rc) {
cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc);
return rc;
}
cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin);
switch (soc_revision) {
case SDM660_SOC_ID:
rc = cprh_sdm660_kbss_read_fuse_data(vreg, fuse);
if (rc) {
cpr3_err(vreg, "sdm660 kbss fuse data read failed, rc=%d\n",
rc);
return rc;
}
break;
case MSM8998_V1_SOC_ID:
case MSM8998_V2_SOC_ID:
rc = cprh_msm8998_kbss_read_fuse_data(vreg, fuse);
if (rc) {
cpr3_err(vreg, "msm8998 kbss fuse data read failed, rc=%d\n",
rc);
return rc;
}
break;
case SDM845_V1_SOC_ID:
case SDM845_V2_SOC_ID:
rc = cprh_sdm845_kbss_read_fuse_data(vreg, fuse);
if (rc) {
cpr3_err(vreg, "sdm845 kbss fuse data read failed, rc=%d\n",
rc);
return rc;
}
break;
default:
cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision);
return -EINVAL;
}
vreg->speed_bin_fuse = fuse->speed_bin;
vreg->cpr_rev_fuse = fuse->cpr_fusing_rev;
return 0;
}
/**
* cprh_kbss_parse_corner_data() - parse KBSS corner data from device tree
* properties of the CPR3 regulator's device node
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_parse_corner_data(struct cpr3_regulator *vreg)
{
int rc;
rc = cpr3_parse_common_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
return rc;
}
/*
* A total of CPRH_KBSS_MAX_CORNER_COUNT - 1 corners
* may be specified in device tree as an additional corner
* must be allocated to correspond to the APM crossover voltage.
*/
if (vreg->corner_count > CPRH_KBSS_MAX_CORNER_COUNT - 1) {
cpr3_err(vreg, "corner count %d exceeds supported maximum %d\n",
vreg->corner_count, CPRH_KBSS_MAX_CORNER_COUNT - 1);
return -EINVAL;
}
return rc;
}
/**
* cprh_kbss_calculate_open_loop_voltages() - calculate the open-loop
* voltage for each corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* If open-loop voltage interpolation is allowed in device tree, then this
* function calculates the open-loop voltage for a given corner using linear
* interpolation. This interpolation is performed using the processor
* frequencies of the lower and higher Fmax corners along with their fused
* open-loop voltages.
*
* If open-loop voltage interpolation is not allowed, then this function uses
* the Fmax fused open-loop voltage for all of the corners associated with a
* given fuse corner.
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_calculate_open_loop_voltages(struct cpr3_regulator *vreg)
{
struct device_node *node = vreg->of_node;
struct cprh_kbss_fuses *fuse = vreg->platform_fuses;
int i, j, id, tid, rc = 0;
bool allow_interpolation;
u64 freq_low, volt_low, freq_high, volt_high;
const int *ref_volt;
int *fuse_volt;
int *fmax_corner;
const char * const *corner_name;
enum soc_id soc_revision;
fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
GFP_KERNEL);
fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
GFP_KERNEL);
if (!fuse_volt || !fmax_corner) {
rc = -ENOMEM;
goto done;
}
id = vreg->thread->ctrl->ctrl_id;
soc_revision = vreg->thread->ctrl->soc_revision;
switch (soc_revision) {
case SDM660_SOC_ID:
ref_volt = sdm660_kbss_fuse_ref_volt[id];
if (id == CPRH_KBSS_POWER_CLUSTER_ID)
corner_name = cprh_sdm660_power_kbss_fuse_corner_name;
else
corner_name = cprh_sdm660_perf_kbss_fuse_corner_name;
break;
case MSM8998_V1_SOC_ID:
ref_volt = msm8998_v1_kbss_fuse_ref_volt;
corner_name = cprh_msm8998_kbss_fuse_corner_name;
break;
case MSM8998_V2_SOC_ID:
ref_volt = msm8998_v2_kbss_fuse_ref_volt[id];
corner_name = cprh_msm8998_kbss_fuse_corner_name;
break;
case SDM845_V1_SOC_ID:
tid = cprh_kbss_get_thread_id(vreg->thread);
ref_volt = sdm845_v1_kbss_fuse_ref_volt[id][tid];
corner_name = cprh_sdm845_v1_kbss_fuse_corner_name[id];
break;
case SDM845_V2_SOC_ID:
tid = cprh_kbss_get_thread_id(vreg->thread);
ref_volt = sdm845_v2_kbss_fuse_ref_volt[id][tid];
corner_name = cprh_sdm845_v2_kbss_fuse_corner_name[id];
break;
default:
cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision);
rc = -EINVAL;
goto done;
}
for (i = 0; i < vreg->fuse_corner_count; i++) {
fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(ref_volt[i],
soc_revision == SDM845_V1_SOC_ID
|| soc_revision == SDM845_V2_SOC_ID
? CPRH_SDM845_KBSS_FUSE_STEP_VOLT
: CPRH_KBSS_FUSE_STEP_VOLT,
fuse->init_voltage[i],
CPRH_KBSS_VOLTAGE_FUSE_SIZE);
/* Log fused open-loop voltage values for debugging purposes. */
cpr3_info(vreg, "fused %8s: open-loop=%7d uV\n", corner_name[i],
fuse_volt[i]);
}
rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
if (rc) {
cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
rc);
goto done;
}
allow_interpolation = of_property_read_bool(node,
"qcom,allow-voltage-interpolation");
for (i = 1; i < vreg->fuse_corner_count; i++) {
if (fuse_volt[i] < fuse_volt[i - 1]) {
cpr3_info(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
i, fuse_volt[i], i - 1, fuse_volt[i - 1],
i, fuse_volt[i - 1]);
fuse_volt[i] = fuse_volt[i - 1];
}
}
if (!allow_interpolation) {
/* Use fused open-loop voltage for lower frequencies. */
for (i = 0; i < vreg->corner_count; i++)
vreg->corner[i].open_loop_volt
= fuse_volt[vreg->corner[i].cpr_fuse_corner];
goto done;
}
/* Determine highest corner mapped to each fuse corner */
j = vreg->fuse_corner_count - 1;
for (i = vreg->corner_count - 1; i >= 0; i--) {
if (vreg->corner[i].cpr_fuse_corner == j) {
fmax_corner[j] = i;
j--;
}
}
if (j >= 0) {
cpr3_err(vreg, "invalid fuse corner mapping\n");
rc = -EINVAL;
goto done;
}
/*
* Interpolation is not possible for corners mapped to the lowest fuse
* corner so use the fuse corner value directly.
*/
for (i = 0; i <= fmax_corner[0]; i++)
vreg->corner[i].open_loop_volt = fuse_volt[0];
/* Interpolate voltages for the higher fuse corners. */
for (i = 1; i < vreg->fuse_corner_count; i++) {
freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
volt_low = fuse_volt[i - 1];
freq_high = vreg->corner[fmax_corner[i]].proc_freq;
volt_high = fuse_volt[i];
for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
vreg->corner[j].open_loop_volt = cpr3_interpolate(
freq_low, volt_low, freq_high, volt_high,
vreg->corner[j].proc_freq);
}
done:
if (rc == 0) {
cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
for (i = 0; i < vreg->corner_count; i++)
cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
vreg->corner[i].open_loop_volt);
rc = cpr3_adjust_open_loop_voltages(vreg);
if (rc)
cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
rc);
}
kfree(fuse_volt);
kfree(fmax_corner);
return rc;
}
/**
* cprh_msm8998_partial_binning_override() - override the voltage and quotient
* settings for low corners based upon special partial binning
* fuse values
*
* @vreg: Pointer to the CPR3 regulator
*
* Some parts are not able to operate at low voltages. The force highest
* corner fuse specifies if a given part must operate with voltages
* corresponding to the highest corner.
*
* Return: 0 on success, errno on failure
*/
static int cprh_msm8998_partial_binning_override(struct cpr3_regulator *vreg)
{
struct cprh_kbss_fuses *fuse = vreg->platform_fuses;
struct cpr3_corner *corner;
struct cpr4_sdelta *sdelta;
int i;
u32 proc_freq;
if (fuse->force_highest_corner) {
cpr3_info(vreg, "overriding CPR parameters for corners 0 to %d with quotients and voltages of corner %d\n",
vreg->corner_count - 2, vreg->corner_count - 1);
corner = &vreg->corner[vreg->corner_count - 1];
for (i = 0; i < vreg->corner_count - 1; i++) {
proc_freq = vreg->corner[i].proc_freq;
sdelta = vreg->corner[i].sdelta;
if (sdelta) {
if (sdelta->table)
devm_kfree(vreg->thread->ctrl->dev,
sdelta->table);
if (sdelta->boost_table)
devm_kfree(vreg->thread->ctrl->dev,
sdelta->boost_table);
devm_kfree(vreg->thread->ctrl->dev,
sdelta);
}
vreg->corner[i] = *corner;
vreg->corner[i].proc_freq = proc_freq;
}
return 0;
}
return 0;
};
/**
* cprh_kbss_parse_core_count_temp_adj_properties() - load device tree
* properties associated with per-corner-band and temperature
* voltage adjustments.
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_parse_core_count_temp_adj_properties(
struct cpr3_regulator *vreg)
{
struct cpr3_controller *ctrl = vreg->thread->ctrl;
struct device_node *node = vreg->of_node;
u32 *temp, *combo_corner_bands, *speed_bin_corner_bands;
int rc, i, len, temp_point_count;
vreg->allow_core_count_adj = of_find_property(node,
"qcom,corner-band-allow-core-count-adjustment",
NULL);
vreg->allow_temp_adj = of_find_property(node,
"qcom,corner-band-allow-temp-adjustment",
NULL);
if (!vreg->allow_core_count_adj && !vreg->allow_temp_adj)
return 0;
combo_corner_bands = kcalloc(vreg->fuse_combos_supported,
sizeof(*combo_corner_bands),
GFP_KERNEL);
if (!combo_corner_bands)
return -ENOMEM;
rc = of_property_read_u32_array(node, "qcom,cpr-corner-bands",
combo_corner_bands,
vreg->fuse_combos_supported);
if (rc == -EOVERFLOW) {
/* Single value case */
rc = of_property_read_u32(node, "qcom,cpr-corner-bands",
combo_corner_bands);
for (i = 1; i < vreg->fuse_combos_supported; i++)
combo_corner_bands[i] = combo_corner_bands[0];
}
if (rc) {
cpr3_err(vreg, "error reading property qcom,cpr-corner-bands, rc=%d\n",
rc);
kfree(combo_corner_bands);
return rc;
}
vreg->fuse_combo_corner_band_offset = 0;
vreg->fuse_combo_corner_band_sum = 0;
for (i = 0; i < vreg->fuse_combos_supported; i++) {
vreg->fuse_combo_corner_band_sum += combo_corner_bands[i];
if (i < vreg->fuse_combo)
vreg->fuse_combo_corner_band_offset +=
combo_corner_bands[i];
}
vreg->corner_band_count = combo_corner_bands[vreg->fuse_combo];
kfree(combo_corner_bands);
if (vreg->corner_band_count <= 0 ||
vreg->corner_band_count > CPRH_KBSS_MAX_CORNER_BAND_COUNT ||
vreg->corner_band_count > vreg->corner_count) {
cpr3_err(vreg, "invalid corner band count %d > %d (max) for %d corners\n",
vreg->corner_band_count,
CPRH_KBSS_MAX_CORNER_BAND_COUNT,
vreg->corner_count);
return -EINVAL;
}
vreg->speed_bin_corner_band_offset = 0;
vreg->speed_bin_corner_band_sum = 0;
if (vreg->speed_bins_supported > 0) {
speed_bin_corner_bands = kcalloc(vreg->speed_bins_supported,
sizeof(*speed_bin_corner_bands),
GFP_KERNEL);
if (!speed_bin_corner_bands)
return -ENOMEM;
rc = of_property_read_u32_array(node,
"qcom,cpr-speed-bin-corner-bands",
speed_bin_corner_bands,
vreg->speed_bins_supported);
if (rc) {
cpr3_err(vreg, "error reading property qcom,cpr-speed-bin-corner-bands, rc=%d\n",
rc);
kfree(speed_bin_corner_bands);
return rc;
}
for (i = 0; i < vreg->speed_bins_supported; i++) {
vreg->speed_bin_corner_band_sum +=
speed_bin_corner_bands[i];
if (i < vreg->speed_bin_fuse)
vreg->speed_bin_corner_band_offset +=
speed_bin_corner_bands[i];
}
if (speed_bin_corner_bands[vreg->speed_bin_fuse]
!= vreg->corner_band_count) {
cpr3_err(vreg, "qcom,cpr-corner-bands and qcom,cpr-speed-bin-corner-bands conflict on number of corners bands: %d vs %u\n",
vreg->corner_band_count,
speed_bin_corner_bands[vreg->speed_bin_fuse]);
kfree(speed_bin_corner_bands);
return -EINVAL;
}
kfree(speed_bin_corner_bands);
}
vreg->corner_band = devm_kcalloc(ctrl->dev,
vreg->corner_band_count,
sizeof(*vreg->corner_band),
GFP_KERNEL);
temp = kcalloc(vreg->corner_band_count, sizeof(*temp), GFP_KERNEL);
if (!vreg->corner_band || !temp) {
rc = -ENOMEM;
goto free_temp;
}
rc = cpr3_parse_corner_band_array_property(vreg,
"qcom,cpr-corner-band-map",
1, temp);
if (rc) {
cpr3_err(vreg, "could not load corner band map, rc=%d\n",
rc);
goto free_temp;
}
for (i = 1; i < vreg->corner_band_count; i++) {
if (temp[i - 1] > temp[i]) {
cpr3_err(vreg, "invalid corner band mapping: band %d corner %d, band %d corner %d\n",
i - 1, temp[i - 1],
i, temp[i]);
rc = -EINVAL;
goto free_temp;
}
}
for (i = 0; i < vreg->corner_band_count; i++)
vreg->corner_band[i].corner = temp[i] - CPR3_CORNER_OFFSET;
if (!of_find_property(ctrl->dev->of_node,
"qcom,cpr-temp-point-map", &len)) {
/*
* Temperature based adjustments are not defined. Single
* temperature band is still valid for per-online-core
* adjustments.
*/
ctrl->temp_band_count = 1;
rc = 0;
goto free_temp;
}
if (!vreg->allow_temp_adj) {
rc = 0;
goto free_temp;
}
temp_point_count = len / sizeof(u32);
if (temp_point_count <= 0 || temp_point_count >
CPRH_KBSS_MAX_TEMP_POINTS) {
cpr3_err(ctrl, "invalid number of temperature points %d > %d (max)\n",
temp_point_count, CPRH_KBSS_MAX_TEMP_POINTS);
rc = -EINVAL;
goto free_temp;
}
ctrl->temp_points = devm_kcalloc(ctrl->dev, temp_point_count,
sizeof(*ctrl->temp_points), GFP_KERNEL);
if (!ctrl->temp_points) {
rc = -ENOMEM;
goto free_temp;
}
rc = of_property_read_u32_array(ctrl->dev->of_node,
"qcom,cpr-temp-point-map",
ctrl->temp_points, temp_point_count);
if (rc) {
cpr3_err(ctrl, "error reading property qcom,cpr-temp-point-map, rc=%d\n",
rc);
goto free_temp;
}
for (i = 0; i < temp_point_count; i++)
cpr3_debug(ctrl, "Temperature Point %d=%d\n", i,
ctrl->temp_points[i]);
/*
* If t1, t2, and t3 are the temperature points, then the temperature
* bands are: (-inf, t1], (t1, t2], (t2, t3], and (t3, inf).
*/
ctrl->temp_band_count = temp_point_count + 1;
cpr3_debug(ctrl, "Number of temp bands=%d\n",
ctrl->temp_band_count);
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-initial-temp-band",
&ctrl->initial_temp_band);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-initial-temp-band, rc=%d\n",
rc);
goto free_temp;
}
if (ctrl->initial_temp_band >= ctrl->temp_band_count) {
cpr3_err(ctrl, "Initial temperature band value %d should be in range [0 - %d]\n",
ctrl->initial_temp_band, ctrl->temp_band_count - 1);
rc = -EINVAL;
goto free_temp;
}
switch (ctrl->soc_revision) {
case SDM660_SOC_ID:
ctrl->temp_sensor_id_start = ctrl->ctrl_id ==
CPRH_KBSS_POWER_CLUSTER_ID
? SDM660_KBSS_POWER_TEMP_SENSOR_ID_START :
SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START;
ctrl->temp_sensor_id_end = ctrl->ctrl_id ==
CPRH_KBSS_POWER_CLUSTER_ID
? SDM660_KBSS_POWER_TEMP_SENSOR_ID_END :
SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END;
break;
case MSM8998_V1_SOC_ID:
case MSM8998_V2_SOC_ID:
ctrl->temp_sensor_id_start = ctrl->ctrl_id ==
CPRH_KBSS_POWER_CLUSTER_ID
? MSM8998_KBSS_POWER_TEMP_SENSOR_ID_START :
MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START;
ctrl->temp_sensor_id_end = ctrl->ctrl_id ==
CPRH_KBSS_POWER_CLUSTER_ID
? MSM8998_KBSS_POWER_TEMP_SENSOR_ID_END :
MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END;
break;
case SDM845_V1_SOC_ID:
case SDM845_V2_SOC_ID:
ctrl->temp_sensor_id_start = ctrl->ctrl_id ==
CPRH_KBSS_POWER_CLUSTER_ID
? SDM845_KBSS_POWER_TEMP_SENSOR_ID_START :
SDM845_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START;
ctrl->temp_sensor_id_end = ctrl->ctrl_id ==
CPRH_KBSS_POWER_CLUSTER_ID
? SDM845_KBSS_POWER_TEMP_SENSOR_ID_END :
SDM845_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END;
break;
default:
cpr3_err(ctrl, "unsupported soc id = %d\n", ctrl->soc_revision);
rc = -EINVAL;
goto free_temp;
}
ctrl->allow_temp_adj = true;
free_temp:
kfree(temp);
return rc;
}
/**
* cprh_kbss_apm_crossover_as_corner() - introduce a corner whose floor,
* open-loop, and ceiling voltages correspond to the APM
* crossover voltage.
* @vreg: Pointer to the CPR3 regulator
*
* The APM corner is utilized as a crossover corner by OSM and CPRh
* hardware to set the VDD supply voltage during the APM switch
* routine.
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_apm_crossover_as_corner(struct cpr3_regulator *vreg)
{
struct cpr3_controller *ctrl = vreg->thread->ctrl;
struct cpr3_corner *corner;
if (!ctrl->apm_crossover_volt) {
/* APM voltage crossover corner not required. */
return 0;
}
corner = &vreg->corner[vreg->corner_count];
/*
* 0 MHz indicates this corner is not to be
* used as active DCVS set point.
*/
corner->proc_freq = 0;
corner->floor_volt = ctrl->apm_crossover_volt;
corner->ceiling_volt = ctrl->apm_crossover_volt;
corner->open_loop_volt = ctrl->apm_crossover_volt;
corner->abs_ceiling_volt = ctrl->apm_crossover_volt;
corner->use_open_loop = true;
vreg->corner_count++;
return 0;
}
/**
* cprh_kbss_mem_acc_crossover_as_corner() - introduce a corner whose floor,
* open-loop, and ceiling voltages correspond to the MEM ACC
* crossover voltage.
* @vreg: Pointer to the CPR3 regulator
*
* The MEM ACC corner is utilized as a crossover corner by OSM and CPRh
* hardware to set the VDD supply voltage during the MEM ACC switch
* routine.
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_mem_acc_crossover_as_corner(struct cpr3_regulator *vreg)
{
struct cpr3_controller *ctrl = vreg->thread->ctrl;
struct cpr3_corner *corner;
if (!ctrl->mem_acc_crossover_volt) {
/* MEM ACC voltage crossover corner not required. */
return 0;
}
corner = &vreg->corner[vreg->corner_count];
/*
* 0 MHz indicates this corner is not to be
* used as active DCVS set point.
*/
corner->proc_freq = 0;
corner->floor_volt = ctrl->mem_acc_crossover_volt;
corner->ceiling_volt = ctrl->mem_acc_crossover_volt;
corner->open_loop_volt = ctrl->mem_acc_crossover_volt;
corner->abs_ceiling_volt = ctrl->mem_acc_crossover_volt;
corner->use_open_loop = true;
vreg->corner_count++;
return 0;
}
/**
* cprh_kbss_set_no_interpolation_quotients() - use the fused target quotient
* values for lower frequencies.
* @vreg: Pointer to the CPR3 regulator
* @volt_adjust: Pointer to array of per-corner closed-loop adjustment
* voltages
* @volt_adjust_fuse: Pointer to array of per-fuse-corner closed-loop
* adjustment voltages
* @ro_scale: Pointer to array of per-fuse-corner RO scaling factor
* values with units of QUOT/V
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_set_no_interpolation_quotients(struct cpr3_regulator *vreg,
int *volt_adjust, int *volt_adjust_fuse, int *ro_scale)
{
struct cprh_kbss_fuses *fuse = vreg->platform_fuses;
u32 quot, ro;
int quot_adjust;
int i, fuse_corner;
for (i = 0; i < vreg->corner_count; i++) {
fuse_corner = vreg->corner[i].cpr_fuse_corner;
quot = fuse->target_quot[fuse_corner];
quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
volt_adjust_fuse[fuse_corner] +
volt_adjust[i]);
ro = fuse->ro_sel[fuse_corner];
vreg->corner[i].target_quot[ro] = quot + quot_adjust;
cpr3_debug(vreg, "corner=%d RO=%u target quot=%u\n",
i, ro, quot);
if (quot_adjust)
cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %u --> %u (%d uV)\n",
i, ro, quot, vreg->corner[i].target_quot[ro],
volt_adjust_fuse[fuse_corner] +
volt_adjust[i]);
}
return 0;
}
/**
* cprh_kbss_calculate_target_quotients() - calculate the CPR target
* quotient for each corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* If target quotient interpolation is allowed in device tree, then this
* function calculates the target quotient for a given corner using linear
* interpolation. This interpolation is performed using the processor
* frequencies of the lower and higher Fmax corners along with the fused
* target quotient and quotient offset of the higher Fmax corner.
*
* If target quotient interpolation is not allowed, then this function uses
* the Fmax fused target quotient for all of the corners associated with a
* given fuse corner.
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_calculate_target_quotients(struct cpr3_regulator *vreg)
{
struct cprh_kbss_fuses *fuse = vreg->platform_fuses;
int rc;
bool allow_interpolation;
u64 freq_low, freq_high, prev_quot;
u64 *quot_low;
u64 *quot_high;
u32 quot, ro;
int i, j, fuse_corner, quot_adjust;
int *fmax_corner;
int *volt_adjust, *volt_adjust_fuse, *ro_scale;
int lowest_fuse_corner, highest_fuse_corner;
const char * const *corner_name;
switch (vreg->thread->ctrl->soc_revision) {
case SDM660_SOC_ID:
if (vreg->thread->ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) {
corner_name = cprh_sdm660_power_kbss_fuse_corner_name;
lowest_fuse_corner =
CPRH_SDM660_POWER_KBSS_FUSE_CORNER_LOWSVS;
highest_fuse_corner =
CPRH_SDM660_POWER_KBSS_FUSE_CORNER_TURBO_L1;
} else {
corner_name = cprh_sdm660_perf_kbss_fuse_corner_name;
lowest_fuse_corner =
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVS;
highest_fuse_corner =
CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO_L2;
}
break;
case MSM8998_V1_SOC_ID:
case MSM8998_V2_SOC_ID:
corner_name = cprh_msm8998_kbss_fuse_corner_name;
lowest_fuse_corner =
CPRH_MSM8998_KBSS_FUSE_CORNER_LOWSVS;
highest_fuse_corner =
CPRH_MSM8998_KBSS_FUSE_CORNER_TURBO_L1;
break;
case SDM845_V1_SOC_ID:
corner_name = cprh_sdm845_v1_kbss_fuse_corner_name[
vreg->thread->ctrl->ctrl_id];
lowest_fuse_corner = 0;
highest_fuse_corner = vreg->fuse_corner_count - 1;
break;
case SDM845_V2_SOC_ID:
corner_name = cprh_sdm845_v2_kbss_fuse_corner_name[
vreg->thread->ctrl->ctrl_id];
lowest_fuse_corner = 0;
highest_fuse_corner = vreg->fuse_corner_count - 1;
break;
default:
cpr3_err(vreg, "unsupported soc id = %d\n",
vreg->thread->ctrl->soc_revision);
return -EINVAL;
}
/* Log fused quotient values for debugging purposes. */
cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu\n",
corner_name[lowest_fuse_corner],
fuse->ro_sel[lowest_fuse_corner],
fuse->target_quot[lowest_fuse_corner]);
for (i = lowest_fuse_corner + 1; i <= highest_fuse_corner; i++)
cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu, quot_offset[%2llu]=%4llu\n",
corner_name[i], fuse->ro_sel[i], fuse->target_quot[i],
fuse->ro_sel[i], fuse->quot_offset[i] *
CPRH_KBSS_QUOT_OFFSET_SCALE);
allow_interpolation = of_property_read_bool(vreg->of_node,
"qcom,allow-quotient-interpolation");
volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
GFP_KERNEL);
volt_adjust_fuse = kcalloc(vreg->fuse_corner_count,
sizeof(*volt_adjust_fuse), GFP_KERNEL);
ro_scale = kcalloc(vreg->fuse_corner_count, sizeof(*ro_scale),
GFP_KERNEL);
fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
GFP_KERNEL);
quot_low = kcalloc(vreg->fuse_corner_count, sizeof(*quot_low),
GFP_KERNEL);
quot_high = kcalloc(vreg->fuse_corner_count, sizeof(*quot_high),
GFP_KERNEL);
if (!volt_adjust || !volt_adjust_fuse || !ro_scale ||
!fmax_corner || !quot_low || !quot_high) {
rc = -ENOMEM;
goto done;
}
rc = cpr3_parse_closed_loop_voltage_adjustments(vreg, &fuse->ro_sel[0],
volt_adjust, volt_adjust_fuse, ro_scale);
if (rc) {
cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
rc);
goto done;
}
if (!allow_interpolation) {
/* Use fused target quotients for lower frequencies. */
return cprh_kbss_set_no_interpolation_quotients(vreg,
volt_adjust, volt_adjust_fuse, ro_scale);
}
/* Determine highest corner mapped to each fuse corner */
j = vreg->fuse_corner_count - 1;
for (i = vreg->corner_count - 1; i >= 0; i--) {
if (vreg->corner[i].cpr_fuse_corner == j) {
fmax_corner[j] = i;
j--;
}
}
if (j >= 0) {
cpr3_err(vreg, "invalid fuse corner mapping\n");
rc = -EINVAL;
goto done;
}
/*
* Interpolation is not possible for corners mapped to the lowest fuse
* corner so use the fuse corner value directly.
*/
i = lowest_fuse_corner;
quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]);
quot = fuse->target_quot[i] + quot_adjust;
quot_high[i] = quot_low[i] = quot;
ro = fuse->ro_sel[i];
if (quot_adjust)
cpr3_debug(vreg, "adjusted fuse corner %d RO%u target quot: %llu --> %u (%d uV)\n",
i, ro, fuse->target_quot[i], quot, volt_adjust_fuse[i]);
for (i = 0; i <= fmax_corner[lowest_fuse_corner]; i++)
vreg->corner[i].target_quot[ro] = quot;
for (i = lowest_fuse_corner + 1; i < vreg->fuse_corner_count; i++) {
quot_high[i] = fuse->target_quot[i];
if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
quot_low[i] = quot_high[i - 1];
else
quot_low[i] = quot_high[i]
- fuse->quot_offset[i]
* CPRH_KBSS_QUOT_OFFSET_SCALE;
if (quot_high[i] < quot_low[i]) {
cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu; overriding: quot_high[%d]=%llu\n",
i, quot_high[i], i, quot_low[i],
i, quot_low[i]);
quot_high[i] = quot_low[i];
}
}
/* Perform per-fuse-corner target quotient adjustment */
for (i = 1; i < vreg->fuse_corner_count; i++) {
quot_adjust = cpr3_quot_adjustment(ro_scale[i],
volt_adjust_fuse[i]);
if (quot_adjust) {
prev_quot = quot_high[i];
quot_high[i] += quot_adjust;
cpr3_debug(vreg, "adjusted fuse corner %d RO%llu target quot: %llu --> %llu (%d uV)\n",
i, fuse->ro_sel[i], prev_quot, quot_high[i],
volt_adjust_fuse[i]);
}
if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
quot_low[i] = quot_high[i - 1];
else
quot_low[i] += cpr3_quot_adjustment(ro_scale[i],
volt_adjust_fuse[i - 1]);
if (quot_high[i] < quot_low[i]) {
cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu after adjustment; overriding: quot_high[%d]=%llu\n",
i, quot_high[i], i, quot_low[i],
i, quot_low[i]);
quot_high[i] = quot_low[i];
}
}
/* Interpolate voltages for the higher fuse corners. */
for (i = 1; i < vreg->fuse_corner_count; i++) {
freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
freq_high = vreg->corner[fmax_corner[i]].proc_freq;
ro = fuse->ro_sel[i];
for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
vreg->corner[j].target_quot[ro] = cpr3_interpolate(
freq_low, quot_low[i], freq_high, quot_high[i],
vreg->corner[j].proc_freq);
}
/* Perform per-corner target quotient adjustment */
for (i = 0; i < vreg->corner_count; i++) {
fuse_corner = vreg->corner[i].cpr_fuse_corner;
ro = fuse->ro_sel[fuse_corner];
quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
volt_adjust[i]);
if (quot_adjust) {
prev_quot = vreg->corner[i].target_quot[ro];
vreg->corner[i].target_quot[ro] += quot_adjust;
cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %llu --> %u (%d uV)\n",
i, ro, prev_quot,
vreg->corner[i].target_quot[ro],
volt_adjust[i]);
}
}
/* Ensure that target quotients increase monotonically */
for (i = 1; i < vreg->corner_count; i++) {
ro = fuse->ro_sel[vreg->corner[i].cpr_fuse_corner];
if (fuse->ro_sel[vreg->corner[i - 1].cpr_fuse_corner] == ro
&& vreg->corner[i].target_quot[ro]
< vreg->corner[i - 1].target_quot[ro]) {
cpr3_debug(vreg, "adjusted corner %d RO%u target quot=%u < adjusted corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
i, ro, vreg->corner[i].target_quot[ro],
i - 1, ro, vreg->corner[i - 1].target_quot[ro],
i, ro, vreg->corner[i - 1].target_quot[ro]);
vreg->corner[i].target_quot[ro]
= vreg->corner[i - 1].target_quot[ro];
}
}
done:
kfree(volt_adjust);
kfree(volt_adjust_fuse);
kfree(ro_scale);
kfree(fmax_corner);
kfree(quot_low);
kfree(quot_high);
return rc;
}
/**
* cprh_kbss_print_settings() - print out KBSS CPR configuration settings into
* the kernel log for debugging purposes
* @vreg: Pointer to the CPR3 regulator
*/
static void cprh_kbss_print_settings(struct cpr3_regulator *vreg)
{
struct cpr3_corner *corner;
int i;
cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
for (i = 0; i < vreg->corner_count; i++) {
corner = &vreg->corner[i];
cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
i, corner->proc_freq, corner->cpr_fuse_corner,
corner->floor_volt, corner->open_loop_volt,
corner->ceiling_volt);
}
}
/**
* cprh_kbss_init_thread() - perform steps necessary to initialize the
* configuration data for a CPR3 thread
* @thread: Pointer to the CPR3 thread
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_init_thread(struct cpr3_thread *thread)
{
int rc;
rc = cpr3_parse_common_thread_data(thread);
if (rc) {
cpr3_err(thread->ctrl, "thread %u unable to read CPR thread data from device tree, rc=%d\n",
thread->thread_id, rc);
return rc;
}
return 0;
}
/**
* cprh_kbss_init_regulator() - perform all steps necessary to initialize the
* configuration data for a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_init_regulator(struct cpr3_regulator *vreg)
{
struct cprh_kbss_fuses *fuse;
int rc;
rc = cprh_kbss_read_fuse_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
return rc;
}
fuse = vreg->platform_fuses;
rc = cprh_kbss_parse_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
rc);
return rc;
}
rc = cprh_kbss_calculate_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
rc);
return rc;
}
rc = cpr3_limit_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
rc);
return rc;
}
cprh_adjust_voltages_for_apm(vreg);
cprh_adjust_voltages_for_mem_acc(vreg);
cpr3_open_loop_voltage_as_ceiling(vreg);
rc = cpr3_limit_floor_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
return rc;
}
rc = cprh_kbss_calculate_target_quotients(vreg);
if (rc) {
cpr3_err(vreg, "unable to calculate target quotients, rc=%d\n",
rc);
return rc;
}
rc = cprh_kbss_parse_core_count_temp_adj_properties(vreg);
if (rc) {
cpr3_err(vreg, "unable to parse core count and temperature adjustment properties, rc=%d\n",
rc);
return rc;
}
rc = cpr4_parse_core_count_temp_voltage_adj(vreg, true);
if (rc) {
cpr3_err(vreg, "unable to parse temperature and core count voltage adjustments, rc=%d\n",
rc);
return rc;
}
if (vreg->allow_core_count_adj && (vreg->max_core_count <= 0
|| vreg->max_core_count >
CPRH_KBSS_CPR_SDELTA_CORE_COUNT)) {
cpr3_err(vreg, "qcom,max-core-count has invalid value = %d\n",
vreg->max_core_count);
return -EINVAL;
}
if ((vreg->allow_core_count_adj || vreg->allow_temp_adj)
&& vreg->thread->thread_id != 0) {
cpr3_err(vreg, "core count and temperature based adjustments are only allowed for CPR thread 0\n");
return -EINVAL;
}
rc = cprh_msm8998_partial_binning_override(vreg);
if (rc) {
cpr3_err(vreg, "unable to override CPR parameters based on partial binning fuse values, rc=%d\n",
rc);
return rc;
}
rc = cprh_kbss_apm_crossover_as_corner(vreg);
if (rc) {
cpr3_err(vreg, "unable to introduce APM voltage crossover corner, rc=%d\n",
rc);
return rc;
}
rc = cprh_kbss_mem_acc_crossover_as_corner(vreg);
if (rc) {
cpr3_err(vreg, "unable to introduce MEM ACC voltage crossover corner, rc=%d\n",
rc);
return rc;
}
cprh_kbss_print_settings(vreg);
return 0;
}
/**
* cprh_kbss_init_aging() - perform KBSS CPRh controller specific aging
* initializations
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_init_aging(struct cpr3_controller *ctrl)
{
struct cprh_kbss_fuses *fuse = NULL;
struct cpr3_regulator *vreg = NULL;
u32 aging_ro_scale;
int i, j, rc = 0;
for (i = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
if (ctrl->thread[i].vreg[j].aging_allowed) {
ctrl->aging_required = true;
vreg = &ctrl->thread[i].vreg[j];
fuse = vreg->platform_fuses;
break;
}
}
}
if (!ctrl->aging_required || !fuse || !vreg)
return 0;
rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ro-scaling-factor",
1, &aging_ro_scale);
if (rc)
return rc;
if (aging_ro_scale == 0) {
cpr3_err(ctrl, "aging RO scaling factor is invalid: %u\n",
aging_ro_scale);
return -EINVAL;
}
ctrl->aging_vdd_mode = REGULATOR_MODE_NORMAL;
ctrl->aging_complete_vdd_mode = REGULATOR_MODE_IDLE;
ctrl->aging_sensor_count = 1;
ctrl->aging_sensor = devm_kzalloc(ctrl->dev,
sizeof(*ctrl->aging_sensor),
GFP_KERNEL);
if (!ctrl->aging_sensor)
return -ENOMEM;
switch (ctrl->soc_revision) {
case SDM660_SOC_ID:
if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) {
ctrl->aging_sensor->sensor_id
= SDM660_KBSS_POWER_AGING_SENSOR_ID;
ctrl->aging_sensor->bypass_mask[0]
= SDM660_KBSS_POWER_AGING_BYPASS_MASK0;
} else {
ctrl->aging_sensor->sensor_id
= SDM660_KBSS_PERFORMANCE_AGING_SENSOR_ID;
ctrl->aging_sensor->bypass_mask[0]
= SDM660_KBSS_PERFORMANCE_AGING_BYPASS_MASK0;
}
break;
case MSM8998_V1_SOC_ID:
case MSM8998_V2_SOC_ID:
if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) {
ctrl->aging_sensor->sensor_id
= MSM8998_KBSS_POWER_AGING_SENSOR_ID;
ctrl->aging_sensor->bypass_mask[0]
= MSM8998_KBSS_POWER_AGING_BYPASS_MASK0;
} else {
ctrl->aging_sensor->sensor_id
= MSM8998_KBSS_PERFORMANCE_AGING_SENSOR_ID;
ctrl->aging_sensor->bypass_mask[0]
= MSM8998_KBSS_PERFORMANCE_AGING_BYPASS_MASK0;
}
break;
case SDM845_V1_SOC_ID:
case SDM845_V2_SOC_ID:
if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) {
ctrl->aging_sensor->sensor_id
= SDM845_KBSS_POWER_AGING_SENSOR_ID;
ctrl->aging_sensor->bypass_mask[0]
= SDM845_KBSS_POWER_AGING_BYPASS_MASK0;
} else {
ctrl->aging_sensor->sensor_id
= SDM845_KBSS_PERFORMANCE_AGING_SENSOR_ID;
ctrl->aging_sensor->bypass_mask[0]
= SDM845_KBSS_PERFORMANCE_AGING_BYPASS_MASK0;
}
break;
default:
cpr3_err(ctrl, "unsupported soc id = %d\n", ctrl->soc_revision);
return -EINVAL;
}
ctrl->aging_sensor->ro_scale = aging_ro_scale;
ctrl->aging_sensor->init_quot_diff
= cpr3_convert_open_loop_voltage_fuse(0,
CPRH_KBSS_AGING_INIT_QUOT_DIFF_SCALE,
fuse->aging_init_quot_diff,
CPRH_KBSS_AGING_INIT_QUOT_DIFF_SIZE);
cpr3_debug(ctrl, "sensor %u aging init quotient diff = %d, aging RO scale = %u QUOT/V\n",
ctrl->aging_sensor->sensor_id,
ctrl->aging_sensor->init_quot_diff,
ctrl->aging_sensor->ro_scale);
return 0;
}
/**
* cprh_kbss_init_controller() - perform KBSS CPRh controller specific
* initializations
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cprh_kbss_init_controller(struct cpr3_controller *ctrl)
{
int rc, i, tid_power, tid_l3;
ctrl->ctrl_type = CPR_CTRL_TYPE_CPRH;
rc = cpr3_parse_common_ctrl_data(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-controller-id",
&ctrl->ctrl_id);
if (rc) {
cpr3_err(ctrl, "could not read DT property qcom,cpr-controller-id, rc=%d\n",
rc);
return rc;
}
if (ctrl->ctrl_id < CPRH_KBSS_MIN_CONTROLLER_ID ||
ctrl->ctrl_id > CPRH_KBSS_MAX_CONTROLLER_ID) {
cpr3_err(ctrl, "invalid qcom,cpr-controller-id specified\n");
return -EINVAL;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-down-error-step-limit",
&ctrl->down_error_step_limit);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-down-error-step-limit, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-up-error-step-limit",
&ctrl->up_error_step_limit);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-up-error-step-limit, rc=%d\n",
rc);
return rc;
}
ctrl->acd_avg_enabled = of_property_read_bool(ctrl->dev->of_node,
"qcom,cpr-acd-avg-enable");
if (ctrl->acd_avg_enabled) {
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-acd-adj-down-step-limit",
&ctrl->acd_adj_down_step_limit);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-acd-adj-down-step-limit, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-acd-adj-up-step-limit",
&ctrl->acd_adj_up_step_limit);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-acd-adj-up-step-limit, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-acd-adj-down-step-size",
&ctrl->acd_adj_down_step_size);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-acd-down-step-size, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-acd-adj-up-step-size",
&ctrl->acd_adj_up_step_size);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-acd-up-step-size, rc=%d\n",
rc);
return rc;
}
ctrl->acd_notwait_for_cl_settled =
of_property_read_bool(ctrl->dev->of_node,
"qcom,cpr-acd-notwait-for-cl-settled");
ctrl->acd_adj_avg_fast_update =
of_property_read_bool(ctrl->dev->of_node,
"qcom,cpr-acd-avg-fast-update");
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,voltage-base",
&ctrl->base_volt);
if (rc) {
cpr3_err(ctrl, "error reading property qcom,voltage-base, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-up-down-delay-time",
&ctrl->up_down_delay_time);
if (rc) {
cpr3_err(ctrl, "error reading property qcom,cpr-up-down-delay-time, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,apm-threshold-voltage",
&ctrl->apm_threshold_volt);
if (rc) {
cpr3_debug(ctrl, "qcom,apm-threshold-voltage not specified\n");
} else {
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,apm-crossover-voltage",
&ctrl->apm_crossover_volt);
if (rc) {
cpr3_err(ctrl, "error reading property qcom,apm-crossover-voltage, rc=%d\n",
rc);
return rc;
}
}
of_property_read_u32(ctrl->dev->of_node, "qcom,apm-hysteresis-voltage",
&ctrl->apm_adj_volt);
ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt);
ctrl->saw_use_unit_mV = of_property_read_bool(ctrl->dev->of_node,
"qcom,cpr-saw-use-unit-mV");
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,mem-acc-threshold-voltage",
&ctrl->mem_acc_threshold_volt);
if (!rc) {
ctrl->mem_acc_threshold_volt
= CPR3_ROUND(ctrl->mem_acc_threshold_volt, ctrl->step_volt);
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,mem-acc-crossover-voltage",
&ctrl->mem_acc_crossover_volt);
if (rc) {
cpr3_err(ctrl, "error reading property qcom,mem-acc-crossover-voltage, rc=%d\n",
rc);
return rc;
}
ctrl->mem_acc_crossover_volt
= CPR3_ROUND(ctrl->mem_acc_crossover_volt, ctrl->step_volt);
}
/*
* Use fixed step quotient if specified otherwise use dynamically
* calculated per RO step quotient
*/
of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-step-quot-fixed",
&ctrl->step_quot_fixed);
ctrl->use_dynamic_step_quot = !ctrl->step_quot_fixed;
of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-voltage-settling-time",
&ctrl->voltage_settling_time);
of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-corner-switch-delay-time",
&ctrl->corner_switch_delay_time);
switch (ctrl->soc_revision) {
case SDM660_SOC_ID:
if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID)
ctrl->sensor_count =
SDM660_KBSS_POWER_CPR_SENSOR_COUNT;
else
ctrl->sensor_count =
SDM660_KBSS_PERFORMANCE_CPR_SENSOR_COUNT;
break;
case MSM8998_V1_SOC_ID:
case MSM8998_V2_SOC_ID:
if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID)
ctrl->sensor_count =
MSM8998_KBSS_POWER_CPR_SENSOR_COUNT;
else
ctrl->sensor_count =
MSM8998_KBSS_PERFORMANCE_CPR_SENSOR_COUNT;
break;
case SDM845_V1_SOC_ID:
case SDM845_V2_SOC_ID:
if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID)
ctrl->sensor_count =
SDM845_KBSS_POWER_CPR_SENSOR_COUNT;
else
ctrl->sensor_count =
SDM845_KBSS_PERFORMANCE_CPR_SENSOR_COUNT;
break;
default:
cpr3_err(ctrl, "unsupported soc id = %d\n", ctrl->soc_revision);
return -EINVAL;
}
/*
* KBSS only has one thread (0) per controller so the zeroed
* array does not need further modification.
*/
ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
sizeof(*ctrl->sensor_owner), GFP_KERNEL);
if (!ctrl->sensor_owner)
return -ENOMEM;
/* Specify sensor ownership for SDM845 controller 0 */
if ((ctrl->soc_revision == SDM845_V1_SOC_ID
|| ctrl->soc_revision == SDM845_V2_SOC_ID)
&& ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) {
if (ctrl->soc_revision == SDM845_V1_SOC_ID) {
/* Thread IDs are swapped for SDM845 V1 */
tid_power = CPRH_KBSS_L3_THREAD_ID;
tid_l3 = CPRH_KBSS_POWER_CLUSTER_THREAD_ID;
} else {
tid_power = CPRH_KBSS_POWER_CLUSTER_THREAD_ID;
tid_l3 = CPRH_KBSS_L3_THREAD_ID;
}
for (i = SDM845_KBSS_POWER_THREAD_CPR_SENSOR_ID_START;
i <= SDM845_KBSS_POWER_THREAD_CPR_SENSOR_ID_END; i++)
ctrl->sensor_owner[i] = tid_power;
for (i = SDM845_KBSS_L3_THREAD_CPR_SENSOR_ID_START;
i <= SDM845_KBSS_L3_THREAD_CPR_SENSOR_ID_END; i++)
ctrl->sensor_owner[i] = tid_l3;
}
ctrl->cpr_clock_rate = CPRH_KBSS_CPR_CLOCK_RATE;
ctrl->supports_hw_closed_loop = true;
ctrl->use_hw_closed_loop = of_property_read_bool(ctrl->dev->of_node,
"qcom,cpr-hw-closed-loop");
return 0;
}
static int cprh_kbss_regulator_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_suspend(ctrl);
}
static int cprh_kbss_regulator_resume(struct platform_device *pdev)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_resume(ctrl);
}
/* Data corresponds to the SoC revision */
static const struct of_device_id cprh_regulator_match_table[] = {
{
.compatible = "qcom,cprh-msm8998-v1-kbss-regulator",
.data = (void *)(uintptr_t)MSM8998_V1_SOC_ID,
},
{
.compatible = "qcom,cprh-msm8998-v2-kbss-regulator",
.data = (void *)(uintptr_t)MSM8998_V2_SOC_ID,
},
{
.compatible = "qcom,cprh-msm8998-kbss-regulator",
.data = (void *)(uintptr_t)MSM8998_V2_SOC_ID,
},
{
.compatible = "qcom,cprh-sdm660-kbss-regulator",
.data = (void *)(uintptr_t)SDM660_SOC_ID,
},
{
.compatible = "qcom,cprh-sdm845-v1-kbss-regulator",
.data = (void *)(uintptr_t)SDM845_V1_SOC_ID,
},
{
.compatible = "qcom,cprh-sdm845-v2-kbss-regulator",
.data = (void *)(uintptr_t)SDM845_V2_SOC_ID,
},
{
.compatible = "qcom,cprh-sdm845-kbss-regulator",
.data = (void *)(uintptr_t)SDM845_V2_SOC_ID,
},
{}
};
static int cprh_kbss_regulator_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct of_device_id *match;
struct cpr3_controller *ctrl;
int i, rc, max_thread_count;
if (!dev->of_node) {
dev_err(dev, "Device tree node is missing\n");
return -EINVAL;
}
ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return -ENOMEM;
ctrl->dev = dev;
ctrl->cpr_allowed_hw = true;
rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
&ctrl->name);
if (rc) {
cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
rc);
return rc;
}
match = of_match_node(cprh_regulator_match_table, dev->of_node);
if (match)
ctrl->soc_revision = (uintptr_t)match->data;
else
cpr3_err(ctrl, "could not find compatible string match\n");
rc = cpr3_map_fuse_base(ctrl, pdev);
if (rc) {
cpr3_err(ctrl, "could not map fuse base address\n");
return rc;
}
rc = cpr3_allocate_threads(ctrl, 0, 1);
if (rc) {
cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
rc);
return rc;
}
rc = cprh_kbss_init_controller(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
rc);
return rc;
}
/*
* SDM845 controller 0 supports 2 CPR threads. All other controllers
* only support 1.
*/
max_thread_count = (ctrl->soc_revision == SDM845_V1_SOC_ID
|| ctrl->soc_revision == SDM845_V2_SOC_ID)
&& ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID
? 2 : 1;
if (ctrl->thread_count < 1 || ctrl->thread_count > max_thread_count) {
cpr3_err(ctrl, "expected 1 or %d threads but found %d\n",
max_thread_count, ctrl->thread_count);
return -EINVAL;
} else if (ctrl->thread[0].vreg_count != 1) {
cpr3_err(ctrl, "expected 1 regulator for thread 0 but found %d\n",
ctrl->thread[0].vreg_count);
return -EINVAL;
} else if (ctrl->thread_count == 2 && ctrl->thread[1].vreg_count != 1) {
cpr3_err(ctrl, "expected 1 regulator for thread 1 but found %d\n",
ctrl->thread[1].vreg_count);
return -EINVAL;
}
for (i = 0; i < ctrl->thread_count; i++) {
rc = cprh_kbss_init_thread(&ctrl->thread[i]);
if (rc) {
cpr3_err(ctrl, "thread initialization failed, rc=%d\n",
rc);
return rc;
}
rc = cprh_kbss_init_regulator(&ctrl->thread[i].vreg[0]);
if (rc) {
cpr3_err(&ctrl->thread[i].vreg[0], "regulator initialization failed, rc=%d\n",
rc);
return rc;
}
}
rc = cprh_kbss_init_aging(ctrl);
if (rc) {
cpr3_err(ctrl, "failed to initialize aging configurations, rc=%d\n",
rc);
return rc;
}
platform_set_drvdata(pdev, ctrl);
return cpr3_regulator_register(pdev, ctrl);
}
static int cprh_kbss_regulator_remove(struct platform_device *pdev)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_unregister(ctrl);
}
static struct platform_driver cprh_kbss_regulator_driver = {
.driver = {
.name = "qcom,cprh-kbss-regulator",
.of_match_table = cprh_regulator_match_table,
.owner = THIS_MODULE,
},
.probe = cprh_kbss_regulator_probe,
.remove = cprh_kbss_regulator_remove,
.suspend = cprh_kbss_regulator_suspend,
.resume = cprh_kbss_regulator_resume,
};
static int cpr_regulator_init(void)
{
return platform_driver_register(&cprh_kbss_regulator_driver);
}
static void cpr_regulator_exit(void)
{
platform_driver_unregister(&cprh_kbss_regulator_driver);
}
MODULE_DESCRIPTION("CPRh KBSS regulator driver");
MODULE_LICENSE("GPL v2");
arch_initcall(cpr_regulator_init);
module_exit(cpr_regulator_exit);