blob: b3dad297ccb4991aa59e8d9713c0d0c2e0f72eef [file] [log] [blame]
/* drivers/serial/msm_serial_hs.c
*
* MSM 7k High speed uart driver
*
* Copyright (c) 2008 Google Inc.
* Copyright (c) 2007-2014, The Linux Foundation. All rights reserved.
* Modified: Nick Pelly <npelly@google.com>
*
* All source code in this file is licensed under the following license
* except where indicated.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* Has optional support for uart power management independent of linux
* suspend/resume:
*
* RX wakeup.
* UART wakeup can be triggered by RX activity (using a wakeup GPIO on the
* UART RX pin). This should only be used if there is not a wakeup
* GPIO on the UART CTS, and the first RX byte is known (for example, with the
* Bluetooth Texas Instruments HCILL protocol), since the first RX byte will
* always be lost. RTS will be asserted even while the UART is off in this mode
* of operation. See msm_serial_hs_platform_data.rx_wakeup_irq.
*/
#include <linux/module.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/atomic.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/tty_flip.h>
#include <linux/wait.h>
#include <linux/sysfs.h>
#include <linux/stat.h>
#include <linux/device.h>
#include <linux/wakelock.h>
#include <linux/debugfs.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/gpio.h>
#include <linux/ipc_logging.h>
#include <asm/atomic.h>
#include <asm/irq.h>
#include <linux/msm-sps.h>
#include <linux/platform_data/msm_serial_hs.h>
#include <linux/msm-bus.h>
#include "msm_serial_hs_hwreg.h"
#define UART_SPS_CONS_PERIPHERAL 0
#define UART_SPS_PROD_PERIPHERAL 1
static void *ipc_msm_hs_log_ctxt;
#define IPC_MSM_HS_LOG_PAGES 30
/* If the debug_mask gets set to FATAL_LEV,
* a fatal error has happened and further IPC logging
* is disabled so that this problem can be detected
*/
enum {
FATAL_LEV = 0U,
ERR_LEV = 1U,
WARN_LEV = 2U,
INFO_LEV = 3U,
DBG_LEV = 4U,
};
/* Default IPC log level INFO */
static int hs_serial_debug_mask = DBG_LEV;
module_param_named(debug_mask, hs_serial_debug_mask,
int, S_IRUGO | S_IWUSR | S_IWGRP);
#define MSM_HS_DBG(x...) do { \
if (hs_serial_debug_mask >= DBG_LEV) { \
if (ipc_msm_hs_log_ctxt) \
ipc_log_string(ipc_msm_hs_log_ctxt, x); \
} \
} while (0)
#define MSM_HS_INFO(x...) do { \
if (hs_serial_debug_mask >= INFO_LEV) {\
if (ipc_msm_hs_log_ctxt) \
ipc_log_string(ipc_msm_hs_log_ctxt, x); \
} \
} while (0)
/* warnings and errors show up on console always */
#define MSM_HS_WARN(x...) do { \
pr_warn(x); \
if (ipc_msm_hs_log_ctxt && hs_serial_debug_mask >= WARN_LEV) \
ipc_log_string(ipc_msm_hs_log_ctxt, x); \
} while (0)
/* ERROR condition in the driver sets the hs_serial_debug_mask
* to ERR_FATAL level, so that this message can be seen
* in IPC logging. Further errors continue to log on the console
*/
#define MSM_HS_ERR(x...) do { \
pr_err(x); \
if (ipc_msm_hs_log_ctxt && hs_serial_debug_mask >= ERR_LEV) { \
ipc_log_string(ipc_msm_hs_log_ctxt, x); \
hs_serial_debug_mask = FATAL_LEV; \
} \
} while (0)
/*
* There are 3 different kind of UART Core available on MSM.
* High Speed UART (i.e. Legacy HSUART), GSBI based HSUART
* and BSLP based HSUART.
*/
enum uart_core_type {
LEGACY_HSUART,
GSBI_HSUART,
BLSP_HSUART,
};
enum flush_reason {
FLUSH_NONE,
FLUSH_DATA_READY,
FLUSH_DATA_INVALID, /* values after this indicate invalid data */
FLUSH_IGNORE,
FLUSH_STOP,
FLUSH_SHUTDOWN,
};
enum msm_hs_clk_states_e {
MSM_HS_CLK_PORT_OFF, /* port not in use */
MSM_HS_CLK_OFF, /* clock disabled */
MSM_HS_CLK_REQUEST_OFF, /* disable after TX and RX flushed */
MSM_HS_CLK_ON, /* clock enabled */
};
/* Track the forced RXSTALE flush during clock off sequence.
* These states are only valid during MSM_HS_CLK_REQUEST_OFF */
enum msm_hs_clk_req_off_state_e {
CLK_REQ_OFF_START,
CLK_REQ_OFF_RXSTALE_ISSUED,
CLK_REQ_OFF_FLUSH_ISSUED,
CLK_REQ_OFF_RXSTALE_FLUSHED,
};
/* SPS data structures to support HSUART with BAM
* @sps_pipe - This struct defines BAM pipe descriptor
* @sps_connect - This struct defines a connection's end point
* @sps_register - This struct defines a event registration parameters
*/
struct msm_hs_sps_ep_conn_data {
struct sps_pipe *pipe_handle;
struct sps_connect config;
struct sps_register_event event;
};
struct msm_hs_tx {
unsigned int tx_ready_int_en; /* ok to dma more tx */
unsigned int dma_in_flight; /* tx dma in progress */
enum flush_reason flush;
wait_queue_head_t wait;
int tx_count;
dma_addr_t dma_base;
struct tasklet_struct tlet;
struct msm_hs_sps_ep_conn_data cons;
};
struct msm_hs_rx {
enum flush_reason flush;
wait_queue_head_t wait;
dma_addr_t rbuffer;
unsigned char *buffer;
unsigned int buffer_pending;
struct dma_pool *pool;
struct wake_lock wake_lock;
struct delayed_work flip_insert_work;
struct tasklet_struct tlet;
struct msm_hs_sps_ep_conn_data prod;
bool rx_cmd_queued;
bool rx_cmd_exec;
};
enum buffer_states {
NONE_PENDING = 0x0,
FIFO_OVERRUN = 0x1,
PARITY_ERROR = 0x2,
CHARS_NORMAL = 0x4,
};
/* optional low power wakeup, typically on a GPIO RX irq */
struct msm_hs_wakeup {
int irq; /* < 0 indicates low power wakeup disabled */
unsigned char ignore; /* bool */
/* bool: inject char into rx tty on wakeup */
bool inject_rx;
unsigned char rx_to_inject;
};
struct msm_hs_port {
struct uart_port uport;
unsigned long imr_reg; /* shadow value of UARTDM_IMR */
struct clk *clk;
struct clk *pclk;
struct msm_hs_tx tx;
struct msm_hs_rx rx;
struct hrtimer clk_off_timer; /* to poll TXEMT before clock off */
ktime_t clk_off_delay;
enum msm_hs_clk_states_e clk_state;
enum msm_hs_clk_req_off_state_e clk_req_off_state;
atomic_t clk_count;
struct msm_hs_wakeup wakeup;
struct wake_lock dma_wake_lock; /* held while any DMA active */
struct dentry *loopback_dir;
struct work_struct clock_off_w; /* work for actual clock off */
struct workqueue_struct *hsuart_wq; /* hsuart workqueue */
struct mutex clk_mutex; /* mutex to guard against clock off/clock on */
struct work_struct disconnect_rx_endpoint; /* disconnect rx_endpoint */
enum uart_core_type uart_type;
unsigned long bam_handle;
resource_size_t bam_mem;
int bam_irq;
unsigned char __iomem *bam_base;
unsigned int bam_tx_ep_pipe_index;
unsigned int bam_rx_ep_pipe_index;
/* struct sps_event_notify is an argument passed when triggering a
* callback event object registered for an SPS connection end point.
*/
struct sps_event_notify notify;
/* bus client handler */
u32 bus_perf_client;
/* BLSP UART required BUS Scaling data */
struct msm_bus_scale_pdata *bus_scale_table;
int rx_count_callback;
bool rx_bam_inprogress;
wait_queue_head_t bam_disconnect_wait;
bool use_pinctrl;
struct pinctrl *pinctrl;
struct pinctrl_state *gpio_state_active;
struct pinctrl_state *gpio_state_suspend;
};
static struct of_device_id msm_hs_match_table[] = {
{ .compatible = "qcom,msm-hsuart-v14",
},
};
#define MSM_UARTDM_BURST_SIZE 16 /* DM burst size (in bytes) */
#define UARTDM_TX_BUF_SIZE UART_XMIT_SIZE
#define UARTDM_RX_BUF_SIZE 512
#define RETRY_TIMEOUT 5
#define UARTDM_NR 256
#define BAM_PIPE_MIN 0
#define BAM_PIPE_MAX 11
#define BUS_SCALING 1
#define BUS_RESET 0
#define RX_FLUSH_COMPLETE_TIMEOUT 300 /* In jiffies */
#define BLSP_UART_CLK_FMAX 63160000
static struct dentry *debug_base;
static struct platform_driver msm_serial_hs_platform_driver;
static struct uart_driver msm_hs_driver;
static struct uart_ops msm_hs_ops;
static void msm_hs_start_rx_locked(struct uart_port *uport);
static void msm_serial_hs_rx_tlet(unsigned long tlet_ptr);
static void flip_insert_work(struct work_struct *work);
static void msm_hs_bus_voting(struct msm_hs_port *msm_uport, unsigned int vote);
static struct msm_hs_port *msm_hs_get_hs_port(int port_index);
#define UARTDM_TO_MSM(uart_port) \
container_of((uart_port), struct msm_hs_port, uport)
struct uart_port * msm_hs_get_port_by_id(int num)
{
struct uart_port *uport;
struct msm_hs_port *msm_uport;
if (num < 0 || num >= UARTDM_NR)
return NULL;
msm_uport = msm_hs_get_hs_port(num);
uport = &(msm_uport->uport);
return uport;
}
static int msm_hs_ioctl(struct uart_port *uport, unsigned int cmd,
unsigned long arg)
{
int ret = 0, state = 1;
enum msm_hs_clk_states_e clk_state;
unsigned long flags;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
switch (cmd) {
case MSM_ENABLE_UART_CLOCK: {
MSM_HS_DBG("%s():ENABLE UART CLOCK: cmd=%d\n", __func__, cmd);
msm_hs_request_clock_on(&msm_uport->uport);
break;
}
case MSM_DISABLE_UART_CLOCK: {
MSM_HS_DBG("%s():DISABLE UART CLOCK: cmd=%d\n", __func__, cmd);
msm_hs_request_clock_off(&msm_uport->uport);
break;
}
case MSM_GET_UART_CLOCK_STATUS: {
/* Return value 0 - UART CLOCK is OFF
* Return value 1 - UART CLOCK is ON */
MSM_HS_DBG("%s():GET UART CLOCK STATUS: cmd=%d\n", __func__,
cmd);
spin_lock_irqsave(&msm_uport->uport.lock, flags);
clk_state = msm_uport->clk_state;
spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
if (clk_state <= MSM_HS_CLK_OFF)
state = 0;
ret = state;
break;
}
default: {
MSM_HS_DBG("%s():Unknown cmd specified: cmd=%d\n", __func__,
cmd);
ret = -ENOIOCTLCMD;
break;
}
}
return ret;
}
static int msm_hs_clock_vote(struct msm_hs_port *msm_uport)
{
int rc = 0;
mutex_lock(&msm_uport->clk_mutex);
if (1 == atomic_inc_return(&msm_uport->clk_count)) {
msm_hs_bus_voting(msm_uport, BUS_SCALING);
/* Turn on core clk and iface clk */
if (msm_uport->pclk) {
rc = clk_prepare_enable(msm_uport->pclk);
if (rc) {
dev_err(msm_uport->uport.dev,
"%s: Could not turn on pclk [%d]\n",
__func__, rc);
mutex_unlock(&msm_uport->clk_mutex);
atomic_dec_return(&msm_uport->clk_count);
return rc;
}
}
rc = clk_prepare_enable(msm_uport->clk);
if (rc) {
dev_err(msm_uport->uport.dev,
"%s: Could not turn on core clk [%d]\n",
__func__, rc);
if(msm_uport->pclk)
clk_disable_unprepare(msm_uport->pclk);
mutex_unlock(&msm_uport->clk_mutex);
atomic_dec_return(&msm_uport->clk_count);
return rc;
}
msm_uport->clk_state = MSM_HS_CLK_ON;
MSM_HS_DBG("%s: Clock ON successful\n", __func__);
}
mutex_unlock(&msm_uport->clk_mutex);
return rc;
}
static void msm_hs_clock_unvote(struct msm_hs_port *msm_uport)
{
int rc = atomic_read(&msm_uport->clk_count);
if (rc <= 0) {
WARN(rc, "msm_uport->clk_count < 0!");
dev_err(msm_uport->uport.dev,
"%s: Clocks count invalid [%d]\n", __func__, rc);
return;
}
mutex_lock(&msm_uport->clk_mutex);
rc = atomic_dec_return(&msm_uport->clk_count);
if (0 == rc) {
/* Turn off the core clk and iface clk*/
clk_disable_unprepare(msm_uport->clk);
if (msm_uport->pclk)
clk_disable_unprepare(msm_uport->pclk);
/* Unvote the PNOC clock */
msm_hs_bus_voting(msm_uport, BUS_RESET);
msm_uport->clk_state = MSM_HS_CLK_OFF;
MSM_HS_DBG("%s: Clock OFF successful\n", __func__);
}
mutex_unlock(&msm_uport->clk_mutex);
}
/* Check if the uport line number matches with user id stored in pdata.
* User id information is stored during initialization. This function
* ensues that the same device is selected */
static struct msm_hs_port *get_matching_hs_port(struct platform_device *pdev)
{
struct msm_serial_hs_platform_data *pdata = pdev->dev.platform_data;
struct msm_hs_port *msm_uport = msm_hs_get_hs_port(pdev->id);
if ((!msm_uport) || (msm_uport->uport.line != pdev->id
&& msm_uport->uport.line != pdata->userid)) {
MSM_HS_ERR("uport line number mismatch!");
WARN_ON(1);
return NULL;
}
return msm_uport;
}
static ssize_t show_clock(struct device *dev, struct device_attribute *attr,
char *buf)
{
int state = 1;
ssize_t ret = 0;
enum msm_hs_clk_states_e clk_state;
unsigned long flags;
struct platform_device *pdev = container_of(dev, struct
platform_device, dev);
struct msm_hs_port *msm_uport = get_matching_hs_port(pdev);
/* This check should not fail */
if (msm_uport) {
spin_lock_irqsave(&msm_uport->uport.lock, flags);
clk_state = msm_uport->clk_state;
spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
if (clk_state <= MSM_HS_CLK_OFF)
state = 0;
ret = snprintf(buf, PAGE_SIZE, "%d\n", state);
}
return ret;
}
static ssize_t set_clock(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int state;
ssize_t ret = 0;
struct platform_device *pdev = container_of(dev, struct
platform_device, dev);
struct msm_hs_port *msm_uport = get_matching_hs_port(pdev);
/* This check should not fail */
if (msm_uport) {
state = buf[0] - '0';
switch (state) {
case 0:
msm_hs_request_clock_off(&msm_uport->uport);
ret = count;
break;
case 1:
msm_hs_request_clock_on(&msm_uport->uport);
ret = count;
break;
default:
ret = -EINVAL;
}
}
return ret;
}
static DEVICE_ATTR(clock, S_IWUSR | S_IRUGO, show_clock, set_clock);
static inline unsigned int use_low_power_wakeup(struct msm_hs_port *msm_uport)
{
return (msm_uport->wakeup.irq > 0);
}
static void msm_hs_bus_voting(struct msm_hs_port *msm_uport, unsigned int vote)
{
int ret;
if (msm_uport->bus_perf_client) {
MSM_HS_DBG("Bus voting:%d\n", vote);
ret = msm_bus_scale_client_update_request(
msm_uport->bus_perf_client, vote);
if (ret)
MSM_HS_ERR("%s(): Failed for Bus voting: %d\n",
__func__, vote);
}
}
static inline unsigned int msm_hs_read(struct uart_port *uport,
unsigned int index)
{
return readl_relaxed(uport->membase + index);
}
static inline void msm_hs_write(struct uart_port *uport, unsigned int index,
unsigned int value)
{
writel_relaxed(value, uport->membase + index);
}
static int sps_rx_disconnect(struct sps_pipe *sps_pipe_handler)
{
struct sps_connect config;
int ret;
ret = sps_get_config(sps_pipe_handler, &config);
if (ret) {
pr_err("%s: sps_get_config() failed ret %d\n", __func__, ret);
return ret;
}
config.options |= SPS_O_POLL;
ret = sps_set_config(sps_pipe_handler, &config);
if (ret) {
pr_err("%s: sps_set_config() failed ret %d\n", __func__, ret);
return ret;
}
return sps_disconnect(sps_pipe_handler);
}
static void hex_dump_ipc(char *prefix, char *string, int size)
{
unsigned char linebuf[512];
unsigned char firstbuf[40], lastbuf[40];
if ((hs_serial_debug_mask != DBG_LEV) && (size > 20)) {
hex_dump_to_buffer(string, 10, 16, 1,
firstbuf, sizeof(firstbuf), 1);
hex_dump_to_buffer(string + (size - 10), 10, 16, 1,
lastbuf, sizeof(lastbuf), 1);
MSM_HS_INFO("%s : %s...%s", prefix, firstbuf, lastbuf);
} else {
hex_dump_to_buffer(string, size, 16, 1,
linebuf, sizeof(linebuf), 1);
MSM_HS_INFO("%s : %s", prefix, linebuf);
}
}
/*
* This API read and provides UART Core registers information.
*/
static void dump_uart_hs_registers(struct msm_hs_port *msm_uport)
{
struct uart_port *uport = &(msm_uport->uport);
if (msm_uport->clk_state != MSM_HS_CLK_ON) {
MSM_HS_WARN("%s: Failed.Clocks are OFF\n", __func__);
return;
}
MSM_HS_DBG(
"MR1:%x MR2:%x TFWR:%x RFWR:%x DMEN:%x IMR:%x MISR:%x NCF_TX:%x\n",
msm_hs_read(uport, UART_DM_MR1),
msm_hs_read(uport, UART_DM_MR2),
msm_hs_read(uport, UART_DM_TFWR),
msm_hs_read(uport, UART_DM_RFWR),
msm_hs_read(uport, UART_DM_DMEN),
msm_hs_read(uport, UART_DM_IMR),
msm_hs_read(uport, UART_DM_MISR),
msm_hs_read(uport, UART_DM_NCF_TX));
MSM_HS_INFO("SR:%x ISR:%x DMRX:%x RX_SNAP:%x TXFS:%x RXFS:%x\n",
msm_hs_read(uport, UART_DM_SR),
msm_hs_read(uport, UART_DM_ISR),
msm_hs_read(uport, UART_DM_DMRX),
msm_hs_read(uport, UART_DM_RX_TOTAL_SNAP),
msm_hs_read(uport, UART_DM_TXFS),
msm_hs_read(uport, UART_DM_RXFS));
MSM_HS_DBG("clk_req_state:0x%x rx.flush:%u\n",
msm_uport->clk_req_off_state,
msm_uport->rx.flush);
MSM_HS_DBG("clk_state:%d", msm_uport->clk_state);
}
static int msm_serial_loopback_enable_set(void *data, u64 val)
{
struct msm_hs_port *msm_uport = data;
struct uart_port *uport = &(msm_uport->uport);
unsigned long flags;
int ret = 0;
msm_hs_clock_vote(msm_uport);
if (val) {
spin_lock_irqsave(&uport->lock, flags);
ret = msm_hs_read(uport, UART_DM_MR2);
ret |= (UARTDM_MR2_LOOP_MODE_BMSK |
UARTDM_MR2_RFR_CTS_LOOP_MODE_BMSK);
msm_hs_write(uport, UART_DM_MR2, ret);
spin_unlock_irqrestore(&uport->lock, flags);
} else {
spin_lock_irqsave(&uport->lock, flags);
ret = msm_hs_read(uport, UART_DM_MR2);
ret &= ~(UARTDM_MR2_LOOP_MODE_BMSK |
UARTDM_MR2_RFR_CTS_LOOP_MODE_BMSK);
msm_hs_write(uport, UART_DM_MR2, ret);
spin_unlock_irqrestore(&uport->lock, flags);
}
/* Calling CLOCK API. Hence mb() requires here. */
mb();
msm_hs_clock_unvote(msm_uport);
return 0;
}
static int msm_serial_loopback_enable_get(void *data, u64 *val)
{
struct msm_hs_port *msm_uport = data;
struct uart_port *uport = &(msm_uport->uport);
unsigned long flags;
int ret = 0;
msm_hs_clock_vote(msm_uport);
spin_lock_irqsave(&uport->lock, flags);
ret = msm_hs_read(&msm_uport->uport, UART_DM_MR2);
spin_unlock_irqrestore(&uport->lock, flags);
msm_hs_clock_unvote(msm_uport);
*val = (ret & UARTDM_MR2_LOOP_MODE_BMSK) ? 1 : 0;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(loopback_enable_fops, msm_serial_loopback_enable_get,
msm_serial_loopback_enable_set, "%llu\n");
/*
* msm_serial_hs debugfs node: <debugfs_root>/msm_serial_hs/loopback.<id>
* writing 1 turns on internal loopback mode in HW. Useful for automation
* test scripts.
* writing 0 disables the internal loopback mode. Default is disabled.
*/
static void msm_serial_debugfs_init(struct msm_hs_port *msm_uport,
int id)
{
char node_name[15];
snprintf(node_name, sizeof(node_name), "loopback.%d", id);
msm_uport->loopback_dir = debugfs_create_file(node_name,
S_IRUGO | S_IWUSR,
debug_base,
msm_uport,
&loopback_enable_fops);
if (IS_ERR_OR_NULL(msm_uport->loopback_dir))
MSM_HS_ERR("%s(): Cannot create loopback.%d debug entry",
__func__, id);
}
static int msm_hs_remove(struct platform_device *pdev)
{
struct msm_hs_port *msm_uport;
struct device *dev;
if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
MSM_HS_ERR("Invalid plaform device ID = %d\n", pdev->id);
return -EINVAL;
}
msm_uport = get_matching_hs_port(pdev);
if (!msm_uport)
return -EINVAL;
dev = msm_uport->uport.dev;
sysfs_remove_file(&pdev->dev.kobj, &dev_attr_clock.attr);
debugfs_remove(msm_uport->loopback_dir);
dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
msm_uport->rx.rbuffer);
dma_pool_destroy(msm_uport->rx.pool);
wake_lock_destroy(&msm_uport->rx.wake_lock);
wake_lock_destroy(&msm_uport->dma_wake_lock);
destroy_workqueue(msm_uport->hsuart_wq);
mutex_destroy(&msm_uport->clk_mutex);
uart_remove_one_port(&msm_hs_driver, &msm_uport->uport);
clk_put(msm_uport->clk);
if (msm_uport->pclk)
clk_put(msm_uport->pclk);
iounmap(msm_uport->uport.membase);
return 0;
}
static int msm_hs_init_clk(struct uart_port *uport)
{
int ret;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
/* Set up the MREG/NREG/DREG/MNDREG */
ret = clk_set_rate(msm_uport->clk, uport->uartclk);
if (ret) {
MSM_HS_WARN("Error setting clock rate on UART\n");
return ret;
}
ret = msm_hs_clock_vote(msm_uport);
if (ret) {
MSM_HS_ERR("Error could not turn on UART clk\n");
return ret;
}
return 0;
}
/* Connect a UART peripheral's SPS endpoint(consumer endpoint)
*
* Also registers a SPS callback function for the consumer
* process with the SPS driver
*
* @uport - Pointer to uart uport structure
*
* @return - 0 if successful else negative value.
*
*/
static int msm_hs_spsconnect_tx(struct uart_port *uport)
{
int ret;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct msm_hs_tx *tx = &msm_uport->tx;
struct sps_pipe *sps_pipe_handle = tx->cons.pipe_handle;
struct sps_connect *sps_config = &tx->cons.config;
struct sps_register_event *sps_event = &tx->cons.event;
/* Establish connection between peripheral and memory endpoint */
ret = sps_connect(sps_pipe_handle, sps_config);
if (ret) {
MSM_HS_ERR("msm_serial_hs: sps_connect() failed for tx!!\n"
"pipe_handle=0x%p ret=%d", sps_pipe_handle, ret);
return ret;
}
/* Register callback event for EOT (End of transfer) event. */
ret = sps_register_event(sps_pipe_handle, sps_event);
if (ret) {
MSM_HS_ERR("msm_serial_hs: sps_connect() failed for tx!!\n"
"pipe_handle=0x%p ret=%d", sps_pipe_handle, ret);
goto reg_event_err;
}
return 0;
reg_event_err:
sps_disconnect(sps_pipe_handle);
return ret;
}
/* Connect a UART peripheral's SPS endpoint(producer endpoint)
*
* Also registers a SPS callback function for the producer
* process with the SPS driver
*
* @uport - Pointer to uart uport structure
*
* @return - 0 if successful else negative value.
*
*/
static int msm_hs_spsconnect_rx(struct uart_port *uport)
{
int ret;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct msm_hs_rx *rx = &msm_uport->rx;
struct sps_pipe *sps_pipe_handle = rx->prod.pipe_handle;
struct sps_connect *sps_config = &rx->prod.config;
struct sps_register_event *sps_event = &rx->prod.event;
/* Establish connection between peripheral and memory endpoint */
ret = sps_connect(sps_pipe_handle, sps_config);
if (ret) {
MSM_HS_ERR("msm_serial_hs: sps_connect() failed for rx!!\n"
"pipe_handle=0x%p ret=%d", sps_pipe_handle, ret);
return ret;
}
/* Register callback event for DESC_DONE event. */
ret = sps_register_event(sps_pipe_handle, sps_event);
if (ret) {
MSM_HS_ERR("msm_serial_hs: sps_connect() failed for rx!!\n"
"pipe_handle=0x%p ret=%d", sps_pipe_handle, ret);
goto reg_event_err;
}
return 0;
reg_event_err:
sps_disconnect(sps_pipe_handle);
return ret;
}
/*
* programs the UARTDM_CSR register with correct bit rates
*
* Interrupts should be disabled before we are called, as
* we modify Set Baud rate
* Set receive stale interrupt level, dependant on Bit Rate
* Goal is to have around 8 ms before indicate stale.
* roundup (((Bit Rate * .008) / 10) + 1
*/
static void msm_hs_set_bps_locked(struct uart_port *uport,
unsigned int bps)
{
unsigned long rxstale;
unsigned long data;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
switch (bps) {
case 300:
msm_hs_write(uport, UART_DM_CSR, 0x00);
rxstale = 1;
break;
case 600:
msm_hs_write(uport, UART_DM_CSR, 0x11);
rxstale = 1;
break;
case 1200:
msm_hs_write(uport, UART_DM_CSR, 0x22);
rxstale = 1;
break;
case 2400:
msm_hs_write(uport, UART_DM_CSR, 0x33);
rxstale = 1;
break;
case 4800:
msm_hs_write(uport, UART_DM_CSR, 0x44);
rxstale = 1;
break;
case 9600:
msm_hs_write(uport, UART_DM_CSR, 0x55);
rxstale = 2;
break;
case 14400:
msm_hs_write(uport, UART_DM_CSR, 0x66);
rxstale = 3;
break;
case 19200:
msm_hs_write(uport, UART_DM_CSR, 0x77);
rxstale = 4;
break;
case 28800:
msm_hs_write(uport, UART_DM_CSR, 0x88);
rxstale = 6;
break;
case 38400:
msm_hs_write(uport, UART_DM_CSR, 0x99);
rxstale = 8;
break;
case 57600:
msm_hs_write(uport, UART_DM_CSR, 0xaa);
rxstale = 16;
break;
case 76800:
msm_hs_write(uport, UART_DM_CSR, 0xbb);
rxstale = 16;
break;
case 115200:
msm_hs_write(uport, UART_DM_CSR, 0xcc);
rxstale = 31;
break;
case 230400:
msm_hs_write(uport, UART_DM_CSR, 0xee);
rxstale = 31;
break;
case 460800:
msm_hs_write(uport, UART_DM_CSR, 0xff);
rxstale = 31;
break;
case 4000000:
case 3686400:
case 3200000:
case 3500000:
case 3000000:
case 2500000:
case 1500000:
case 1152000:
case 1000000:
case 921600:
msm_hs_write(uport, UART_DM_CSR, 0xff);
rxstale = 31;
break;
default:
msm_hs_write(uport, UART_DM_CSR, 0xff);
/* default to 9600 */
bps = 9600;
rxstale = 2;
break;
}
/*
* uart baud rate depends on CSR and MND Values
* we are updating CSR before and then calling
* clk_set_rate which updates MND Values. Hence
* dsb requires here.
*/
mb();
if (bps > 460800) {
uport->uartclk = bps * 16;
/* BLSP based UART supports maximum clock frequency
* of 63.16 Mhz. With this (63.16 Mhz) clock frequency
* UART can support baud rate of 3.94 Mbps which is
* equivalent to 4 Mbps.
* UART hardware is robust enough to handle this
* deviation to achieve baud rate ~4 Mbps.
*/
if (bps == 4000000)
uport->uartclk = BLSP_UART_CLK_FMAX;
} else {
uport->uartclk = 7372800;
}
if (clk_set_rate(msm_uport->clk, uport->uartclk)) {
MSM_HS_WARN("Error setting clock rate on UART\n");
WARN_ON(1);
}
data = rxstale & UARTDM_IPR_STALE_LSB_BMSK;
data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2);
msm_hs_write(uport, UART_DM_IPR, data);
/*
* It is suggested to do reset of transmitter and receiver after
* changing any protocol configuration. Here Baud rate and stale
* timeout are getting updated. Hence reset transmitter and receiver.
*/
msm_hs_write(uport, UART_DM_CR, RESET_TX);
msm_hs_write(uport, UART_DM_CR, RESET_RX);
}
static void msm_hs_set_std_bps_locked(struct uart_port *uport,
unsigned int bps)
{
unsigned long rxstale;
unsigned long data;
switch (bps) {
case 9600:
msm_hs_write(uport, UART_DM_CSR, 0x99);
rxstale = 2;
break;
case 14400:
msm_hs_write(uport, UART_DM_CSR, 0xaa);
rxstale = 3;
break;
case 19200:
msm_hs_write(uport, UART_DM_CSR, 0xbb);
rxstale = 4;
break;
case 28800:
msm_hs_write(uport, UART_DM_CSR, 0xcc);
rxstale = 6;
break;
case 38400:
msm_hs_write(uport, UART_DM_CSR, 0xdd);
rxstale = 8;
break;
case 57600:
msm_hs_write(uport, UART_DM_CSR, 0xee);
rxstale = 16;
break;
case 115200:
msm_hs_write(uport, UART_DM_CSR, 0xff);
rxstale = 31;
break;
default:
msm_hs_write(uport, UART_DM_CSR, 0x99);
/* default to 9600 */
bps = 9600;
rxstale = 2;
break;
}
data = rxstale & UARTDM_IPR_STALE_LSB_BMSK;
data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2);
msm_hs_write(uport, UART_DM_IPR, data);
}
/*
* termios : new ktermios
* oldtermios: old ktermios previous setting
*
* Configure the serial port
*/
static void msm_hs_set_termios(struct uart_port *uport,
struct ktermios *termios,
struct ktermios *oldtermios)
{
unsigned int bps;
unsigned long data;
int ret;
unsigned int c_cflag = termios->c_cflag;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct msm_hs_rx *rx = &msm_uport->rx;
struct sps_pipe *sps_pipe_handle = rx->prod.pipe_handle;
/**
* set_termios can be invoked from the framework when
* the clocks are off and the client has not had a chance
* to turn them on. Make sure that they are on
*/
msm_hs_clock_vote(msm_uport);
mutex_lock(&msm_uport->clk_mutex);
msm_hs_write(uport, UART_DM_IMR, 0);
MSM_HS_DBG("Entering %s\n", __func__);
/* Clear the Rx Ready Ctl bit - This ensures that
* flow control lines stop the other side from sending
* data while we change the parameters
*/
data = msm_hs_read(uport, UART_DM_MR1);
data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK;
msm_hs_write(uport, UART_DM_MR1, data);
/* set RFR_N to high */
msm_hs_write(uport, UART_DM_CR, RFR_HIGH);
/*
* Disable Rx channel of UARTDM
* DMA Rx Stall happens if enqueue and flush of Rx command happens
* concurrently. Hence before changing the baud rate/protocol
* configuration and sending flush command to ADM, disable the Rx
* channel of UARTDM.
* Note: should not reset the receiver here immediately as it is not
* suggested to do disable/reset or reset/disable at the same time.
*/
data = msm_hs_read(uport, UART_DM_DMEN);
/* Disable UARTDM RX BAM Interface */
data &= ~UARTDM_RX_BAM_ENABLE_BMSK;
msm_hs_write(uport, UART_DM_DMEN, data);
/* 300 is the minimum baud support by the driver */
bps = uart_get_baud_rate(uport, termios, oldtermios, 200, 4000000);
/* Temporary remapping 200 BAUD to 3.2 mbps */
if (bps == 200)
bps = 3200000;
uport->uartclk = clk_get_rate(msm_uport->clk);
if (!uport->uartclk)
msm_hs_set_std_bps_locked(uport, bps);
else
msm_hs_set_bps_locked(uport, bps);
data = msm_hs_read(uport, UART_DM_MR2);
data &= ~UARTDM_MR2_PARITY_MODE_BMSK;
/* set parity */
if (PARENB == (c_cflag & PARENB)) {
if (PARODD == (c_cflag & PARODD)) {
data |= ODD_PARITY;
} else if (CMSPAR == (c_cflag & CMSPAR)) {
data |= SPACE_PARITY;
} else {
data |= EVEN_PARITY;
}
}
/* Set bits per char */
data &= ~UARTDM_MR2_BITS_PER_CHAR_BMSK;
switch (c_cflag & CSIZE) {
case CS5:
data |= FIVE_BPC;
break;
case CS6:
data |= SIX_BPC;
break;
case CS7:
data |= SEVEN_BPC;
break;
default:
data |= EIGHT_BPC;
break;
}
/* stop bits */
if (c_cflag & CSTOPB) {
data |= STOP_BIT_TWO;
} else {
/* otherwise 1 stop bit */
data |= STOP_BIT_ONE;
}
data |= UARTDM_MR2_ERROR_MODE_BMSK;
/* write parity/bits per char/stop bit configuration */
msm_hs_write(uport, UART_DM_MR2, data);
uport->ignore_status_mask = termios->c_iflag & INPCK;
uport->ignore_status_mask |= termios->c_iflag & IGNPAR;
uport->ignore_status_mask |= termios->c_iflag & IGNBRK;
uport->read_status_mask = (termios->c_cflag & CREAD);
/* Set Transmit software time out */
uart_update_timeout(uport, c_cflag, bps);
msm_hs_write(uport, UART_DM_CR, RESET_RX);
msm_hs_write(uport, UART_DM_CR, RESET_TX);
/* Issue TX BAM Start IFC command */
msm_hs_write(uport, UART_DM_CR, START_TX_BAM_IFC);
if (msm_uport->rx.flush == FLUSH_NONE) {
wake_lock(&msm_uport->rx.wake_lock);
msm_uport->rx.flush = FLUSH_DATA_INVALID;
mb();
if (msm_uport->rx_bam_inprogress)
ret = wait_event_timeout(msm_uport->rx.wait,
msm_uport->rx_bam_inprogress == false,
RX_FLUSH_COMPLETE_TIMEOUT);
ret = sps_rx_disconnect(sps_pipe_handle);
if (ret)
MSM_HS_ERR("%s(): sps_disconnect failed\n",
__func__);
msm_hs_spsconnect_rx(uport);
msm_uport->rx.flush = FLUSH_IGNORE;
msm_serial_hs_rx_tlet((unsigned long) &rx->tlet);
}
/* Configure HW flow control
* UART Core would see status of CTS line when it is sending data
* to remote uart to confirm that it can receive or not.
* UART Core would trigger RFR if it is not having any space with
* RX FIFO.
*/
/* Pulling RFR line high */
msm_hs_write(uport, UART_DM_CR, RFR_LOW);
data = msm_hs_read(uport, UART_DM_MR1);
data &= ~(UARTDM_MR1_CTS_CTL_BMSK | UARTDM_MR1_RX_RDY_CTL_BMSK);
if (c_cflag & CRTSCTS) {
data |= UARTDM_MR1_CTS_CTL_BMSK;
data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
}
msm_hs_write(uport, UART_DM_MR1, data);
msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg);
mb();
mutex_unlock(&msm_uport->clk_mutex);
MSM_HS_DBG("Exit %s\n", __func__);
msm_hs_clock_unvote(msm_uport);
}
/*
* Standard API, Transmitter
* Any character in the transmit shift register is sent
*/
unsigned int msm_hs_tx_empty(struct uart_port *uport)
{
unsigned int data;
unsigned int ret = 0;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
msm_hs_clock_vote(msm_uport);
data = msm_hs_read(uport, UART_DM_SR);
msm_hs_clock_unvote(msm_uport);
MSM_HS_DBG("%s(): SR Reg Read 0x%x", __func__, data);
if (data & UARTDM_SR_TXEMT_BMSK)
ret = TIOCSER_TEMT;
return ret;
}
EXPORT_SYMBOL(msm_hs_tx_empty);
/*
* Standard API, Stop transmitter.
* Any character in the transmit shift register is sent as
* well as the current data mover transfer .
*/
static void msm_hs_stop_tx_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
msm_uport->tx.tx_ready_int_en = 0;
}
/* Disconnect BAM RX Endpoint Pipe Index from workqueue context*/
static void hsuart_disconnect_rx_endpoint_work(struct work_struct *w)
{
struct msm_hs_port *msm_uport = container_of(w, struct msm_hs_port,
disconnect_rx_endpoint);
struct uart_port *uport = &msm_uport->uport;
struct msm_hs_rx *rx = &msm_uport->rx;
struct sps_pipe *sps_pipe_handle = rx->prod.pipe_handle;
struct platform_device *pdev = to_platform_device(uport->dev);
const struct msm_serial_hs_platform_data *pdata =
pdev->dev.platform_data;
int ret = 0;
msm_hs_clock_vote(msm_uport);
ret = sps_rx_disconnect(sps_pipe_handle);
msm_hs_clock_unvote(msm_uport);
if (ret)
MSM_HS_ERR("%s(): sps_disconnect failed\n", __func__);
if (pdata->no_suspend_delay)
wake_unlock(&msm_uport->rx.wake_lock);
else
wake_lock_timeout(&msm_uport->rx.wake_lock,
HZ / 2);
msm_uport->rx.flush = FLUSH_SHUTDOWN;
MSM_HS_DBG("%s: Calling Completion\n", __func__);
wake_up(&msm_uport->bam_disconnect_wait);
MSM_HS_DBG("%s: Done Completion\n", __func__);
wake_up(&msm_uport->rx.wait);
}
/*
* Standard API, Stop receiver as soon as possible.
*
* Function immediately terminates the operation of the
* channel receiver and any incoming characters are lost. None
* of the receiver status bits are affected by this command and
* characters that are already in the receive FIFO there.
*/
static void msm_hs_stop_rx_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
unsigned int data;
MSM_HS_DBG("In %s():\n", __func__);
if (msm_uport->clk_state != MSM_HS_CLK_OFF) {
/* disable dlink */
data = msm_hs_read(uport, UART_DM_DMEN);
data &= ~UARTDM_RX_BAM_ENABLE_BMSK;
msm_hs_write(uport, UART_DM_DMEN, data);
/* calling DMOV or CLOCK API. Hence mb() */
mb();
}
/* Disable the receiver */
if (msm_uport->rx.flush == FLUSH_NONE) {
wake_lock(&msm_uport->rx.wake_lock);
msm_uport->rx.flush = FLUSH_STOP;
/* workqueue for BAM rx endpoint disconnect */
queue_work(msm_uport->hsuart_wq,
&msm_uport->disconnect_rx_endpoint);
}
}
/* Transmit the next chunk of data */
static void msm_hs_submit_tx_locked(struct uart_port *uport)
{
int left;
int tx_count;
int aligned_tx_count;
dma_addr_t src_addr;
dma_addr_t aligned_src_addr;
u32 flags = SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_INT;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct msm_hs_tx *tx = &msm_uport->tx;
struct circ_buf *tx_buf = &msm_uport->uport.state->xmit;
struct sps_pipe *sps_pipe_handle;
struct platform_device *pdev = to_platform_device(uport->dev);
char * buff = tx_buf->buf+tx_buf->tail;
if (uart_circ_empty(tx_buf) || uport->state->port.tty->stopped) {
msm_hs_stop_tx_locked(uport);
if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF) {
MSM_HS_DBG("%s(): Clock off requested calling WQ",
__func__);
queue_work(msm_uport->hsuart_wq,
&msm_uport->clock_off_w);
wake_up(&msm_uport->tx.wait);
}
return;
}
tx->dma_in_flight = 1;
tx_count = uart_circ_chars_pending(tx_buf);
if (UARTDM_TX_BUF_SIZE < tx_count)
tx_count = UARTDM_TX_BUF_SIZE;
left = UART_XMIT_SIZE - tx_buf->tail;
if (tx_count > left)
tx_count = left;
MSM_HS_INFO("%s(): [UART_TX]<%d>\n", __func__, tx_count);
hex_dump_ipc("HSUART write: ", &tx_buf->buf[tx_buf->tail], tx_count);
src_addr = tx->dma_base + tx_buf->tail;
if (pdev->id == 0 && tx_count == 4 && buff[0] == 0x1 && buff[1] == 0x3 && buff[2] == 0xc && buff[3] == 0x0) {
printk(KERN_ERR "(msm_serial_hs) hci_reset was received at ttyHS0 port\n");
}
/* Mask the src_addr to align on a cache
* and add those bytes to tx_count */
aligned_src_addr = src_addr & ~(dma_get_cache_alignment() - 1);
aligned_tx_count = tx_count + src_addr - aligned_src_addr;
dma_sync_single_for_device(uport->dev, aligned_src_addr,
aligned_tx_count, DMA_TO_DEVICE);
tx->tx_count = tx_count;
msm_uport->tx.flush = FLUSH_NONE;
sps_pipe_handle = tx->cons.pipe_handle;
/* Queue transfer request to SPS */
sps_transfer_one(sps_pipe_handle, src_addr, tx_count,
msm_uport, flags);
MSM_HS_DBG("%s:Enqueue Tx Cmd\n", __func__);
}
/* Start to receive the next chunk of data */
static void msm_hs_start_rx_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct msm_hs_rx *rx = &msm_uport->rx;
struct sps_pipe *sps_pipe_handle;
u32 flags = SPS_IOVEC_FLAG_INT;
unsigned int buffer_pending = msm_uport->rx.buffer_pending;
unsigned int data;
if (msm_uport->clk_state != MSM_HS_CLK_ON) {
MSM_HS_WARN("%s: Failed.Clocks are OFF\n", __func__);
return;
}
if (rx->rx_cmd_exec) {
MSM_HS_INFO("%s: Rx Cmd got executed, wait for rx_tlet\n",
__func__);
rx->flush = FLUSH_IGNORE;
return;
}
msm_uport->rx.buffer_pending = 0;
if (buffer_pending)
MSM_HS_ERR("Error: rx started in buffer state =%x",
buffer_pending);
msm_hs_write(uport, UART_DM_CR, RESET_STALE_INT);
msm_hs_write(uport, UART_DM_DMRX, UARTDM_RX_BUF_SIZE);
msm_hs_write(uport, UART_DM_CR, STALE_EVENT_ENABLE);
/*
* Enable UARTDM Rx Interface as previously it has been
* disable in set_termios before configuring baud rate.
*/
data = msm_hs_read(uport, UART_DM_DMEN);
/* Enable UARTDM Rx BAM Interface */
data |= UARTDM_RX_BAM_ENABLE_BMSK;
msm_hs_write(uport, UART_DM_DMEN, data);
msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg);
/* Calling next DMOV API. Hence mb() here. */
mb();
/*
* RX-transfer will be automatically re-activated
* after last data of previous transfer was read.
*/
data = (RX_STALE_AUTO_RE_EN | RX_TRANS_AUTO_RE_ACTIVATE |
RX_DMRX_CYCLIC_EN);
msm_hs_write(uport, UART_DM_RX_TRANS_CTRL, data);
/* Issue RX BAM Start IFC command */
msm_hs_write(uport, UART_DM_CR, START_RX_BAM_IFC);
mb();
msm_uport->rx.flush = FLUSH_NONE;
msm_uport->rx_bam_inprogress = true;
sps_pipe_handle = rx->prod.pipe_handle;
/* Queue transfer request to SPS */
sps_transfer_one(sps_pipe_handle, rx->rbuffer,
UARTDM_RX_BUF_SIZE, msm_uport, flags);
msm_uport->rx_bam_inprogress = false;
msm_uport->rx.rx_cmd_queued = true;
wake_up(&msm_uport->rx.wait);
MSM_HS_DBG("%s:Enqueue Rx Cmd\n", __func__);
}
static void flip_insert_work(struct work_struct *work)
{
unsigned long flags;
int retval;
struct msm_hs_port *msm_uport =
container_of(work, struct msm_hs_port,
rx.flip_insert_work.work);
struct tty_struct *tty = msm_uport->uport.state->port.tty;
spin_lock_irqsave(&msm_uport->uport.lock, flags);
if (msm_uport->rx.buffer_pending == NONE_PENDING) {
MSM_HS_ERR("Error: No buffer pending in %s", __func__);
spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
return;
}
if (msm_uport->rx.buffer_pending & FIFO_OVERRUN) {
retval = tty_insert_flip_char(tty->port, 0, TTY_OVERRUN);
if (retval)
msm_uport->rx.buffer_pending &= ~FIFO_OVERRUN;
}
if (msm_uport->rx.buffer_pending & PARITY_ERROR) {
retval = tty_insert_flip_char(tty->port, 0, TTY_PARITY);
if (retval)
msm_uport->rx.buffer_pending &= ~PARITY_ERROR;
}
if (msm_uport->rx.buffer_pending & CHARS_NORMAL) {
int rx_count, rx_offset;
rx_count = (msm_uport->rx.buffer_pending & 0xFFFF0000) >> 16;
rx_offset = (msm_uport->rx.buffer_pending & 0xFFD0) >> 5;
retval = tty_insert_flip_string(tty->port,
msm_uport->rx.buffer +
rx_offset, rx_count);
msm_uport->rx.buffer_pending &= (FIFO_OVERRUN |
PARITY_ERROR);
if (retval != rx_count)
msm_uport->rx.buffer_pending |= CHARS_NORMAL |
retval << 8 | (rx_count - retval) << 16;
}
if (msm_uport->rx.buffer_pending)
schedule_delayed_work(&msm_uport->rx.flip_insert_work,
msecs_to_jiffies(RETRY_TIMEOUT));
else if ((msm_uport->clk_state == MSM_HS_CLK_ON) &&
(msm_uport->rx.flush <= FLUSH_IGNORE)) {
MSM_HS_WARN("Pending buffers cleared, restarting");
msm_hs_start_rx_locked(&msm_uport->uport);
}
spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
tty_flip_buffer_push(tty->port);
}
static void msm_serial_hs_rx_tlet(unsigned long tlet_ptr)
{
int retval;
int rx_count = 0;
unsigned long status;
unsigned long flags;
unsigned int error_f = 0;
struct uart_port *uport;
struct msm_hs_port *msm_uport;
unsigned int flush;
struct tty_struct *tty;
struct sps_event_notify *notify;
struct msm_hs_rx *rx;
struct sps_pipe *sps_pipe_handle;
u32 sps_flags = SPS_IOVEC_FLAG_INT;
struct platform_device *pdev;
const struct msm_serial_hs_platform_data *pdata;
msm_uport = container_of((struct tasklet_struct *)tlet_ptr,
struct msm_hs_port, rx.tlet);
uport = &msm_uport->uport;
tty = uport->state->port.tty;
notify = &msm_uport->notify;
rx = &msm_uport->rx;
pdev = to_platform_device(uport->dev);
pdata = pdev->dev.platform_data;
msm_uport->rx.rx_cmd_queued = false;
msm_uport->rx.rx_cmd_exec = false;
status = msm_hs_read(uport, UART_DM_SR);
spin_lock_irqsave(&uport->lock, flags);
MSM_HS_DBG("In %s\n", __func__);
/* overflow is not connect to data in a FIFO */
if (unlikely((status & UARTDM_SR_OVERRUN_BMSK) &&
(uport->read_status_mask & CREAD))) {
retval = tty_insert_flip_char(tty->port, 0, TTY_OVERRUN);
if (!retval)
msm_uport->rx.buffer_pending |= TTY_OVERRUN;
uport->icount.buf_overrun++;
error_f = 1;
}
if (!(uport->ignore_status_mask & INPCK))
status = status & ~(UARTDM_SR_PAR_FRAME_BMSK);
if (unlikely(status & UARTDM_SR_PAR_FRAME_BMSK)) {
/* Can not tell difference between parity & frame error */
MSM_HS_WARN("msm_serial_hs: parity error\n");
uport->icount.parity++;
error_f = 1;
if (!(uport->ignore_status_mask & IGNPAR)) {
retval = tty_insert_flip_char(tty->port, 0, TTY_PARITY);
if (!retval)
msm_uport->rx.buffer_pending |= TTY_PARITY;
}
}
if (unlikely(status & UARTDM_SR_RX_BREAK_BMSK)) {
MSM_HS_DBG("msm_serial_hs: Rx break\n");
uport->icount.brk++;
error_f = 1;
if (!(uport->ignore_status_mask & IGNBRK)) {
retval = tty_insert_flip_char(tty->port, 0, TTY_BREAK);
if (!retval)
msm_uport->rx.buffer_pending |= TTY_BREAK;
}
}
if (error_f) {
if (msm_uport->clk_state == MSM_HS_CLK_ON)
msm_hs_write(uport, UART_DM_CR, RESET_ERROR_STATUS);
else
MSM_HS_WARN("%s: Failed.Clocks are OFF\n", __func__);
}
flush = msm_uport->rx.flush;
if (flush == FLUSH_IGNORE)
if (!msm_uport->rx.buffer_pending) {
MSM_HS_DBG("%s: calling start_rx_locked\n", __func__);
msm_hs_start_rx_locked(uport);
}
if (flush >= FLUSH_DATA_INVALID)
goto out;
rx_count = msm_uport->rx_count_callback;
MSM_HS_INFO("%s():[UART_RX]<%d>\n", __func__, rx_count);
hex_dump_ipc("HSUART Read: ", msm_uport->rx.buffer, rx_count);
if (0 != (uport->read_status_mask & CREAD)) {
retval = tty_insert_flip_string(tty->port, msm_uport->rx.buffer,
rx_count);
if (retval != rx_count) {
MSM_HS_DBG("%s(): retval %d rx_count %d", __func__,
retval, rx_count);
msm_uport->rx.buffer_pending |= CHARS_NORMAL |
retval << 5 | (rx_count - retval) << 16;
}
}
if (!msm_uport->rx.buffer_pending && !msm_uport->rx.rx_cmd_queued) {
msm_uport->rx.flush = FLUSH_NONE;
msm_uport->rx_bam_inprogress = true;
sps_pipe_handle = rx->prod.pipe_handle;
MSM_HS_DBG("Queing bam descriptor\n");
/* Queue transfer request to SPS */
sps_transfer_one(sps_pipe_handle, rx->rbuffer,
UARTDM_RX_BUF_SIZE, msm_uport, sps_flags);
msm_uport->rx_bam_inprogress = false;
msm_uport->rx.rx_cmd_queued = true;
wake_up(&msm_uport->rx.wait);
}
out:
if (msm_uport->rx.buffer_pending) {
MSM_HS_WARN("tty buffer exhausted. Stalling\n");
schedule_delayed_work(&msm_uport->rx.flip_insert_work
, msecs_to_jiffies(RETRY_TIMEOUT));
}
/* release wakelock in 500ms, not immediately, because higher layers
* don't always take wakelocks when they should
*/
if (pdata->no_suspend_delay)
wake_unlock(&msm_uport->rx.wake_lock);
else
wake_lock_timeout(&msm_uport->rx.wake_lock, HZ / 2);
/* tty_flip_buffer_push() might call msm_hs_start(), so unlock */
spin_unlock_irqrestore(&uport->lock, flags);
if (flush < FLUSH_DATA_INVALID)
tty_flip_buffer_push(tty->port);
}
/* Enable the transmitter Interrupt */
static void msm_hs_start_tx_locked(struct uart_port *uport )
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
if (msm_uport->clk_state != MSM_HS_CLK_ON) {
MSM_HS_WARN("%s: Failed.Clocks are OFF\n", __func__);
return;
}
if ((msm_uport->tx.tx_ready_int_en == 0) &&
(msm_uport->tx.dma_in_flight == 0))
msm_hs_submit_tx_locked(uport);
}
/**
* Callback notification from SPS driver
*
* This callback function gets triggered called from
* SPS driver when requested SPS data transfer is
* completed.
*
*/
static void msm_hs_sps_tx_callback(struct sps_event_notify *notify)
{
struct msm_hs_port *msm_uport =
(struct msm_hs_port *)
((struct sps_event_notify *)notify)->user;
msm_uport->notify = *notify;
MSM_HS_DBG("%s: ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x, line=%d\n",
__func__, notify->event_id,
notify->data.transfer.iovec.addr,
notify->data.transfer.iovec.size,
notify->data.transfer.iovec.flags,
msm_uport->uport.line);
tasklet_schedule(&msm_uport->tx.tlet);
}
static void msm_serial_hs_tx_tlet(unsigned long tlet_ptr)
{
unsigned long flags;
struct msm_hs_port *msm_uport = container_of((struct tasklet_struct *)
tlet_ptr, struct msm_hs_port, tx.tlet);
struct uart_port *uport = &msm_uport->uport;
struct circ_buf *tx_buf = &uport->state->xmit;
struct msm_hs_tx *tx = &msm_uport->tx;
/*
* Do the work buffer related work in BAM
* mode that is equivalent to legacy mode
*/
spin_lock_irqsave(&(msm_uport->uport.lock), flags);
if (!uart_circ_empty(tx_buf))
tx_buf->tail = (tx_buf->tail +
tx->tx_count) & ~UART_XMIT_SIZE;
else
MSM_HS_DBG("%s:circ buffer is empty\n", __func__);
tx->dma_in_flight = 0;
uport->icount.tx += tx->tx_count;
/*
* Calling to send next chunk of data
* If the circ buffer is empty, we stop
* If the clock off was requested, the clock
* off sequence is kicked off
*/
msm_hs_submit_tx_locked(uport);
if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS)
uart_write_wakeup(uport);
if (msm_uport->tx.flush == FLUSH_STOP) {
msm_uport->tx.flush = FLUSH_SHUTDOWN;
wake_up(&msm_uport->tx.wait);
spin_unlock_irqrestore(&(msm_uport->uport.lock), flags);
return;
}
spin_unlock_irqrestore(&(msm_uport->uport.lock), flags);
MSM_HS_INFO("In %s()\n", __func__);
dump_uart_hs_registers(msm_uport);
}
/**
* Callback notification from SPS driver
*
* This callback function gets triggered called from
* SPS driver when requested SPS data transfer is
* completed.
*
*/
static void msm_hs_sps_rx_callback(struct sps_event_notify *notify)
{
struct msm_hs_port *msm_uport =
(struct msm_hs_port *)
((struct sps_event_notify *)notify)->user;
struct uart_port *uport;
unsigned long flags;
uport = &(msm_uport->uport);
msm_uport->notify = *notify;
MSM_HS_DBG("%s: sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
__func__, notify->event_id,
notify->data.transfer.iovec.addr,
notify->data.transfer.iovec.size,
notify->data.transfer.iovec.flags);
if (msm_uport->rx.flush == FLUSH_NONE) {
spin_lock_irqsave(&uport->lock, flags);
msm_uport->rx_count_callback = notify->data.transfer.iovec.size;
msm_uport->rx.rx_cmd_exec = true;
spin_unlock_irqrestore(&uport->lock, flags);
tasklet_schedule(&msm_uport->rx.tlet);
}
}
/*
* Standard API, Current states of modem control inputs
*
* Since CTS can be handled entirely by HARDWARE we always
* indicate clear to send and count on the TX FIFO to block when
* it fills up.
*
* - TIOCM_DCD
* - TIOCM_CTS
* - TIOCM_DSR
* - TIOCM_RI
* (Unsupported) DCD and DSR will return them high. RI will return low.
*/
static unsigned int msm_hs_get_mctrl_locked(struct uart_port *uport)
{
return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS;
}
/*
* Standard API, Set or clear RFR_signal
*
* Set RFR high, (Indicate we are not ready for data), we disable auto
* ready for receiving and then set RFR_N high. To set RFR to low we just turn
* back auto ready for receiving and it should lower RFR signal
* when hardware is ready
*/
void msm_hs_set_mctrl_locked(struct uart_port *uport,
unsigned int mctrl)
{
unsigned int set_rts;
unsigned int data;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
if (msm_uport->clk_state != MSM_HS_CLK_ON) {
MSM_HS_WARN("%s:Failed.Clocks are OFF\n", __func__);
printk(KERN_INFO "(msm_serial_hs) msm_hs_set_mctrl_locked.Clocks are OFF\n");
return;
}
/* RTS is active low */
set_rts = TIOCM_RTS & mctrl ? 0 : 1;
data = msm_hs_read(uport, UART_DM_MR1);
if (set_rts) {
/*disable auto ready-for-receiving */
data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK;
msm_hs_write(uport, UART_DM_MR1, data);
/* set RFR_N to high */
msm_hs_write(uport, UART_DM_CR, RFR_HIGH);
} else {
/* Enable auto ready-for-receiving */
data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
msm_hs_write(uport, UART_DM_MR1, data);
}
mb();
}
void msm_hs_set_mctrl(struct uart_port *uport,
unsigned int mctrl)
{
unsigned long flags;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
msm_hs_clock_vote(msm_uport);
spin_lock_irqsave(&uport->lock, flags);
msm_hs_set_mctrl_locked(uport, mctrl);
spin_unlock_irqrestore(&uport->lock, flags);
msm_hs_clock_unvote(msm_uport);
}
EXPORT_SYMBOL(msm_hs_set_mctrl);
/* Standard API, Enable modem status (CTS) interrupt */
static void msm_hs_enable_ms_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
if (msm_uport->clk_state != MSM_HS_CLK_ON) {
MSM_HS_WARN("%s:Failed.Clocks are OFF\n", __func__);
return;
}
/* Enable DELTA_CTS Interrupt */
msm_uport->imr_reg |= UARTDM_ISR_DELTA_CTS_BMSK;
msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg);
mb();
}
/*
* Standard API, Break Signal
*
* Control the transmission of a break signal. ctl eq 0 => break
* signal terminate ctl ne 0 => start break signal
*/
static void msm_hs_break_ctl(struct uart_port *uport, int ctl)
{
unsigned long flags;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
if (msm_uport->clk_state != MSM_HS_CLK_ON) {
MSM_HS_WARN("%s: Failed.Clocks are OFF\n", __func__);
return;
}
spin_lock_irqsave(&uport->lock, flags);
msm_hs_write(uport, UART_DM_CR, ctl ? START_BREAK : STOP_BREAK);
mb();
spin_unlock_irqrestore(&uport->lock, flags);
}
static void msm_hs_config_port(struct uart_port *uport, int cfg_flags)
{
if (cfg_flags & UART_CONFIG_TYPE)
uport->type = PORT_MSM;
}
/* Handle CTS changes (Called from interrupt handler) */
static void msm_hs_handle_delta_cts_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
if (msm_uport->clk_state != MSM_HS_CLK_ON) {
MSM_HS_WARN("%s: Failed.Clocks are OFF\n", __func__);
return;
}
/* clear interrupt */
msm_hs_write(uport, UART_DM_CR, RESET_CTS);
/* Calling CLOCK API. Hence mb() requires here. */
mb();
uport->icount.cts++;
/* clear the IOCTL TIOCMIWAIT if called */
wake_up_interruptible(&uport->state->port.delta_msr_wait);
}
/* check if the TX path is flushed, and if so clock off
* returns 0 did not clock off, need to retry (still sending final byte)
* -1 did not clock off, do not retry
* 1 if we clocked off
*/
static int msm_hs_check_clock_off(struct uart_port *uport)
{
unsigned long sr_status;
unsigned long flags;
#ifdef CONFIG_MSM_BT_POWER
unsigned int data;
#endif
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct circ_buf *tx_buf = &uport->state->xmit;
struct platform_device *pdev = to_platform_device(uport->dev);
mutex_lock(&msm_uport->clk_mutex);
spin_lock_irqsave(&uport->lock, flags);
if (msm_uport->clk_state == MSM_HS_CLK_OFF) {
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
MSM_HS_INFO("%s: Clocks Off Successfully\n", __func__);
return 1;
}
MSM_HS_DBG("In %s:\n", __func__);
/* Cancel if tx tty buffer is not empty, dma is in flight,
* or tx fifo is not empty
*/
if (msm_uport->clk_state != MSM_HS_CLK_REQUEST_OFF ||
!uart_circ_empty(tx_buf) || msm_uport->tx.dma_in_flight ||
msm_uport->imr_reg & UARTDM_ISR_TXLEV_BMSK) {
#ifdef CONFIG_MSM_BT_POWER
if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF) {
msm_uport->clk_state = MSM_HS_CLK_ON;
/* Pulling RFR line high */
msm_hs_write(uport, UART_DM_CR, RFR_LOW);
/* Enable auto RFR */
data = msm_hs_read(uport, UART_DM_MR1);
data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
msm_hs_write(uport, UART_DM_MR1, data);
mb();
}
#endif
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
MSM_HS_DBG("%s(): clkstate %d", __func__, msm_uport->clk_state);
return -1;
}
/* Make sure the uart is finished with the last byte,
* use BFamily Register
*/
sr_status = msm_hs_read(uport, UART_DM_SR);
if (!(sr_status & UARTDM_SR_TXEMT_BMSK)) {
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
MSM_HS_DBG("%s(): SR TXEMT fail %lx", __func__, sr_status);
return 0; /* retry */
}
if (msm_uport->rx.flush != FLUSH_SHUTDOWN) {
if (msm_uport->rx.flush == FLUSH_NONE)
msm_hs_stop_rx_locked(uport);
MSM_HS_DBG("%s: rx.flush %d clk_state %d\n", __func__,
msm_uport->rx.flush, msm_uport->clk_state);
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
return 0; /* come back later to really clock off */
}
spin_unlock_irqrestore(&uport->lock, flags);
#ifdef CONFIG_MSM_BT_POWER
/* Pulling RFR line high */
msm_hs_write(uport, UART_DM_CR, RFR_LOW);
/* Enable auto RFR */
data = msm_hs_read(uport, UART_DM_MR1);
data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
msm_hs_write(uport, UART_DM_MR1, data);
mb();
#endif
/* we really want to clock off */
mutex_unlock(&msm_uport->clk_mutex);
msm_hs_clock_unvote(msm_uport);
mutex_lock(&msm_uport->clk_mutex);
spin_lock_irqsave(&uport->lock, flags);
if (use_low_power_wakeup(msm_uport)) {
msm_uport->wakeup.ignore = 1;
enable_irq(msm_uport->wakeup.irq);
}
/*
* keeping uport-irq enabled all the time
* gates XO shutdown in idle power collapse. Disable
* this only when wakeup irq is set.
*/
disable_irq(uport->irq);
if (pdev->id == 0)
printk(KERN_INFO "(msm_serial_hs) msm_hs_check_clock_off - dma wake unlock\n");
wake_unlock(&msm_uport->dma_wake_lock);
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
return 1;
}
static void hsuart_clock_off_work(struct work_struct *w)
{
struct msm_hs_port *msm_uport = container_of(w, struct msm_hs_port,
clock_off_w);
struct uart_port *uport = &msm_uport->uport;
struct platform_device *pdev = to_platform_device(uport->dev);
int check_clk_off = msm_hs_check_clock_off(uport);
if (!check_clk_off) {
hrtimer_start(&msm_uport->clk_off_timer,
msm_uport->clk_off_delay,
HRTIMER_MODE_REL);
} else if (check_clk_off == -1) {
if (pdev->id == 0)
printk(KERN_INFO "(msm_serial_hs) hsuart_clock_off_work WORKQUEUE - FIFO is not empty or in flight...\n");
} else {
if (pdev->id == 0)
printk(KERN_INFO "(msm_serial_hs) hsuart_clock_off_work WORKQUEUE - Maybe, clock is off-ed.\n");
}
}
static enum hrtimer_restart msm_hs_clk_off_retry(struct hrtimer *timer)
{
struct msm_hs_port *msm_uport = container_of(timer, struct msm_hs_port,
clk_off_timer);
queue_work(msm_uport->hsuart_wq, &msm_uport->clock_off_w);
return HRTIMER_NORESTART;
}
static irqreturn_t msm_hs_isr(int irq, void *dev)
{
unsigned long flags;
unsigned int isr_status;
struct msm_hs_port *msm_uport = (struct msm_hs_port *)dev;
struct uart_port *uport = &msm_uport->uport;
struct circ_buf *tx_buf = &uport->state->xmit;
struct msm_hs_tx *tx = &msm_uport->tx;
struct msm_hs_rx *rx = &msm_uport->rx;
spin_lock_irqsave(&uport->lock, flags);
isr_status = msm_hs_read(uport, UART_DM_MISR);
MSM_HS_INFO("%s: DM_ISR: 0x%x\n", __func__, isr_status);
dump_uart_hs_registers(msm_uport);
/* Uart RX starting */
if (isr_status & UARTDM_ISR_RXLEV_BMSK) {
wake_lock(&rx->wake_lock); /* hold wakelock while rx dma */
MSM_HS_DBG("%s:UARTDM_ISR_RXLEV_BMSK\n", __func__);
msm_uport->imr_reg &= ~UARTDM_ISR_RXLEV_BMSK;
msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg);
/* Complete device write for IMR. Hence mb() requires. */
mb();
}
/* Stale rx interrupt */
if (isr_status & UARTDM_ISR_RXSTALE_BMSK) {
msm_hs_write(uport, UART_DM_CR, STALE_EVENT_DISABLE);
msm_hs_write(uport, UART_DM_CR, RESET_STALE_INT);
/*
* Complete device write before calling DMOV API. Hence
* mb() requires here.
*/
mb();
MSM_HS_DBG("%s:Stal Interrupt\n", __func__);
}
/* tx ready interrupt */
if (isr_status & UARTDM_ISR_TX_READY_BMSK) {
MSM_HS_DBG("%s: ISR_TX_READY Interrupt\n", __func__);
/* Clear TX Ready */
msm_hs_write(uport, UART_DM_CR, CLEAR_TX_READY);
if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF) {
msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg);
}
/*
* Complete both writes before starting new TX.
* Hence mb() requires here.
*/
mb();
/* Complete DMA TX transactions and submit new transactions */
/* Do not update tx_buf.tail if uart_flush_buffer already
* called in serial core
*/
if (!uart_circ_empty(tx_buf))
tx_buf->tail = (tx_buf->tail +
tx->tx_count) & ~UART_XMIT_SIZE;
tx->dma_in_flight = 0;
uport->icount.tx += tx->tx_count;
if (tx->tx_ready_int_en)
msm_hs_submit_tx_locked(uport);
if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS)
uart_write_wakeup(uport);
}
if (isr_status & UARTDM_ISR_TXLEV_BMSK) {
/* TX FIFO is empty */
msm_uport->imr_reg &= ~UARTDM_ISR_TXLEV_BMSK;
msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg);
MSM_HS_DBG("%s: TXLEV Interrupt\n", __func__);
/*
* Complete device write before starting clock_off request.
* Hence mb() requires here.
*/
mb();
queue_work(msm_uport->hsuart_wq, &msm_uport->clock_off_w);
}
/* Change in CTS interrupt */
if (isr_status & UARTDM_ISR_DELTA_CTS_BMSK)
msm_hs_handle_delta_cts_locked(uport);
spin_unlock_irqrestore(&uport->lock, flags);
return IRQ_HANDLED;
}
/* The following two functions provide interfaces to get the underlying
* port structure (struct uart_port or struct msm_hs_port) given
* the port index. msm_hs_get_uart port is called by clients.
* The function msm_hs_get_hs_port is for internal use
*/
struct uart_port *msm_hs_get_uart_port(int port_index)
{
struct uart_state *state = msm_hs_driver.state + port_index;
/* The uart_driver structure stores the states in an array.
* Thus the corresponding offset from the drv->state returns
* the state for the uart_port that is requested
*/
if (port_index == state->uart_port->line)
return state->uart_port;
return NULL;
}
EXPORT_SYMBOL(msm_hs_get_uart_port);
static struct msm_hs_port *msm_hs_get_hs_port(int port_index)
{
struct uart_port *uport = msm_hs_get_uart_port(port_index);
if (uport)
return UARTDM_TO_MSM(uport);
return NULL;
}
/* request to turn off uart clock once pending TX is flushed */
void msm_hs_request_clock_off(struct uart_port *uport) {
unsigned long flags;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
int data;
spin_lock_irqsave(&uport->lock, flags);
if (msm_uport->clk_state == MSM_HS_CLK_ON) {
msm_uport->clk_state = MSM_HS_CLK_REQUEST_OFF;
data = msm_hs_read(uport, UART_DM_MR1);
/*disable auto ready-for-receiving */
data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK;
msm_hs_write(uport, UART_DM_MR1, data);
mb();
/* set RFR_N to high */
msm_hs_write(uport, UART_DM_CR, RFR_HIGH);
data = msm_hs_read(uport, UART_DM_SR);
MSM_HS_DBG("%s(): TXEMT, queuing clock off work\n",
__func__);
queue_work(msm_uport->hsuart_wq, &msm_uport->clock_off_w);
mb();
}
spin_unlock_irqrestore(&uport->lock, flags);
}
EXPORT_SYMBOL(msm_hs_request_clock_off);
void msm_hs_request_clock_on(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
unsigned long flags;
unsigned int data;
int ret = 0;
struct platform_device *pdev = to_platform_device(uport->dev);
mutex_lock(&msm_uport->clk_mutex);
spin_lock_irqsave(&uport->lock, flags);
#ifdef CONFIG_MSM_BT_POWER
if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF) {
/* Pulling RFR line high */
msm_hs_write(uport, UART_DM_CR, RFR_LOW);
/* Enable auto RFR */
data = msm_hs_read(uport, UART_DM_MR1);
data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
msm_hs_write(uport, UART_DM_MR1, data);
mb();
}
#endif
switch (msm_uport->clk_state) {
case MSM_HS_CLK_OFF:
if (pdev->id == 0)
printk(KERN_INFO "(msm_serial_hs) msm_hs_check_clock_on - dma wake lock\n");
wake_lock(&msm_uport->dma_wake_lock);
if (use_low_power_wakeup(msm_uport))
disable_irq_nosync(msm_uport->wakeup.irq);
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
ret = msm_hs_clock_vote(msm_uport);
mutex_lock(&msm_uport->clk_mutex);
if (ret) {
MSM_HS_INFO("Clock ON Failure"
"For UART CLK Stalling HSUART\n");
break;
}
/* uport-irq was disabled when clocked off */
enable_irq(uport->irq);
spin_lock_irqsave(&uport->lock, flags);
/* else fall-through */
case MSM_HS_CLK_REQUEST_OFF:
hrtimer_cancel(&msm_uport->clk_off_timer);
if (msm_uport->rx.flush == FLUSH_STOP) {
spin_unlock_irqrestore(&uport->lock, flags);
MSM_HS_DBG("%s:Calling wait forxcompletion\n",
__func__);
mutex_unlock(&msm_uport->clk_mutex);
ret = wait_event_timeout(msm_uport->bam_disconnect_wait,
msm_uport->rx.flush == FLUSH_SHUTDOWN, 300);
mutex_lock(&msm_uport->clk_mutex);
if (!ret)
MSM_HS_ERR("BAM Disconnect not happened\n");
spin_lock_irqsave(&uport->lock, flags);
MSM_HS_DBG("%s:DONE wait for completion\n", __func__);
}
MSM_HS_DBG("%s:clock state %d\n\n", __func__,
msm_uport->clk_state);
if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF)
msm_uport->clk_state = MSM_HS_CLK_ON;
if (msm_uport->rx.flush == FLUSH_STOP ||
msm_uport->rx.flush == FLUSH_SHUTDOWN) {
msm_hs_write(uport, UART_DM_CR, RESET_RX);
data = msm_hs_read(uport, UART_DM_DMEN);
data |= UARTDM_RX_BAM_ENABLE_BMSK;
msm_hs_write(uport, UART_DM_DMEN, data);
/* Complete above device write. Hence mb() here. */
mb();
}
MSM_HS_DBG("%s: rx.flush %d\n", __func__, msm_uport->rx.flush);
if (msm_uport->rx.flush == FLUSH_SHUTDOWN) {
spin_unlock_irqrestore(&uport->lock, flags);
msm_hs_spsconnect_rx(uport);
spin_lock_irqsave(&uport->lock, flags);
msm_hs_start_rx_locked(uport);
}
if (msm_uport->rx.flush == FLUSH_STOP)
msm_uport->rx.flush = FLUSH_IGNORE;
break;
case MSM_HS_CLK_ON:
break;
case MSM_HS_CLK_PORT_OFF:
MSM_HS_ERR("%s:Clock ON failed;UART Port is Closed\n",__func__);
break;
}
MSM_HS_INFO("%s:Clock ON Successful\n", __func__);
dump_uart_hs_registers(msm_uport);
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
}
EXPORT_SYMBOL(msm_hs_request_clock_on);
int msm_hs_get_clock_state(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
return (int)msm_uport->clk_state;
}
EXPORT_SYMBOL(msm_hs_get_clock_state);
static irqreturn_t msm_hs_wakeup_isr(int irq, void *dev)
{
unsigned int wakeup = 0;
unsigned long flags;
struct msm_hs_port *msm_uport = (struct msm_hs_port *)dev;
struct uart_port *uport = &msm_uport->uport;
struct tty_struct *tty = NULL;
spin_lock_irqsave(&uport->lock, flags);
if (msm_uport->clk_state == MSM_HS_CLK_OFF) {
/* ignore the first irq - it is a pending irq that occured
* before enable_irq()
*/
if (msm_uport->wakeup.ignore)
msm_uport->wakeup.ignore = 0;
else
wakeup = 1;
}
if (wakeup) {
/* the uart was clocked off during an rx, wake up and
* optionally inject char into tty rx
*/
spin_unlock_irqrestore(&uport->lock, flags);
msm_hs_request_clock_on(uport);
spin_lock_irqsave(&uport->lock, flags);
if (msm_uport->wakeup.inject_rx) {
tty = uport->state->port.tty;
tty_insert_flip_char(tty->port,
msm_uport->wakeup.rx_to_inject,
TTY_NORMAL);
MSM_HS_DBG("%s(): Inject 0x%x", __func__,
msm_uport->wakeup.rx_to_inject);
}
}
spin_unlock_irqrestore(&uport->lock, flags);
if (wakeup && msm_uport->wakeup.inject_rx)
tty_flip_buffer_push(tty->port);
return IRQ_HANDLED;
}
static const char *msm_hs_type(struct uart_port *port)
{
return ("MSM HS UART");
}
/**
* msm_hs_unconfig_uart_gpios: Unconfigures UART GPIOs
* @uport: uart port
*/
static void msm_hs_unconfig_uart_gpios(struct uart_port *uport)
{
struct platform_device *pdev = to_platform_device(uport->dev);
const struct msm_serial_hs_platform_data *pdata =
pdev->dev.platform_data;
if (pdata) {
if (gpio_is_valid(pdata->uart_tx_gpio))
gpio_free(pdata->uart_tx_gpio);
if (gpio_is_valid(pdata->uart_rx_gpio))
gpio_free(pdata->uart_rx_gpio);
if (gpio_is_valid(pdata->uart_cts_gpio))
gpio_free(pdata->uart_cts_gpio);
if (gpio_is_valid(pdata->uart_rfr_gpio))
gpio_free(pdata->uart_rfr_gpio);
} else
MSM_HS_ERR("Error:Pdata is NULL.\n");
}
/**
* msm_hs_config_uart_gpios - Configures UART GPIOs
* @uport: uart port
*/
static int msm_hs_config_uart_gpios(struct uart_port *uport)
{
struct platform_device *pdev = to_platform_device(uport->dev);
const struct msm_serial_hs_platform_data *pdata =
pdev->dev.platform_data;
int ret = 0;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
if (!IS_ERR_OR_NULL(msm_uport->pinctrl)) {
MSM_HS_DBG("%s(): Using Pinctrl", __func__);
msm_uport->use_pinctrl = true;
ret = pinctrl_select_state(msm_uport->pinctrl,
msm_uport->gpio_state_active);
if (ret)
MSM_HS_ERR("%s(): Failed to pinctrl set_state",
__func__);
return ret;
} else if (pdata) {
/* Fall back to using gpio lib */
if (gpio_is_valid(pdata->uart_tx_gpio)) {
ret = gpio_request(pdata->uart_tx_gpio,
"UART_TX_GPIO");
if (unlikely(ret)) {
MSM_HS_ERR("gpio request failed for:%d\n",
pdata->uart_tx_gpio);
goto exit_uart_config;
}
}
if (gpio_is_valid(pdata->uart_rx_gpio)) {
ret = gpio_request(pdata->uart_rx_gpio,
"UART_RX_GPIO");
if (unlikely(ret)) {
MSM_HS_ERR("gpio request failed for:%d\n",
pdata->uart_rx_gpio);
goto uart_tx_unconfig;
}
}
if (gpio_is_valid(pdata->uart_cts_gpio)) {
ret = gpio_request(pdata->uart_cts_gpio,
"UART_CTS_GPIO");
if (unlikely(ret)) {
MSM_HS_ERR("gpio request failed for:%d\n",
pdata->uart_cts_gpio);
goto uart_rx_unconfig;
}
}
if (gpio_is_valid(pdata->uart_rfr_gpio)) {
ret = gpio_request(pdata->uart_rfr_gpio,
"UART_RFR_GPIO");
if (unlikely(ret)) {
MSM_HS_ERR("gpio request failed for:%d\n",
pdata->uart_rfr_gpio);
goto uart_cts_unconfig;
}
}
} else {
MSM_HS_ERR("Pdata is NULL.\n");
ret = -EINVAL;
}
return ret;
uart_cts_unconfig:
if (gpio_is_valid(pdata->uart_cts_gpio))
gpio_free(pdata->uart_cts_gpio);
uart_rx_unconfig:
if (gpio_is_valid(pdata->uart_rx_gpio))
gpio_free(pdata->uart_rx_gpio);
uart_tx_unconfig:
if (gpio_is_valid(pdata->uart_tx_gpio))
gpio_free(pdata->uart_tx_gpio);
exit_uart_config:
return ret;
}
static void msm_hs_get_pinctrl_configs(struct uart_port *uport)
{
struct pinctrl_state *set_state;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
msm_uport->pinctrl = devm_pinctrl_get(uport->dev);
if (IS_ERR_OR_NULL(msm_uport->pinctrl)) {
MSM_HS_INFO("%s(): Pinctrl not defined", __func__);
} else {
MSM_HS_DBG("%s(): Using Pinctrl", __func__);
msm_uport->use_pinctrl = true;
set_state = pinctrl_lookup_state(msm_uport->pinctrl,
"hsuart_active");
if (IS_ERR_OR_NULL(set_state)) {
dev_err(uport->dev,
"pinctrl lookup failed for hsuart_active");
goto pinctrl_fail;
}
MSM_HS_DBG("%s(): Pinctrl state active %p\n", __func__,
set_state);
msm_uport->gpio_state_active = set_state;
set_state = pinctrl_lookup_state(msm_uport->pinctrl,
"hsuart_sleep");
if (IS_ERR_OR_NULL(set_state)) {
dev_err(uport->dev,
"pinctrl lookup failed for hsuart_sleep");
goto pinctrl_fail;
}
MSM_HS_DBG("%s(): Pinctrl state sleep %p\n", __func__,
set_state);
msm_uport->gpio_state_suspend = set_state;
return;
}
pinctrl_fail:
msm_uport->pinctrl = NULL;
return;
}
/* Called when port is opened */
static int msm_hs_startup(struct uart_port *uport)
{
int ret;
int rfr_level;
unsigned long flags;
unsigned int data;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct circ_buf *tx_buf = &uport->state->xmit;
struct msm_hs_tx *tx = &msm_uport->tx;
struct msm_hs_rx *rx = &msm_uport->rx;
struct sps_pipe *sps_pipe_handle_tx = tx->cons.pipe_handle;
struct sps_pipe *sps_pipe_handle_rx = rx->prod.pipe_handle;
struct platform_device *pdev = to_platform_device(uport->dev);
rfr_level = uport->fifosize;
if (rfr_level > 16)
rfr_level -= 16;
tx->dma_base = dma_map_single(uport->dev, tx_buf->buf, UART_XMIT_SIZE,
DMA_TO_DEVICE);
if (pdev->id == 0)
printk(KERN_INFO "(msm_serial_hs) msm_hs_startup - dma wake lock\n");
wake_lock(&msm_uport->dma_wake_lock);
/* turn on uart clk */
ret = msm_hs_init_clk(uport);
if (unlikely(ret)) {
MSM_HS_ERR("Turning ON uartclk error\n");
wake_unlock(&msm_uport->dma_wake_lock);
return ret;
}
ret = msm_hs_config_uart_gpios(uport);
if (ret) {
MSM_HS_ERR("Uart GPIO request failed\n");
goto deinit_uart_clk;
}
/* SPS Connect for BAM endpoints */
/* SPS connect for TX */
ret = msm_hs_spsconnect_tx(uport);
if (ret) {
MSM_HS_ERR("msm_serial_hs: SPS connect failed for TX");
goto unconfig_uart_gpios;
}
/* SPS connect for RX */
ret = msm_hs_spsconnect_rx(uport);
if (ret) {
MSM_HS_ERR("msm_serial_hs: SPS connect failed for RX");
goto sps_disconnect_tx;
}
data = (UARTDM_BCR_TX_BREAK_DISABLE | UARTDM_BCR_STALE_IRQ_EMPTY |
UARTDM_BCR_RX_DMRX_LOW_EN | UARTDM_BCR_RX_STAL_IRQ_DMRX_EQL |
UARTDM_BCR_RX_DMRX_1BYTE_RES_EN);
msm_hs_write(uport, UART_DM_BCR, data);
/* Set auto RFR Level */
data = msm_hs_read(uport, UART_DM_MR1);
data &= ~UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK;
data &= ~UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK;
data |= (UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK & (rfr_level << 2));
data |= (UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK & rfr_level);
msm_hs_write(uport, UART_DM_MR1, data);
/* Make sure RXSTALE count is non-zero */
data = msm_hs_read(uport, UART_DM_IPR);
if (!data) {
data |= 0x1f & UARTDM_IPR_STALE_LSB_BMSK;
msm_hs_write(uport, UART_DM_IPR, data);
}
/* Enable BAM mode */
data = UARTDM_TX_BAM_ENABLE_BMSK | UARTDM_RX_BAM_ENABLE_BMSK;
msm_hs_write(uport, UART_DM_DMEN, data);
/* Reset TX */
msm_hs_write(uport, UART_DM_CR, RESET_TX);
msm_hs_write(uport, UART_DM_CR, RESET_RX);
msm_hs_write(uport, UART_DM_CR, RESET_ERROR_STATUS);
msm_hs_write(uport, UART_DM_CR, RESET_BREAK_INT);
msm_hs_write(uport, UART_DM_CR, RESET_STALE_INT);
msm_hs_write(uport, UART_DM_CR, RESET_CTS);
msm_hs_write(uport, UART_DM_CR, RFR_LOW);
/* Turn on Uart Receiver */
msm_hs_write(uport, UART_DM_CR, UARTDM_CR_RX_EN_BMSK);
/* Turn on Uart Transmitter */
msm_hs_write(uport, UART_DM_CR, UARTDM_CR_TX_EN_BMSK);
/* Initialize the tx */
tx->tx_ready_int_en = 0;
tx->dma_in_flight = 0;
rx->rx_cmd_exec = false;
/* Enable reading the current CTS, no harm even if CTS is ignored */
msm_uport->imr_reg |= UARTDM_ISR_CURRENT_CTS_BMSK;
/* TXLEV on empty TX fifo */
msm_hs_write(uport, UART_DM_TFWR, 4);
/*
* Complete all device write related configuration before
* queuing RX request. Hence mb() requires here.
*/
mb();
if (use_low_power_wakeup(msm_uport)) {
ret = irq_set_irq_wake(msm_uport->wakeup.irq, 1);
if (unlikely(ret)) {
MSM_HS_ERR("%s():Err setting wakeup irq\n", __func__);
goto sps_disconnect_rx;
}
}
ret = request_irq(uport->irq, msm_hs_isr, IRQF_TRIGGER_HIGH,
"msm_hs_uart", msm_uport);
if (unlikely(ret)) {
MSM_HS_ERR("%s():Error getting uart irq\n", __func__);
goto free_wake_irq;
}
if (use_low_power_wakeup(msm_uport)) {
ret = request_threaded_irq(msm_uport->wakeup.irq, NULL,
msm_hs_wakeup_isr,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"msm_hs_wakeup", msm_uport);
if (unlikely(ret)) {
MSM_HS_ERR("%s():Err getting uart wakeup_irq\n",
__func__);
goto free_uart_irq;
}
disable_irq(msm_uport->wakeup.irq);
}
spin_lock_irqsave(&uport->lock, flags);
msm_hs_start_rx_locked(uport);
spin_unlock_irqrestore(&uport->lock, flags);
pm_runtime_enable(uport->dev);
return 0;
free_uart_irq:
free_irq(uport->irq, msm_uport);
free_wake_irq:
if (use_low_power_wakeup(msm_uport))
irq_set_irq_wake(msm_uport->wakeup.irq, 0);
sps_disconnect_rx:
sps_disconnect(sps_pipe_handle_rx);
sps_disconnect_tx:
sps_disconnect(sps_pipe_handle_tx);
unconfig_uart_gpios:
msm_hs_unconfig_uart_gpios(uport);
deinit_uart_clk:
msm_hs_clock_unvote(msm_uport);
if (pdev->id == 0)
printk(KERN_INFO "(msm_serial_hs) msm_hs_startup deinit clk - dma wake unlock\n");
wake_unlock(&msm_uport->dma_wake_lock);
return ret;
}
/* Initialize tx and rx data structures */
static int uartdm_init_port(struct uart_port *uport)
{
int ret = 0;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct msm_hs_tx *tx = &msm_uport->tx;
struct msm_hs_rx *rx = &msm_uport->rx;
init_waitqueue_head(&rx->wait);
init_waitqueue_head(&tx->wait);
init_waitqueue_head(&msm_uport->bam_disconnect_wait);
wake_lock_init(&rx->wake_lock, WAKE_LOCK_SUSPEND, "msm_serial_hs_rx");
wake_lock_init(&msm_uport->dma_wake_lock, WAKE_LOCK_SUSPEND,
"msm_serial_hs_dma");
tasklet_init(&rx->tlet, msm_serial_hs_rx_tlet,
(unsigned long) &rx->tlet);
tasklet_init(&tx->tlet, msm_serial_hs_tx_tlet,
(unsigned long) &tx->tlet);
rx->pool = dma_pool_create("rx_buffer_pool", uport->dev,
UARTDM_RX_BUF_SIZE, 16, 0);
if (!rx->pool) {
MSM_HS_ERR("%s(): cannot allocate rx_buffer_pool", __func__);
ret = -ENOMEM;
goto exit_tasklet_init;
}
rx->buffer = dma_pool_alloc(rx->pool, GFP_KERNEL, &rx->rbuffer);
if (!rx->buffer) {
MSM_HS_ERR("%s(): cannot allocate rx->buffer", __func__);
ret = -ENOMEM;
goto free_pool;
}
/* Set up Uart Receive */
msm_hs_write(uport, UART_DM_RFWR, 32);
INIT_DELAYED_WORK(&rx->flip_insert_work, flip_insert_work);
return ret;
free_pool:
dma_pool_destroy(msm_uport->rx.pool);
exit_tasklet_init:
wake_lock_destroy(&msm_uport->rx.wake_lock);
wake_lock_destroy(&msm_uport->dma_wake_lock);
tasklet_kill(&msm_uport->tx.tlet);
tasklet_kill(&msm_uport->rx.tlet);
return ret;
}
struct msm_serial_hs_platform_data
*msm_hs_dt_to_pdata(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct msm_serial_hs_platform_data *pdata;
u32 rx_to_inject;
int ret;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
MSM_HS_ERR("unable to allocate memory for platform data\n");
return ERR_PTR(-ENOMEM);
}
pdev->id = of_alias_get_id(pdev->dev.of_node, "uart");
/* UART TX GPIO */
pdata->uart_tx_gpio = of_get_named_gpio(node,
"qcom,tx-gpio", 0);
if (pdata->uart_tx_gpio < 0)
MSM_HS_DBG("uart_tx_gpio is not available\n");
/* UART RX GPIO */
pdata->uart_rx_gpio = of_get_named_gpio(node,
"qcom,rx-gpio", 0);
if (pdata->uart_rx_gpio < 0)
MSM_HS_DBG("uart_rx_gpio is not available\n");
/* UART CTS GPIO */
pdata->uart_cts_gpio = of_get_named_gpio(node,
"qcom,cts-gpio", 0);
if (pdata->uart_cts_gpio < 0)
MSM_HS_DBG("uart_cts_gpio is not available\n");
/* UART RFR GPIO */
pdata->uart_rfr_gpio = of_get_named_gpio(node,
"qcom,rfr-gpio", 0);
if (pdata->uart_rfr_gpio < 0)
MSM_HS_DBG("uart_rfr_gpio is not available\n");
pdata->no_suspend_delay = of_property_read_bool(node,
"qcom,no-suspend-delay");
pdata->inject_rx_on_wakeup = of_property_read_bool(node,
"qcom,inject-rx-on-wakeup");
if (pdata->inject_rx_on_wakeup) {
ret = of_property_read_u32(node, "qcom,rx-char-to-inject",
&rx_to_inject);
if (ret < 0) {
MSM_HS_ERR("Error: Rx_char_to_inject not specified.\n");
return ERR_PTR(ret);
}
pdata->rx_to_inject = (u8)rx_to_inject;
}
ret = of_property_read_u32(node, "qcom,bam-tx-ep-pipe-index",
&pdata->bam_tx_ep_pipe_index);
if (ret < 0) {
MSM_HS_ERR("Error: Getting UART BAM TX EP Pipe Index.\n");
return ERR_PTR(ret);
}
if (!(pdata->bam_tx_ep_pipe_index >= BAM_PIPE_MIN &&
pdata->bam_tx_ep_pipe_index <= BAM_PIPE_MAX)) {
MSM_HS_ERR("Error: Invalid UART BAM TX EP Pipe Index.\n");
return ERR_PTR(-EINVAL);
}
ret = of_property_read_u32(node, "qcom,bam-rx-ep-pipe-index",
&pdata->bam_rx_ep_pipe_index);
if (ret < 0) {
MSM_HS_ERR("Error: Getting UART BAM RX EP Pipe Index.\n");
return ERR_PTR(ret);
}
if (!(pdata->bam_rx_ep_pipe_index >= BAM_PIPE_MIN &&
pdata->bam_rx_ep_pipe_index <= BAM_PIPE_MAX)) {
MSM_HS_ERR("Error: Invalid UART BAM RX EP Pipe Index.\n");
return ERR_PTR(-EINVAL);
}
MSM_HS_DBG("tx_ep_pipe_index:%d rx_ep_pipe_index:%d\n"
"tx_gpio:%d rx_gpio:%d rfr_gpio:%d cts_gpio:%d",
pdata->bam_tx_ep_pipe_index, pdata->bam_rx_ep_pipe_index,
pdata->uart_tx_gpio, pdata->uart_rx_gpio, pdata->uart_cts_gpio,
pdata->uart_rfr_gpio);
return pdata;
}
/**
* Deallocate UART peripheral's SPS endpoint
* @msm_uport - Pointer to msm_hs_port structure
* @ep - Pointer to sps endpoint data structure
*/
static void msm_hs_exit_ep_conn(struct msm_hs_port *msm_uport,
struct msm_hs_sps_ep_conn_data *ep)
{
struct sps_pipe *sps_pipe_handle = ep->pipe_handle;
struct sps_connect *sps_config = &ep->config;
dma_free_coherent(msm_uport->uport.dev,
sps_config->desc.size,
&sps_config->desc.phys_base,
GFP_KERNEL);
sps_free_endpoint(sps_pipe_handle);
}
/**
* Allocate UART peripheral's SPS endpoint
*
* This function allocates endpoint context
* by calling appropriate SPS driver APIs.
*
* @msm_uport - Pointer to msm_hs_port structure
* @ep - Pointer to sps endpoint data structure
* @is_produce - 1 means Producer endpoint
* - 0 means Consumer endpoint
*
* @return - 0 if successful else negative value
*/
static int msm_hs_sps_init_ep_conn(struct msm_hs_port *msm_uport,
struct msm_hs_sps_ep_conn_data *ep,
bool is_producer)
{
int rc = 0;
struct sps_pipe *sps_pipe_handle;
struct sps_connect *sps_config = &ep->config;
struct sps_register_event *sps_event = &ep->event;
/* Allocate endpoint context */
sps_pipe_handle = sps_alloc_endpoint();
if (!sps_pipe_handle) {
MSM_HS_ERR("%s(): sps_alloc_endpoint() failed!!\n"
"is_producer=%d", __func__, is_producer);
rc = -ENOMEM;
goto out;
}
/* Get default connection configuration for an endpoint */
rc = sps_get_config(sps_pipe_handle, sps_config);
if (rc) {
MSM_HS_ERR("%s(): failed! pipe_handle=0x%p rc=%d",
__func__, sps_pipe_handle, rc);
goto get_config_err;
}
/* Modify the default connection configuration */
if (is_producer) {
/* For UART producer transfer, source is UART peripheral
where as destination is system memory */
sps_config->source = msm_uport->bam_handle;
sps_config->destination = SPS_DEV_HANDLE_MEM;
sps_config->mode = SPS_MODE_SRC;
sps_config->src_pipe_index = msm_uport->bam_rx_ep_pipe_index;
sps_config->dest_pipe_index = 0;
} else {
/* For UART consumer transfer, source is system memory
where as destination is UART peripheral */
sps_config->source = SPS_DEV_HANDLE_MEM;
sps_config->destination = msm_uport->bam_handle;
sps_config->mode = SPS_MODE_DEST;
sps_config->src_pipe_index = 0;
sps_config->dest_pipe_index = msm_uport->bam_tx_ep_pipe_index;
}
sps_config->options = SPS_O_EOT | SPS_O_DESC_DONE | SPS_O_AUTO_ENABLE;
sps_config->event_thresh = 0x10;
/* Allocate maximum descriptor fifo size */
sps_config->desc.size = 65532;
sps_config->desc.base = dma_alloc_coherent(msm_uport->uport.dev,
sps_config->desc.size,
&sps_config->desc.phys_base,
GFP_KERNEL);
if (!sps_config->desc.base) {
rc = -ENOMEM;
MSM_HS_ERR("msm_serial_hs: dma_alloc_coherent() failed!!\n");
goto get_config_err;
}
memset(sps_config->desc.base, 0x00, sps_config->desc.size);
sps_event->mode = SPS_TRIGGER_CALLBACK;
if (is_producer) {
sps_event->callback = msm_hs_sps_rx_callback;
} else {
sps_event->callback = msm_hs_sps_tx_callback;
}
sps_event->options = SPS_O_DESC_DONE | SPS_O_EOT;
sps_event->user = (void *)msm_uport;
/* Now save the sps pipe handle */
ep->pipe_handle = sps_pipe_handle;
pr_debug("msm_serial_hs: success !! %s: pipe_handle=0x%p\n"
"desc_fifo.phys_base=0x%pa\n",
is_producer ? "READ" : "WRITE",
sps_pipe_handle, &sps_config->desc.phys_base);
return 0;
get_config_err:
sps_free_endpoint(sps_pipe_handle);
out:
return rc;
}
/**
* Initialize SPS HW connected with UART core
*
* This function register BAM HW resources with
* SPS driver and then initialize 2 SPS endpoints
*
* msm_uport - Pointer to msm_hs_port structure
*
* @return - 0 if successful else negative value
*/
static int msm_hs_sps_init(struct msm_hs_port *msm_uport)
{
int rc = 0;
struct sps_bam_props bam = {0};
unsigned long bam_handle;
rc = sps_phy2h(msm_uport->bam_mem, &bam_handle);
if (rc || !bam_handle) {
bam.phys_addr = msm_uport->bam_mem;
bam.virt_addr = msm_uport->bam_base;
/*
* This event thresold value is only significant for BAM-to-BAM
* transfer. It's ignored for BAM-to-System mode transfer.
*/
bam.event_threshold = 0x10; /* Pipe event threshold */
bam.summing_threshold = 1; /* BAM event threshold */
/* SPS driver wll handle the UART BAM IRQ */
bam.irq = (u32)msm_uport->bam_irq;
bam.manage = SPS_BAM_MGR_DEVICE_REMOTE;
MSM_HS_DBG("msm_serial_hs: bam physical base=0x%pa\n",
&bam.phys_addr);
MSM_HS_DBG("msm_serial_hs: bam virtual base=0x%p\n",
bam.virt_addr);
/* Register UART Peripheral BAM device to SPS driver */
rc = sps_register_bam_device(&bam, &bam_handle);
if (rc) {
MSM_HS_ERR("%s: BAM device register failed\n",
__func__);
return rc;
}
MSM_HS_DBG("%s:BAM device registered. bam_handle=0x%lx",
__func__, msm_uport->bam_handle);
}
msm_uport->bam_handle = bam_handle;
rc = msm_hs_sps_init_ep_conn(msm_uport, &msm_uport->rx.prod,
UART_SPS_PROD_PERIPHERAL);
if (rc) {
MSM_HS_ERR("%s: Failed to Init Producer BAM-pipe", __func__);
goto deregister_bam;
}
rc = msm_hs_sps_init_ep_conn(msm_uport, &msm_uport->tx.cons,
UART_SPS_CONS_PERIPHERAL);
if (rc) {
MSM_HS_ERR("%s: Failed to Init Consumer BAM-pipe", __func__);
goto deinit_ep_conn_prod;
}
return 0;
deinit_ep_conn_prod:
msm_hs_exit_ep_conn(msm_uport, &msm_uport->rx.prod);
deregister_bam:
sps_deregister_bam_device(msm_uport->bam_handle);
return rc;
}
static bool deviceid[UARTDM_NR] = {0};
/*
* The mutex synchronizes grabbing next free device number
* both in case of an alias being used or not. When alias is
* used, the msm_hs_dt_to_pdata gets it and the boolean array
* is accordingly updated with device_id_set_used. If no alias
* is used, then device_id_grab_next_free sets that array.
*/
static DEFINE_MUTEX(mutex_next_device_id);
static int device_id_grab_next_free(void)
{
int i;
int ret = -ENODEV;
mutex_lock(&mutex_next_device_id);
for (i = 0; i < UARTDM_NR; i++)
if (!deviceid[i]) {
ret = i;
deviceid[i] = true;
break;
}
mutex_unlock(&mutex_next_device_id);
return ret;
}
static int device_id_set_used(int index)
{
int ret = 0;
mutex_lock(&mutex_next_device_id);
if (deviceid[index])
ret = -ENODEV;
else
deviceid[index] = true;
mutex_unlock(&mutex_next_device_id);
return ret;
}
static int msm_hs_probe(struct platform_device *pdev)
{
int ret = 0;
struct uart_port *uport;
struct msm_hs_port *msm_uport;
struct resource *core_resource;
struct resource *bam_resource;
int core_irqres, bam_irqres, wakeup_irqres;
struct msm_serial_hs_platform_data *pdata = pdev->dev.platform_data;
unsigned long data;
if (pdev->dev.of_node) {
dev_dbg(&pdev->dev, "device tree enabled\n");
pdata = msm_hs_dt_to_pdata(pdev);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
if (pdev->id < 0) {
pdev->id = device_id_grab_next_free();
if (pdev->id < 0) {
dev_err(&pdev->dev,
"Error grabbing next free device id");
return pdev->id;
}
} else {
ret = device_id_set_used(pdev->id);
if (ret < 0) {
dev_err(&pdev->dev, "%d alias taken",
pdev->id);
return ret;
}
}
pdev->dev.platform_data = pdata;
}
if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
MSM_HS_ERR("Invalid plaform device ID = %d\n", pdev->id);
return -EINVAL;
}
msm_uport = devm_kzalloc(&pdev->dev, sizeof(struct msm_hs_port),
GFP_KERNEL);
if (!msm_uport) {
MSM_HS_ERR("Memory allocation failed\n");
return -ENOMEM;
}
msm_uport->uport.type = PORT_UNKNOWN;
uport = &msm_uport->uport;
uport->dev = &pdev->dev;
if (pdev->dev.of_node)
msm_uport->uart_type = BLSP_HSUART;
msm_hs_get_pinctrl_configs(uport);
/* Get required resources for BAM HSUART */
core_resource = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "core_mem");
if (!core_resource) {
MSM_HS_ERR("Invalid core HSUART Resources.\n");
return -ENXIO;
}
bam_resource = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "bam_mem");
if (!bam_resource) {
MSM_HS_ERR("Invalid BAM HSUART Resources.\n");
return -ENXIO;
}
core_irqres = platform_get_irq_byname(pdev, "core_irq");
if (core_irqres < 0) {
MSM_HS_ERR("Invalid core irqres Resources.\n");
return -ENXIO;
}
bam_irqres = platform_get_irq_byname(pdev, "bam_irq");
if (bam_irqres < 0) {
MSM_HS_ERR("Invalid bam irqres Resources.\n");
return -ENXIO;
}
wakeup_irqres = platform_get_irq_byname(pdev, "wakeup_irq");
if (wakeup_irqres < 0) {
wakeup_irqres = -1;
MSM_HS_DBG("Wakeup irq not specified.\n");
}
uport->mapbase = core_resource->start;
uport->membase = ioremap(uport->mapbase,
resource_size(core_resource));
if (unlikely(!uport->membase)) {
MSM_HS_ERR("UART Resource ioremap Failed.\n");
return -ENOMEM;
}
msm_uport->bam_mem = bam_resource->start;
msm_uport->bam_base = ioremap(msm_uport->bam_mem,
resource_size(bam_resource));
if (unlikely(!msm_uport->bam_base)) {
MSM_HS_ERR("UART BAM Resource ioremap Failed.\n");
iounmap(uport->membase);
return -ENOMEM;
}
uport->irq = core_irqres;
msm_uport->bam_irq = bam_irqres;
pdata->wakeup_irq = wakeup_irqres;
msm_uport->bus_scale_table = msm_bus_cl_get_pdata(pdev);
if (!msm_uport->bus_scale_table) {
MSM_HS_ERR("BLSP UART: Bus scaling is disabled.\n");
} else {
msm_uport->bus_perf_client =
msm_bus_scale_register_client
(msm_uport->bus_scale_table);
if (IS_ERR(&msm_uport->bus_perf_client)) {
MSM_HS_ERR("%s():Bus client register failed\n",
__func__);
ret = -EINVAL;
goto unmap_memory;
}
}
if (pdata == NULL)
msm_uport->wakeup.irq = -1;
else {
msm_uport->wakeup.irq = pdata->wakeup_irq;
msm_uport->wakeup.ignore = 1;
msm_uport->wakeup.inject_rx = pdata->inject_rx_on_wakeup;
msm_uport->wakeup.rx_to_inject = pdata->rx_to_inject;
msm_uport->bam_tx_ep_pipe_index =
pdata->bam_tx_ep_pipe_index;
msm_uport->bam_rx_ep_pipe_index =
pdata->bam_rx_ep_pipe_index;
}
uport->iotype = UPIO_MEM;
uport->fifosize = 64;
uport->ops = &msm_hs_ops;
uport->flags = UPF_BOOT_AUTOCONF;
uport->uartclk = 7372800;
msm_uport->imr_reg = 0x0;
msm_uport->clk = clk_get(&pdev->dev, "core_clk");
if (IS_ERR(msm_uport->clk)) {
ret = PTR_ERR(msm_uport->clk);
goto deregister_bus_client;
}
msm_uport->pclk = clk_get(&pdev->dev, "iface_clk");
/*
* Some configurations do not require explicit pclk control so
* do not flag error on pclk get failure.
*/
if (IS_ERR(msm_uport->pclk))
msm_uport->pclk = NULL;
ret = clk_set_rate(msm_uport->clk, uport->uartclk);
if (ret) {
MSM_HS_WARN("Error setting clock rate on UART\n");
goto put_clk;
}
msm_uport->hsuart_wq = alloc_workqueue("k_hsuart",
WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
if (!msm_uport->hsuart_wq) {
MSM_HS_ERR("%s(): Unable to create workqueue hsuart_wq\n",
__func__);
ret = -ENOMEM;
goto put_clk;
}
INIT_WORK(&msm_uport->clock_off_w, hsuart_clock_off_work);
/* Init work for sps_disconnect in stop_rx_locked */
INIT_WORK(&msm_uport->disconnect_rx_endpoint,
hsuart_disconnect_rx_endpoint_work);
mutex_init(&msm_uport->clk_mutex);
atomic_set(&msm_uport->clk_count, 0);
/* Initialize SPS HW connected with UART core */
ret = msm_hs_sps_init(msm_uport);
if (unlikely(ret)) {
MSM_HS_ERR("SPS Initialization failed ! err=%d", ret);
goto destroy_mutex;
}
msm_hs_clock_vote(msm_uport);
ret = uartdm_init_port(uport);
if (unlikely(ret)) {
goto err_clock;
}
/* configure the CR Protection to Enable */
msm_hs_write(uport, UART_DM_CR, CR_PROTECTION_EN);
/*
* Enable Command register protection before going ahead as this hw
* configuration makes sure that issued cmd to CR register gets complete
* before next issued cmd start. Hence mb() requires here.
*/
mb();
/*
* Set RX_BREAK_ZERO_CHAR_OFF and RX_ERROR_CHAR_OFF
* so any rx_break and character having parity of framing
* error don't enter inside UART RX FIFO.
*/
data = msm_hs_read(uport, UART_DM_MR2);
data |= (UARTDM_MR2_RX_BREAK_ZERO_CHAR_OFF |
UARTDM_MR2_RX_ERROR_CHAR_OFF);
msm_hs_write(uport, UART_DM_MR2, data);
mb();
hrtimer_init(&msm_uport->clk_off_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL);
msm_uport->clk_off_timer.function = msm_hs_clk_off_retry;
msm_uport->clk_off_delay = ktime_set(0, 1000000); /* 1ms */
ret = sysfs_create_file(&pdev->dev.kobj, &dev_attr_clock.attr);
if (unlikely(ret)) {
MSM_HS_ERR("Probe Failed as sysfs failed\n");
goto err_clock;
}
msm_serial_debugfs_init(msm_uport, pdev->id);
uport->line = pdev->id;
if (pdata != NULL && pdata->userid && pdata->userid <= UARTDM_NR)
uport->line = pdata->userid;
ret = uart_add_one_port(&msm_hs_driver, uport);
if (!ret) {
msm_hs_clock_unvote(msm_uport);
msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
return ret;
}
err_clock:
msm_hs_clock_unvote(msm_uport);
destroy_mutex:
mutex_destroy(&msm_uport->clk_mutex);
destroy_workqueue(msm_uport->hsuart_wq);
put_clk:
if (msm_uport->pclk)
clk_put(msm_uport->pclk);
if (msm_uport->clk)
clk_put(msm_uport->clk);
deregister_bus_client:
msm_bus_scale_unregister_client(msm_uport->bus_perf_client);
unmap_memory:
iounmap(uport->membase);
iounmap(msm_uport->bam_base);
return ret;
}
static int __init msm_serial_hs_init(void)
{
int ret;
ipc_msm_hs_log_ctxt = ipc_log_context_create(IPC_MSM_HS_LOG_PAGES,
"msm_serial_hs", 0);
if (!ipc_msm_hs_log_ctxt)
MSM_HS_WARN("%s: error creating logging context", __func__);
ret = uart_register_driver(&msm_hs_driver);
if (unlikely(ret)) {
MSM_HS_ERR("%s failed to load\n", __func__);
return ret;
}
debug_base = debugfs_create_dir("msm_serial_hs", NULL);
if (IS_ERR_OR_NULL(debug_base))
pr_info("msm_serial_hs: Cannot create debugfs dir\n");
ret = platform_driver_register(&msm_serial_hs_platform_driver);
if (ret) {
MSM_HS_ERR("%s failed to load\n", __func__);
debugfs_remove_recursive(debug_base);
uart_unregister_driver(&msm_hs_driver);
return ret;
}
MSM_HS_INFO("msm_serial_hs module loaded\n");
return ret;
}
/*
* Called by the upper layer when port is closed.
* - Disables the port
* - Unhook the ISR
*/
static void msm_hs_shutdown(struct uart_port *uport)
{
int ret;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct circ_buf *tx_buf = &uport->state->xmit;
struct msm_hs_tx *tx = &msm_uport->tx;
struct sps_pipe *sps_pipe_handle = tx->cons.pipe_handle;
struct platform_device *pdev = to_platform_device(uport->dev);
if (pdev->id == 0)
printk(KERN_INFO "(msm_serial_hs) msm_hs_shutdown\n");
/*
* cancel the hrtimer first so that
* clk_state can not change in flight
*/
hrtimer_cancel(&msm_uport->clk_off_timer);
flush_work(&msm_uport->clock_off_w);
if (use_low_power_wakeup(msm_uport))
irq_set_irq_wake(msm_uport->wakeup.irq, 0);
/* wake irq or uart irq is active depending on clk_state */
if (msm_uport->clk_state == MSM_HS_CLK_OFF) {
if (use_low_power_wakeup(msm_uport))
disable_irq(msm_uport->wakeup.irq);
} else {
disable_irq(uport->irq);
wake_unlock(&msm_uport->dma_wake_lock);
}
/* make sure tx tasklet finishes */
tasklet_kill(&msm_uport->tx.tlet);
ret = wait_event_timeout(msm_uport->tx.wait,
uart_circ_empty(tx_buf), 500);
if (!ret)
MSM_HS_WARN("Shutdown called when tx buff not empty");
/* make sure rx tasklet finishes */
tasklet_kill(&msm_uport->rx.tlet);
wait_event(msm_uport->rx.wait, msm_uport->rx.flush == FLUSH_SHUTDOWN);
cancel_delayed_work_sync(&msm_uport->rx.flip_insert_work);
flush_workqueue(msm_uport->hsuart_wq);
msm_hs_clock_vote(msm_uport);
mutex_lock(&msm_uport->clk_mutex);
/* BAM Disconnect for TX */
ret = sps_disconnect(sps_pipe_handle);
if (ret)
MSM_HS_ERR("%s(): sps_disconnect failed\n",
__func__);
WARN_ON(msm_uport->rx.flush < FLUSH_STOP);
/* Disable the transmitter */
msm_hs_write(uport, UART_DM_CR, UARTDM_CR_TX_DISABLE_BMSK);
/* Disable the receiver */
msm_hs_write(uport, UART_DM_CR, UARTDM_CR_RX_DISABLE_BMSK);
msm_uport->imr_reg = 0;
msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg);
/*
* Complete all device write before actually disabling uartclk.
* Hence mb() requires here.
*/
mb();
mutex_unlock(&msm_uport->clk_mutex);
msm_uport->rx.buffer_pending = NONE_PENDING;
MSM_HS_DBG("%s(): tx, rx events complete", __func__);
msm_hs_clock_unvote(msm_uport);
if (msm_uport->clk_state != MSM_HS_CLK_OFF) {
/* to balance clk_state */
msm_hs_clock_unvote(msm_uport);
}
pm_runtime_disable(uport->dev);
msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
dma_unmap_single(uport->dev, msm_uport->tx.dma_base,
UART_XMIT_SIZE, DMA_TO_DEVICE);
/* Free the interrupt */
free_irq(uport->irq, msm_uport);
if (use_low_power_wakeup(msm_uport))
free_irq(msm_uport->wakeup.irq, msm_uport);
msm_hs_unconfig_uart_gpios(uport);
}
static void __exit msm_serial_hs_exit(void)
{
MSM_HS_INFO("msm_serial_hs module removed\n");
debugfs_remove_recursive(debug_base);
platform_driver_unregister(&msm_serial_hs_platform_driver);
uart_unregister_driver(&msm_hs_driver);
}
static int msm_hs_runtime_idle(struct device *dev)
{
/*
* returning success from idle results in runtime suspend to be
* called
*/
return 0;
}
static int msm_hs_runtime_resume(struct device *dev)
{
struct platform_device *pdev = container_of(dev, struct
platform_device, dev);
struct msm_hs_port *msm_uport = get_matching_hs_port(pdev);
int ret;
/* This check should not fail
* During probe, we set uport->line to either pdev->id or userid */
if (msm_uport) {
msm_hs_request_clock_on(&msm_uport->uport);
if (msm_uport->use_pinctrl) {
ret = pinctrl_select_state(msm_uport->pinctrl,
msm_uport->gpio_state_active);
if (ret)
MSM_HS_ERR("%s(): error select active state",
__func__);
}
}
return 0;
}
static int msm_hs_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = container_of(dev, struct
platform_device, dev);
struct msm_hs_port *msm_uport = get_matching_hs_port(pdev);
int ret;
/* This check should not fail
* During probe, we set uport->line to either pdev->id or userid */
if (msm_uport) {
msm_hs_request_clock_off(&msm_uport->uport);
if (msm_uport->use_pinctrl) {
ret = pinctrl_select_state(msm_uport->pinctrl,
msm_uport->gpio_state_suspend);
if (ret)
MSM_HS_ERR("%s(): error select suspend state",
__func__);
}
}
return 0;
}
static const struct dev_pm_ops msm_hs_dev_pm_ops = {
.runtime_suspend = msm_hs_runtime_suspend,
.runtime_resume = msm_hs_runtime_resume,
.runtime_idle = msm_hs_runtime_idle,
};
static struct platform_driver msm_serial_hs_platform_driver = {
.probe = msm_hs_probe,
.remove = msm_hs_remove,
.driver = {
.name = "msm_serial_hs",
.pm = &msm_hs_dev_pm_ops,
.of_match_table = msm_hs_match_table,
},
};
static struct uart_driver msm_hs_driver = {
.owner = THIS_MODULE,
.driver_name = "msm_serial_hs",
.dev_name = "ttyHS",
.nr = UARTDM_NR,
.cons = 0,
};
static struct uart_ops msm_hs_ops = {
.tx_empty = msm_hs_tx_empty,
.set_mctrl = msm_hs_set_mctrl_locked,
.get_mctrl = msm_hs_get_mctrl_locked,
.stop_tx = msm_hs_stop_tx_locked,
.start_tx = msm_hs_start_tx_locked,
.stop_rx = msm_hs_stop_rx_locked,
.enable_ms = msm_hs_enable_ms_locked,
.break_ctl = msm_hs_break_ctl,
.startup = msm_hs_startup,
.shutdown = msm_hs_shutdown,
.set_termios = msm_hs_set_termios,
.type = msm_hs_type,
.config_port = msm_hs_config_port,
.flush_buffer = NULL,
.ioctl = msm_hs_ioctl,
};
module_init(msm_serial_hs_init);
module_exit(msm_serial_hs_exit);
MODULE_DESCRIPTION("High Speed UART Driver for the MSM chipset");
MODULE_VERSION("1.2");
MODULE_LICENSE("GPL v2");