blob: 4489adb572c08d0c469ef63c16c50a37220984fc [file] [log] [blame]
/* Copyright (c) 2012-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <asm/dma-iommu.h>
#include <asm/memory.h>
#include <linux/clk/msm-clk.h>
#include <linux/coresight-stm.h>
#include <linux/delay.h>
#include <linux/devfreq.h>
#include <linux/hash.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/pm_qos.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <soc/qcom/cx_ipeak.h>
#include <soc/qcom/scm.h>
#include <soc/qcom/smem.h>
#include <soc/qcom/subsystem_restart.h>
#include "hfi_packetization.h"
#include "msm_vidc_debug.h"
#include "venus_hfi.h"
#include "vidc_hfi_io.h"
#define FIRMWARE_SIZE 0X00A00000
#define REG_ADDR_OFFSET_BITMASK 0x000FFFFF
#define QDSS_IOVA_START 0x80001000
static struct hal_device_data hal_ctxt;
#define TZBSP_MEM_PROTECT_VIDEO_VAR 0x8
struct tzbsp_memprot {
u32 cp_start;
u32 cp_size;
u32 cp_nonpixel_start;
u32 cp_nonpixel_size;
};
struct tzbsp_resp {
int ret;
};
#define TZBSP_VIDEO_SET_STATE 0xa
/* Poll interval in uS */
#define POLL_INTERVAL_US 50
enum tzbsp_video_state {
TZBSP_VIDEO_STATE_SUSPEND = 0,
TZBSP_VIDEO_STATE_RESUME = 1,
TZBSP_VIDEO_STATE_RESTORE_THRESHOLD = 2,
};
struct tzbsp_video_set_state_req {
u32 state; /* should be tzbsp_video_state enum value */
u32 spare; /* reserved for future, should be zero */
};
const struct msm_vidc_gov_data DEFAULT_BUS_VOTE = {
.data = NULL,
.data_count = 0,
.imem_size = 0,
};
const int max_packets = 1000;
static void venus_hfi_pm_handler(struct work_struct *work);
static DECLARE_DELAYED_WORK(venus_hfi_pm_work, venus_hfi_pm_handler);
static inline int __resume(struct venus_hfi_device *device);
static inline int __suspend(struct venus_hfi_device *device);
static int __disable_regulators(struct venus_hfi_device *device);
static int __enable_regulators(struct venus_hfi_device *device);
static inline int __prepare_enable_clks(struct venus_hfi_device *device);
static inline void __disable_unprepare_clks(struct venus_hfi_device *device);
static int __scale_clocks_load(struct venus_hfi_device *device, int load,
struct vidc_clk_scale_data *data,
unsigned long instant_bitrate);
static void __flush_debug_queue(struct venus_hfi_device *device, u8 *packet);
static int __initialize_packetization(struct venus_hfi_device *device);
static struct hal_session *__get_session(struct venus_hfi_device *device,
u32 session_id);
static int __iface_cmdq_write(struct venus_hfi_device *device,
void *pkt);
static int __load_fw(struct venus_hfi_device *device);
static void __unload_fw(struct venus_hfi_device *device);
static int __tzbsp_set_video_state(enum tzbsp_video_state state);
/**
* Utility function to enforce some of our assumptions. Spam calls to this
* in hotspots in code to double check some of the assumptions that we hold.
*/
static inline void __strict_check(struct venus_hfi_device *device)
{
if (!mutex_is_locked(&device->lock)) {
dprintk(VIDC_WARN,
"device->lock mutex is not locked\n");
WARN_ON(VIDC_DBG_WARN_ENABLE);
}
}
static inline void __set_state(struct venus_hfi_device *device,
enum venus_hfi_state state)
{
device->state = state;
}
static inline bool __core_in_valid_state(struct venus_hfi_device *device)
{
return device->state != VENUS_STATE_DEINIT;
}
static void __dump_packet(u8 *packet, enum vidc_msg_prio log_level)
{
u32 c = 0, packet_size = *(u32 *)packet;
const int row_size = 32;
/* row must contain enough for 0xdeadbaad * 8 to be converted into
* "de ad ba ab " * 8 + '\0' */
char row[3 * row_size];
for (c = 0; c * row_size < packet_size; ++c) {
int bytes_to_read = ((c + 1) * row_size > packet_size) ?
packet_size % row_size : row_size;
hex_dump_to_buffer(packet + c * row_size, bytes_to_read,
row_size, 4, row, sizeof(row), false);
dprintk(log_level, "%s\n", row);
}
}
static void __sim_modify_cmd_packet(u8 *packet, struct venus_hfi_device *device)
{
struct hfi_cmd_sys_session_init_packet *sys_init;
struct hal_session *session = NULL;
u8 i;
phys_addr_t fw_bias = 0;
if (!device || !packet) {
dprintk(VIDC_ERR, "Invalid Param\n");
return;
} else if (!device->hal_data->firmware_base
|| is_iommu_present(device->res)) {
return;
}
fw_bias = device->hal_data->firmware_base;
sys_init = (struct hfi_cmd_sys_session_init_packet *)packet;
session = __get_session(device, sys_init->session_id);
if (!session) {
dprintk(VIDC_DBG, "%s :Invalid session id: %x\n",
__func__, sys_init->session_id);
return;
}
switch (sys_init->packet_type) {
case HFI_CMD_SESSION_EMPTY_BUFFER:
if (session->is_decoder) {
struct hfi_cmd_session_empty_buffer_compressed_packet
*pkt = (struct
hfi_cmd_session_empty_buffer_compressed_packet
*) packet;
pkt->packet_buffer -= fw_bias;
} else {
struct
hfi_cmd_session_empty_buffer_uncompressed_plane0_packet
*pkt = (struct
hfi_cmd_session_empty_buffer_uncompressed_plane0_packet
*) packet;
pkt->packet_buffer -= fw_bias;
}
break;
case HFI_CMD_SESSION_FILL_BUFFER:
{
struct hfi_cmd_session_fill_buffer_packet *pkt =
(struct hfi_cmd_session_fill_buffer_packet *)packet;
pkt->packet_buffer -= fw_bias;
break;
}
case HFI_CMD_SESSION_SET_BUFFERS:
{
struct hfi_cmd_session_set_buffers_packet *pkt =
(struct hfi_cmd_session_set_buffers_packet *)packet;
if (pkt->buffer_type == HFI_BUFFER_OUTPUT ||
pkt->buffer_type == HFI_BUFFER_OUTPUT2) {
struct hfi_buffer_info *buff;
buff = (struct hfi_buffer_info *) pkt->rg_buffer_info;
buff->buffer_addr -= fw_bias;
if (buff->extra_data_addr >= fw_bias)
buff->extra_data_addr -= fw_bias;
} else {
for (i = 0; i < pkt->num_buffers; i++)
pkt->rg_buffer_info[i] -= fw_bias;
}
break;
}
case HFI_CMD_SESSION_RELEASE_BUFFERS:
{
struct hfi_cmd_session_release_buffer_packet *pkt =
(struct hfi_cmd_session_release_buffer_packet *)packet;
if (pkt->buffer_type == HFI_BUFFER_OUTPUT ||
pkt->buffer_type == HFI_BUFFER_OUTPUT2) {
struct hfi_buffer_info *buff;
buff = (struct hfi_buffer_info *) pkt->rg_buffer_info;
buff->buffer_addr -= fw_bias;
buff->extra_data_addr -= fw_bias;
} else {
for (i = 0; i < pkt->num_buffers; i++)
pkt->rg_buffer_info[i] -= fw_bias;
}
break;
}
case HFI_CMD_SESSION_PARSE_SEQUENCE_HEADER:
{
struct hfi_cmd_session_parse_sequence_header_packet *pkt =
(struct hfi_cmd_session_parse_sequence_header_packet *)
packet;
pkt->packet_buffer -= fw_bias;
break;
}
case HFI_CMD_SESSION_GET_SEQUENCE_HEADER:
{
struct hfi_cmd_session_get_sequence_header_packet *pkt =
(struct hfi_cmd_session_get_sequence_header_packet *)
packet;
pkt->packet_buffer -= fw_bias;
break;
}
default:
break;
}
}
static int __acquire_regulator(struct regulator_info *rinfo)
{
int rc = 0;
if (rinfo->has_hw_power_collapse) {
rc = regulator_set_mode(rinfo->regulator,
REGULATOR_MODE_NORMAL);
if (rc) {
/*
* This is somewhat fatal, but nothing we can do
* about it. We can't disable the regulator w/o
* getting it back under s/w control
*/
dprintk(VIDC_WARN,
"Failed to acquire regulator control: %s\n",
rinfo->name);
} else {
dprintk(VIDC_DBG,
"Acquire regulator control from HW: %s\n",
rinfo->name);
}
}
if (!regulator_is_enabled(rinfo->regulator)) {
dprintk(VIDC_WARN, "Regulator is not enabled %s\n",
rinfo->name);
WARN_ON(VIDC_DBG_WARN_ENABLE);
}
return rc;
}
static int __hand_off_regulator(struct regulator_info *rinfo)
{
int rc = 0;
if (rinfo->has_hw_power_collapse) {
rc = regulator_set_mode(rinfo->regulator,
REGULATOR_MODE_FAST);
if (rc) {
dprintk(VIDC_WARN,
"Failed to hand off regulator control: %s\n",
rinfo->name);
} else {
dprintk(VIDC_DBG,
"Hand off regulator control to HW: %s\n",
rinfo->name);
}
}
return rc;
}
static int __hand_off_regulators(struct venus_hfi_device *device)
{
struct regulator_info *rinfo;
int rc = 0, c = 0;
venus_hfi_for_each_regulator(device, rinfo) {
rc = __hand_off_regulator(rinfo);
/*
* If one regulator hand off failed, driver should take
* the control for other regulators back.
*/
if (rc)
goto err_reg_handoff_failed;
c++;
}
return rc;
err_reg_handoff_failed:
venus_hfi_for_each_regulator_reverse_continue(device, rinfo, c)
__acquire_regulator(rinfo);
return rc;
}
static int __write_queue(struct vidc_iface_q_info *qinfo, u8 *packet,
bool *rx_req_is_set)
{
struct hfi_queue_header *queue;
u32 packet_size_in_words, new_write_idx;
u32 empty_space, read_idx;
u32 *write_ptr;
if (!qinfo || !packet) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
} else if (!qinfo->q_array.align_virtual_addr) {
dprintk(VIDC_WARN, "Queues have already been freed\n");
return -EINVAL;
}
queue = (struct hfi_queue_header *) qinfo->q_hdr;
if (!queue) {
dprintk(VIDC_ERR, "queue not present\n");
return -ENOENT;
}
if (msm_vidc_debug & VIDC_PKT) {
dprintk(VIDC_PKT, "%s: %pK\n", __func__, qinfo);
__dump_packet(packet, VIDC_PKT);
}
packet_size_in_words = (*(u32 *)packet) >> 2;
if (!packet_size_in_words) {
dprintk(VIDC_ERR, "Zero packet size\n");
return -ENODATA;
}
read_idx = queue->qhdr_read_idx;
empty_space = (queue->qhdr_write_idx >= read_idx) ?
(queue->qhdr_q_size - (queue->qhdr_write_idx - read_idx)) :
(read_idx - queue->qhdr_write_idx);
if (empty_space <= packet_size_in_words) {
queue->qhdr_tx_req = 1;
dprintk(VIDC_ERR, "Insufficient size (%d) to write (%d)\n",
empty_space, packet_size_in_words);
return -ENOTEMPTY;
}
queue->qhdr_tx_req = 0;
new_write_idx = (queue->qhdr_write_idx + packet_size_in_words);
write_ptr = (u32 *)((qinfo->q_array.align_virtual_addr) +
(queue->qhdr_write_idx << 2));
if (new_write_idx < queue->qhdr_q_size) {
memcpy(write_ptr, packet, packet_size_in_words << 2);
} else {
new_write_idx -= queue->qhdr_q_size;
memcpy(write_ptr, packet, (packet_size_in_words -
new_write_idx) << 2);
memcpy((void *)qinfo->q_array.align_virtual_addr,
packet + ((packet_size_in_words - new_write_idx) << 2),
new_write_idx << 2);
}
/* Memory barrier to make sure packet is written before updating the
* write index */
mb();
queue->qhdr_write_idx = new_write_idx;
if (rx_req_is_set)
*rx_req_is_set = queue->qhdr_rx_req == 1;
/* Memory barrier to make sure write index is updated before an
* interrupt is raised on venus. */
mb();
return 0;
}
static void __hal_sim_modify_msg_packet(u8 *packet,
struct venus_hfi_device *device)
{
struct hfi_msg_sys_session_init_done_packet *sys_idle;
struct hal_session *session = NULL;
phys_addr_t fw_bias = 0;
if (!device || !packet) {
dprintk(VIDC_ERR, "Invalid Param\n");
return;
} else if (!device->hal_data->firmware_base
|| is_iommu_present(device->res)) {
return;
}
fw_bias = device->hal_data->firmware_base;
sys_idle = (struct hfi_msg_sys_session_init_done_packet *)packet;
session = __get_session(device, sys_idle->session_id);
if (!session) {
dprintk(VIDC_DBG, "%s: Invalid session id: %x\n",
__func__, sys_idle->session_id);
return;
}
switch (sys_idle->packet_type) {
case HFI_MSG_SESSION_FILL_BUFFER_DONE:
if (session->is_decoder) {
struct
hfi_msg_session_fbd_uncompressed_plane0_packet
*pkt_uc = (struct
hfi_msg_session_fbd_uncompressed_plane0_packet
*) packet;
pkt_uc->packet_buffer += fw_bias;
} else {
struct
hfi_msg_session_fill_buffer_done_compressed_packet
*pkt = (struct
hfi_msg_session_fill_buffer_done_compressed_packet
*) packet;
pkt->packet_buffer += fw_bias;
}
break;
case HFI_MSG_SESSION_EMPTY_BUFFER_DONE:
{
struct hfi_msg_session_empty_buffer_done_packet *pkt =
(struct hfi_msg_session_empty_buffer_done_packet *)packet;
pkt->packet_buffer += fw_bias;
break;
}
case HFI_MSG_SESSION_GET_SEQUENCE_HEADER_DONE:
{
struct
hfi_msg_session_get_sequence_header_done_packet
*pkt =
(struct hfi_msg_session_get_sequence_header_done_packet *)
packet;
pkt->sequence_header += fw_bias;
break;
}
default:
break;
}
}
static int __read_queue(struct vidc_iface_q_info *qinfo, u8 *packet,
u32 *pb_tx_req_is_set)
{
struct hfi_queue_header *queue;
u32 packet_size_in_words, new_read_idx;
u32 *read_ptr;
u32 receive_request = 0;
int rc = 0;
if (!qinfo || !packet || !pb_tx_req_is_set) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
} else if (!qinfo->q_array.align_virtual_addr) {
dprintk(VIDC_WARN, "Queues have already been freed\n");
return -EINVAL;
}
/*Memory barrier to make sure data is valid before
*reading it*/
mb();
queue = (struct hfi_queue_header *) qinfo->q_hdr;
if (!queue) {
dprintk(VIDC_ERR, "Queue memory is not allocated\n");
return -ENOMEM;
}
/*
* Do not set receive request for debug queue, if set,
* Venus generates interrupt for debug messages even
* when there is no response message available.
* In general debug queue will not become full as it
* is being emptied out for every interrupt from Venus.
* Venus will anyway generates interrupt if it is full.
*/
if (queue->qhdr_type & HFI_Q_ID_CTRL_TO_HOST_MSG_Q)
receive_request = 1;
if (queue->qhdr_read_idx == queue->qhdr_write_idx) {
queue->qhdr_rx_req = receive_request;
*pb_tx_req_is_set = 0;
dprintk(VIDC_DBG,
"%s queue is empty, rx_req = %u, tx_req = %u, read_idx = %u\n",
receive_request ? "message" : "debug",
queue->qhdr_rx_req, queue->qhdr_tx_req,
queue->qhdr_read_idx);
return -ENODATA;
}
read_ptr = (u32 *)((qinfo->q_array.align_virtual_addr) +
(queue->qhdr_read_idx << 2));
packet_size_in_words = (*read_ptr) >> 2;
if (!packet_size_in_words) {
dprintk(VIDC_ERR, "Zero packet size\n");
return -ENODATA;
}
new_read_idx = queue->qhdr_read_idx + packet_size_in_words;
if (((packet_size_in_words << 2) <= VIDC_IFACEQ_VAR_HUGE_PKT_SIZE)
&& queue->qhdr_read_idx <= queue->qhdr_q_size) {
if (new_read_idx < queue->qhdr_q_size) {
memcpy(packet, read_ptr,
packet_size_in_words << 2);
} else {
new_read_idx -= queue->qhdr_q_size;
memcpy(packet, read_ptr,
(packet_size_in_words - new_read_idx) << 2);
memcpy(packet + ((packet_size_in_words -
new_read_idx) << 2),
(u8 *)qinfo->q_array.align_virtual_addr,
new_read_idx << 2);
}
} else {
dprintk(VIDC_WARN,
"BAD packet received, read_idx: %#x, pkt_size: %d\n",
queue->qhdr_read_idx, packet_size_in_words << 2);
dprintk(VIDC_WARN, "Dropping this packet\n");
new_read_idx = queue->qhdr_write_idx;
rc = -ENODATA;
}
queue->qhdr_read_idx = new_read_idx;
if (queue->qhdr_read_idx != queue->qhdr_write_idx)
queue->qhdr_rx_req = 0;
else
queue->qhdr_rx_req = receive_request;
*pb_tx_req_is_set = (1 == queue->qhdr_tx_req) ? 1 : 0;
if (msm_vidc_debug & VIDC_PKT) {
dprintk(VIDC_PKT, "%s: %pK\n", __func__, qinfo);
__dump_packet(packet, VIDC_PKT);
}
return rc;
}
static int __smem_alloc(struct venus_hfi_device *dev,
struct vidc_mem_addr *mem, u32 size, u32 align,
u32 flags, u32 usage)
{
struct msm_smem *alloc = NULL;
int rc = 0;
if (!dev || !dev->hal_client || !mem || !size) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
dprintk(VIDC_INFO, "start to alloc size: %d, flags: %d\n", size, flags);
alloc = msm_smem_alloc(dev->hal_client, size, align, flags, usage, 1);
if (!alloc) {
dprintk(VIDC_ERR, "Alloc failed\n");
rc = -ENOMEM;
goto fail_smem_alloc;
}
dprintk(VIDC_DBG, "__smem_alloc: ptr = %pK, size = %d\n",
alloc->kvaddr, size);
rc = msm_smem_cache_operations(dev->hal_client, alloc,
SMEM_CACHE_CLEAN);
if (rc) {
dprintk(VIDC_WARN, "Failed to clean cache\n");
dprintk(VIDC_WARN, "This may result in undefined behavior\n");
}
mem->mem_size = alloc->size;
mem->mem_data = alloc;
mem->align_virtual_addr = alloc->kvaddr;
mem->align_device_addr = alloc->device_addr;
return rc;
fail_smem_alloc:
return rc;
}
static void __smem_free(struct venus_hfi_device *dev, struct msm_smem *mem)
{
if (!dev || !mem) {
dprintk(VIDC_ERR, "invalid param %pK %pK\n", dev, mem);
return;
}
msm_smem_free(dev->hal_client, mem);
}
static void __write_register(struct venus_hfi_device *device,
u32 reg, u32 value)
{
u32 hwiosymaddr = reg;
u8 *base_addr;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %pK\n", device);
return;
}
__strict_check(device);
if (!device->power_enabled) {
dprintk(VIDC_WARN,
"HFI Write register failed : Power is OFF\n");
WARN_ON(VIDC_DBG_WARN_ENABLE);
return;
}
base_addr = device->hal_data->register_base;
dprintk(VIDC_DBG, "Base addr: %pK, written to: %#x, Value: %#x...\n",
base_addr, hwiosymaddr, value);
base_addr += hwiosymaddr;
writel_relaxed(value, base_addr);
wmb();
}
static int __read_register(struct venus_hfi_device *device, u32 reg)
{
int rc = 0;
u8 *base_addr;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %pK\n", device);
return -EINVAL;
}
__strict_check(device);
if (!device->power_enabled) {
dprintk(VIDC_WARN,
"HFI Read register failed : Power is OFF\n");
WARN_ON(VIDC_DBG_WARN_ENABLE);
return -EINVAL;
}
base_addr = device->hal_data->register_base;
rc = readl_relaxed(base_addr + reg);
rmb();
dprintk(VIDC_DBG, "Base addr: %pK, read from: %#x, value: %#x...\n",
base_addr, reg, rc);
return rc;
}
static void __set_registers(struct venus_hfi_device *device)
{
struct reg_set *reg_set;
int i;
if (!device->res) {
dprintk(VIDC_ERR,
"device resources null, cannot set registers\n");
return;
}
reg_set = &device->res->reg_set;
for (i = 0; i < reg_set->count; i++) {
__write_register(device, reg_set->reg_tbl[i].reg,
reg_set->reg_tbl[i].value);
}
}
/*
* The existence of this function is a hack for 8996 (or certain Venus versions)
* to overcome a hardware bug. Whenever the GDSCs momentarily power collapse
* (after calling __hand_off_regulators()), the values of the threshold
* registers (typically programmed by TZ) are incorrectly reset. As a result
* reprogram these registers at certain agreed upon points.
*/
static void __set_threshold_registers(struct venus_hfi_device *device)
{
u32 version = __read_register(device, VIDC_WRAPPER_HW_VERSION);
version &= ~GENMASK(15, 0);
if (version != (0x3 << 28 | 0x43 << 16))
return;
if (__tzbsp_set_video_state(TZBSP_VIDEO_STATE_RESTORE_THRESHOLD))
dprintk(VIDC_ERR, "Failed to restore threshold values\n");
}
static void __iommu_detach(struct venus_hfi_device *device)
{
struct context_bank_info *cb;
if (!device || !device->res) {
dprintk(VIDC_ERR, "Invalid parameter: %pK\n", device);
return;
}
list_for_each_entry(cb, &device->res->context_banks, list) {
if (cb->dev)
arm_iommu_detach_device(cb->dev);
if (cb->mapping)
arm_iommu_release_mapping(cb->mapping);
}
}
static bool __is_session_supported(unsigned long sessions_supported,
enum vidc_vote_data_session session_type)
{
bool same_codec, same_session_type;
int codec_bit, session_type_bit;
unsigned long session = session_type;
if (!sessions_supported || !session)
return false;
/* ffs returns a 1 indexed, test_bit takes a 0 indexed...index */
codec_bit = ffs(session) - 1;
session_type_bit = codec_bit + 1;
same_codec = test_bit(codec_bit, &sessions_supported) ==
test_bit(codec_bit, &session);
same_session_type = test_bit(session_type_bit, &sessions_supported) ==
test_bit(session_type_bit, &session);
return same_codec && same_session_type;
}
bool venus_hfi_is_session_supported(unsigned long sessions_supported,
enum vidc_vote_data_session session_type)
{
return __is_session_supported(sessions_supported, session_type);
}
EXPORT_SYMBOL(venus_hfi_is_session_supported);
static int __devfreq_target(struct device *devfreq_dev,
unsigned long *freq, u32 flags)
{
int rc = 0;
uint64_t ab = 0;
struct bus_info *bus = NULL, *temp = NULL;
struct venus_hfi_device *device = dev_get_drvdata(devfreq_dev);
venus_hfi_for_each_bus(device, temp) {
if (temp->dev == devfreq_dev) {
bus = temp;
break;
}
}
if (!bus) {
rc = -EBADHANDLE;
goto err_unknown_device;
}
/*
* Clamp for all non zero frequencies. This clamp is necessary to stop
* devfreq driver from spamming - Couldn't update frequency - logs, if
* the scaled ab value is not part of the frequency table.
*/
if (*freq)
*freq = clamp_t(typeof(*freq), *freq, bus->range[0],
bus->range[1]);
/* we expect governors to provide values in kBps form, convert to Bps */
ab = *freq * 1000;
rc = msm_bus_scale_update_bw(bus->client, ab, 0);
if (rc) {
dprintk(VIDC_ERR, "Failed voting bus %s to ab %llu\n: %d",
bus->name, ab, rc);
goto err_unknown_device;
}
dprintk(VIDC_PROF, "Voting bus %s to ab %llu\n", bus->name, ab);
return 0;
err_unknown_device:
return rc;
}
static int __devfreq_get_status(struct device *devfreq_dev,
struct devfreq_dev_status *stat)
{
int rc = 0;
struct bus_info *bus = NULL, *temp = NULL;
struct venus_hfi_device *device = dev_get_drvdata(devfreq_dev);
venus_hfi_for_each_bus(device, temp) {
if (temp->dev == devfreq_dev) {
bus = temp;
break;
}
}
if (!bus) {
rc = -EBADHANDLE;
goto err_unknown_device;
}
*stat = (struct devfreq_dev_status) {
.private_data = &device->bus_vote,
/*
* Put in dummy place holder values for upstream govs, our
* custom gov only needs .private_data. We should fill this in
* properly if we can actually measure busy_time accurately
* (which we can't at the moment)
*/
.total_time = 1,
.busy_time = 1,
.current_frequency = 0,
};
err_unknown_device:
return rc;
}
static int __unvote_buses(struct venus_hfi_device *device)
{
int rc = 0;
struct bus_info *bus = NULL;
venus_hfi_for_each_bus(device, bus) {
int local_rc = 0;
unsigned long zero = 0;
rc = devfreq_suspend_device(bus->devfreq);
if (rc)
goto err_unknown_device;
local_rc = __devfreq_target(bus->dev, &zero, 0);
rc = rc ?: local_rc;
}
if (rc)
dprintk(VIDC_WARN, "Failed to unvote some buses\n");
err_unknown_device:
return rc;
}
static int __vote_buses(struct venus_hfi_device *device,
struct vidc_bus_vote_data *data, int num_data)
{
int rc = 0;
struct bus_info *bus = NULL;
struct vidc_bus_vote_data *new_data = NULL;
if (!num_data) {
dprintk(VIDC_DBG, "No vote data available\n");
goto no_data_count;
} else if (!data) {
dprintk(VIDC_ERR, "Invalid voting data\n");
return -EINVAL;
}
new_data = kmemdup(data, num_data * sizeof(*new_data), GFP_KERNEL);
if (!new_data) {
dprintk(VIDC_ERR, "Can't alloc memory to cache bus votes\n");
rc = -ENOMEM;
goto err_no_mem;
}
no_data_count:
kfree(device->bus_vote.data);
device->bus_vote.data = new_data;
device->bus_vote.data_count = num_data;
device->bus_vote.imem_size = device->res->imem_size;
venus_hfi_for_each_bus(device, bus) {
if (bus && bus->devfreq) {
/* NOP if already resume */
rc = devfreq_resume_device(bus->devfreq);
if (rc)
goto err_no_mem;
/* Kick devfreq awake incase _resume() didn't do it */
bus->devfreq->nb.notifier_call(
&bus->devfreq->nb, 0, NULL);
}
}
err_no_mem:
return rc;
}
static int venus_hfi_vote_buses(void *dev, struct vidc_bus_vote_data *d, int n)
{
int rc = 0;
struct venus_hfi_device *device = dev;
if (!device)
return -EINVAL;
mutex_lock(&device->lock);
rc = __vote_buses(device, d, n);
mutex_unlock(&device->lock);
return rc;
}
static int __core_set_resource(struct venus_hfi_device *device,
struct vidc_resource_hdr *resource_hdr, void *resource_value)
{
struct hfi_cmd_sys_set_resource_packet *pkt;
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
if (!device || !resource_hdr || !resource_value) {
dprintk(VIDC_ERR, "set_res: Invalid Params\n");
return -EINVAL;
}
pkt = (struct hfi_cmd_sys_set_resource_packet *) packet;
rc = call_hfi_pkt_op(device, sys_set_resource,
pkt, resource_hdr, resource_value);
if (rc) {
dprintk(VIDC_ERR, "set_res: failed to create packet\n");
goto err_create_pkt;
}
rc = __iface_cmdq_write(device, pkt);
if (rc)
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int __alloc_imem(struct venus_hfi_device *device, unsigned long size)
{
struct imem *imem = NULL;
int rc = 0;
if (!device)
return -EINVAL;
imem = &device->resources.imem;
if (imem->type) {
dprintk(VIDC_ERR, "IMEM of type %d already allocated\n",
imem->type);
return -ENOMEM;
}
switch (device->res->imem_type) {
case IMEM_VMEM:
{
phys_addr_t vmem_buffer = 0;
rc = vmem_allocate(size, &vmem_buffer);
if (rc) {
if (rc == -ENOTSUPP) {
dprintk(VIDC_DBG,
"Target does not support vmem\n");
rc = 0;
}
goto imem_alloc_failed;
} else if (!vmem_buffer) {
rc = -ENOMEM;
goto imem_alloc_failed;
}
imem->vmem = vmem_buffer;
break;
}
case IMEM_NONE:
rc = 0;
break;
default:
rc = -ENOTSUPP;
goto imem_alloc_failed;
}
imem->type = device->res->imem_type;
dprintk(VIDC_DBG, "Allocated %ld bytes of IMEM of type %d\n", size,
imem->type);
return 0;
imem_alloc_failed:
imem->type = IMEM_NONE;
return rc;
}
static int __free_imem(struct venus_hfi_device *device)
{
struct imem *imem = NULL;
int rc = 0;
if (!device)
return -EINVAL;
imem = &device->resources.imem;
switch (imem->type) {
case IMEM_NONE:
/* Follow the semantics of free(NULL), which is a no-op. */
break;
case IMEM_VMEM:
vmem_free(imem->vmem);
break;
default:
rc = -ENOTSUPP;
goto imem_free_failed;
}
imem->type = IMEM_NONE;
return 0;
imem_free_failed:
return rc;
}
static int __set_imem(struct venus_hfi_device *device, struct imem *imem)
{
struct vidc_resource_hdr rhdr;
phys_addr_t addr = 0;
int rc = 0;
if (!device || !device->res || !imem) {
dprintk(VIDC_ERR, "Invalid params, core: %pK, imem: %pK\n",
device, imem);
return -EINVAL;
}
rhdr.resource_handle = imem; /* cookie */
rhdr.size = device->res->imem_size;
rhdr.resource_id = VIDC_RESOURCE_NONE;
switch (imem->type) {
case IMEM_VMEM:
rhdr.resource_id = VIDC_RESOURCE_VMEM;
addr = imem->vmem;
break;
case IMEM_NONE:
dprintk(VIDC_DBG, "%s Target does not support IMEM", __func__);
rc = 0;
goto imem_set_failed;
default:
dprintk(VIDC_ERR, "IMEM of type %d unsupported\n", imem->type);
rc = -ENOTSUPP;
goto imem_set_failed;
}
BUG_ON(!addr);
rc = __core_set_resource(device, &rhdr, (void *)addr);
if (rc) {
dprintk(VIDC_ERR, "Failed to set IMEM on driver\n");
goto imem_set_failed;
}
dprintk(VIDC_DBG,
"Managed to set IMEM buffer of type %d sized %d bytes at %pa\n",
rhdr.resource_id, rhdr.size, &addr);
rc = __vote_buses(device, device->bus_vote.data,
device->bus_vote.data_count);
if (rc) {
dprintk(VIDC_ERR,
"Failed to vote for buses after setting imem: %d\n",
rc);
}
imem_set_failed:
return rc;
}
static int __tzbsp_set_video_state(enum tzbsp_video_state state)
{
struct tzbsp_video_set_state_req cmd = {0};
int tzbsp_rsp = 0;
int rc = 0;
struct scm_desc desc = {0};
desc.args[0] = cmd.state = state;
desc.args[1] = cmd.spare = 0;
desc.arginfo = SCM_ARGS(2);
if (!is_scm_armv8()) {
rc = scm_call(SCM_SVC_BOOT, TZBSP_VIDEO_SET_STATE, &cmd,
sizeof(cmd), &tzbsp_rsp, sizeof(tzbsp_rsp));
} else {
rc = scm_call2(SCM_SIP_FNID(SCM_SVC_BOOT,
TZBSP_VIDEO_SET_STATE), &desc);
tzbsp_rsp = desc.ret[0];
}
if (rc) {
dprintk(VIDC_ERR, "Failed scm_call %d\n", rc);
return rc;
}
dprintk(VIDC_DBG, "Set state %d, resp %d\n", state, tzbsp_rsp);
if (tzbsp_rsp) {
dprintk(VIDC_ERR,
"Failed to set video core state to suspend: %d\n",
tzbsp_rsp);
return -EINVAL;
}
return 0;
}
static inline int __boot_firmware(struct venus_hfi_device *device)
{
int rc = 0;
u32 ctrl_status = 0, count = 0, max_tries = 100;
__write_register(device, VIDC_CTRL_INIT, 0x1);
while (!ctrl_status && count < max_tries) {
ctrl_status = __read_register(device, VIDC_CPU_CS_SCIACMDARG0);
if ((ctrl_status & 0xFE) == 0x4) {
dprintk(VIDC_ERR, "invalid setting for UC_REGION\n");
break;
}
usleep_range(500, 1000);
count++;
}
if (count >= max_tries) {
dprintk(VIDC_ERR, "Error booting up vidc firmware\n");
rc = -ETIME;
}
return rc;
}
static struct clock_info *__get_clock(struct venus_hfi_device *device,
char *name)
{
struct clock_info *vc;
venus_hfi_for_each_clock(device, vc) {
if (!strcmp(vc->name, name))
return vc;
}
dprintk(VIDC_WARN, "%s Clock %s not found\n", __func__, name);
return NULL;
}
static unsigned long __get_clock_rate(struct clock_info *clock,
int num_mbs_per_sec, struct vidc_clk_scale_data *data)
{
int num_rows = clock->count;
struct load_freq_table *table = clock->load_freq_tbl;
unsigned long freq = table[0].freq, max_freq = 0;
int i = 0, j = 0;
unsigned long instance_freq[VIDC_MAX_SESSIONS] = {0};
if (!data && !num_rows) {
freq = 0;
goto print_clk;
}
if ((!num_mbs_per_sec || !data) && num_rows) {
freq = table[num_rows - 1].freq;
goto print_clk;
}
for (i = 0; i < num_rows; i++) {
if (num_mbs_per_sec > table[i].load)
break;
for (j = 0; j < data->num_sessions; j++) {
bool matches = __is_session_supported(
table[i].supported_codecs, data->session[j]);
if (!matches)
continue;
instance_freq[j] = table[i].freq;
}
}
for (i = 0; i < data->num_sessions; i++)
max_freq = max(instance_freq[i], max_freq);
freq = max_freq ? : freq;
print_clk:
dprintk(VIDC_PROF, "Required clock rate = %lu num_mbs_per_sec %d\n",
freq, num_mbs_per_sec);
return freq;
}
static unsigned long __get_clock_rate_with_bitrate(struct clock_info *clock,
int num_mbs_per_sec, struct vidc_clk_scale_data *data,
unsigned long instant_bitrate)
{
int num_rows = clock->count;
struct load_freq_table *table = clock->load_freq_tbl;
unsigned long freq = table[0].freq, max_freq = 0;
unsigned long base_freq, supported_clk[VIDC_MAX_SESSIONS] = {0};
int i, j;
if (!data && !num_rows) {
freq = 0;
goto print_clk;
}
if ((!num_mbs_per_sec || !data) && num_rows) {
freq = table[num_rows - 1].freq;
goto print_clk;
}
/* Get clock rate based on current load only */
base_freq = __get_clock_rate(clock, num_mbs_per_sec, data);
/*
* Supported bitrate = 40% of clock frequency
* Check if the instant bitrate is supported by the base frequency.
* If not, move on to the next frequency which supports the bitrate.
*/
for (j = 0; j < data->num_sessions; j++) {
unsigned long supported_bitrate = 0;
for (i = num_rows - 1; i >= 0; i--) {
bool matches = __is_session_supported(
table[i].supported_codecs, data->session[j]);
if (!matches)
continue;
freq = table[i].freq;
supported_bitrate = freq * 40/100;
/*
* Store this frequency for each instance, we need
* to select the maximum freq among all the instances.
*/
if (freq >= base_freq &&
supported_bitrate >= instant_bitrate) {
supported_clk[j] = freq;
break;
}
}
/*
* Current bitrate is higher than max supported load.
* Select max frequency to handle this load.
*/
if (i < 0)
supported_clk[j] = table[0].freq;
}
for (i = 0; i < data->num_sessions; i++)
max_freq = max(supported_clk[i], max_freq);
freq = max_freq ? : base_freq;
if (base_freq == freq)
dprintk(VIDC_DBG, "Stay at base freq: %lu bitrate = %lu\n",
freq, instant_bitrate);
else
dprintk(VIDC_DBG, "Move up clock freq: %lu bitrate = %lu\n",
freq, instant_bitrate);
print_clk:
dprintk(VIDC_PROF, "Required clock rate = %lu num_mbs_per_sec %d\n",
freq, num_mbs_per_sec);
return freq;
}
static unsigned long venus_hfi_get_core_clock_rate(void *dev, bool actual_rate)
{
struct venus_hfi_device *device = (struct venus_hfi_device *) dev;
struct clock_info *vc;
if (!device) {
dprintk(VIDC_ERR, "%s Invalid args: %pK\n", __func__, device);
return -EINVAL;
}
if (actual_rate) {
vc = __get_clock(device, "core_clk");
if (vc)
return clk_get_rate(vc->clk);
else
return 0;
} else {
return device->scaled_rate;
}
}
static int venus_hfi_suspend(void *dev)
{
int rc = 0;
struct venus_hfi_device *device = (struct venus_hfi_device *) dev;
if (!device) {
dprintk(VIDC_ERR, "%s invalid device\n", __func__);
return -EINVAL;
} else if (!device->res->sw_power_collapsible) {
return -ENOTSUPP;
}
dprintk(VIDC_DBG, "Suspending Venus\n");
flush_delayed_work(&venus_hfi_pm_work);
mutex_lock(&device->lock);
if (device->power_enabled)
rc = -EBUSY;
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_flush_debug_queue(void *dev)
{
int rc = 0;
struct venus_hfi_device *device = (struct venus_hfi_device *) dev;
if (!device) {
dprintk(VIDC_ERR, "%s invalid device\n", __func__);
return -EINVAL;
}
mutex_lock(&device->lock);
if (device->power_enabled) {
dprintk(VIDC_DBG, "Venus is busy\n");
rc = -EBUSY;
goto exit;
}
__flush_debug_queue(device, NULL);
exit:
mutex_unlock(&device->lock);
return rc;
}
static enum hal_default_properties venus_hfi_get_default_properties(void *dev)
{
enum hal_default_properties prop = 0;
struct venus_hfi_device *device = (struct venus_hfi_device *) dev;
if (!device) {
dprintk(VIDC_ERR, "%s invalid device\n", __func__);
return -EINVAL;
}
mutex_lock(&device->lock);
if (device->packetization_type == HFI_PACKETIZATION_3XX)
prop = HAL_VIDEO_DYNAMIC_BUF_MODE;
mutex_unlock(&device->lock);
return prop;
}
static int __halt_axi(struct venus_hfi_device *device)
{
u32 reg;
int rc = 0;
if (!device) {
dprintk(VIDC_ERR, "Invalid input: %pK\n", device);
return -EINVAL;
}
/*
* Driver needs to make sure that clocks are enabled to read Venus AXI
* registers. If not skip AXI HALT.
*/
if (!device->power_enabled) {
dprintk(VIDC_WARN,
"Clocks are OFF, skipping AXI HALT\n");
WARN_ON(VIDC_DBG_WARN_ENABLE);
return -EINVAL;
}
/* Halt AXI and AXI IMEM VBIF Access */
reg = __read_register(device, VENUS_VBIF_AXI_HALT_CTRL0);
reg |= VENUS_VBIF_AXI_HALT_CTRL0_HALT_REQ;
__write_register(device, VENUS_VBIF_AXI_HALT_CTRL0, reg);
/* Request for AXI bus port halt */
rc = readl_poll_timeout(device->hal_data->register_base
+ VENUS_VBIF_AXI_HALT_CTRL1,
reg, reg & VENUS_VBIF_AXI_HALT_CTRL1_HALT_ACK,
POLL_INTERVAL_US,
VENUS_VBIF_AXI_HALT_ACK_TIMEOUT_US);
if (rc)
dprintk(VIDC_WARN, "AXI bus port halt timeout\n");
return rc;
}
static int __set_clk_rate(struct venus_hfi_device *device,
struct clock_info *cl, u64 rate) {
int rc = 0, rc1 = 0;
u64 toggle_freq = device->res->clk_freq_threshold;
struct cx_ipeak_client *ipeak = device->res->cx_ipeak_context;
struct clk *clk = cl->clk;
if (device->clk_freq < toggle_freq && rate >= toggle_freq) {
rc1 = cx_ipeak_update(ipeak, true);
dprintk(VIDC_PROF, "Voting up: %d\n", rc);
}
rc = clk_set_rate(clk, rate);
if (rc)
dprintk(VIDC_ERR,
"%s: Failed to set clock rate %llu %s: %d\n",
__func__, rate, cl->name, rc);
if (device->clk_freq >= toggle_freq && rate < toggle_freq) {
rc1 = cx_ipeak_update(ipeak, false);
dprintk(VIDC_PROF, "Voting down: %d\n", rc);
}
if (rc1)
dprintk(VIDC_ERR,
"cx_ipeak_update failed! ipeak %pK\n", ipeak);
if (!rc)
device->clk_freq = rate;
return rc;
}
static int __scale_clocks_cycles_per_mb(struct venus_hfi_device *device,
struct vidc_clk_scale_data *data, unsigned long instant_bitrate)
{
int rc = 0, i = 0, j = 0;
struct clock_info *cl;
struct clock_freq_table *clk_freq_tbl = NULL;
struct allowed_clock_rates_table *allowed_clks_tbl = NULL;
struct clock_profile_entry *entry = NULL;
u64 total_freq = 0, rate = 0;
clk_freq_tbl = &device->res->clock_freq_tbl;
allowed_clks_tbl = device->res->allowed_clks_tbl;
if (!data) {
dprintk(VIDC_DBG, "%s: NULL scale data\n", __func__);
total_freq = device->clk_freq;
goto get_clock_freq;
}
device->clk_bitrate = instant_bitrate;
for (i = 0; i < data->num_sessions; i++) {
/*
* for each active session iterate through all possible
* sessions and get matching session's cycles per mb
* from dtsi and multiply with the session's load to
* get the frequency required for the session.
* accumulate all session's frequencies to get the
* total clock frequency.
*/
for (j = 0; j < clk_freq_tbl->count; j++) {
bool matched = false;
u64 freq = 0;
entry = &clk_freq_tbl->clk_prof_entries[j];
matched = __is_session_supported(entry->codec_mask,
data->session[i]);
if (!matched)
continue;
freq = entry->cycles * data->load[i];
if (data->power_mode[i] == VIDC_POWER_LOW &&
entry->low_power_factor) {
/* low_power_factor is in Q16 format */
freq = (freq * entry->low_power_factor) >> 16;
}
total_freq += freq;
dprintk(VIDC_DBG,
"session[%d] %#x: cycles (%d), load (%d), freq (%llu), factor (%d)\n",
i, data->session[i], entry->cycles,
data->load[i], freq,
entry->low_power_factor);
}
}
get_clock_freq:
/*
* get required clock rate from allowed clock rates table
*/
for (i = device->res->allowed_clks_tbl_size - 1; i >= 0; i--) {
rate = allowed_clks_tbl[i].clock_rate;
if (rate >= total_freq)
break;
}
venus_hfi_for_each_clock(device, cl) {
if (!cl->has_scaling)
continue;
rc = __set_clk_rate(device, cl, rate);
if (rc)
return rc;
if (!strcmp(cl->name, "core_clk"))
device->scaled_rate = rate;
dprintk(VIDC_DBG,
"scaling clock %s to %llu (required freq %llu)\n",
cl->name, rate, total_freq);
}
return rc;
}
static int __scale_clocks_load(struct venus_hfi_device *device, int load,
struct vidc_clk_scale_data *data, unsigned long instant_bitrate)
{
struct clock_info *cl;
device->clk_bitrate = instant_bitrate;
venus_hfi_for_each_clock(device, cl) {
if (cl->has_scaling) {
unsigned long rate = 0;
int rc;
/*
* load_fw and power_on needs to be addressed.
* differently. Below check enforces the same.
*/
if (!device->clk_bitrate && !data && !load &&
device->clk_freq)
rate = device->clk_freq;
if (!rate) {
if (!device->clk_bitrate)
rate = __get_clock_rate(cl, load,
data);
else
rate = __get_clock_rate_with_bitrate(cl,
load, data,
instant_bitrate);
}
rc = __set_clk_rate(device, cl, rate);
if (rc)
return rc;
if (!strcmp(cl->name, "core_clk"))
device->scaled_rate = rate;
dprintk(VIDC_PROF, "Scaling clock %s to %lu\n",
cl->name, rate);
}
}
return 0;
}
static int __scale_clocks(struct venus_hfi_device *device,
int load, struct vidc_clk_scale_data *data,
unsigned long instant_bitrate)
{
int rc = 0;
if (device->res->clock_freq_tbl.clk_prof_entries &&
device->res->allowed_clks_tbl)
rc = __scale_clocks_cycles_per_mb(device,
data, instant_bitrate);
else if (device->res->load_freq_tbl)
rc = __scale_clocks_load(device, load, data, instant_bitrate);
else
dprintk(VIDC_DBG, "Clock scaling is not supported\n");
return rc;
}
static int venus_hfi_scale_clocks(void *dev, int load,
struct vidc_clk_scale_data *data,
unsigned long instant_bitrate)
{
int rc = 0;
struct venus_hfi_device *device = dev;
if (!device) {
dprintk(VIDC_ERR, "Invalid args: %pK\n", device);
return -EINVAL;
}
mutex_lock(&device->lock);
if (__resume(device)) {
dprintk(VIDC_ERR, "Resume from power collapse failed\n");
rc = -ENODEV;
goto exit;
}
rc = __scale_clocks(device, load, data, instant_bitrate);
exit:
mutex_unlock(&device->lock);
return rc;
}
/* Writes into cmdq without raising an interrupt */
static int __iface_cmdq_write_relaxed(struct venus_hfi_device *device,
void *pkt, bool *requires_interrupt)
{
struct vidc_iface_q_info *q_info;
struct vidc_hal_cmd_pkt_hdr *cmd_packet;
int result = -E2BIG;
if (!device || !pkt) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
__strict_check(device);
if (!__core_in_valid_state(device)) {
dprintk(VIDC_DBG, "%s - fw not in init state\n", __func__);
result = -EINVAL;
goto err_q_null;
}
cmd_packet = (struct vidc_hal_cmd_pkt_hdr *)pkt;
device->last_packet_type = cmd_packet->packet_type;
q_info = &device->iface_queues[VIDC_IFACEQ_CMDQ_IDX];
if (!q_info) {
dprintk(VIDC_ERR, "cannot write to shared Q's\n");
goto err_q_null;
}
if (!q_info->q_array.align_virtual_addr) {
dprintk(VIDC_ERR, "cannot write to shared CMD Q's\n");
result = -ENODATA;
goto err_q_null;
}
__sim_modify_cmd_packet((u8 *)pkt, device);
if (__resume(device)) {
dprintk(VIDC_ERR, "%s: Power on failed\n", __func__);
goto err_q_write;
}
if (!__write_queue(q_info, (u8 *)pkt, requires_interrupt)) {
if (device->res->sw_power_collapsible) {
cancel_delayed_work(&venus_hfi_pm_work);
if (!queue_delayed_work(device->venus_pm_workq,
&venus_hfi_pm_work,
msecs_to_jiffies(
msm_vidc_pwr_collapse_delay))) {
dprintk(VIDC_DBG,
"PM work already scheduled\n");
}
}
result = 0;
} else {
dprintk(VIDC_ERR, "__iface_cmdq_write: queue full\n");
}
err_q_write:
err_q_null:
return result;
}
static int __iface_cmdq_write(struct venus_hfi_device *device, void *pkt)
{
bool needs_interrupt = false;
int rc = __iface_cmdq_write_relaxed(device, pkt, &needs_interrupt);
if (!rc && needs_interrupt) {
/* Consumer of cmdq prefers that we raise an interrupt */
rc = 0;
__write_register(device, VIDC_CPU_IC_SOFTINT,
1 << VIDC_CPU_IC_SOFTINT_H2A_SHFT);
}
return rc;
}
static int __iface_msgq_read(struct venus_hfi_device *device, void *pkt)
{
u32 tx_req_is_set = 0;
int rc = 0;
struct vidc_iface_q_info *q_info;
if (!pkt) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
__strict_check(device);
if (!__core_in_valid_state(device)) {
dprintk(VIDC_DBG, "%s - fw not in init state\n", __func__);
rc = -EINVAL;
goto read_error_null;
}
if (device->iface_queues[VIDC_IFACEQ_MSGQ_IDX].
q_array.align_virtual_addr == 0) {
dprintk(VIDC_ERR, "cannot read from shared MSG Q's\n");
rc = -ENODATA;
goto read_error_null;
}
q_info = &device->iface_queues[VIDC_IFACEQ_MSGQ_IDX];
if (!__read_queue(q_info, (u8 *)pkt, &tx_req_is_set)) {
__hal_sim_modify_msg_packet((u8 *)pkt, device);
if (tx_req_is_set)
__write_register(device, VIDC_CPU_IC_SOFTINT,
1 << VIDC_CPU_IC_SOFTINT_H2A_SHFT);
rc = 0;
} else
rc = -ENODATA;
read_error_null:
return rc;
}
static int __iface_dbgq_read(struct venus_hfi_device *device, void *pkt)
{
u32 tx_req_is_set = 0;
int rc = 0;
struct vidc_iface_q_info *q_info;
if (!pkt) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
__strict_check(device);
if (!__core_in_valid_state(device)) {
dprintk(VIDC_DBG, "%s - fw not in init state\n", __func__);
rc = -EINVAL;
goto dbg_error_null;
}
if (device->iface_queues[VIDC_IFACEQ_DBGQ_IDX].
q_array.align_virtual_addr == 0) {
dprintk(VIDC_ERR, "cannot read from shared DBG Q's\n");
rc = -ENODATA;
goto dbg_error_null;
}
q_info = &device->iface_queues[VIDC_IFACEQ_DBGQ_IDX];
if (!__read_queue(q_info, (u8 *)pkt, &tx_req_is_set)) {
if (tx_req_is_set)
__write_register(device, VIDC_CPU_IC_SOFTINT,
1 << VIDC_CPU_IC_SOFTINT_H2A_SHFT);
rc = 0;
} else
rc = -ENODATA;
dbg_error_null:
return rc;
}
static void __set_queue_hdr_defaults(struct hfi_queue_header *q_hdr)
{
q_hdr->qhdr_status = 0x1;
q_hdr->qhdr_type = VIDC_IFACEQ_DFLT_QHDR;
q_hdr->qhdr_q_size = VIDC_IFACEQ_QUEUE_SIZE / 4;
q_hdr->qhdr_pkt_size = 0;
q_hdr->qhdr_rx_wm = 0x1;
q_hdr->qhdr_tx_wm = 0x1;
q_hdr->qhdr_rx_req = 0x1;
q_hdr->qhdr_tx_req = 0x0;
q_hdr->qhdr_rx_irq_status = 0x0;
q_hdr->qhdr_tx_irq_status = 0x0;
q_hdr->qhdr_read_idx = 0x0;
q_hdr->qhdr_write_idx = 0x0;
}
static void __interface_queues_release(struct venus_hfi_device *device)
{
int i;
struct hfi_mem_map_table *qdss;
struct hfi_mem_map *mem_map;
int num_entries = device->res->qdss_addr_set.count;
unsigned long mem_map_table_base_addr;
struct context_bank_info *cb;
if (device->qdss.mem_data) {
qdss = (struct hfi_mem_map_table *)
device->qdss.align_virtual_addr;
qdss->mem_map_num_entries = num_entries;
mem_map_table_base_addr =
device->qdss.align_device_addr +
sizeof(struct hfi_mem_map_table);
qdss->mem_map_table_base_addr =
(u32)mem_map_table_base_addr;
if ((unsigned long)qdss->mem_map_table_base_addr !=
mem_map_table_base_addr) {
dprintk(VIDC_ERR,
"Invalid mem_map_table_base_addr %#lx",
mem_map_table_base_addr);
}
mem_map = (struct hfi_mem_map *)(qdss + 1);
cb = msm_smem_get_context_bank(device->hal_client,
false, HAL_BUFFER_INTERNAL_CMD_QUEUE);
for (i = 0; cb && i < num_entries; i++) {
iommu_unmap(cb->mapping->domain,
mem_map[i].virtual_addr,
mem_map[i].size);
}
__smem_free(device, device->qdss.mem_data);
}
__smem_free(device, device->iface_q_table.mem_data);
__smem_free(device, device->sfr.mem_data);
for (i = 0; i < VIDC_IFACEQ_NUMQ; i++) {
device->iface_queues[i].q_hdr = NULL;
device->iface_queues[i].q_array.mem_data = NULL;
device->iface_queues[i].q_array.align_virtual_addr = NULL;
device->iface_queues[i].q_array.align_device_addr = 0;
}
device->iface_q_table.mem_data = NULL;
device->iface_q_table.align_virtual_addr = NULL;
device->iface_q_table.align_device_addr = 0;
device->qdss.mem_data = NULL;
device->qdss.align_virtual_addr = NULL;
device->qdss.align_device_addr = 0;
device->sfr.mem_data = NULL;
device->sfr.align_virtual_addr = NULL;
device->sfr.align_device_addr = 0;
device->mem_addr.mem_data = NULL;
device->mem_addr.align_virtual_addr = NULL;
device->mem_addr.align_device_addr = 0;
msm_smem_delete_client(device->hal_client);
device->hal_client = NULL;
}
static int __get_qdss_iommu_virtual_addr(struct venus_hfi_device *dev,
struct hfi_mem_map *mem_map, struct dma_iommu_mapping *mapping)
{
int i;
int rc = 0;
dma_addr_t iova = QDSS_IOVA_START;
int num_entries = dev->res->qdss_addr_set.count;
struct addr_range *qdss_addr_tbl = dev->res->qdss_addr_set.addr_tbl;
if (!num_entries)
return -ENODATA;
for (i = 0; i < num_entries; i++) {
if (mapping) {
rc = iommu_map(mapping->domain, iova,
qdss_addr_tbl[i].start,
qdss_addr_tbl[i].size,
IOMMU_READ | IOMMU_WRITE);
if (rc) {
dprintk(VIDC_ERR,
"IOMMU QDSS mapping failed for addr %#x\n",
qdss_addr_tbl[i].start);
rc = -ENOMEM;
break;
}
} else {
iova = qdss_addr_tbl[i].start;
}
mem_map[i].virtual_addr = (u32)iova;
mem_map[i].physical_addr = qdss_addr_tbl[i].start;
mem_map[i].size = qdss_addr_tbl[i].size;
mem_map[i].attr = 0x0;
iova += mem_map[i].size;
}
if (i < num_entries) {
dprintk(VIDC_ERR,
"QDSS mapping failed, Freeing other entries %d\n", i);
for (--i; mapping && i >= 0; i--) {
iommu_unmap(mapping->domain,
mem_map[i].virtual_addr,
mem_map[i].size);
}
}
return rc;
}
static void __setup_ucregion_memory_map(struct venus_hfi_device *device)
{
__write_register(device, VIDC_UC_REGION_ADDR,
(u32)device->iface_q_table.align_device_addr);
__write_register(device, VIDC_UC_REGION_SIZE, SHARED_QSIZE);
__write_register(device, VIDC_CPU_CS_SCIACMDARG2,
(u32)device->iface_q_table.align_device_addr);
__write_register(device, VIDC_CPU_CS_SCIACMDARG1, 0x01);
if (device->sfr.align_device_addr)
__write_register(device, VIDC_SFR_ADDR,
(u32)device->sfr.align_device_addr);
if (device->qdss.align_device_addr)
__write_register(device, VIDC_MMAP_ADDR,
(u32)device->qdss.align_device_addr);
}
static int __interface_queues_init(struct venus_hfi_device *dev)
{
struct hfi_queue_table_header *q_tbl_hdr;
struct hfi_queue_header *q_hdr;
u32 i;
int rc = 0;
struct hfi_mem_map_table *qdss;
struct hfi_mem_map *mem_map;
struct vidc_iface_q_info *iface_q;
struct hfi_sfr_struct *vsfr;
struct vidc_mem_addr *mem_addr;
int offset = 0;
int num_entries = dev->res->qdss_addr_set.count;
u32 value = 0;
phys_addr_t fw_bias = 0;
size_t q_size;
unsigned long mem_map_table_base_addr;
struct context_bank_info *cb;
q_size = SHARED_QSIZE - ALIGNED_SFR_SIZE - ALIGNED_QDSS_SIZE;
mem_addr = &dev->mem_addr;
if (!is_iommu_present(dev->res))
fw_bias = dev->hal_data->firmware_base;
rc = __smem_alloc(dev, mem_addr, q_size, 1, 0,
HAL_BUFFER_INTERNAL_CMD_QUEUE);
if (rc) {
dprintk(VIDC_ERR, "iface_q_table_alloc_fail\n");
goto fail_alloc_queue;
}
dev->iface_q_table.align_virtual_addr = mem_addr->align_virtual_addr;
dev->iface_q_table.align_device_addr = mem_addr->align_device_addr -
fw_bias;
dev->iface_q_table.mem_size = VIDC_IFACEQ_TABLE_SIZE;
dev->iface_q_table.mem_data = mem_addr->mem_data;
offset += dev->iface_q_table.mem_size;
for (i = 0; i < VIDC_IFACEQ_NUMQ; i++) {
iface_q = &dev->iface_queues[i];
iface_q->q_array.align_device_addr = mem_addr->align_device_addr
+ offset - fw_bias;
iface_q->q_array.align_virtual_addr =
mem_addr->align_virtual_addr + offset;
iface_q->q_array.mem_size = VIDC_IFACEQ_QUEUE_SIZE;
iface_q->q_array.mem_data = NULL;
offset += iface_q->q_array.mem_size;
iface_q->q_hdr = VIDC_IFACEQ_GET_QHDR_START_ADDR(
dev->iface_q_table.align_virtual_addr, i);
__set_queue_hdr_defaults(iface_q->q_hdr);
}
if ((msm_vidc_fw_debug_mode & HFI_DEBUG_MODE_QDSS) && num_entries) {
rc = __smem_alloc(dev, mem_addr,
ALIGNED_QDSS_SIZE, 1, 0,
HAL_BUFFER_INTERNAL_CMD_QUEUE);
if (rc) {
dprintk(VIDC_WARN,
"qdss_alloc_fail: QDSS messages logging will not work\n");
dev->qdss.align_device_addr = 0;
} else {
dev->qdss.align_device_addr =
mem_addr->align_device_addr - fw_bias;
dev->qdss.align_virtual_addr =
mem_addr->align_virtual_addr;
dev->qdss.mem_size = ALIGNED_QDSS_SIZE;
dev->qdss.mem_data = mem_addr->mem_data;
}
}
rc = __smem_alloc(dev, mem_addr,
ALIGNED_SFR_SIZE, 1, 0,
HAL_BUFFER_INTERNAL_CMD_QUEUE);
if (rc) {
dprintk(VIDC_WARN, "sfr_alloc_fail: SFR not will work\n");
dev->sfr.align_device_addr = 0;
} else {
dev->sfr.align_device_addr = mem_addr->align_device_addr -
fw_bias;
dev->sfr.align_virtual_addr = mem_addr->align_virtual_addr;
dev->sfr.mem_size = ALIGNED_SFR_SIZE;
dev->sfr.mem_data = mem_addr->mem_data;
}
q_tbl_hdr = (struct hfi_queue_table_header *)
dev->iface_q_table.align_virtual_addr;
q_tbl_hdr->qtbl_version = 0;
q_tbl_hdr->device_addr = (void *)dev;
strlcpy(q_tbl_hdr->name, "msm_v4l2_vidc", sizeof(q_tbl_hdr->name));
q_tbl_hdr->qtbl_size = VIDC_IFACEQ_TABLE_SIZE;
q_tbl_hdr->qtbl_qhdr0_offset = sizeof(struct hfi_queue_table_header);
q_tbl_hdr->qtbl_qhdr_size = sizeof(struct hfi_queue_header);
q_tbl_hdr->qtbl_num_q = VIDC_IFACEQ_NUMQ;
q_tbl_hdr->qtbl_num_active_q = VIDC_IFACEQ_NUMQ;
iface_q = &dev->iface_queues[VIDC_IFACEQ_CMDQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = (u32)iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_HOST_TO_CTRL_CMD_Q;
if ((ion_phys_addr_t)q_hdr->qhdr_start_addr !=
iface_q->q_array.align_device_addr) {
dprintk(VIDC_ERR, "Invalid CMDQ device address (%pa)",
&iface_q->q_array.align_device_addr);
}
iface_q = &dev->iface_queues[VIDC_IFACEQ_MSGQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = (u32)iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_CTRL_TO_HOST_MSG_Q;
if ((ion_phys_addr_t)q_hdr->qhdr_start_addr !=
iface_q->q_array.align_device_addr) {
dprintk(VIDC_ERR, "Invalid MSGQ device address (%pa)",
&iface_q->q_array.align_device_addr);
}
iface_q = &dev->iface_queues[VIDC_IFACEQ_DBGQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = (u32)iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_CTRL_TO_HOST_DEBUG_Q;
/*
* Set receive request to zero on debug queue as there is no
* need of interrupt from video hardware for debug messages
*/
q_hdr->qhdr_rx_req = 0;
if ((ion_phys_addr_t)q_hdr->qhdr_start_addr !=
iface_q->q_array.align_device_addr) {
dprintk(VIDC_ERR, "Invalid DBGQ device address (%pa)",
&iface_q->q_array.align_device_addr);
}
value = (u32)dev->iface_q_table.align_device_addr;
if ((ion_phys_addr_t)value !=
dev->iface_q_table.align_device_addr) {
dprintk(VIDC_ERR,
"Invalid iface_q_table device address (%pa)",
&dev->iface_q_table.align_device_addr);
}
if (dev->qdss.mem_data) {
qdss = (struct hfi_mem_map_table *)dev->qdss.align_virtual_addr;
qdss->mem_map_num_entries = num_entries;
mem_map_table_base_addr = dev->qdss.align_device_addr +
sizeof(struct hfi_mem_map_table);
qdss->mem_map_table_base_addr =
(u32)mem_map_table_base_addr;
if ((ion_phys_addr_t)qdss->mem_map_table_base_addr !=
mem_map_table_base_addr) {
dprintk(VIDC_ERR,
"Invalid mem_map_table_base_addr (%#lx)",
mem_map_table_base_addr);
}
mem_map = (struct hfi_mem_map *)(qdss + 1);
cb = msm_smem_get_context_bank(dev->hal_client, false,
HAL_BUFFER_INTERNAL_CMD_QUEUE);
if (!cb) {
dprintk(VIDC_ERR,
"%s: failed to get context bank\n", __func__);
return -EINVAL;
}
rc = __get_qdss_iommu_virtual_addr(dev, mem_map, cb->mapping);
if (rc) {
dprintk(VIDC_ERR,
"IOMMU mapping failed, Freeing qdss memdata\n");
__smem_free(dev, dev->qdss.mem_data);
dev->qdss.mem_data = NULL;
dev->qdss.align_virtual_addr = NULL;
dev->qdss.align_device_addr = 0;
}
value = (u32)dev->qdss.align_device_addr;
if ((ion_phys_addr_t)value !=
dev->qdss.align_device_addr) {
dprintk(VIDC_ERR, "Invalid qdss device address (%pa)",
&dev->qdss.align_device_addr);
}
}
vsfr = (struct hfi_sfr_struct *) dev->sfr.align_virtual_addr;
vsfr->bufSize = ALIGNED_SFR_SIZE;
value = (u32)dev->sfr.align_device_addr;
if ((ion_phys_addr_t)value !=
dev->sfr.align_device_addr) {
dprintk(VIDC_ERR, "Invalid sfr device address (%pa)",
&dev->sfr.align_device_addr);
}
__setup_ucregion_memory_map(dev);
return 0;
fail_alloc_queue:
return -ENOMEM;
}
static int __sys_set_debug(struct venus_hfi_device *device, u32 debug)
{
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
struct hfi_cmd_sys_set_property_packet *pkt =
(struct hfi_cmd_sys_set_property_packet *) &packet;
rc = call_hfi_pkt_op(device, sys_debug_config, pkt, debug);
if (rc) {
dprintk(VIDC_WARN,
"Debug mode setting to FW failed\n");
return -ENOTEMPTY;
}
if (__iface_cmdq_write(device, pkt))
return -ENOTEMPTY;
return 0;
}
static int __sys_set_coverage(struct venus_hfi_device *device, u32 mode)
{
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
struct hfi_cmd_sys_set_property_packet *pkt =
(struct hfi_cmd_sys_set_property_packet *) &packet;
rc = call_hfi_pkt_op(device, sys_coverage_config,
pkt, mode);
if (rc) {
dprintk(VIDC_WARN,
"Coverage mode setting to FW failed\n");
return -ENOTEMPTY;
}
if (__iface_cmdq_write(device, pkt)) {
dprintk(VIDC_WARN, "Failed to send coverage pkt to f/w\n");
return -ENOTEMPTY;
}
return 0;
}
static int __sys_set_idle_message(struct venus_hfi_device *device,
bool enable)
{
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
struct hfi_cmd_sys_set_property_packet *pkt =
(struct hfi_cmd_sys_set_property_packet *) &packet;
if (!enable) {
dprintk(VIDC_DBG, "sys_idle_indicator is not enabled\n");
return 0;
}
call_hfi_pkt_op(device, sys_idle_indicator, pkt, enable);
if (__iface_cmdq_write(device, pkt))
return -ENOTEMPTY;
return 0;
}
static int __sys_set_power_control(struct venus_hfi_device *device,
bool enable)
{
struct regulator_info *rinfo;
bool supported = false;
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
struct hfi_cmd_sys_set_property_packet *pkt =
(struct hfi_cmd_sys_set_property_packet *) &packet;
venus_hfi_for_each_regulator(device, rinfo) {
if (rinfo->has_hw_power_collapse) {
supported = true;
break;
}
}
if (!supported)
return 0;
call_hfi_pkt_op(device, sys_power_control, pkt, enable);
if (__iface_cmdq_write(device, pkt))
return -ENOTEMPTY;
return 0;
}
static int venus_hfi_core_init(void *device)
{
struct hfi_cmd_sys_init_packet pkt;
struct hfi_cmd_sys_get_property_packet version_pkt;
int rc = 0;
struct list_head *ptr, *next;
struct hal_session *session = NULL;
struct venus_hfi_device *dev;
if (!device) {
dprintk(VIDC_ERR, "Invalid device\n");
return -ENODEV;
}
dev = device;
mutex_lock(&dev->lock);
rc = __load_fw(dev);
if (rc) {
dprintk(VIDC_ERR, "Failed to load Venus FW\n");
goto err_load_fw;
}
__set_state(dev, VENUS_STATE_INIT);
list_for_each_safe(ptr, next, &dev->sess_head) {
/* This means that session list is not empty. Kick stale
* sessions out of our valid instance list, but keep the
* list_head inited so that list_del (in the future, called
* by session_clean()) will be valid. When client doesn't close
* them, then it is a genuine leak which driver can't fix. */
session = list_entry(ptr, struct hal_session, list);
list_del_init(&session->list);
}
INIT_LIST_HEAD(&dev->sess_head);
if (!dev->hal_client) {
dev->hal_client = msm_smem_new_client(
SMEM_ION, dev->res, MSM_VIDC_UNKNOWN);
if (dev->hal_client == NULL) {
dprintk(VIDC_ERR, "Failed to alloc ION_Client\n");
rc = -ENODEV;
goto err_core_init;
}
dprintk(VIDC_DBG, "Dev_Virt: %pa, Reg_Virt: %pK\n",
&dev->hal_data->firmware_base,
dev->hal_data->register_base);
rc = __interface_queues_init(dev);
if (rc) {
dprintk(VIDC_ERR, "failed to init queues\n");
rc = -ENOMEM;
goto err_core_init;
}
} else {
dprintk(VIDC_ERR, "hal_client exists\n");
rc = -EEXIST;
goto err_core_init;
}
rc = __boot_firmware(dev);
if (rc) {
dprintk(VIDC_ERR, "Failed to start core\n");
rc = -ENODEV;
goto err_core_init;
}
rc = call_hfi_pkt_op(dev, sys_init, &pkt, HFI_VIDEO_ARCH_OX);
if (rc) {
dprintk(VIDC_ERR, "Failed to create sys init pkt\n");
goto err_core_init;
}
if (__iface_cmdq_write(dev, &pkt)) {
rc = -ENOTEMPTY;
goto err_core_init;
}
rc = call_hfi_pkt_op(dev, sys_image_version, &version_pkt);
if (rc || __iface_cmdq_write(dev, &version_pkt))
dprintk(VIDC_WARN, "Failed to send image version pkt to f/w\n");
if (dev->res->pm_qos_latency_us) {
#ifdef CONFIG_SMP
dev->qos.type = PM_QOS_REQ_AFFINE_IRQ;
dev->qos.irq = dev->hal_data->irq;
#endif
pm_qos_add_request(&dev->qos, PM_QOS_CPU_DMA_LATENCY,
dev->res->pm_qos_latency_us);
}
mutex_unlock(&dev->lock);
return rc;
err_core_init:
__set_state(dev, VENUS_STATE_DEINIT);
__unload_fw(dev);
err_load_fw:
mutex_unlock(&dev->lock);
return rc;
}
static int venus_hfi_core_release(void *dev)
{
struct venus_hfi_device *device = dev;
int rc = 0;
if (!device) {
dprintk(VIDC_ERR, "invalid device\n");
return -ENODEV;
}
mutex_lock(&device->lock);
if (device->res->pm_qos_latency_us &&
pm_qos_request_active(&device->qos))
pm_qos_remove_request(&device->qos);
__set_state(device, VENUS_STATE_DEINIT);
__unload_fw(device);
mutex_unlock(&device->lock);
return rc;
}
static int __get_q_size(struct venus_hfi_device *dev, unsigned int q_index)
{
struct hfi_queue_header *queue;
struct vidc_iface_q_info *q_info;
u32 write_ptr, read_ptr;
if (q_index >= VIDC_IFACEQ_NUMQ) {
dprintk(VIDC_ERR, "Invalid q index: %d\n", q_index);
return -ENOENT;
}
q_info = &dev->iface_queues[q_index];
if (!q_info) {
dprintk(VIDC_ERR, "cannot read shared Q's\n");
return -ENOENT;
}
queue = (struct hfi_queue_header *)q_info->q_hdr;
if (!queue) {
dprintk(VIDC_ERR, "queue not present\n");
return -ENOENT;
}
write_ptr = (u32)queue->qhdr_write_idx;
read_ptr = (u32)queue->qhdr_read_idx;
return read_ptr - write_ptr;
}
static void __core_clear_interrupt(struct venus_hfi_device *device)
{
u32 intr_status = 0;
if (!device) {
dprintk(VIDC_ERR, "%s: NULL device\n", __func__);
return;
}
intr_status = __read_register(device, VIDC_WRAPPER_INTR_STATUS);
if (intr_status & VIDC_WRAPPER_INTR_STATUS_A2H_BMSK ||
intr_status & VIDC_WRAPPER_INTR_STATUS_A2HWD_BMSK ||
intr_status &
VIDC_CPU_CS_SCIACMDARG0_HFI_CTRL_INIT_IDLE_MSG_BMSK) {
device->intr_status |= intr_status;
device->reg_count++;
dprintk(VIDC_DBG,
"INTERRUPT for device: %pK: times: %d interrupt_status: %d\n",
device, device->reg_count, intr_status);
} else {
device->spur_count++;
dprintk(VIDC_INFO,
"SPURIOUS_INTR for device: %pK: times: %d interrupt_status: %d\n",
device, device->spur_count, intr_status);
}
__write_register(device, VIDC_CPU_CS_A2HSOFTINTCLR, 1);
__write_register(device, VIDC_WRAPPER_INTR_CLEAR, intr_status);
dprintk(VIDC_DBG, "Cleared WRAPPER/A2H interrupt\n");
}
static int venus_hfi_core_ping(void *device)
{
struct hfi_cmd_sys_ping_packet pkt;
int rc = 0;
struct venus_hfi_device *dev;
if (!device) {
dprintk(VIDC_ERR, "invalid device\n");
return -ENODEV;
}
dev = device;
mutex_lock(&dev->lock);
rc = call_hfi_pkt_op(dev, sys_ping, &pkt);
if (rc) {
dprintk(VIDC_ERR, "core_ping: failed to create packet\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(dev, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&dev->lock);
return rc;
}
static int venus_hfi_core_trigger_ssr(void *device,
enum hal_ssr_trigger_type type)
{
struct hfi_cmd_sys_test_ssr_packet pkt;
int rc = 0;
struct venus_hfi_device *dev;
if (!device) {
dprintk(VIDC_ERR, "invalid device\n");
return -ENODEV;
}
dev = device;
mutex_lock(&dev->lock);
rc = call_hfi_pkt_op(dev, ssr_cmd, type, &pkt);
if (rc) {
dprintk(VIDC_ERR, "core_ping: failed to create packet\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(dev, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&dev->lock);
return rc;
}
static int venus_hfi_session_set_property(void *sess,
enum hal_property ptype, void *pdata)
{
u8 packet[VIDC_IFACEQ_VAR_LARGE_PKT_SIZE];
struct hfi_cmd_session_set_property_packet *pkt =
(struct hfi_cmd_session_set_property_packet *) &packet;
struct hal_session *session = sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session || !session->device || !pdata) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
dprintk(VIDC_INFO, "in set_prop,with prop id: %#x\n", ptype);
rc = call_hfi_pkt_op(device, session_set_property,
pkt, session, ptype, pdata);
if (rc == -ENOTSUPP) {
dprintk(VIDC_DBG,
"set property: unsupported prop id: %#x\n", ptype);
rc = 0;
goto err_set_prop;
} else if (rc) {
dprintk(VIDC_ERR, "set property: failed to create packet\n");
rc = -EINVAL;
goto err_set_prop;
}
if (__iface_cmdq_write(session->device, pkt)) {
rc = -ENOTEMPTY;
goto err_set_prop;
}
err_set_prop:
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_get_property(void *sess,
enum hal_property ptype)
{
struct hfi_cmd_session_get_property_packet pkt = {0};
struct hal_session *session = sess;
int rc = 0;
struct venus_hfi_device *device;
if (!session || !session->device) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
dprintk(VIDC_INFO, "%s: property id: %d\n", __func__, ptype);
rc = call_hfi_pkt_op(device, session_get_property,
&pkt, session, ptype);
if (rc) {
dprintk(VIDC_ERR, "get property profile: pkt failed\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(session->device, &pkt)) {
rc = -ENOTEMPTY;
dprintk(VIDC_ERR, "%s cmdq_write error\n", __func__);
}
err_create_pkt:
mutex_unlock(&device->lock);
return rc;
}
static void __set_default_sys_properties(struct venus_hfi_device *device)
{
if (__sys_set_debug(device, msm_vidc_fw_debug))
dprintk(VIDC_WARN, "Setting fw_debug msg ON failed\n");
if (__sys_set_idle_message(device,
device->res->sys_idle_indicator || msm_vidc_sys_idle_indicator))
dprintk(VIDC_WARN, "Setting idle response ON failed\n");
if (__sys_set_power_control(device, msm_vidc_fw_low_power_mode))
dprintk(VIDC_WARN, "Setting h/w power collapse ON failed\n");
}
static void __session_clean(struct hal_session *session)
{
dprintk(VIDC_DBG, "deleted the session: %pK\n", session);
list_del(&session->list);
/* Poison the session handle with zeros */
*session = (struct hal_session){ {0} };
kfree(session);
}
static int venus_hfi_session_clean(void *session)
{
struct hal_session *sess_close;
struct venus_hfi_device *device;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess_close = session;
device = sess_close->device;
if (!device) {
dprintk(VIDC_ERR, "Invalid device handle %s\n", __func__);
return -EINVAL;
}
mutex_lock(&device->lock);
__session_clean(sess_close);
mutex_unlock(&device->lock);
return 0;
}
static int venus_hfi_session_init(void *device, void *session_id,
enum hal_domain session_type, enum hal_video_codec codec_type,
void **new_session)
{
struct hfi_cmd_sys_session_init_packet pkt;
struct venus_hfi_device *dev;
struct hal_session *s;
if (!device || !new_session) {
dprintk(VIDC_ERR, "%s - invalid input\n", __func__);
return -EINVAL;
}
dev = device;
mutex_lock(&dev->lock);
s = kzalloc(sizeof(struct hal_session), GFP_KERNEL);
if (!s) {
dprintk(VIDC_ERR, "new session fail: Out of memory\n");
goto err_session_init_fail;
}
s->session_id = session_id;
s->is_decoder = (session_type == HAL_VIDEO_DOMAIN_DECODER);
s->device = dev;
s->codec = codec_type;
s->domain = session_type;
dprintk(VIDC_DBG,
"%s: inst %pK, session %pK, codec 0x%x, domain 0x%x\n",
__func__, session_id, s, s->codec, s->domain);
list_add_tail(&s->list, &dev->sess_head);
__set_default_sys_properties(device);
if (call_hfi_pkt_op(dev, session_init, &pkt,
s, session_type, codec_type)) {
dprintk(VIDC_ERR, "session_init: failed to create packet\n");
goto err_session_init_fail;
}
*new_session = s;
if (__iface_cmdq_write(dev, &pkt))
goto err_session_init_fail;
mutex_unlock(&dev->lock);
return 0;
err_session_init_fail:
if (s)
__session_clean(s);
*new_session = NULL;
mutex_unlock(&dev->lock);
return -EINVAL;
}
static int __send_session_cmd(struct hal_session *session, int pkt_type)
{
struct vidc_hal_session_cmd_pkt pkt;
int rc = 0;
struct venus_hfi_device *device = session->device;
rc = call_hfi_pkt_op(device, session_cmd,
&pkt, pkt_type, session);
if (rc == -EPERM)
return 0;
if (rc) {
dprintk(VIDC_ERR, "send session cmd: create pkt failed\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int venus_hfi_session_end(void *session)
{
struct hal_session *sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess = session;
device = sess->device;
mutex_lock(&device->lock);
if (msm_vidc_fw_coverage) {
if (__sys_set_coverage(sess->device, msm_vidc_fw_coverage))
dprintk(VIDC_WARN, "Fw_coverage msg ON failed\n");
}
rc = __send_session_cmd(session, HFI_CMD_SYS_SESSION_END);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_abort(void *sess)
{
struct hal_session *session;
struct venus_hfi_device *device;
int rc = 0;
session = sess;
if (!session || !session->device) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
__flush_debug_queue(device, NULL);
rc = __send_session_cmd(session, HFI_CMD_SYS_SESSION_ABORT);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_set_buffers(void *sess,
struct vidc_buffer_addr_info *buffer_info)
{
struct hfi_cmd_session_set_buffers_packet *pkt;
u8 packet[VIDC_IFACEQ_VAR_LARGE_PKT_SIZE];
int rc = 0;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device || !buffer_info) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
if (buffer_info->buffer_type == HAL_BUFFER_INPUT) {
/*
* Hardware doesn't care about input buffers being
* published beforehand
*/
rc = 0;
goto err_create_pkt;
}
pkt = (struct hfi_cmd_session_set_buffers_packet *)packet;
rc = call_hfi_pkt_op(device, session_set_buffers,
pkt, session, buffer_info);
if (rc) {
dprintk(VIDC_ERR, "set buffers: failed to create packet\n");
goto err_create_pkt;
}
dprintk(VIDC_INFO, "set buffers: %#x\n", buffer_info->buffer_type);
if (__iface_cmdq_write(session->device, pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_release_buffers(void *sess,
struct vidc_buffer_addr_info *buffer_info)
{
struct hfi_cmd_session_release_buffer_packet *pkt;
u8 packet[VIDC_IFACEQ_VAR_LARGE_PKT_SIZE];
int rc = 0;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device || !buffer_info) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
if (buffer_info->buffer_type == HAL_BUFFER_INPUT) {
rc = 0;
goto err_create_pkt;
}
pkt = (struct hfi_cmd_session_release_buffer_packet *) packet;
rc = call_hfi_pkt_op(device, session_release_buffers,
pkt, session, buffer_info);
if (rc) {
dprintk(VIDC_ERR, "release buffers: failed to create packet\n");
goto err_create_pkt;
}
dprintk(VIDC_INFO, "Release buffers: %#x\n", buffer_info->buffer_type);
if (__iface_cmdq_write(session->device, pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_load_res(void *session)
{
struct hal_session *sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess = session;
device = sess->device;
mutex_lock(&device->lock);
rc = __send_session_cmd(sess, HFI_CMD_SESSION_LOAD_RESOURCES);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_release_res(void *session)
{
struct hal_session *sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess = session;
device = sess->device;
mutex_lock(&device->lock);
rc = __send_session_cmd(sess, HFI_CMD_SESSION_RELEASE_RESOURCES);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_start(void *session)
{
struct hal_session *sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess = session;
device = sess->device;
mutex_lock(&device->lock);
rc = __send_session_cmd(sess, HFI_CMD_SESSION_START);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_continue(void *session)
{
struct hal_session *sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess = session;
device = sess->device;
mutex_lock(&device->lock);
rc = __send_session_cmd(sess, HFI_CMD_SESSION_CONTINUE);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_stop(void *session)
{
struct hal_session *sess;
struct venus_hfi_device *device;
int rc = 0;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess = session;
device = sess->device;
mutex_lock(&device->lock);
rc = __send_session_cmd(sess, HFI_CMD_SESSION_STOP);
mutex_unlock(&device->lock);
return rc;
}
static int __session_etb(struct hal_session *session,
struct vidc_frame_data *input_frame, bool relaxed)
{
int rc = 0;
struct venus_hfi_device *device = session->device;
if (session->is_decoder) {
struct hfi_cmd_session_empty_buffer_compressed_packet pkt;
rc = call_hfi_pkt_op(device, session_etb_decoder,
&pkt, session, input_frame);
if (rc) {
dprintk(VIDC_ERR,
"Session etb decoder: failed to create pkt\n");
goto err_create_pkt;
}
if (!relaxed)
rc = __iface_cmdq_write(session->device, &pkt);
else
rc = __iface_cmdq_write_relaxed(session->device,
&pkt, NULL);
if (rc)
goto err_create_pkt;
} else {
struct hfi_cmd_session_empty_buffer_uncompressed_plane0_packet
pkt;
rc = call_hfi_pkt_op(device, session_etb_encoder,
&pkt, session, input_frame);
if (rc) {
dprintk(VIDC_ERR,
"Session etb encoder: failed to create pkt\n");
goto err_create_pkt;
}
if (!relaxed)
rc = __iface_cmdq_write(session->device, &pkt);
else
rc = __iface_cmdq_write_relaxed(session->device,
&pkt, NULL);
if (rc)
goto err_create_pkt;
}
err_create_pkt:
return rc;
}
static int venus_hfi_session_etb(void *sess,
struct vidc_frame_data *input_frame)
{
int rc = 0;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device || !input_frame) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
rc = __session_etb(session, input_frame, false);
mutex_unlock(&device->lock);
return rc;
}
static int __session_ftb(struct hal_session *session,
struct vidc_frame_data *output_frame, bool relaxed)
{
int rc = 0;
struct venus_hfi_device *device = session->device;
struct hfi_cmd_session_fill_buffer_packet pkt;
rc = call_hfi_pkt_op(device, session_ftb,
&pkt, session, output_frame);
if (rc) {
dprintk(VIDC_ERR, "Session ftb: failed to create pkt\n");
goto err_create_pkt;
}
if (!relaxed)
rc = __iface_cmdq_write(session->device, &pkt);
else
rc = __iface_cmdq_write_relaxed(session->device,
&pkt, NULL);
err_create_pkt:
return rc;
}
static int venus_hfi_session_ftb(void *sess,
struct vidc_frame_data *output_frame)
{
int rc = 0;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device || !output_frame) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
rc = __session_ftb(session, output_frame, false);
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_process_batch(void *sess,
int num_etbs, struct vidc_frame_data etbs[],
int num_ftbs, struct vidc_frame_data ftbs[])
{
int rc = 0, c = 0;
struct hal_session *session = sess;
struct venus_hfi_device *device;
struct hfi_cmd_session_sync_process_packet pkt;
if (!session || !session->device) {
dprintk(VIDC_ERR, "%s: Invalid Params\n", __func__);
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
for (c = 0; c < num_ftbs; ++c) {
rc = __session_ftb(session, &ftbs[c], true);
if (rc) {
dprintk(VIDC_ERR, "Failed to queue batched ftb: %d\n",
rc);
goto err_etbs_and_ftbs;
}
}
for (c = 0; c < num_etbs; ++c) {
rc = __session_etb(session, &etbs[c], true);
if (rc) {
dprintk(VIDC_ERR, "Failed to queue batched etb: %d\n",
rc);
goto err_etbs_and_ftbs;
}
}
rc = call_hfi_pkt_op(device, session_sync_process, &pkt, session);
if (rc) {
dprintk(VIDC_ERR, "Failed to create sync packet\n");
goto err_etbs_and_ftbs;
}
if (__iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_etbs_and_ftbs:
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_parse_seq_hdr(void *sess,
struct vidc_seq_hdr *seq_hdr)
{
struct hfi_cmd_session_parse_sequence_header_packet *pkt;
int rc = 0;
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device || !seq_hdr) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
pkt = (struct hfi_cmd_session_parse_sequence_header_packet *)packet;
rc = call_hfi_pkt_op(device, session_parse_seq_header,
pkt, session, seq_hdr);
if (rc) {
dprintk(VIDC_ERR,
"Session parse seq hdr: failed to create pkt\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(session->device, pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_get_seq_hdr(void *sess,
struct vidc_seq_hdr *seq_hdr)
{
struct hfi_cmd_session_get_sequence_header_packet *pkt;
int rc = 0;
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device || !seq_hdr) {
dprintk(VIDC_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
pkt = (struct hfi_cmd_session_get_sequence_header_packet *)packet;
rc = call_hfi_pkt_op(device, session_get_seq_hdr,
pkt, session, seq_hdr);
if (rc) {
dprintk(VIDC_ERR,
"Session get seq hdr: failed to create pkt\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(session->device, pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_get_buf_req(void *sess)
{
struct hfi_cmd_session_get_property_packet pkt;
int rc = 0;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device) {
dprintk(VIDC_ERR, "invalid session");
return -ENODEV;
}
device = session->device;
mutex_lock(&device->lock);
rc = call_hfi_pkt_op(device, session_get_buf_req,
&pkt, session);
if (rc) {
dprintk(VIDC_ERR,
"Session get buf req: failed to create pkt\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&device->lock);
return rc;
}
static int venus_hfi_session_flush(void *sess, enum hal_flush flush_mode)
{
struct hfi_cmd_session_flush_packet pkt;
int rc = 0;
struct hal_session *session = sess;
struct venus_hfi_device *device;
if (!session || !session->device) {
dprintk(VIDC_ERR, "invalid session");
return -ENODEV;
}
device = session->device;
mutex_lock(&device->lock);
rc = call_hfi_pkt_op(device, session_flush,
&pkt, session, flush_mode);
if (rc) {
dprintk(VIDC_ERR, "Session flush: failed to create pkt\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&device->lock);
return rc;
}
static int __check_core_registered(struct hal_device_data core,
phys_addr_t fw_addr, u8 *reg_addr, u32 reg_size,
phys_addr_t irq)
{
struct venus_hfi_device *device;
struct list_head *curr, *next;
if (core.dev_count) {
list_for_each_safe(curr, next, &core.dev_head) {
device = list_entry(curr,
struct venus_hfi_device, list);
if (device && device->hal_data->irq == irq &&
(CONTAINS(device->hal_data->
firmware_base,
FIRMWARE_SIZE, fw_addr) ||
CONTAINS(fw_addr, FIRMWARE_SIZE,
device->hal_data->
firmware_base) ||
CONTAINS(device->hal_data->
register_base,
reg_size, reg_addr) ||
CONTAINS(reg_addr, reg_size,
device->hal_data->
register_base) ||
OVERLAPS(device->hal_data->
register_base,
reg_size, reg_addr, reg_size) ||
OVERLAPS(reg_addr, reg_size,
device->hal_data->
register_base, reg_size) ||
OVERLAPS(device->hal_data->
firmware_base,
FIRMWARE_SIZE, fw_addr,
FIRMWARE_SIZE) ||
OVERLAPS(fw_addr, FIRMWARE_SIZE,
device->hal_data->
firmware_base,
FIRMWARE_SIZE))) {
return 0;
} else {
dprintk(VIDC_INFO, "Device not registered\n");
return -EINVAL;
}
}
} else {
dprintk(VIDC_INFO, "no device Registered\n");
}
return -EINVAL;
}
static void __process_fatal_error(
struct venus_hfi_device *device)
{
struct msm_vidc_cb_cmd_done cmd_done = {0};
cmd_done.device_id = device->device_id;
device->callback(HAL_SYS_ERROR, &cmd_done);
}
static int __prepare_pc(struct venus_hfi_device *device)
{
int rc = 0;
struct hfi_cmd_sys_pc_prep_packet pkt;
rc = call_hfi_pkt_op(device, sys_pc_prep, &pkt);
if (rc) {
dprintk(VIDC_ERR, "Failed to create sys pc prep pkt\n");
goto err_pc_prep;
}
if (__iface_cmdq_write(device, &pkt))
rc = -ENOTEMPTY;
if (rc)
dprintk(VIDC_ERR, "Failed to prepare venus for power off");
err_pc_prep:
return rc;
}
static void venus_hfi_pm_handler(struct work_struct *work)
{
int rc = 0;
u32 wfi_status = 0, idle_status = 0, pc_ready = 0;
int count = 0;
const int max_tries = 5;
struct venus_hfi_device *device = list_first_entry(
&hal_ctxt.dev_head, struct venus_hfi_device, list);
if (!device) {
dprintk(VIDC_ERR, "%s: NULL device\n", __func__);
return;
}
/*
* It is ok to check this variable outside the lock since
* it is being updated in this context only
*/
if (device->skip_pc_count >= VIDC_MAX_PC_SKIP_COUNT) {
dprintk(VIDC_WARN, "Failed to PC for %d times\n",
device->skip_pc_count);
device->skip_pc_count = 0;
__process_fatal_error(device);
return;
}
mutex_lock(&device->lock);
if (!device->power_enabled) {
dprintk(VIDC_DBG, "%s: Power already disabled\n",
__func__);
goto exit;
}
rc = __core_in_valid_state(device);
if (!rc) {
dprintk(VIDC_WARN,
"Core is in bad state, Skipping power collapse\n");
goto skip_power_off;
}
pc_ready = __read_register(device, VIDC_CPU_CS_SCIACMDARG0) &
VIDC_CPU_CS_SCIACMDARG0_HFI_CTRL_PC_READY;
if (!pc_ready) {
wfi_status = __read_register(device,
VIDC_WRAPPER_CPU_STATUS);
idle_status = __read_register(device,
VIDC_CPU_CS_SCIACMDARG0);
if (!(wfi_status & BIT(0)) ||
!(idle_status & BIT(30))) {
dprintk(VIDC_WARN, "Skipping PC\n");
goto skip_power_off;
}
rc = __prepare_pc(device);
if (rc) {
dprintk(VIDC_WARN, "Failed PC %d\n", rc);
goto skip_power_off;
}
while (count < max_tries) {
wfi_status = __read_register(device,
VIDC_WRAPPER_CPU_STATUS);
pc_ready = __read_register(device,
VIDC_CPU_CS_SCIACMDARG0);
if ((wfi_status & BIT(0)) && (pc_ready &
VIDC_CPU_CS_SCIACMDARG0_HFI_CTRL_PC_READY))
break;
usleep_range(1000, 1500);
count++;
}
if (count == max_tries) {
dprintk(VIDC_ERR,
"Skip PC. Core is not in right state (%#x, %#x)\n",
wfi_status, pc_ready);
goto skip_power_off;
}
}
rc = __suspend(device);
if (rc)
dprintk(VIDC_ERR, "Failed venus power off\n");
/* Cancel pending delayed works if any */
cancel_delayed_work(&venus_hfi_pm_work);
device->skip_pc_count = 0;
mutex_unlock(&device->lock);
return;
skip_power_off:
device->skip_pc_count++;
dprintk(VIDC_WARN, "Skip PC(%d, %#x, %#x, %#x)\n",
device->skip_pc_count, wfi_status, idle_status, pc_ready);
queue_delayed_work(device->venus_pm_workq,
&venus_hfi_pm_work,
msecs_to_jiffies(msm_vidc_pwr_collapse_delay));
exit:
mutex_unlock(&device->lock);
return;
}
static void __process_sys_error(struct venus_hfi_device *device)
{
struct hfi_sfr_struct *vsfr = NULL;
__set_state(device, VENUS_STATE_DEINIT);
/* Once SYS_ERROR received from HW, it is safe to halt the AXI.
* With SYS_ERROR, Venus FW may have crashed and HW might be
* active and causing unnecessary transactions. Hence it is
* safe to stop all AXI transactions from venus sub-system. */
if (__halt_axi(device))
dprintk(VIDC_WARN, "Failed to halt AXI after SYS_ERROR\n");
vsfr = (struct hfi_sfr_struct *)device->sfr.align_virtual_addr;
if (vsfr) {
void *p = memchr(vsfr->rg_data, '\0', vsfr->bufSize);
/* SFR isn't guaranteed to be NULL terminated
since SYS_ERROR indicates that Venus is in the
process of crashing.*/
if (p == NULL)
vsfr->rg_data[vsfr->bufSize - 1] = '\0';
dprintk(VIDC_ERR, "SFR Message from FW: %s\n",
vsfr->rg_data);
}
}
static void __flush_debug_queue(struct venus_hfi_device *device, u8 *packet)
{
bool local_packet = false;
enum vidc_msg_prio log_level = VIDC_FW;
if (!device) {
dprintk(VIDC_ERR, "%s: Invalid params\n", __func__);
return;
}
if (!packet) {
packet = kzalloc(VIDC_IFACEQ_VAR_HUGE_PKT_SIZE, GFP_TEMPORARY);
if (!packet) {
dprintk(VIDC_ERR, "In %s() Fail to allocate mem\n",
__func__);
return;
}
local_packet = true;
/*
* Local packek is used when something FATAL occurred.
* It is good to print these logs by default.
*/
log_level = VIDC_ERR;
}
while (!__iface_dbgq_read(device, packet)) {
struct hfi_msg_sys_coverage_packet *pkt =
(struct hfi_msg_sys_coverage_packet *) packet;
if (pkt->packet_type == HFI_MSG_SYS_COV) {
int stm_size = 0;
stm_size = stm_log_inv_ts(0, 0,
pkt->rg_msg_data, pkt->msg_size);
if (stm_size == 0)
dprintk(VIDC_ERR,
"In %s, stm_log returned size of 0\n",
__func__);
} else {
struct hfi_msg_sys_debug_packet *pkt =
(struct hfi_msg_sys_debug_packet *) packet;
dprintk(log_level, "%s", pkt->rg_msg_data);
}
}
if (local_packet)
kfree(packet);
}
static struct hal_session *__get_session(struct venus_hfi_device *device,
u32 session_id)
{
struct hal_session *temp = NULL;
list_for_each_entry(temp, &device->sess_head, list) {
if (session_id == hash32_ptr(temp))
return temp;
}
return NULL;
}
static int __response_handler(struct venus_hfi_device *device)
{
struct msm_vidc_cb_info *packets;
int packet_count = 0;
u8 *raw_packet = NULL;
bool requeue_pm_work = true;
if (!device || device->state != VENUS_STATE_INIT)
return 0;
packets = device->response_pkt;
raw_packet = device->raw_packet;
if (!raw_packet || !packets) {
dprintk(VIDC_ERR,
"%s: Invalid args : Res packet = %p, Raw packet = %p\n",
__func__, packets, raw_packet);
return 0;
}
if (device->intr_status & VIDC_WRAPPER_INTR_CLEAR_A2HWD_BMSK) {
struct hfi_sfr_struct *vsfr = (struct hfi_sfr_struct *)
device->sfr.align_virtual_addr;
struct msm_vidc_cb_info info = {
.response_type = HAL_SYS_WATCHDOG_TIMEOUT,
.response.cmd = {
.device_id = device->device_id,
}
};
if (vsfr)
dprintk(VIDC_ERR, "SFR Message from FW: %s\n",
vsfr->rg_data);
dprintk(VIDC_ERR, "Received watchdog timeout\n");
packets[packet_count++] = info;
goto exit;
}
/* Bleed the msg queue dry of packets */
while (!__iface_msgq_read(device, raw_packet)) {
void **session_id = NULL;
struct msm_vidc_cb_info *info = &packets[packet_count++];
struct vidc_hal_sys_init_done sys_init_done = {0};
int rc = 0;
rc = hfi_process_msg_packet(device->device_id,
(struct vidc_hal_msg_pkt_hdr *)raw_packet, info);
if (rc) {
dprintk(VIDC_WARN,
"Corrupt/unknown packet found, discarding\n");
--packet_count;
continue;
}
/* Process the packet types that we're interested in */
switch (info->response_type) {
case HAL_SYS_ERROR:
__process_sys_error(device);
break;
case HAL_SYS_RELEASE_RESOURCE_DONE:
dprintk(VIDC_DBG, "Received SYS_RELEASE_RESOURCE\n");
break;
case HAL_SYS_INIT_DONE:
dprintk(VIDC_DBG, "Received SYS_INIT_DONE\n");
/* Video driver intentionally does not unset
* IMEM on venus to simplify power collapse.
*/
if (__set_imem(device, &device->resources.imem))
dprintk(VIDC_WARN,
"Failed to set IMEM. Performance will be impacted\n");
sys_init_done.capabilities =
device->sys_init_capabilities;
hfi_process_sys_init_done_prop_read(
(struct hfi_msg_sys_init_done_packet *)
raw_packet, &sys_init_done);
info->response.cmd.data.sys_init_done = sys_init_done;
break;
case HAL_SESSION_LOAD_RESOURCE_DONE:
/*
* Work around for H/W bug, need to re-program these
* registers as part of a handshake agreement with the
* firmware. This strictly only needs to be done for
* decoder secure sessions, but there's no harm in doing
* so for all sessions as it's at worst a NO-OP.
*/
__set_threshold_registers(device);
break;
default:
break;
}
/* For session-related packets, validate session */
switch (info->response_type) {
case HAL_SESSION_LOAD_RESOURCE_DONE:
case HAL_SESSION_INIT_DONE:
case HAL_SESSION_END_DONE:
case HAL_SESSION_ABORT_DONE:
case HAL_SESSION_START_DONE:
case HAL_SESSION_STOP_DONE:
case HAL_SESSION_FLUSH_DONE:
case HAL_SESSION_SUSPEND_DONE:
case HAL_SESSION_RESUME_DONE:
case HAL_SESSION_SET_PROP_DONE:
case HAL_SESSION_GET_PROP_DONE:
case HAL_SESSION_PARSE_SEQ_HDR_DONE:
case HAL_SESSION_RELEASE_BUFFER_DONE:
case HAL_SESSION_RELEASE_RESOURCE_DONE:
case HAL_SESSION_PROPERTY_INFO:
session_id = &info->response.cmd.session_id;
break;
case HAL_SESSION_ERROR:
case HAL_SESSION_GET_SEQ_HDR_DONE:
case HAL_SESSION_ETB_DONE:
case HAL_SESSION_FTB_DONE:
session_id = &info->response.data.session_id;
break;
case HAL_SESSION_EVENT_CHANGE:
session_id = &info->response.event.session_id;
break;
case HAL_RESPONSE_UNUSED:
default:
session_id = NULL;
break;
}
/*
* hfi_process_msg_packet provides a session_id that's a hashed
* value of struct hal_session, we need to coerce the hashed
* value back to pointer that we can use. Ideally, hfi_process\
* _msg_packet should take care of this, but it doesn't have
* required information for it
*/
if (session_id) {
struct hal_session *session = NULL;
if (upper_32_bits((uintptr_t)*session_id) != 0) {
dprintk(VIDC_WARN,
"Upper 32 bits of session_id != 0\n");
WARN_ON(VIDC_DBG_WARN_ENABLE);
}
session = __get_session(device,
(u32)(uintptr_t)*session_id);
if (!session) {
dprintk(VIDC_ERR,
"Received a packet (%#x) for an unrecognized session (%pK), discarding\n",
info->response_type,
*session_id);
--packet_count;
continue;
}
*session_id = session->session_id;
}
if (packet_count >= max_packets &&
__get_q_size(device, VIDC_IFACEQ_MSGQ_IDX)) {
dprintk(VIDC_WARN,
"Too many packets in message queue to handle at once, deferring read\n");
break;
}
}
if (requeue_pm_work && device->res->sw_power_collapsible) {
cancel_delayed_work(&venus_hfi_pm_work);
if (!queue_delayed_work(device->venus_pm_workq,
&venus_hfi_pm_work,
msecs_to_jiffies(msm_vidc_pwr_collapse_delay))) {
dprintk(VIDC_ERR, "PM work already scheduled\n");
}
}
exit:
__flush_debug_queue(device, raw_packet);
return packet_count;
}
static void venus_hfi_core_work_handler(struct work_struct *work)
{
struct venus_hfi_device *device = list_first_entry(
&hal_ctxt.dev_head, struct venus_hfi_device, list);
int num_responses = 0, i = 0;
u32 intr_status;
mutex_lock(&device->lock);
dprintk(VIDC_INFO, "Handling interrupt\n");
if (!__core_in_valid_state(device)) {
dprintk(VIDC_DBG, "%s - Core not in init state\n", __func__);
goto err_no_work;
}
if (!device->callback) {
dprintk(VIDC_ERR, "No interrupt callback function: %pK\n",
device);
goto err_no_work;
}
if (__resume(device)) {
dprintk(VIDC_ERR, "%s: Power enable failed\n", __func__);
goto err_no_work;
}
__core_clear_interrupt(device);
num_responses = __response_handler(device);
err_no_work:
/* Keep the interrupt status before releasing device lock */
intr_status = device->intr_status;
mutex_unlock(&device->lock);
/*
* Issue the callbacks outside of the locked contex to preserve
* re-entrancy.
*/
for (i = 0; !IS_ERR_OR_NULL(device->response_pkt) &&
i < num_responses; ++i) {
struct msm_vidc_cb_info *r = &device->response_pkt[i];
if (!__core_in_valid_state(device)) {
dprintk(VIDC_ERR,
"Ignore responses from %d to %d as device is in invalid state",
(i + 1), num_responses);
break;
}
device->callback(r->response_type, &r->response);
}
/* We need re-enable the irq which was disabled in ISR handler */
if (!(intr_status & VIDC_WRAPPER_INTR_STATUS_A2HWD_BMSK))
enable_irq(device->hal_data->irq);
/*
* XXX: Don't add any code beyond here. Reacquiring locks after release
* it above doesn't guarantee the atomicity that we're aiming for.
*/
}
static DECLARE_WORK(venus_hfi_work, venus_hfi_core_work_handler);
static irqreturn_t venus_hfi_isr(int irq, void *dev)
{
struct venus_hfi_device *device = dev;
dprintk(VIDC_INFO, "Received an interrupt %d\n", irq);
disable_irq_nosync(irq);
queue_work(device->vidc_workq, &venus_hfi_work);
return IRQ_HANDLED;
}
static int __init_regs_and_interrupts(struct venus_hfi_device *device,
struct msm_vidc_platform_resources *res)
{
struct hal_data *hal = NULL;
int rc = 0;
rc = __check_core_registered(hal_ctxt, res->firmware_base,
(u8 *)(uintptr_t)res->register_base,
res->register_size, res->irq);
if (!rc) {
dprintk(VIDC_ERR, "Core present/Already added\n");
rc = -EEXIST;
goto err_core_init;
}
dprintk(VIDC_DBG, "HAL_DATA will be assigned now\n");
hal = (struct hal_data *)
kzalloc(sizeof(struct hal_data), GFP_KERNEL);
if (!hal) {
dprintk(VIDC_ERR, "Failed to alloc\n");
rc = -ENOMEM;
goto err_core_init;
}
hal->irq = res->irq;
hal->firmware_base = res->firmware_base;
hal->register_base = devm_ioremap_nocache(&res->pdev->dev,
res->register_base, res->register_size);
hal->register_size = res->register_size;
if (!hal->register_base) {
dprintk(VIDC_ERR,
"could not map reg addr %pa of size %d\n",
&res->register_base, res->register_size);
goto error_irq_fail;
}
device->hal_data = hal;
rc = request_irq(res->irq, venus_hfi_isr, IRQF_TRIGGER_HIGH,
"msm_vidc", device);
if (unlikely(rc)) {
dprintk(VIDC_ERR, "() :request_irq failed\n");
goto error_irq_fail;
}
disable_irq_nosync(res->irq);
dprintk(VIDC_INFO,
"firmware_base = %pa, register_base = %pa, register_size = %d\n",
&res->firmware_base, &res->register_base,
res->register_size);
return rc;
error_irq_fail:
kfree(hal);
err_core_init:
return rc;
}
static inline void __deinit_clocks(struct venus_hfi_device *device)
{
struct clock_info *cl;
device->clk_freq = 0;
venus_hfi_for_each_clock_reverse(device, cl) {
if (cl->clk) {
clk_put(cl->clk);
cl->clk = NULL;
}
}
}
static inline int __init_clocks(struct venus_hfi_device *device)
{
int rc = 0;
struct clock_info *cl = NULL;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %pK\n", device);
return -EINVAL;
}
venus_hfi_for_each_clock(device, cl) {
int i = 0;
dprintk(VIDC_DBG, "%s: scalable? %d, count %d\n",
cl->name, cl->has_scaling, cl->count);
for (i = 0; i < cl->count; ++i) {
dprintk(VIDC_DBG,
"\tload = %d, freq = %d codecs supported %#x\n",
cl->load_freq_tbl[i].load,
cl->load_freq_tbl[i].freq,
cl->load_freq_tbl[i].supported_codecs);
}
}
venus_hfi_for_each_clock(device, cl) {
if (!cl->clk) {
cl->clk = clk_get(&device->res->pdev->dev, cl->name);
if (IS_ERR_OR_NULL(cl->clk)) {
dprintk(VIDC_ERR,
"Failed to get clock: %s\n", cl->name);
rc = PTR_ERR(cl->clk) ?: -EINVAL;
cl->clk = NULL;
goto err_clk_get;
}
}
}
device->clk_freq = 0;
return 0;
err_clk_get:
__deinit_clocks(device);
return rc;
}
static inline void __disable_unprepare_clks(struct venus_hfi_device *device)
{
struct clock_info *cl;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %pK\n", device);
return;
}
venus_hfi_for_each_clock_reverse(device, cl) {
usleep_range(100, 500);
dprintk(VIDC_DBG, "Clock: %s disable and unprepare\n",
cl->name);
clk_disable_unprepare(cl->clk);
}
}
static inline int __prepare_enable_clks(struct venus_hfi_device *device)
{
struct clock_info *cl = NULL, *cl_fail = NULL;
int rc = 0, c = 0;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %pK\n", device);
return -EINVAL;
}
venus_hfi_for_each_clock(device, cl) {
/*
* For the clocks we control, set the rate prior to preparing
* them. Since we don't really have a load at this point, scale
* it to the lowest frequency possible
*/
if (cl->has_scaling)
__set_clk_rate(device, cl,
clk_round_rate(cl->clk, 0));
if (cl->has_mem_retention) {
rc = clk_set_flags(cl->clk, CLKFLAG_NORETAIN_PERIPH);
if (rc) {
dprintk(VIDC_WARN,
"Failed set flag NORETAIN_PERIPH %s\n",
cl->name);
}
rc = clk_set_flags(cl->clk, CLKFLAG_NORETAIN_MEM);
if (rc) {
dprintk(VIDC_WARN,
"Failed set flag NORETAIN_MEM %s\n",
cl->name);
}
}
rc = clk_prepare_enable(cl->clk);
if (rc) {
dprintk(VIDC_ERR, "Failed to enable clocks\n");
cl_fail = cl;
goto fail_clk_enable;
}
c++;
dprintk(VIDC_DBG, "Clock: %s prepared and enabled\n", cl->name);
}
__write_register(device, VIDC_WRAPPER_CLOCK_CONFIG, 0);
__write_register(device, VIDC_WRAPPER_CPU_CLOCK_CONFIG, 0);
return rc;
fail_clk_enable:
venus_hfi_for_each_clock_reverse_continue(device, cl, c) {
usleep_range(100, 500);
dprintk(VIDC_ERR, "Clock: %s disable and unprepare\n",
cl->name);
clk_disable_unprepare(cl->clk);
}
return rc;
}
static void __deinit_bus(struct venus_hfi_device *device)
{
struct bus_info *bus = NULL;
if (!device)
return;
kfree(device->bus_vote.data);
device->bus_vote = DEFAULT_BUS_VOTE;
venus_hfi_for_each_bus_reverse(device, bus) {
devfreq_remove_device(bus->devfreq);
bus->devfreq = NULL;
dev_set_drvdata(bus->dev, NULL);
msm_bus_scale_unregister(bus->client);
bus->client = NULL;
}
}
static int __init_bus(struct venus_hfi_device *device)
{
struct bus_info *bus = NULL;
int rc = 0;
if (!device)
return -EINVAL;
venus_hfi_for_each_bus(device, bus) {
struct devfreq_dev_profile profile = {
.initial_freq = 0,
.polling_ms = INT_MAX,
.freq_table = NULL,
.max_state = 0,
.target = __devfreq_target,
.get_dev_status = __devfreq_get_status,
.exit = NULL,
};
/*
* This is stupid, but there's no other easy way to ahold
* of struct bus_info in venus_hfi_devfreq_*()
*/
WARN(dev_get_drvdata(bus->dev), "%s's drvdata already set\n",
dev_name(bus->dev));
dev_set_drvdata(bus->dev, device);
bus->client = msm_bus_scale_register(bus->master, bus->slave,
bus->name, false);
if (IS_ERR_OR_NULL(bus->client)) {
rc = PTR_ERR(bus->client) ?: -EBADHANDLE;
dprintk(VIDC_ERR, "Failed to register bus %s: %d\n",
bus->name, rc);
bus->client = NULL;
goto err_add_dev;
}
bus->devfreq_prof = profile;
bus->devfreq = devfreq_add_device(bus->dev,
&bus->devfreq_prof, bus->governor, NULL);
if (IS_ERR_OR_NULL(bus->devfreq)) {
rc = PTR_ERR(bus->devfreq) ?: -EBADHANDLE;
dprintk(VIDC_ERR,
"Failed to add devfreq device for bus %s and governor %s: %d\n",
bus->name, bus->governor, rc);
bus->devfreq = NULL;
goto err_add_dev;
}
/*
* Devfreq starts monitoring immediately, since we are just
* initializing stuff at this point, force it to suspend
*/
devfreq_suspend_device(bus->devfreq);
}
device->bus_vote = DEFAULT_BUS_VOTE;
return 0;
err_add_dev:
__deinit_bus(device);
return rc;
}
static void __deinit_regulators(struct venus_hfi_device *device)
{
struct regulator_info *rinfo = NULL;
venus_hfi_for_each_regulator_reverse(device, rinfo) {
if (rinfo->regulator) {
regulator_put(rinfo->regulator);
rinfo->regulator = NULL;
}
}
}
static int __init_regulators(struct venus_hfi_device *device)
{
int rc = 0;
struct regulator_info *rinfo = NULL;
venus_hfi_for_each_regulator(device, rinfo) {
rinfo->regulator = regulator_get(&device->res->pdev->dev,
rinfo->name);
if (IS_ERR_OR_NULL(rinfo->regulator)) {
rc = PTR_ERR(rinfo->regulator) ?: -EBADHANDLE;
dprintk(VIDC_ERR, "Failed to get regulator: %s\n",
rinfo->name);
rinfo->regulator = NULL;
goto err_reg_get;
}
}
return 0;
err_reg_get:
__deinit_regulators(device);
return rc;
}
static int __init_resources(struct venus_hfi_device *device,
struct msm_vidc_platform_resources *res)
{
int rc = 0;
rc = __init_regulators(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to get all regulators\n");
return -ENODEV;
}
rc = __init_clocks(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to init clocks\n");
rc = -ENODEV;
goto err_init_clocks;
}
rc = __init_bus(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to init bus: %d\n", rc);
goto err_init_bus;
}
device->sys_init_capabilities =
kzalloc(sizeof(struct msm_vidc_capability)
* VIDC_MAX_SESSIONS, GFP_TEMPORARY);
return rc;
err_init_bus:
__deinit_clocks(device);
err_init_clocks:
__deinit_regulators(device);
return rc;
}
static void __deinit_resources(struct venus_hfi_device *device)
{
__deinit_bus(device);
__deinit_clocks(device);
__deinit_regulators(device);
kfree(device->sys_init_capabilities);
device->sys_init_capabilities = NULL;
}
static int __protect_cp_mem(struct venus_hfi_device *device)
{
struct tzbsp_memprot memprot;
unsigned int resp = 0;
int rc = 0;
struct context_bank_info *cb;
struct scm_desc desc = {0};
if (!device)
return -EINVAL;
memprot.cp_start = 0x0;
memprot.cp_size = 0x0;
memprot.cp_nonpixel_start = 0x0;
memprot.cp_nonpixel_size = 0x0;
list_for_each_entry(cb, &device->res->context_banks, list) {
if (!strcmp(cb->name, "venus_ns")) {
desc.args[1] = memprot.cp_size =
cb->addr_range.start;
dprintk(VIDC_DBG, "%s memprot.cp_size: %#x\n",
__func__, memprot.cp_size);
}
if (!strcmp(cb->name, "venus_sec_non_pixel")) {
desc.args[2] = memprot.cp_nonpixel_start =
cb->addr_range.start;
desc.args[3] = memprot.cp_nonpixel_size =
cb->addr_range.size;
dprintk(VIDC_DBG,
"%s memprot.cp_nonpixel_start: %#x size: %#x\n",
__func__, memprot.cp_nonpixel_start,
memprot.cp_nonpixel_size);
}
}
if (!is_scm_armv8()) {
rc = scm_call(SCM_SVC_MP, TZBSP_MEM_PROTECT_VIDEO_VAR, &memprot,
sizeof(memprot), &resp, sizeof(resp));
} else {
desc.arginfo = SCM_ARGS(4);
rc = scm_call2(SCM_SIP_FNID(SCM_SVC_MP,
TZBSP_MEM_PROTECT_VIDEO_VAR), &desc);
resp = desc.ret[0];
}
if (rc) {
dprintk(VIDC_ERR, "Failed to protect memory(%d) response: %d\n",
rc, resp);
}
trace_venus_hfi_var_done(
memprot.cp_start, memprot.cp_size,
memprot.cp_nonpixel_start, memprot.cp_nonpixel_size);
return rc;
}
static int __disable_regulator(struct regulator_info *rinfo)
{
int rc = 0;
dprintk(VIDC_DBG, "Disabling regulator %s\n", rinfo->name);
/*
* This call is needed. Driver needs to acquire the control back
* from HW in order to disable the regualtor. Else the behavior
* is unknown.
*/
rc = __acquire_regulator(rinfo);
if (rc) {
/* This is somewhat fatal, but nothing we can do
* about it. We can't disable the regulator w/o
* getting it back under s/w control */
dprintk(VIDC_WARN,
"Failed to acquire control on %s\n",
rinfo->name);
goto disable_regulator_failed;
}
rc = regulator_disable(rinfo->regulator);
if (rc) {
dprintk(VIDC_WARN,
"Failed to disable %s: %d\n",
rinfo->name, rc);
goto disable_regulator_failed;
}
return 0;
disable_regulator_failed:
/* Bring attention to this issue */
WARN_ON(VIDC_DBG_WARN_ENABLE);
return rc;
}
static int __enable_hw_power_collapse(struct venus_hfi_device *device)
{
int rc = 0;
if (!msm_vidc_fw_low_power_mode) {
dprintk(VIDC_DBG, "Not enabling hardware power collapse\n");
return 0;
}
rc = __hand_off_regulators(device);
if (rc)
dprintk(VIDC_WARN,
"%s : Failed to enable HW power collapse %d\n",
__func__, rc);
return rc;
}
static int __enable_regulators(struct venus_hfi_device *device)
{
int rc = 0, c = 0;
struct regulator_info *rinfo;
dprintk(VIDC_DBG, "Enabling regulators\n");
venus_hfi_for_each_regulator(device, rinfo) {
rc = regulator_enable(rinfo->regulator);
if (rc) {
dprintk(VIDC_ERR,
"Failed to enable %s: %d\n",
rinfo->name, rc);
goto err_reg_enable_failed;
}
dprintk(VIDC_DBG, "Enabled regulator %s\n",
rinfo->name);
c++;
}
return 0;
err_reg_enable_failed:
venus_hfi_for_each_regulator_reverse_continue(device, rinfo, c)
__disable_regulator(rinfo);
return rc;
}
static int __disable_regulators(struct venus_hfi_device *device)
{
struct regulator_info *rinfo;
int rc = 0;
dprintk(VIDC_DBG, "Disabling regulators\n");
venus_hfi_for_each_regulator_reverse(device, rinfo)
__disable_regulator(rinfo);
return rc;
}
static int __venus_power_on(struct venus_hfi_device *device)
{
int rc = 0;
if (device->power_enabled)
return 0;
device->power_enabled = true;
/* Vote for all hardware resources */
rc = __vote_buses(device, device->bus_vote.data,
device->bus_vote.data_count);
if (rc) {
dprintk(VIDC_ERR, "Failed to vote buses, err: %d\n", rc);
goto fail_vote_buses;
}
rc = __alloc_imem(device, device->res->imem_size);
if (rc) {
dprintk(VIDC_ERR, "Failed to allocate IMEM\n");
goto fail_alloc_imem;
}
rc = __enable_regulators(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to enable GDSC, err = %d\n", rc);
goto fail_enable_gdsc;
}
rc = __prepare_enable_clks(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to enable clocks: %d\n", rc);
goto fail_enable_clks;
}
rc = __scale_clocks(device, 0, NULL, 0);
if (rc) {
dprintk(VIDC_WARN,
"Failed to scale clocks, performance might be affected\n");
rc = 0;
}
/*
* Re-program all of the registers that get reset as a result of
* regulator_disable() and _enable()
*/
__set_registers(device);
__write_register(device, VIDC_WRAPPER_INTR_MASK,
VIDC_WRAPPER_INTR_MASK_A2HVCODEC_BMSK);
device->intr_status = 0;
enable_irq(device->hal_data->irq);
/*
* Hand off control of regulators to h/w _after_ enabling clocks.
* Note that the GDSC will turn off when switching from normal
* (s/w triggered) to fast (HW triggered) unless the h/w vote is
* present. Since Venus isn't up yet, the GDSC will be off briefly.
*/
if (__enable_hw_power_collapse(device))
dprintk(VIDC_ERR, "Failed to enabled inter-frame PC\n");
return rc;
fail_enable_clks:
__disable_regulators(device);
fail_enable_gdsc:
__free_imem(device);
fail_alloc_imem:
__unvote_buses(device);
fail_vote_buses:
device->power_enabled = false;
return rc;
}
static void __venus_power_off(struct venus_hfi_device *device, bool halt_axi)
{
if (!device->power_enabled)
return;
if (!(device->intr_status & VIDC_WRAPPER_INTR_STATUS_A2HWD_BMSK))
disable_irq_nosync(device->hal_data->irq);
device->intr_status = 0;
/* Halt the AXI to make sure there are no pending transactions.
* Clocks should be unprepared after making sure axi is halted.
*/
if (halt_axi && __halt_axi(device))
dprintk(VIDC_WARN, "Failed to halt AXI\n");
__disable_unprepare_clks(device);
if (__disable_regulators(device))
dprintk(VIDC_WARN, "Failed to disable regulators\n");
__free_imem(device);
if (__unvote_buses(device))
dprintk(VIDC_WARN, "Failed to unvote for buses\n");
device->power_enabled = false;
}
static inline int __suspend(struct venus_hfi_device *device)
{
int rc = 0;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %pK\n", device);
return -EINVAL;
} else if (!device->power_enabled) {
dprintk(VIDC_DBG, "Power already disabled\n");
return 0;
}
dprintk(VIDC_PROF, "Entering power collapse\n");
if (device->res->pm_qos_latency_us &&
pm_qos_request_active(&device->qos))
pm_qos_remove_request(&device->qos);
rc = __tzbsp_set_video_state(TZBSP_VIDEO_STATE_SUSPEND);
if (rc) {
dprintk(VIDC_WARN, "Failed to suspend video core %d\n", rc);
goto err_tzbsp_suspend;
}
__venus_power_off(device, true);
dprintk(VIDC_PROF, "Venus power collapsed\n");
return rc;
err_tzbsp_suspend:
return rc;
}
static inline int __resume(struct venus_hfi_device *device)
{
int rc = 0;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %pK\n", device);
return -EINVAL;
} else if (device->power_enabled) {
dprintk(VIDC_DBG, "Power is already enabled\n");
goto exit;
} else if (!__core_in_valid_state(device)) {
dprintk(VIDC_DBG, "venus_hfi_device in deinit state.");
return -EINVAL;
}
dprintk(VIDC_PROF, "Resuming from power collapse\n");
rc = __venus_power_on(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to power on venus\n");
goto err_venus_power_on;
}
/* Reboot the firmware */
rc = __tzbsp_set_video_state(TZBSP_VIDEO_STATE_RESUME);
if (rc) {
dprintk(VIDC_ERR, "Failed to resume video core %d\n", rc);
goto err_set_video_state;
}
__setup_ucregion_memory_map(device);
/* Wait for boot completion */
rc = __boot_firmware(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to reset venus core\n");
goto err_reset_core;
}
/*
* Work around for H/W bug, need to reprogram these registers once
* firmware is out reset
*/
__set_threshold_registers(device);
if (device->res->pm_qos_latency_us) {
#ifdef CONFIG_SMP
device->qos.type = PM_QOS_REQ_AFFINE_IRQ;
device->qos.irq = device->hal_data->irq;
#endif
pm_qos_add_request(&device->qos, PM_QOS_CPU_DMA_LATENCY,
device->res->pm_qos_latency_us);
}
dprintk(VIDC_PROF, "Resumed from power collapse\n");
exit:
device->skip_pc_count = 0;
return rc;
err_reset_core:
__tzbsp_set_video_state(TZBSP_VIDEO_STATE_SUSPEND);
err_set_video_state:
__venus_power_off(device, true);
err_venus_power_on:
dprintk(VIDC_ERR, "Failed to resume from power collapse\n");
return rc;
}
static int __load_fw(struct venus_hfi_device *device)
{
int rc = 0;
/* Initialize resources */
rc = __init_resources(device, device->res);
if (rc) {
dprintk(VIDC_ERR, "Failed to init resources: %d\n", rc);
goto fail_init_res;
}
rc = __initialize_packetization(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to initialize packetization\n");
goto fail_init_pkt;
}
trace_msm_v4l2_vidc_fw_load_start("msm_v4l2_vidc venus_fw load start");
rc = __venus_power_on(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to power on venus in in load_fw\n");
goto fail_venus_power_on;
}
if ((!device->res->use_non_secure_pil && !device->res->firmware_base)
|| device->res->use_non_secure_pil) {
if (!device->resources.fw.cookie)
device->resources.fw.cookie =
subsystem_get_with_fwname("venus",
device->res->fw_name);
if (IS_ERR_OR_NULL(device->resources.fw.cookie)) {
dprintk(VIDC_ERR, "Failed to download firmware\n");
device->resources.fw.cookie = NULL;
rc = -ENOMEM;
goto fail_load_fw;
}
}
if (!device->res->use_non_secure_pil && !device->res->firmware_base) {
rc = __protect_cp_mem(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to protect memory\n");
goto fail_protect_mem;
}
}
trace_msm_v4l2_vidc_fw_load_end("msm_v4l2_vidc venus_fw load end");
return rc;
fail_protect_mem:
if (device->resources.fw.cookie)
subsystem_put(device->resources.fw.cookie);
device->resources.fw.cookie = NULL;
fail_load_fw:
__venus_power_off(device, true);
fail_venus_power_on:
fail_init_pkt:
__deinit_resources(device);
fail_init_res:
trace_msm_v4l2_vidc_fw_load_end("msm_v4l2_vidc venus_fw load end");
return rc;
}
static void __unload_fw(struct venus_hfi_device *device)
{
if (!device->resources.fw.cookie)
return;
cancel_delayed_work(&venus_hfi_pm_work);
if (device->state != VENUS_STATE_DEINIT)
flush_workqueue(device->venus_pm_workq);
__vote_buses(device, NULL, 0);
subsystem_put(device->resources.fw.cookie);
__interface_queues_release(device);
__venus_power_off(device, false);
device->resources.fw.cookie = NULL;
__deinit_resources(device);
}
static int venus_hfi_get_fw_info(void *dev, struct hal_fw_info *fw_info)
{
int i = 0, j = 0;
struct venus_hfi_device *device = dev;
u32 smem_block_size = 0;
u8 *smem_table_ptr;
char version[VENUS_VERSION_LENGTH] = "";
const u32 smem_image_index_venus = 14 * 128;
if (!device || !fw_info) {
dprintk(VIDC_ERR,
"%s Invalid parameter: device = %pK fw_info = %pK\n",
__func__, device, fw_info);
return -EINVAL;
}
mutex_lock(&device->lock);
smem_table_ptr = smem_get_entry(SMEM_IMAGE_VERSION_TABLE,
&smem_block_size, 0, SMEM_ANY_HOST_FLAG);
if (smem_table_ptr &&
((smem_image_index_venus +
VENUS_VERSION_LENGTH) <= smem_block_size))
memcpy(version,
smem_table_ptr + smem_image_index_venus,
VENUS_VERSION_LENGTH);
while (version[i++] != 'V' && i < VENUS_VERSION_LENGTH)
;
if (i == VENUS_VERSION_LENGTH - 1) {
dprintk(VIDC_WARN, "Venus version string is not proper\n");
fw_info->version[0] = '\0';
goto fail_version_string;
}
for (i--; i < VENUS_VERSION_LENGTH && j < VENUS_VERSION_LENGTH - 1; i++)
fw_info->version[j++] = version[i];
fw_info->version[j] = '\0';
fail_version_string:
dprintk(VIDC_DBG, "F/W version retrieved : %s\n", fw_info->version);
fw_info->base_addr = device->hal_data->firmware_base;
fw_info->register_base = device->res->register_base;
fw_info->register_size = device->hal_data->register_size;
fw_info->irq = device->hal_data->irq;
mutex_unlock(&device->lock);
return 0;
}
static int venus_hfi_get_core_capabilities(void *dev)
{
struct venus_hfi_device *device = dev;
int rc = 0;
if (!device)
return -EINVAL;
mutex_lock(&device->lock);
rc = HAL_VIDEO_ENCODER_ROTATION_CAPABILITY |
HAL_VIDEO_ENCODER_SCALING_CAPABILITY |
HAL_VIDEO_ENCODER_DEINTERLACE_CAPABILITY |
HAL_VIDEO_DECODER_MULTI_STREAM_CAPABILITY;
mutex_unlock(&device->lock);
return rc;
}
static int __initialize_packetization(struct venus_hfi_device *device)
{
int rc = 0;
const char *hfi_version;
if (!device || !device->res) {
dprintk(VIDC_ERR, "%s - invalid param\n", __func__);
return -EINVAL;
}
hfi_version = device->res->hfi_version;
if (!hfi_version) {
device->packetization_type = HFI_PACKETIZATION_LEGACY;
} else if (!strcmp(hfi_version, "3xx")) {
device->packetization_type = HFI_PACKETIZATION_3XX;
} else {
dprintk(VIDC_ERR, "Unsupported hfi version\n");
return -EINVAL;
}
device->pkt_ops = hfi_get_pkt_ops_handle(device->packetization_type);
if (!device->pkt_ops) {
rc = -EINVAL;
dprintk(VIDC_ERR, "Failed to get pkt_ops handle\n");
}
return rc;
}
static struct venus_hfi_device *__add_device(u32 device_id,
struct msm_vidc_platform_resources *res,
hfi_cmd_response_callback callback)
{
struct venus_hfi_device *hdevice = NULL;
int rc = 0;
if (!res || !callback) {
dprintk(VIDC_ERR, "Invalid Parameters\n");
return NULL;
}
dprintk(VIDC_INFO, "entered , device_id: %d\n", device_id);
hdevice = (struct venus_hfi_device *)
kzalloc(sizeof(struct venus_hfi_device), GFP_KERNEL);
if (!hdevice) {
dprintk(VIDC_ERR, "failed to allocate new device\n");
goto exit;
}
hdevice->response_pkt = kmalloc_array(max_packets,
sizeof(*hdevice->response_pkt), GFP_KERNEL);
if (!hdevice->response_pkt) {
dprintk(VIDC_ERR, "failed to allocate response_pkt\n");
goto err_cleanup;
}
hdevice->raw_packet =
kzalloc(VIDC_IFACEQ_VAR_HUGE_PKT_SIZE, GFP_TEMPORARY);
if (!hdevice->raw_packet) {
dprintk(VIDC_ERR, "failed to allocate raw packet\n");
goto err_cleanup;
}
rc = __init_regs_and_interrupts(hdevice, res);
if (rc)
goto err_cleanup;
hdevice->res = res;
hdevice->device_id = device_id;
hdevice->callback = callback;
hdevice->vidc_workq = create_singlethread_workqueue(
"msm_vidc_workerq_venus");
if (!hdevice->vidc_workq) {
dprintk(VIDC_ERR, ": create vidc workq failed\n");
goto err_cleanup;
}
hdevice->venus_pm_workq = create_singlethread_workqueue(
"pm_workerq_venus");
if (!hdevice->venus_pm_workq) {
dprintk(VIDC_ERR, ": create pm workq failed\n");
goto err_cleanup;
}
if (!hal_ctxt.dev_count)
INIT_LIST_HEAD(&hal_ctxt.dev_head);
mutex_init(&hdevice->lock);
INIT_LIST_HEAD(&hdevice->list);
INIT_LIST_HEAD(&hdevice->sess_head);
list_add_tail(&hdevice->list, &hal_ctxt.dev_head);
hal_ctxt.dev_count++;
return hdevice;
err_cleanup:
if (hdevice->vidc_workq)
destroy_workqueue(hdevice->vidc_workq);
kfree(hdevice->response_pkt);
kfree(hdevice->raw_packet);
kfree(hdevice);
exit:
return NULL;
}
static struct venus_hfi_device *__get_device(u32 device_id,
struct msm_vidc_platform_resources *res,
hfi_cmd_response_callback callback)
{
if (!res || !callback) {
dprintk(VIDC_ERR, "Invalid params: %pK %pK\n", res, callback);
return NULL;
}
return __add_device(device_id, res, callback);
}
void venus_hfi_delete_device(void *device)
{
struct venus_hfi_device *close, *tmp, *dev;
if (!device)
return;
dev = (struct venus_hfi_device *) device;
mutex_lock(&dev->lock);
__iommu_detach(dev);
mutex_unlock(&dev->lock);
list_for_each_entry_safe(close, tmp, &hal_ctxt.dev_head, list) {
if (close->hal_data->irq == dev->hal_data->irq) {
hal_ctxt.dev_count--;
list_del(&close->list);
mutex_destroy(&close->lock);
destroy_workqueue(close->vidc_workq);
destroy_workqueue(close->venus_pm_workq);
free_irq(dev->hal_data->irq, close);
iounmap(dev->hal_data->register_base);
kfree(close->hal_data);
kfree(close->response_pkt);
kfree(close->raw_packet);
kfree(close);
break;
}
}
}
static void venus_init_hfi_callbacks(struct hfi_device *hdev)
{
hdev->core_init = venus_hfi_core_init;
hdev->core_release = venus_hfi_core_release;
hdev->core_ping = venus_hfi_core_ping;
hdev->core_trigger_ssr = venus_hfi_core_trigger_ssr;
hdev->session_init = venus_hfi_session_init;
hdev->session_end = venus_hfi_session_end;
hdev->session_abort = venus_hfi_session_abort;
hdev->session_clean = venus_hfi_session_clean;
hdev->session_set_buffers = venus_hfi_session_set_buffers;
hdev->session_release_buffers = venus_hfi_session_release_buffers;
hdev->session_load_res = venus_hfi_session_load_res;
hdev->session_release_res = venus_hfi_session_release_res;
hdev->session_start = venus_hfi_session_start;
hdev->session_continue = venus_hfi_session_continue;
hdev->session_stop = venus_hfi_session_stop;
hdev->session_etb = venus_hfi_session_etb;
hdev->session_ftb = venus_hfi_session_ftb;
hdev->session_process_batch = venus_hfi_session_process_batch;
hdev->session_parse_seq_hdr = venus_hfi_session_parse_seq_hdr;
hdev->session_get_seq_hdr = venus_hfi_session_get_seq_hdr;
hdev->session_get_buf_req = venus_hfi_session_get_buf_req;
hdev->session_flush = venus_hfi_session_flush;
hdev->session_set_property = venus_hfi_session_set_property;
hdev->session_get_property = venus_hfi_session_get_property;
hdev->scale_clocks = venus_hfi_scale_clocks;
hdev->vote_bus = venus_hfi_vote_buses;
hdev->get_fw_info = venus_hfi_get_fw_info;
hdev->get_core_capabilities = venus_hfi_get_core_capabilities;
hdev->suspend = venus_hfi_suspend;
hdev->flush_debug_queue = venus_hfi_flush_debug_queue;
hdev->get_core_clock_rate = venus_hfi_get_core_clock_rate;
hdev->get_default_properties = venus_hfi_get_default_properties;
}
int venus_hfi_initialize(struct hfi_device *hdev, u32 device_id,
struct msm_vidc_platform_resources *res,
hfi_cmd_response_callback callback)
{
int rc = 0;
if (!hdev || !res || !callback) {
dprintk(VIDC_ERR, "Invalid params: %pK %pK %pK\n",
hdev, res, callback);
rc = -EINVAL;
goto err_venus_hfi_init;
}
hdev->hfi_device_data = __get_device(device_id, res, callback);
if (IS_ERR_OR_NULL(hdev->hfi_device_data)) {
rc = PTR_ERR(hdev->hfi_device_data) ?: -EINVAL;
goto err_venus_hfi_init;
}
venus_init_hfi_callbacks(hdev);
err_venus_hfi_init:
return rc;
}