blob: 5605b838189262646f53d288c2b69c5ee6d7476b [file] [log] [blame] [edit]
/*
* Copyright (c) 2015, 2017-2019, The Linux Foundation. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/clk-provider.h>
#include <linux/regmap.h>
#include <linux/delay.h>
#include <linux/sched/clock.h>
#include "clk-alpha-pll.h"
#include "common.h"
#include "clk-debug.h"
#define PLL_MODE 0x00
#define PLL_OUTCTRL BIT(0)
#define PLL_BYPASSNL BIT(1)
#define PLL_RESET_N BIT(2)
#define PLL_OFFLINE_REQ BIT(7)
#define PLL_LOCK_COUNT_SHIFT 8
#define PLL_LOCK_COUNT_MASK 0x3f
#define PLL_BIAS_COUNT_SHIFT 14
#define PLL_BIAS_COUNT_MASK 0x3f
#define PLL_BIAS_COUNT_VAL 0x6
#define PLL_LATCH_INTERFACE BIT(11)
#define PLL_VOTE_FSM_ENA BIT(20)
#define PLL_FSM_ENA BIT(20)
#define PLL_VOTE_FSM_RESET BIT(21)
#define PLL_UPDATE BIT(22)
#define PLL_HW_UPDATE_LOGIC_BYPASS BIT(23)
#define PLL_ALPHA_EN BIT(24)
#define PLL_OFFLINE_ACK BIT(28)
#define PLL_ACK_LATCH BIT(29)
#define PLL_ACTIVE_FLAG BIT(30)
#define PLL_LOCK_DET BIT(31)
#define PLL_L_VAL 0x04
#define PLL_ALPHA_VAL 0x08
#define PLL_ALPHA_VAL_U 0x0c
#define PLL_USER_CTL 0x10
#define PLL_POST_DIV_SHIFT 8
#define PLL_ODD_POST_DIV_SHIFT 15
#define PLL_POST_DIV_MASK 0xf
#define PLL_ODD_POST_DIV_MASK 0x7
#define PLL_ALPHA_EN BIT(24)
#define PLL_VCO_SHIFT 20
#define PLL_VCO_MASK 0x3
#define PLL_USER_CTL_U 0x14
#define PLL_CONFIG_CTL 0x18
#define PLL_CONFIG_CTL_U 0x20
#define PLL_TEST_CTL 0x1c
#define PLL_TEST_CTL_U 0x20
#define PLL_STATUS 0x24
/*
* Even though 40 bits are present, use only 32 for ease of calculation.
*/
#define ALPHA_REG_BITWIDTH 40
#define ALPHA_BITWIDTH 32
#define ALPHA_16BIT_MASK 0xffff
#define ALPHA_REG_16BITWIDTH 16
#define ALPHA_16_BIT_PLL_RATE_MARGIN 500
/* TRION PLL specific settings and offsets */
#define TRION_PLL_CAL_L_VAL 0x8
#define TRION_PLL_USER_CTL 0xc
#define TRION_PLL_USER_CTL_U 0x10
#define TRION_PLL_USER_CTL_U1 0x14
#define TRION_PLL_CONFIG_CTL 0x18
#define TRION_PLL_CONFIG_CTL_U 0x1c
#define TRION_PLL_CONFIG_CTL_U1 0x20
#define TRION_PLL_TEST_CTL 0x24
#define TRION_PLL_TEST_CTL_U 0x28
#define TRION_PLL_TEST_CTL_U1 0x2c
#define TRION_PLL_OPMODE 0x38
#define TRION_PLL_ALPHA_VAL 0x40
#define TRION_PLL_STATUS 0x30
#define TRION_PLL_CAL_VAL 0x44
#define TRION_PLL_STANDBY 0x0
#define TRION_PLL_RUN 0x1
#define TRION_PLL_OUT_MASK 0x7
#define TRION_PCAL_DONE BIT(26)
#define TRION_PLL_ACK_LATCH BIT(29)
#define TRION_PLL_UPDATE BIT(22)
#define TRION_PLL_HW_UPDATE_LOGIC_BYPASS BIT(23)
#define XO_RATE 19200000
/* REGERA PLL specific settings and offsets */
#define REGERA_PLL_USER_CTL 0xc
#define REGERA_PLL_CONFIG_CTL 0x10
#define REGERA_PLL_CONFIG_CTL_U 0x14
#define REGERA_PLL_CONFIG_CTL_U1 0x18
#define REGERA_PLL_TEST_CTL 0x1c
#define REGERA_PLL_TEST_CTL_U 0x20
#define REGERA_PLL_TEST_CTL_U1 0x24
#define REGERA_PLL_OPMODE 0x28
#define REGERA_PLL_OFF 0x0
#define REGERA_PLL_RUN 0x1
#define REGERA_PLL_OUT_MASK 0x9
/* FABIA PLL specific settings and offsets */
#define FABIA_CAL_L_VAL 0x8
#define FABIA_USER_CTL_LO 0xc
#define FABIA_USER_CTL_HI 0x10
#define FABIA_CONFIG_CTL_LO 0x14
#define FABIA_CONFIG_CTL_HI 0x18
#define FABIA_TEST_CTL_LO 0x1c
#define FABIA_TEST_CTL_HI 0x20
#define FABIA_OPMODE 0x2c
#define FABIA_FRAC_VAL 0x38
#define FABIA_PLL_CAL_L_VAL 0x3f
#define FABIA_PLL_STANDBY 0x0
#define FABIA_PLL_RUN 0x1
#define FABIA_PLL_OUT_MASK 0x7
#define FABIA_PLL_ACK_LATCH BIT(29)
#define FABIA_PLL_UPDATE BIT(22)
#define FABIA_PLL_HW_UPDATE_LOGIC_BYPASS BIT(23)
/* AGERA PLL specific settings and offsets */
#define AGERA_PLL_USER_CTL 0xc
#define AGERA_PLL_CONFIG_CTL 0x10
#define AGERA_PLL_CONFIG_CTL_U 0x14
#define AGERA_PLL_TEST_CTL 0x18
#define AGERA_PLL_TEST_CTL_U 0x1c
#define AGERA_PLL_POST_DIV_MASK 0x3
/* LUCID PLL speficic settings and offsets */
#define LUCID_PLL_OFF_L_VAL 0x04
#define LUCID_PLL_OFF_CAL_L_VAL 0x08
#define LUCID_PLL_OFF_USER_CTL 0x0c
#define LUCID_PLL_OFF_USER_CTL_U 0x10
#define LUCID_PLL_OFF_USER_CTL_U1 0x14
#define LUCID_PLL_OFF_CONFIG_CTL 0x18
#define LUCID_PLL_OFF_CONFIG_CTL_U 0x1c
#define LUCID_PLL_OFF_CONFIG_CTL_U1 0x20
#define LUCID_PLL_OFF_TEST_CTL 0x24
#define LUCID_PLL_OFF_TEST_CTL_U 0x28
#define LUCID_PLL_OFF_TEST_CTL_U1 0x2c
#define LUCID_PLL_OFF_STATUS 0x30
#define LUCID_PLL_OFF_OPMODE 0x38
#define LUCID_PLL_OFF_ALPHA_VAL 0x40
#define LUCID_PLL_OFF_FRAC 0x40
#define LUCID_PLL_CAL_VAL 0x44
#define LUCID_PLL_STANDBY 0x0
#define LUCID_PLL_RUN 0x1
#define LUCID_PLL_OUT_MASK 0x7
#define LUCID_PCAL_DONE BIT(27)
#define LUCID_PLL_RATE_MARGIN 500
#define LUCID_PLL_ACK_LATCH BIT(29)
#define LUCID_PLL_UPDATE BIT(22)
#define LUCID_PLL_HW_UPDATE_LOGIC_BYPASS BIT(23)
#define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \
struct clk_alpha_pll, clkr)
#define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \
struct clk_alpha_pll_postdiv, clkr)
static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse,
const char *action)
{
u32 val, off;
int count;
int ret;
u64 time;
struct clk_hw *hw = &pll->clkr.hw;
const char *name = clk_hw_get_name(hw);
off = pll->offset;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return ret;
time = sched_clock();
for (count = 100; count > 0; count--) {
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return ret;
if (inverse && !(val & mask))
return 0;
else if ((val & mask) == mask)
return 0;
udelay(1);
}
time = sched_clock() - time;
pr_err("PLL lock bit detection total wait time: %lld ns", time);
WARN_CLK(hw->core, name, 1, "failed to %s!\n", action);
return -ETIMEDOUT;
}
#define wait_for_pll_enable_active(pll) \
wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable")
#define wait_for_pll_enable_lock(pll) \
wait_for_pll(pll, PLL_LOCK_DET, 0, "enable")
#define wait_for_pll_disable(pll) \
wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable")
#define wait_for_pll_offline(pll) \
wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline")
#define wait_for_regera_pll_freq_lock(pll) \
wait_for_pll(pll, PLL_LOCK_DET, 0, "lock after rate change")
#define wait_for_pll_latch_ack(pll) \
wait_for_pll(pll, PLL_ACK_LATCH, 0, "latch ack")
#define wait_for_pll_update(pll) \
wait_for_pll(pll, PLL_UPDATE, 1, "pll update")
int clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
u32 val, mask;
if (!config) {
pr_err("PLL configuration missing.\n");
return -EINVAL;
}
regmap_write(regmap, pll->offset + PLL_L_VAL, config->l);
regmap_write(regmap, pll->offset + PLL_ALPHA_VAL, config->alpha);
regmap_write(regmap, pll->offset + PLL_ALPHA_VAL_U, config->alpha_u);
if (config->config_ctl_val)
regmap_write(regmap, pll->offset + PLL_CONFIG_CTL,
config->config_ctl_val);
if (config->main_output_mask || config->aux_output_mask ||
config->aux2_output_mask || config->early_output_mask ||
config->vco_val || config->alpha_en_mask) {
val = config->main_output_mask;
val |= config->aux_output_mask;
val |= config->aux2_output_mask;
val |= config->early_output_mask;
val |= config->vco_val;
val |= config->alpha_en_mask;
mask = config->main_output_mask;
mask |= config->aux_output_mask;
mask |= config->aux2_output_mask;
mask |= config->early_output_mask;
mask |= config->vco_mask;
mask |= config->alpha_en_mask;
regmap_update_bits(regmap, pll->offset + PLL_USER_CTL,
mask, val);
}
if (config->post_div_mask) {
mask = config->post_div_mask;
val = config->post_div_val;
regmap_update_bits(regmap, pll->offset + PLL_USER_CTL,
mask, val);
}
/* Do not bypass the latch interface */
if (pll->flags & SUPPORTS_SLEW)
regmap_update_bits(regmap, pll->offset + PLL_USER_CTL_U,
PLL_LATCH_INTERFACE, (u32)~PLL_LATCH_INTERFACE);
if (pll->flags & SUPPORTS_DYNAMIC_UPDATE) {
regmap_update_bits(regmap, pll->offset + PLL_MODE,
PLL_HW_UPDATE_LOGIC_BYPASS,
PLL_HW_UPDATE_LOGIC_BYPASS);
}
if (config->test_ctl_mask) {
mask = config->test_ctl_mask;
val = config->test_ctl_val;
regmap_update_bits(regmap, pll->offset + PLL_TEST_CTL,
mask, val);
}
if (config->test_ctl_hi_mask) {
mask = config->test_ctl_hi_mask;
val = config->test_ctl_hi_val;
regmap_update_bits(regmap, pll->offset + PLL_TEST_CTL_U,
mask, val);
}
if (pll->flags & SUPPORTS_FSM_MODE)
qcom_pll_set_fsm_mode(regmap, pll->offset + PLL_MODE,
6, 0);
return 0;
}
static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw)
{
int ret;
u32 val, off;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
off = pll->offset;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return ret;
val |= PLL_FSM_ENA;
if (pll->flags & SUPPORTS_OFFLINE_REQ)
val &= ~PLL_OFFLINE_REQ;
ret = regmap_write(pll->clkr.regmap, off + PLL_MODE, val);
if (ret)
return ret;
/* Make sure enable request goes through before waiting for update */
mb();
return wait_for_pll_enable_active(pll);
}
static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw)
{
int ret;
u32 val, off;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
off = pll->offset;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return;
if (pll->flags & SUPPORTS_OFFLINE_REQ) {
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_OFFLINE_REQ, PLL_OFFLINE_REQ);
if (ret)
return;
ret = wait_for_pll_offline(pll);
if (ret)
return;
}
/* Disable hwfsm */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_FSM_ENA, 0);
if (ret)
return;
wait_for_pll_disable(pll);
}
static int pll_is_enabled(struct clk_hw *hw, u32 mask)
{
int ret;
u32 val, off;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
off = pll->offset;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return ret;
return !!(val & mask);
}
static int clk_alpha_pll_hwfsm_is_enabled(struct clk_hw *hw)
{
return pll_is_enabled(hw, PLL_ACTIVE_FLAG);
}
static int clk_alpha_pll_is_enabled(struct clk_hw *hw)
{
return pll_is_enabled(hw, PLL_LOCK_DET);
}
static int clk_alpha_pll_enable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, mask, off, l_val;
off = pll->offset;
mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & PLL_VOTE_FSM_ENA) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
ret = wait_for_pll_enable_active(pll);
if (ret == 0)
if (pll->flags & SUPPORTS_FSM_VOTE)
*pll->soft_vote |= (pll->soft_vote_mask);
return ret;
}
/* Skip if already enabled */
if ((val & mask) == mask)
return 0;
ret = regmap_read(pll->clkr.regmap, off + PLL_L_VAL, &l_val);
if (ret)
return ret;
/* PLL has lost it's L value, needs reconfiguration */
if (!l_val) {
if (pll->type == AGERA_PLL)
ret = clk_agera_pll_configure(pll, pll->clkr.regmap,
pll->config);
else
ret = clk_alpha_pll_configure(pll, pll->clkr.regmap,
pll->config);
if (ret) {
pr_err("Failed to configure %s\n", clk_hw_get_name(hw));
return ret;
}
pr_warn("%s: PLL configuration lost, reconfiguration of PLL done.\n",
clk_hw_get_name(hw));
}
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_BYPASSNL, PLL_BYPASSNL);
if (ret)
return ret;
/*
* H/W requires a 5us delay between disabling the bypass and
* de-asserting the reset.
*/
mb();
udelay(5);
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_RESET_N, PLL_RESET_N);
if (ret)
return ret;
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_OUTCTRL, PLL_OUTCTRL);
/* Ensure that the write above goes through before returning. */
mb();
return ret;
}
static void clk_alpha_pll_disable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, mask, off;
off = pll->offset;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & PLL_VOTE_FSM_ENA) {
if (pll->flags & SUPPORTS_FSM_VOTE) {
*pll->soft_vote &= ~(pll->soft_vote_mask);
if (!*pll->soft_vote)
clk_disable_regmap(hw);
} else
clk_disable_regmap(hw);
return;
}
mask = PLL_OUTCTRL;
regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, mask, 0);
/* Delay of 2 output clock ticks required until output is disabled */
mb();
udelay(1);
mask = PLL_RESET_N | PLL_BYPASSNL;
regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, mask, 0);
}
static unsigned long alpha_pll_calc_rate(const struct clk_alpha_pll *pll,
u64 prate, u32 l, u32 a)
{
int alpha_bw = ALPHA_BITWIDTH;
if (pll->type == TRION_PLL || pll->type == REGERA_PLL
|| pll->type == FABIA_PLL || pll->type == AGERA_PLL
|| pll->type == LUCID_PLL)
alpha_bw = ALPHA_REG_16BITWIDTH;
return (prate * l) + ((prate * a) >> alpha_bw);
}
static unsigned long
alpha_pll_round_rate(const struct clk_alpha_pll *pll, unsigned long rate,
unsigned long prate, u32 *l, u64 *a)
{
u64 remainder;
u64 quotient;
int alpha_bw = ALPHA_BITWIDTH;
/*
* The PLLs parent rate is zero probably since the parent hasn't
* registered yet. Return early with the requested rate.
*/
if (!prate) {
pr_warn("PLLs parent rate hasn't been initialized.\n");
return rate;
}
quotient = rate;
remainder = do_div(quotient, prate);
*l = quotient;
if (!remainder) {
*a = 0;
return rate;
}
/*
* Trion/Regera/Fabia PLLs only have 16 bits to program
* the fractional divider.
*/
if (pll->type == TRION_PLL || pll->type == REGERA_PLL
|| pll->type == FABIA_PLL || pll->type == AGERA_PLL
|| pll->type == LUCID_PLL)
alpha_bw = ALPHA_REG_16BITWIDTH;
/* Upper ALPHA_BITWIDTH bits of Alpha */
quotient = remainder << alpha_bw;
remainder = do_div(quotient, prate);
if (remainder)
quotient++;
*a = quotient;
return alpha_pll_calc_rate(pll, prate, *l, *a);
}
static const struct pll_vco *
alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate)
{
const struct pll_vco *v = pll->vco_table;
const struct pll_vco *end = v + pll->num_vco;
for (; v < end; v++)
if (rate >= v->min_freq && rate <= v->max_freq)
return v;
return NULL;
}
static unsigned long
clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
u32 l, low, high, ctl;
u64 a = 0, prate = parent_rate;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 off = pll->offset;
regmap_read(pll->clkr.regmap, off + PLL_L_VAL, &l);
regmap_read(pll->clkr.regmap, off + PLL_USER_CTL, &ctl);
if (ctl & PLL_ALPHA_EN) {
regmap_read(pll->clkr.regmap, off + PLL_ALPHA_VAL, &low);
if (pll->flags & SUPPORTS_16BIT_ALPHA) {
a = low & ALPHA_16BIT_MASK;
} else {
regmap_read(pll->clkr.regmap, off + PLL_ALPHA_VAL_U,
&high);
a = (u64)high << 32 | low;
a >>= ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH;
}
}
return alpha_pll_calc_rate(pll, prate, l, a);
}
static int clk_alpha_pll_dynamic_update(struct clk_alpha_pll *pll)
{
int ret;
u32 off = pll->offset;
/* Latch the input to the PLL */
regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_UPDATE, PLL_UPDATE);
/* Wait for 2 reference cycle before checking ACK bit */
udelay(1);
ret = wait_for_pll_latch_ack(pll);
if (ret)
return ret;
/* Return latch input to 0 */
regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_UPDATE, (u32)~PLL_UPDATE);
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
return 0;
}
static const struct pll_vco_data
*find_vco_data(const struct pll_vco_data *data,
unsigned long rate, size_t size)
{
int i;
if (!data)
return NULL;
for (i = 0; i < size; i++) {
if (rate == data[i].freq)
return &data[i];
}
return &data[i - 1];
}
static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
const struct pll_vco *vco;
const struct pll_vco_data *data;
bool is_enabled;
u32 l, l_val, off = pll->offset;
int ret;
u64 a;
unsigned long rrate;
rrate = alpha_pll_round_rate(pll, rate, prate, &l, &a);
if (rrate != rate) {
pr_err("alpha_pll: Call clk_set_rate with rounded rates!\n");
return -EINVAL;
}
vco = alpha_pll_find_vco(pll, rrate);
if (!vco) {
pr_err("alpha pll not in a valid vco range\n");
return -EINVAL;
}
is_enabled = clk_hw_is_enabled(hw);
/*
* For PLLs that do not support dynamic programming (dynamic_update
* is not set), ensure PLL is off before changing rate. For
* optimization reasons, assume no downstream clock is actively
* using it.
*/
if (is_enabled && !(pll->flags & SUPPORTS_DYNAMIC_UPDATE))
hw->init->ops->disable(hw);
ret = regmap_read(pll->clkr.regmap, off + PLL_L_VAL, &l_val);
if (ret)
return ret;
/* PLL has lost it's L value, needs reconfiguration */
if (!l_val) {
if (pll->type == AGERA_PLL)
ret = clk_agera_pll_configure(pll, pll->clkr.regmap,
pll->config);
else
ret = clk_alpha_pll_configure(pll, pll->clkr.regmap,
pll->config);
if (ret) {
pr_err("Failed to configure %s\n", clk_hw_get_name(hw));
return ret;
}
pr_warn("%s: PLL configuration lost, reconfiguration of PLL done.\n",
clk_hw_get_name(hw));
}
regmap_write(pll->clkr.regmap, off + PLL_L_VAL, l);
if (pll->flags & SUPPORTS_16BIT_ALPHA) {
regmap_write(pll->clkr.regmap, off + PLL_ALPHA_VAL,
a & ALPHA_16BIT_MASK);
} else {
a <<= (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH);
regmap_write(pll->clkr.regmap, off + PLL_ALPHA_VAL, a);
regmap_write(pll->clkr.regmap, off + PLL_ALPHA_VAL_U, a >> 32);
}
regmap_update_bits(pll->clkr.regmap, off + PLL_USER_CTL,
PLL_VCO_MASK << PLL_VCO_SHIFT,
vco->val << PLL_VCO_SHIFT);
data = find_vco_data(pll->vco_data, rate, pll->num_vco_data);
if (data) {
if (data->freq == rate)
regmap_update_bits(pll->clkr.regmap, off + PLL_USER_CTL,
PLL_POST_DIV_MASK << PLL_POST_DIV_SHIFT,
data->post_div_val << PLL_POST_DIV_SHIFT);
else
regmap_update_bits(pll->clkr.regmap, off + PLL_USER_CTL,
PLL_POST_DIV_MASK << PLL_POST_DIV_SHIFT,
0x0 << PLL_VCO_SHIFT);
}
regmap_update_bits(pll->clkr.regmap, off + PLL_USER_CTL, PLL_ALPHA_EN,
PLL_ALPHA_EN);
if (is_enabled && (pll->flags & SUPPORTS_DYNAMIC_UPDATE))
clk_alpha_pll_dynamic_update(pll);
if (is_enabled && !(pll->flags & SUPPORTS_DYNAMIC_UPDATE))
hw->init->ops->enable(hw);
return 0;
}
static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l;
u64 a;
unsigned long min_freq, max_freq;
if (rate < pll->min_supported_freq)
return pll->min_supported_freq;
rate = alpha_pll_round_rate(pll, rate, *prate, &l, &a);
if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
return rate;
min_freq = pll->vco_table[0].min_freq;
max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
return clamp(rate, min_freq, max_freq);
}
static void print_pll_registers(struct seq_file *f, struct clk_hw *hw,
struct clk_register_data *pll_regs, int size,
struct clk_register_data *pll_vote_reg)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
int i, val;
for (i = 0; i < size; i++) {
regmap_read(pll->clkr.regmap, pll->offset + pll_regs[i].offset,
&val);
clock_debug_output(f, false, "%20s: 0x%.8x\n", pll_regs[i].name,
val);
}
regmap_read(pll->clkr.regmap, pll->offset + PLL_MODE, &val);
if (val & PLL_FSM_ENA) {
regmap_read(pll->clkr.regmap, pll->clkr.enable_reg +
pll_vote_reg->offset, &val);
clock_debug_output(f, false, "%20s: 0x%.8x\n",
pll_vote_reg->name, val);
}
}
static void clk_alpha_pll_list_registers(struct seq_file *f, struct clk_hw *hw)
{
static struct clk_register_data pll_regs[] = {
{"PLL_MODE", 0x0},
{"PLL_L_VAL", 0x4},
{"PLL_ALPHA_VAL", 0x8},
{"PLL_ALPHA_VAL_U", 0xC},
{"PLL_USER_CTL", 0x10},
{"PLL_USER_CTL_U", 0x14},
{"PLL_CONFIG_CTL", 0x18},
{"PLL_TEST_CTL", 0x1c},
{"PLL_TEST_CTL_U", 0x20},
{"PLL_STATUS", 0x24},
};
static struct clk_register_data pll_vote_reg = {
"APSS_PLL_VOTE", 0x0
};
print_pll_registers(f, hw, pll_regs, ARRAY_SIZE(pll_regs),
&pll_vote_reg);
}
static int trion_pll_is_enabled(struct clk_alpha_pll *pll,
struct regmap *regmap)
{
u32 mode_regval, opmode_regval;
int ret;
ret = regmap_read(regmap, pll->offset + PLL_MODE, &mode_regval);
ret |= regmap_read(regmap, pll->offset + TRION_PLL_OPMODE,
&opmode_regval);
if (ret)
return 0;
return ((opmode_regval & TRION_PLL_RUN) && (mode_regval & PLL_OUTCTRL));
}
int clk_trion_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
int ret = 0;
if (!config) {
pr_err("PLL configuration missing.\n");
return -EINVAL;
}
if (pll->inited)
return ret;
if (trion_pll_is_enabled(pll, regmap)) {
pr_warn("PLL is already enabled. Skipping configuration.\n");
pll->inited = true;
return ret;
}
if (config->l)
regmap_write(regmap, pll->offset + PLL_L_VAL,
config->l);
regmap_write(regmap, pll->offset + TRION_PLL_CAL_L_VAL,
TRION_PLL_CAL_VAL);
if (config->alpha)
regmap_write(regmap, pll->offset + TRION_PLL_ALPHA_VAL,
config->alpha);
if (config->config_ctl_val)
regmap_write(regmap, pll->offset + TRION_PLL_CONFIG_CTL,
config->config_ctl_val);
if (config->config_ctl_hi_val)
regmap_write(regmap, pll->offset + TRION_PLL_CONFIG_CTL_U,
config->config_ctl_hi_val);
if (config->config_ctl_hi1_val)
regmap_write(regmap, pll->offset + TRION_PLL_CONFIG_CTL_U1,
config->config_ctl_hi1_val);
if (config->user_ctl_val)
regmap_write(regmap, pll->offset + TRION_PLL_USER_CTL,
config->user_ctl_val);
if (config->user_ctl_hi_val)
regmap_write(regmap, pll->offset + TRION_PLL_USER_CTL_U,
config->user_ctl_hi_val);
if (config->user_ctl_hi1_val)
regmap_write(regmap, pll->offset + TRION_PLL_USER_CTL_U1,
config->user_ctl_hi1_val);
if (config->test_ctl_val)
regmap_write(regmap, pll->offset + TRION_PLL_TEST_CTL,
config->test_ctl_val);
if (config->test_ctl_hi_val)
regmap_write(regmap, pll->offset + TRION_PLL_TEST_CTL_U,
config->test_ctl_hi_val);
if (config->test_ctl_hi1_val)
regmap_write(regmap, pll->offset + TRION_PLL_TEST_CTL_U1,
config->test_ctl_hi1_val);
regmap_update_bits(regmap, pll->offset + PLL_MODE,
TRION_PLL_HW_UPDATE_LOGIC_BYPASS,
TRION_PLL_HW_UPDATE_LOGIC_BYPASS);
/* Disable PLL output */
ret = regmap_update_bits(regmap, pll->offset + PLL_MODE,
PLL_OUTCTRL, 0);
if (ret)
return ret;
/* Set operation mode to OFF */
regmap_write(regmap, pll->offset + TRION_PLL_OPMODE,
TRION_PLL_STANDBY);
/* PLL should be in OFF mode before continuing */
wmb();
/* Place the PLL in STANDBY mode */
ret = regmap_update_bits(regmap, pll->offset + PLL_MODE,
PLL_RESET_N, PLL_RESET_N);
if (ret)
return ret;
pll->inited = true;
return 0;
}
static int clk_trion_pll_enable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, off = pll->offset, l_val, cal_val;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & PLL_VOTE_FSM_ENA) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable_active(pll);
}
ret = regmap_read(pll->clkr.regmap, pll->offset + PLL_L_VAL, &l_val);
if (ret)
return ret;
ret = regmap_read(pll->clkr.regmap, pll->offset + TRION_PLL_CAL_L_VAL,
&cal_val);
if (ret)
return ret;
/* PLL has lost it's L or CAL value, needs reconfiguration */
if (!l_val || !cal_val)
pll->inited = false;
if (unlikely(!pll->inited)) {
ret = clk_trion_pll_configure(pll, pll->clkr.regmap,
pll->config);
if (ret) {
pr_err("Failed to configure %s\n", clk_hw_get_name(hw));
return ret;
}
pr_warn("%s: PLL configuration lost, reconfiguration of PLL done.\n",
clk_hw_get_name(hw));
}
/* Set operation mode to RUN */
regmap_write(pll->clkr.regmap, off + TRION_PLL_OPMODE, TRION_PLL_RUN);
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
/* Enable the PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, off + TRION_PLL_USER_CTL,
TRION_PLL_OUT_MASK, TRION_PLL_OUT_MASK);
if (ret)
return ret;
/* Enable the global PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_OUTCTRL, PLL_OUTCTRL);
if (ret)
return ret;
/* Ensure that the write above goes through before returning. */
mb();
return ret;
}
static void clk_trion_pll_disable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, off = pll->offset;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & PLL_VOTE_FSM_ENA) {
clk_disable_regmap(hw);
return;
}
/* Disable the global PLL output */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_OUTCTRL, 0);
if (ret)
return;
/* Disable the PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, off + TRION_PLL_USER_CTL,
TRION_PLL_OUT_MASK, 0);
if (ret)
return;
/* Place the PLL mode in STANDBY */
regmap_write(pll->clkr.regmap, off + TRION_PLL_OPMODE,
TRION_PLL_STANDBY);
regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, PLL_RESET_N,
PLL_RESET_N);
}
/*
* The Trion PLL requires a power-on self-calibration which happens when the
* PLL comes out of reset. The calibration is performed at an output frequency
* of ~1300 MHz which means that SW will have to vote on a voltage that's
* equal to or greater than SVS_L1 on the corresponding rail. Since this is not
* feasable to do in the atomic enable path, temporarily bring up the PLL here,
* let it calibrate, and place it in standby before returning.
*/
static int clk_trion_pll_prepare(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 regval;
int ret = 0;
/* Return early if calibration is not needed. */
regmap_read(pll->clkr.regmap, pll->offset + TRION_PLL_STATUS, &regval);
if (regval & TRION_PCAL_DONE)
return ret;
ret = clk_vote_rate_vdd(hw->core, TRION_PLL_CAL_VAL * XO_RATE);
if (ret)
return ret;
ret = clk_trion_pll_enable(hw);
if (ret)
goto ret_path;
clk_trion_pll_disable(hw);
ret_path:
clk_unvote_rate_vdd(hw->core, TRION_PLL_CAL_VAL * XO_RATE);
return ret;
}
static unsigned long
clk_trion_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
u32 l, frac;
u64 prate = parent_rate;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 off = pll->offset;
regmap_read(pll->clkr.regmap, off + PLL_L_VAL, &l);
regmap_read(pll->clkr.regmap, off + TRION_PLL_ALPHA_VAL, &frac);
return alpha_pll_calc_rate(pll, prate, l, frac);
}
static int clk_trion_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
unsigned long rrate;
u32 regval, l, off = pll->offset, cal_val;
u64 a;
int ret;
ret = regmap_read(pll->clkr.regmap, pll->offset + PLL_L_VAL, &l);
if (ret)
return ret;
ret = regmap_read(pll->clkr.regmap, pll->offset + TRION_PLL_CAL_L_VAL,
&cal_val);
if (ret)
return ret;
/* PLL has lost it's L or CAL value, needs reconfiguration */
if (!l || !cal_val)
pll->inited = false;
if (unlikely(!pll->inited)) {
ret = clk_trion_pll_configure(pll, pll->clkr.regmap,
pll->config);
if (ret) {
pr_err("Failed to configure %s\n", clk_hw_get_name(hw));
return ret;
}
pr_warn("%s: PLL configuration lost, reconfiguration of PLL done.\n",
clk_hw_get_name(hw));
}
rrate = alpha_pll_round_rate(pll, rate, prate, &l, &a);
/*
* Due to a limited number of bits for fractional rate programming, the
* rounded up rate could be marginally higher than the requested rate.
*/
if (rrate > (rate + ALPHA_16_BIT_PLL_RATE_MARGIN) || rrate < rate) {
pr_err("Call set rate on the PLL with rounded rates!\n");
return -EINVAL;
}
regmap_write(pll->clkr.regmap, off + PLL_L_VAL, l);
regmap_write(pll->clkr.regmap, off + TRION_PLL_ALPHA_VAL, a);
/* Latch the PLL input */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
TRION_PLL_UPDATE, TRION_PLL_UPDATE);
if (ret)
return ret;
/* Wait for 2 reference cycles before checking the ACK bit. */
udelay(1);
regmap_read(pll->clkr.regmap, off + PLL_MODE, &regval);
if (!(regval & TRION_PLL_ACK_LATCH)) {
WARN(1, "PLL latch failed. Output may be unstable!\n");
return -EINVAL;
}
/* Return the latch input to 0 */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
TRION_PLL_UPDATE, 0);
if (ret)
return ret;
if (clk_hw_is_enabled(hw)) {
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
}
/* Wait for PLL output to stabilize */
udelay(100);
return 0;
}
static int clk_trion_pll_is_enabled(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
return trion_pll_is_enabled(pll, pll->clkr.regmap);
}
static void clk_trion_pll_list_registers(struct seq_file *f, struct clk_hw *hw)
{
static struct clk_register_data pll_regs[] = {
{"PLL_MODE", 0x0},
{"PLL_L_VAL", 0x4},
{"PLL_CAL_L_VAL", 0x8},
{"PLL_USER_CTL", 0xC},
{"PLL_CONFIG_CTL", 0x18},
{"PLL_OPMODE", 0x38},
{"PLL_ALPHA_VAL", 0x40},
};
static struct clk_register_data pll_vote_reg = {
"APSS_PLL_VOTE", 0x0
};
print_pll_registers(f, hw, pll_regs, ARRAY_SIZE(pll_regs),
&pll_vote_reg);
}
int clk_regera_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
u32 mode_regval;
int ret = 0;
if (!config) {
pr_err("PLL configuration missing.\n");
return -EINVAL;
}
if (pll->inited)
return ret;
ret = regmap_read(regmap, pll->offset + PLL_MODE, &mode_regval);
if (ret)
return ret;
if (mode_regval & PLL_LOCK_DET) {
pr_warn("PLL is already enabled. Skipping configuration.\n");
pll->inited = true;
return 0;
}
if (config->alpha)
regmap_write(regmap, pll->offset + PLL_ALPHA_VAL,
config->alpha);
if (config->l)
regmap_write(regmap, pll->offset + PLL_L_VAL, config->l);
if (config->config_ctl_val)
regmap_write(regmap, pll->offset + REGERA_PLL_CONFIG_CTL,
config->config_ctl_val);
if (config->config_ctl_hi_val)
regmap_write(regmap, pll->offset + REGERA_PLL_CONFIG_CTL_U,
config->config_ctl_hi_val);
if (config->config_ctl_hi1_val)
regmap_write(regmap, pll->offset + REGERA_PLL_CONFIG_CTL_U1,
config->config_ctl_hi1_val);
if (config->user_ctl_val)
regmap_write(regmap, pll->offset + REGERA_PLL_USER_CTL,
config->user_ctl_val);
if (config->test_ctl_val)
regmap_write(regmap, pll->offset + REGERA_PLL_TEST_CTL,
config->test_ctl_val);
if (config->test_ctl_hi_val)
regmap_write(regmap, pll->offset + REGERA_PLL_TEST_CTL_U,
config->test_ctl_hi_val);
if (config->test_ctl_hi1_val)
regmap_write(regmap, pll->offset + REGERA_PLL_TEST_CTL_U1,
config->test_ctl_hi1_val);
/* Set operation mode to OFF */
regmap_write(regmap, pll->offset + REGERA_PLL_OPMODE, REGERA_PLL_OFF);
/* PLL should be in OFF mode before continuing */
wmb();
pll->inited = true;
return 0;
}
static int clk_regera_pll_enable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, off = pll->offset, l_val;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & PLL_VOTE_FSM_ENA) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable_active(pll);
}
ret = regmap_read(pll->clkr.regmap, off + PLL_L_VAL, &l_val);
if (ret)
return ret;
/* PLL has lost it's L value, needs reconfiguration */
if (!l_val)
pll->inited = false;
if (unlikely(!pll->inited)) {
ret = clk_regera_pll_configure(pll, pll->clkr.regmap,
pll->config);
if (ret) {
pr_err("Failed to configure %s\n", clk_hw_get_name(hw));
return ret;
}
pr_warn("%s: PLL configuration lost, reconfiguration of PLL done.\n",
clk_hw_get_name(hw));
}
/* Get the PLL out of bypass mode */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_BYPASSNL, PLL_BYPASSNL);
if (ret)
return ret;
/*
* H/W requires a 1us delay between disabling the bypass and
* de-asserting the reset.
*/
mb();
udelay(1);
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_RESET_N, PLL_RESET_N);
if (ret)
return ret;
/* Set operation mode to RUN */
regmap_write(pll->clkr.regmap, off + REGERA_PLL_OPMODE,
REGERA_PLL_RUN);
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
/* Enable the PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, off + REGERA_PLL_USER_CTL,
REGERA_PLL_OUT_MASK, REGERA_PLL_OUT_MASK);
if (ret)
return ret;
/* Enable the global PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_OUTCTRL, PLL_OUTCTRL);
if (ret)
return ret;
/* Ensure that the write above goes through before returning. */
mb();
return ret;
}
static void clk_regera_pll_disable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, mask, off = pll->offset;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & PLL_VOTE_FSM_ENA) {
clk_disable_regmap(hw);
return;
}
/* Disable the global PLL output */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_OUTCTRL, 0);
if (ret)
return;
/* Disable the PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, off + REGERA_PLL_USER_CTL,
REGERA_PLL_OUT_MASK, 0);
/* Put the PLL in bypass and reset */
mask = PLL_RESET_N | PLL_BYPASSNL;
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, mask, 0);
if (ret)
return;
/* Place the PLL mode in OFF state */
regmap_write(pll->clkr.regmap, off + REGERA_PLL_OPMODE,
REGERA_PLL_OFF);
}
static int clk_regera_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
unsigned long rrate;
u32 l, regval, off = pll->offset;
u64 a;
int ret;
ret = regmap_read(pll->clkr.regmap, off + PLL_L_VAL, &l);
if (ret)
return ret;
/* PLL has lost it's L value, needs reconfiguration */
if (!l)
pll->inited = false;
if (unlikely(!pll->inited)) {
ret = clk_regera_pll_configure(pll, pll->clkr.regmap,
pll->config);
if (ret) {
pr_err("Failed to configure %s\n", clk_hw_get_name(hw));
return ret;
}
pr_warn("%s: PLL configuration lost, reconfiguration of PLL done.\n",
clk_hw_get_name(hw));
}
rrate = alpha_pll_round_rate(pll, rate, prate, &l, &a);
/*
* Due to a limited number of bits for fractional rate programming, the
* rounded up rate could be marginally higher than the requested rate.
*/
if (rrate > (rate + ALPHA_16_BIT_PLL_RATE_MARGIN) || rrate < rate) {
pr_err("Requested rate (%lu) not matching the PLL's supported frequency (%lu)\n",
rate, rrate);
return -EINVAL;
}
regmap_write(pll->clkr.regmap, off + PLL_ALPHA_VAL, a);
regmap_write(pll->clkr.regmap, off + PLL_L_VAL, l);
/* Return early if the PLL is disabled */
ret = regmap_read(pll->clkr.regmap, off + REGERA_PLL_OPMODE, &regval);
if (ret)
return ret;
else if (regval == REGERA_PLL_OFF)
return 0;
/* Wait before polling for the frequency latch */
udelay(5);
ret = wait_for_regera_pll_freq_lock(pll);
if (ret)
return ret;
/* Wait for PLL output to stabilize */
udelay(100);
return 0;
}
static unsigned long
clk_regera_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
u32 l, frac;
u64 prate = parent_rate;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 off = pll->offset;
regmap_read(pll->clkr.regmap, off + PLL_L_VAL, &l);
regmap_read(pll->clkr.regmap, off + PLL_ALPHA_VAL, &frac);
return alpha_pll_calc_rate(pll, prate, l, frac);
}
static void clk_regera_pll_list_registers(struct seq_file *f, struct clk_hw *hw)
{
static struct clk_register_data pll_regs[] = {
{"PLL_MODE", 0x0},
{"PLL_L_VAL", 0x4},
{"PLL_ALPHA_VAL", 0x8},
{"PLL_USER_CTL", 0xC},
{"PLL_CONFIG_CTL", 0x10},
{"PLL_OPMODE", 0x28},
};
static struct clk_register_data pll_vote_reg = {
"APSS_PLL_VOTE", 0x0
};
print_pll_registers(f, hw, pll_regs, ARRAY_SIZE(pll_regs),
&pll_vote_reg);
}
const struct clk_ops clk_pll_sleep_vote_ops = {
.enable = clk_enable_regmap,
.disable = clk_disable_regmap,
.list_registers = clk_alpha_pll_list_registers,
.bus_vote = clk_debug_bus_vote,
};
EXPORT_SYMBOL(clk_pll_sleep_vote_ops);
const struct clk_ops clk_alpha_pll_ops = {
.enable = clk_alpha_pll_enable,
.disable = clk_alpha_pll_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = clk_alpha_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_alpha_pll_set_rate,
.list_registers = clk_alpha_pll_list_registers,
.bus_vote = clk_debug_bus_vote,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_ops);
const struct clk_ops clk_alpha_pll_hwfsm_ops = {
.enable = clk_alpha_pll_hwfsm_enable,
.disable = clk_alpha_pll_hwfsm_disable,
.is_enabled = clk_alpha_pll_hwfsm_is_enabled,
.recalc_rate = clk_alpha_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_alpha_pll_set_rate,
.list_registers = clk_alpha_pll_list_registers,
.bus_vote = clk_debug_bus_vote,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops);
const struct clk_ops clk_trion_pll_ops = {
.prepare = clk_trion_pll_prepare,
.enable = clk_trion_pll_enable,
.disable = clk_trion_pll_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = clk_trion_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_trion_pll_set_rate,
.list_registers = clk_trion_pll_list_registers,
.bus_vote = clk_debug_bus_vote,
};
EXPORT_SYMBOL_GPL(clk_trion_pll_ops);
const struct clk_ops clk_trion_fixed_pll_ops = {
.enable = clk_trion_pll_enable,
.disable = clk_trion_pll_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = clk_trion_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.list_registers = clk_trion_pll_list_registers,
.bus_vote = clk_debug_bus_vote,
};
EXPORT_SYMBOL_GPL(clk_trion_fixed_pll_ops);
const struct clk_ops clk_regera_pll_ops = {
.enable = clk_regera_pll_enable,
.disable = clk_regera_pll_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = clk_regera_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_regera_pll_set_rate,
.list_registers = clk_regera_pll_list_registers,
.bus_vote = clk_debug_bus_vote,
};
EXPORT_SYMBOL_GPL(clk_regera_pll_ops);
static unsigned long
clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
u32 ctl, user_ctl = PLL_USER_CTL, post_div_mask = PLL_POST_DIV_MASK;
u32 i, div = 0;
if (pll->type == AGERA_PLL) {
user_ctl = AGERA_PLL_USER_CTL;
post_div_mask = AGERA_PLL_POST_DIV_MASK;
}
if (pll->type == LUCID_PLL)
user_ctl = LUCID_PLL_OFF_USER_CTL;
regmap_read(pll->clkr.regmap, pll->offset + user_ctl, &ctl);
if (pll->postdiv == POSTDIV_EVEN) {
ctl >>= PLL_POST_DIV_SHIFT;
ctl &= post_div_mask;
return parent_rate >> fls(ctl);
}
ctl >>= PLL_ODD_POST_DIV_SHIFT;
if (pll->type == AGERA_PLL)
ctl &= post_div_mask;
else
ctl &= PLL_ODD_POST_DIV_MASK;
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].val == ctl) {
div = pll->post_div_table[i].div;
break;
}
}
if (div == 0)
div = 1;
return (parent_rate / div);
}
static const struct clk_div_table clk_alpha_div_table[] = {
{ 0x0, 1 },
{ 0x1, 2 },
{ 0x3, 4 },
{ 0x7, 8 },
{ 0xf, 16 },
{ }
};
static long
clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
const struct clk_div_table *postdiv_table = clk_alpha_div_table;
u8 flag = CLK_DIVIDER_POWER_OF_TWO;
if ((pll->postdiv == POSTDIV_ODD) && (pll->post_div_table)) {
postdiv_table = pll->post_div_table;
flag = CLK_DIVIDER_ROUND_CLOSEST;
}
return divider_round_rate(hw, rate, prate, postdiv_table, pll->width,
flag);
}
static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
int div;
u32 user_ctl = PLL_USER_CTL, post_div_mask = PLL_POST_DIV_MASK;
u32 post_div_shift = PLL_POST_DIV_SHIFT;
if (pll->type == AGERA_PLL) {
user_ctl = AGERA_PLL_USER_CTL;
post_div_mask = AGERA_PLL_POST_DIV_MASK;
}
/*
* Even postdiv : 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0
* Odd postdiv : 7 -> 0x7, 5 -> 0x5, 3 -> 0x3, 1 -> 0x0
*/
div = DIV_ROUND_UP_ULL((u64)parent_rate, rate);
if (pll->postdiv == POSTDIV_EVEN || div == 1)
div--;
if (pll->postdiv == POSTDIV_ODD) {
if (!(pll->type == AGERA_PLL))
post_div_shift = PLL_ODD_POST_DIV_SHIFT;
}
return regmap_update_bits(pll->clkr.regmap, pll->offset + user_ctl,
post_div_mask << post_div_shift,
div << post_div_shift);
}
const struct clk_ops clk_alpha_pll_postdiv_ops = {
.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
.round_rate = clk_alpha_pll_postdiv_round_rate,
.set_rate = clk_alpha_pll_postdiv_set_rate,
.bus_vote = clk_debug_bus_vote,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops);
static unsigned long clk_trion_pll_postdiv_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
u32 i, div = 1, val;
if (!pll->post_div_table) {
pr_err("Missing the post_div_table for the PLL\n");
return -EINVAL;
}
regmap_read(pll->clkr.regmap, pll->offset + TRION_PLL_USER_CTL, &val);
val >>= pll->post_div_shift;
val &= PLL_POST_DIV_MASK;
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].val == val) {
div = pll->post_div_table[i].div;
break;
}
}
return (parent_rate / div);
}
static long clk_trion_pll_postdiv_round_rate(struct clk_hw *hw,
unsigned long rate, unsigned long *prate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
if (!pll->post_div_table)
return -EINVAL;
return divider_round_rate(hw, rate, prate, pll->post_div_table,
pll->width, CLK_DIVIDER_ROUND_CLOSEST);
}
static int clk_trion_pll_postdiv_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
int i, val = 0, div, ret;
/*
* If the PLL is in FSM mode, then treat the set_rate callback
* as a no-operation.
*/
ret = regmap_read(pll->clkr.regmap, pll->offset + PLL_MODE, &val);
if (ret)
return ret;
if (val & PLL_VOTE_FSM_ENA)
return 0;
if (!pll->post_div_table) {
pr_err("Missing the post_div_table for the PLL\n");
return -EINVAL;
}
div = DIV_ROUND_UP_ULL((u64)parent_rate, rate);
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].div == div) {
val = pll->post_div_table[i].val;
break;
}
}
return regmap_update_bits(pll->clkr.regmap,
pll->offset + TRION_PLL_USER_CTL,
PLL_POST_DIV_MASK << pll->post_div_shift,
val << pll->post_div_shift);
}
const struct clk_ops clk_trion_pll_postdiv_ops = {
.recalc_rate = clk_trion_pll_postdiv_recalc_rate,
.round_rate = clk_trion_pll_postdiv_round_rate,
.set_rate = clk_trion_pll_postdiv_set_rate,
.bus_vote = clk_debug_bus_vote,
};
EXPORT_SYMBOL_GPL(clk_trion_pll_postdiv_ops);
static int clk_alpha_pll_slew_update(struct clk_alpha_pll *pll)
{
int ret = 0;
u32 val;
regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_MODE,
PLL_UPDATE, PLL_UPDATE);
regmap_read(pll->clkr.regmap, pll->offset + PLL_MODE, &val);
ret = wait_for_pll_update(pll);
if (ret)
return ret;
/*
* HPG mandates a wait of at least 570ns before polling the LOCK
* detect bit. Have a delay of 1us just to be safe.
*/
mb();
udelay(1);
ret = wait_for_pll_enable_lock(pll);
return ret;
}
static int clk_alpha_pll_calibrate(struct clk_hw *hw);
static unsigned long
clk_alpha_pll_slew_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u64 a = 0;
u32 l, low, high, ctl, off = pll->offset;
regmap_read(pll->clkr.regmap, off + PLL_L_VAL, &l);
regmap_read(pll->clkr.regmap, off + PLL_USER_CTL, &ctl);
if (ctl & PLL_ALPHA_EN) {
regmap_read(pll->clkr.regmap, off + PLL_ALPHA_VAL, &low);
if (pll->flags & SUPPORTS_16BIT_ALPHA) {
a = low & ALPHA_16BIT_MASK;
} else {
regmap_read(pll->clkr.regmap, off + PLL_ALPHA_VAL_U,
&high);
a = (u64)high << 32 | low;
a >>= ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH;
}
}
ctl >>= PLL_POST_DIV_SHIFT;
ctl &= PLL_POST_DIV_MASK;
return alpha_pll_calc_rate(pll, parent_rate, l, a) >> fls(ctl);
}
static int clk_alpha_pll_slew_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
unsigned long freq_hz;
const struct pll_vco *curr_vco = NULL, *vco;
u32 l, ctl;
u64 a;
int i = 0;
freq_hz = alpha_pll_round_rate(pll, rate, parent_rate, &l, &a);
if (freq_hz != rate) {
pr_err("alpha_pll: Call clk_set_rate with rounded rates!\n");
return -EINVAL;
}
regmap_read(pll->clkr.regmap, pll->offset + PLL_USER_CTL, &ctl);
ctl >>= PLL_POST_DIV_SHIFT;
ctl &= PLL_POST_DIV_MASK;
for (i = 0; i < ARRAY_SIZE(clk_alpha_div_table); i++) {
if (clk_alpha_div_table[i].val == ctl)
break;
}
if (i < ARRAY_SIZE(clk_alpha_div_table))
curr_vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw) *
clk_alpha_div_table[i].div);
if (!curr_vco) {
pr_err("alpha pll: not in a valid vco range\n");
return -EINVAL;
}
vco = alpha_pll_find_vco(pll, freq_hz);
if (!vco) {
pr_err("alpha pll: not in a valid vco range\n");
return -EINVAL;
}
/*
* Dynamic pll update will not support switching frequencies across
* vco ranges. In those cases fall back to normal alpha set rate.
*/
if (curr_vco->val != vco->val)
return clk_alpha_pll_set_rate(hw, rate, parent_rate);
a = a << (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH);
regmap_write(pll->clkr.regmap, pll->offset + PLL_L_VAL, l);
regmap_write(pll->clkr.regmap, pll->offset + PLL_ALPHA_VAL, a);
regmap_write(pll->clkr.regmap, pll->offset + PLL_ALPHA_VAL_U, a >> 32);
/* Ensure that the write above goes through before proceeding. */
mb();
if (clk_hw_is_enabled(hw))
clk_alpha_pll_slew_update(pll);
return 0;
}
/*
* Slewing plls should be bought up at frequency which is in the middle of the
* desired VCO range. So after bringing up the pll at calibration freq, set it
* back to desired frequency(that was set by previous clk_set_rate).
*/
static int clk_alpha_pll_calibrate(struct clk_hw *hw)
{
unsigned long calibration_freq, freq_hz;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
struct clk_hw *parent;
const struct pll_vco *vco = NULL;
u64 a;
u32 l, ctl;
int rc, i = 0;
parent = clk_hw_get_parent(hw);
if (!parent) {
pr_err("alpha pll: no valid parent found\n");
return -EINVAL;
}
regmap_read(pll->clkr.regmap, pll->offset + PLL_USER_CTL, &ctl);
ctl >>= PLL_POST_DIV_SHIFT;
ctl &= PLL_POST_DIV_MASK;
for (i = 0; i < ARRAY_SIZE(clk_alpha_div_table); i++) {
if (clk_alpha_div_table[i].val == ctl)
break;
}
if (i < ARRAY_SIZE(clk_alpha_div_table))
vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw) *
clk_alpha_div_table[i].div);
if (!vco) {
pr_err("alpha pll: not in a valid vco range\n");
return -EINVAL;
}
/*
* As during slewing plls vco_sel won't be allowed to change, vco table
* should have only one entry table, i.e. index = 0, find the
* calibration frequency.
*/
calibration_freq = (pll->vco_table[0].min_freq +
pll->vco_table[0].max_freq)/2;
freq_hz = alpha_pll_round_rate(pll, calibration_freq,
clk_hw_get_rate(parent), &l, &a);
if (freq_hz != calibration_freq) {
pr_err("alpha_pll: call clk_set_rate with rounded rates!\n");
return -EINVAL;
}
/* Setup PLL for calibration frequency */
a <<= (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH);
regmap_write(pll->clkr.regmap, pll->offset + PLL_L_VAL, l);
regmap_write(pll->clkr.regmap, pll->offset + PLL_ALPHA_VAL, a);
regmap_write(pll->clkr.regmap, pll->offset + PLL_ALPHA_VAL_U, a >> 32);
regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_USER_CTL,
PLL_VCO_MASK << PLL_VCO_SHIFT,
vco->val << PLL_VCO_SHIFT);
regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_USER_CTL,
PLL_ALPHA_EN, PLL_ALPHA_EN);
/* Bringup the pll at calibration frequency */
rc = clk_alpha_pll_enable(hw);
if (rc) {
pr_err("alpha pll calibration failed\n");
return rc;
}
/*
* PLL is already running at calibration frequency.
* So slew pll to the previously set frequency.
*/
freq_hz = alpha_pll_round_rate(pll, clk_hw_get_rate(hw) *
clk_alpha_div_table[i].div,
clk_hw_get_rate(parent), &l, &a);
pr_debug("pll %s: setting back to required rate %lu, freq_hz %ld\n",
hw->init->name, clk_hw_get_rate(hw), freq_hz);
/* Setup the PLL for the new frequency */
a <<= (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH);
regmap_write(pll->clkr.regmap, pll->offset + PLL_L_VAL, l);
regmap_write(pll->clkr.regmap, pll->offset + PLL_ALPHA_VAL, a);
regmap_write(pll->clkr.regmap, pll->offset + PLL_ALPHA_VAL_U, a >> 32);
regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_USER_CTL,
PLL_ALPHA_EN, PLL_ALPHA_EN);
return clk_alpha_pll_slew_update(pll);
}
static int clk_alpha_pll_slew_enable(struct clk_hw *hw)
{
int rc;
rc = clk_alpha_pll_calibrate(hw);
if (rc)
return rc;
return clk_alpha_pll_enable(hw);
}
const struct clk_ops clk_alpha_pll_slew_ops = {
.enable = clk_alpha_pll_slew_enable,
.disable = clk_alpha_pll_disable,
.recalc_rate = clk_alpha_pll_slew_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_alpha_pll_slew_set_rate,
.list_registers = clk_alpha_pll_list_registers,
.bus_vote = clk_debug_bus_vote,
};
EXPORT_SYMBOL(clk_alpha_pll_slew_ops);
static int clk_fabia_pll_latch_input(struct clk_alpha_pll *pll,
struct regmap *regmap)
{
u32 regval;
int ret = 0;
/* Latch the PLL input */
ret = regmap_update_bits(regmap, pll->offset + PLL_MODE,
FABIA_PLL_UPDATE, FABIA_PLL_UPDATE);
if (ret)
return ret;
/* Wait for 2 reference cycles before checking the ACK bit. */
udelay(1);
regmap_read(regmap, pll->offset + PLL_MODE, &regval);
if (!(regval & FABIA_PLL_ACK_LATCH)) {
WARN(1, "clk: PLL latch failed. Output may be unstable!\n");
return -EINVAL;
}
/* Return the latch input to 0 */
ret = regmap_update_bits(regmap, pll->offset + PLL_MODE,
FABIA_PLL_UPDATE, 0);
if (ret)
return ret;
/* Wait for PLL output to stabilize */
udelay(100);
return ret;
}
int clk_fabia_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
u32 val, mask;
if (!config) {
pr_err("PLL configuration missing.\n");
return -EINVAL;
}
if (config->l)
regmap_write(regmap, pll->offset + PLL_L_VAL,
config->l);
regmap_write(regmap, pll->offset + FABIA_CAL_L_VAL,
FABIA_PLL_CAL_L_VAL);
if (config->frac)
regmap_write(regmap, pll->offset + FABIA_FRAC_VAL,
config->frac);
if (config->config_ctl_val)
regmap_write(regmap, pll->offset + FABIA_CONFIG_CTL_LO,
config->config_ctl_val);
if (config->config_ctl_hi_val)
regmap_write(regmap, pll->offset + FABIA_CONFIG_CTL_HI,
config->config_ctl_hi_val);
if (config->user_ctl_val)
regmap_write(regmap, pll->offset + FABIA_USER_CTL_LO,
config->user_ctl_val);
if (config->user_ctl_hi_val)
regmap_write(regmap, pll->offset + FABIA_USER_CTL_HI,
config->user_ctl_hi_val);
if (config->test_ctl_val)
regmap_write(regmap, pll->offset + FABIA_TEST_CTL_LO,
config->test_ctl_val);
if (config->test_ctl_hi_val)
regmap_write(regmap, pll->offset + FABIA_TEST_CTL_HI,
config->test_ctl_hi_val);
if (config->post_div_mask) {
mask = config->post_div_mask;
val = config->post_div_val;
regmap_update_bits(regmap, pll->offset + FABIA_USER_CTL_LO,
mask, val);
}
/*
* If the PLL has already been initialized, it would now be in a STANDBY
* state. Any new updates to the PLL frequency will require setting the
* PLL_UPDATE bit.
*/
if (pll->inited)
clk_fabia_pll_latch_input(pll, regmap);
regmap_update_bits(regmap, pll->offset + PLL_MODE,
FABIA_PLL_HW_UPDATE_LOGIC_BYPASS,
FABIA_PLL_HW_UPDATE_LOGIC_BYPASS);
regmap_update_bits(regmap, pll->offset + PLL_MODE,
PLL_RESET_N, PLL_RESET_N);
pll->inited = true;
return 0;
}
static int clk_fabia_pll_enable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, opmode_val, off = pll->offset, l_val, cal_val;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & PLL_VOTE_FSM_ENA) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable_active(pll);
}
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &opmode_val);
if (ret)
return ret;
/* Skip If PLL is already running */
if ((opmode_val & FABIA_PLL_RUN) && (val & PLL_OUTCTRL))
return 0;
ret = regmap_read(pll->clkr.regmap, pll->offset + PLL_L_VAL, &l_val);
if (ret)
return ret;
ret = regmap_read(pll->clkr.regmap, pll->offset + FABIA_CAL_L_VAL,
&cal_val);
if (ret)
return ret;
/* PLL has lost it's L or CAL value, needs reconfiguration */
if (!l_val || !cal_val)
pll->inited = false;
if (unlikely(!pll->inited)) {
ret = clk_fabia_pll_configure(pll, pll->clkr.regmap,
pll->config);
if (ret) {
pr_err("Failed to configure %s\n", clk_hw_get_name(hw));
return ret;
}
pr_warn("%s: PLL configuration lost, reconfiguration of PLL done.\n",
clk_hw_get_name(hw));
}
/* Disable PLL output */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_OUTCTRL, 0);
if (ret)
return ret;
/* Set operation mode to STANDBY */
regmap_write(pll->clkr.regmap, off + FABIA_OPMODE, FABIA_PLL_STANDBY);
/* PLL should be in STANDBY mode before continuing */
mb();
/* Bring PLL out of reset */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_RESET_N, PLL_RESET_N);
if (ret)
return ret;
/* Set operation mode to RUN */
regmap_write(pll->clkr.regmap, off + FABIA_OPMODE, FABIA_PLL_RUN);
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
/* Enable the main PLL output */
ret = regmap_update_bits(pll->clkr.regmap, off + FABIA_USER_CTL_LO,
FABIA_PLL_OUT_MASK, FABIA_PLL_OUT_MASK);
if (ret)
return ret;
/* Enable PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_OUTCTRL, PLL_OUTCTRL);
if (ret)
return ret;
/* Ensure that the write above goes through before returning. */
mb();
return ret;
}
static void clk_fabia_pll_disable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, off = pll->offset;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & PLL_VOTE_FSM_ENA) {
clk_disable_regmap(hw);
return;
}
/* Disable PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE,
PLL_OUTCTRL, 0);
if (ret)
return;
/* Disable the main PLL output */
ret = regmap_update_bits(pll->clkr.regmap, off + FABIA_USER_CTL_LO,
FABIA_PLL_OUT_MASK, 0);
if (ret)
return;
/* Place the PLL mode in STANDBY */
regmap_write(pll->clkr.regmap, off + FABIA_OPMODE, FABIA_PLL_STANDBY);
}
/*
* Fabia PLL requires power-on self calibration which happen when the PLL comes
* out of reset. Calibration frequency is calculated by below relation:
*
* calibration freq = ((pll_l_valmax + pll_l_valmin) * 0.54)
*/
static int clk_fabia_pll_prepare(struct clk_hw *hw)
{
unsigned long calibration_freq, freq_hz;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
const struct pll_vco *vco;
struct clk_hw *parent;
u64 a;
u32 cal_l, regval, off = pll->offset;
int ret;
/* Check if calibration needs to be done i.e. PLL is in reset */
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &regval);
if (ret)
return ret;
/* Return early if calibration is not needed. */
if (regval & PLL_RESET_N)
return 0;
vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw));
if (!vco) {
pr_err("alpha pll: not in a valid vco range\n");
return -EINVAL;
}
calibration_freq = ((pll->vco_table[0].min_freq +
pll->vco_table[0].max_freq) * 54)/100;
parent = clk_hw_get_parent(hw);
if (!parent)
return -EINVAL;
freq_hz = alpha_pll_round_rate(pll, calibration_freq,
clk_hw_get_rate(parent), &cal_l, &a);
/*
* Due to a limited number of bits for fractional rate programming, the
* rounded up rate could be marginally higher than the requested rate.
*/
if (freq_hz > (calibration_freq + ALPHA_16_BIT_PLL_RATE_MARGIN) ||
freq_hz < calibration_freq) {
pr_err("fabia_pll: Call set rate with rounded rates!\n");
return -EINVAL;
}
/* Setup PLL for calibration frequency */
regmap_write(pll->clkr.regmap, pll->offset + FABIA_CAL_L_VAL, cal_l);
/* Bringup the pll at calibration frequency */
ret = clk_fabia_pll_enable(hw);
if (ret) {
pr_err("alpha pll calibration failed\n");
return ret;
}
clk_fabia_pll_disable(hw);
return 0;
}
static unsigned long
clk_fabia_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
u32 l, frac;
u64 prate = parent_rate;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 off = pll->offset;
regmap_read(pll->clkr.regmap, off + PLL_L_VAL, &l);
regmap_read(pll->clkr.regmap, off + FABIA_FRAC_VAL, &frac);
return alpha_pll_calc_rate(pll, prate, l, frac);
}
static int clk_fabia_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
unsigned long rrate;
u32 regval, l, off = pll->offset, cal_val;
u64 a;
int ret;
ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &regval);
if (ret)
return ret;
ret = regmap_read(pll->clkr.regmap, pll->offset + FABIA_CAL_L_VAL,
&cal_val);
if (ret)
return ret;
/* PLL has lost it's CAL value, needs reconfiguration */
if (!cal_val)
pll->inited = false;
if (unlikely(!pll->inited)) {
ret = clk_fabia_pll_configure(pll, pll->clkr.regmap,
pll->config);
if (ret) {
pr_err("Failed to configure %s\n", clk_hw_get_name(hw));
return ret;
}
pr_warn("%s: PLL configuration lost, reconfiguration of PLL done.\n",
clk_hw_get_name(hw));
}
rrate = alpha_pll_round_rate(pll, rate, prate, &l, &a);
/*
* Due to limited number of bits for fractional rate programming, the
* rounded up rate could be marginally higher than the requested rate.
*/
if (rrate > (rate + ALPHA_16_BIT_PLL_RATE_MARGIN) || rrate < rate) {
pr_err("Call set rate on the PLL with rounded rates!\n");
return -EINVAL;
}
regmap_write(pll->clkr.regmap, off + PLL_L_VAL, l);
regmap_write(pll->clkr.regmap, off + FABIA_FRAC_VAL, a);
return clk_fabia_pll_latch_input(pll, pll->clkr.regmap);
}
static void clk_fabia_pll_list_registers(struct seq_file *f, struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
int size, i, val;
static struct clk_register_data data[] = {
{"PLL_MODE", 0x0},
{"PLL_L_VAL", 0x4},
{"PLL_CAL_L_VAL", 0x8},
{"PLL_FRAC_VAL", 0x38},
{"PLL_USER_CTL_LO", 0xc},
{"PLL_USER_CTL_HI", 0x10},
{"PLL_CONFIG_CTL_LO", 0x14},
{"PLL_CONFIG_CTL_HI", 0x18},
{"PLL_OPMODE", 0x2c},
};
static struct clk_register_data data1[] = {
{"APSS_PLL_VOTE", 0x0},
};
size = ARRAY_SIZE(data);
for (i = 0; i < size; i++) {
regmap_read(pll->clkr.regmap, pll->offset + data[i].offset,
&val);
clock_debug_output(f, false,
"%20s: 0x%.8x\n", data[i].name, val);
}
regmap_read(pll->clkr.regmap, pll->offset + data[0].offset, &val);
if (val & PLL_FSM_ENA) {
regmap_read(pll->clkr.regmap, pll->clkr.enable_reg +
data1[0].offset, &val);
clock_debug_output(f, false,
"%20s: 0x%.8x\n", data1[0].name, val);
}
}
const struct clk_ops clk_fabia_pll_ops = {
.prepare = clk_fabia_pll_prepare,
.enable = clk_fabia_pll_enable,
.disable = clk_fabia_pll_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = clk_fabia_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_fabia_pll_set_rate,
.list_registers = clk_fabia_pll_list_registers,
.bus_vote = clk_debug_bus_vote,
};
EXPORT_SYMBOL(clk_fabia_pll_ops);
const struct clk_ops clk_fabia_fixed_pll_ops = {
.enable = clk_fabia_pll_enable,
.disable = clk_fabia_pll_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = clk_fabia_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.list_registers = clk_fabia_pll_list_registers,
.bus_vote = clk_debug_bus_vote,
};
EXPORT_SYMBOL(clk_fabia_fixed_pll_ops);
static unsigned long clk_generic_pll_postdiv_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
u32 i, div = 1, val;
if (!pll->post_div_table) {
pr_err("Missing the post_div_table for the PLL\n");
return -EINVAL;
}
regmap_read(pll->clkr.regmap, pll->offset + FABIA_USER_CTL_LO, &val);
val >>= pll->post_div_shift;
val &= PLL_POST_DIV_MASK;
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].val == val) {
div = pll->post_div_table[i].div;
break;
}
}
return (parent_rate / div);
}
static long clk_generic_pll_postdiv_round_rate(struct clk_hw *hw,
unsigned long rate, unsigned long *prate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
if (!pll->post_div_table)
return -EINVAL;
return divider_round_rate(hw, rate, prate, pll->post_div_table,
pll->width, CLK_DIVIDER_ROUND_KHZ);
}
static int clk_generic_pll_postdiv_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
int i, val = 0, div, ret;
/*
* If the PLL is in FSM mode, then treat the set_rate callback
* as a no-operation.
*/
ret = regmap_read(pll->clkr.regmap, pll->offset + PLL_MODE, &val);
if (ret)
return ret;
if (val & PLL_VOTE_FSM_ENA)
return 0;
if (!pll->post_div_table) {
pr_err("Missing the post_div_table for the PLL\n");
return -EINVAL;
}
div = DIV_ROUND_UP_ULL((u64)parent_rate, rate);
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].div == div) {
val = pll->post_div_table[i].val;
break;
}
}
return regmap_update_bits(pll->clkr.regmap,
pll->offset + FABIA_USER_CTL_LO,
PLL_POST_DIV_MASK << pll->post_div_shift,
val << pll->post_div_shift);
}
const struct clk_ops clk_generic_pll_postdiv_ops = {
.recalc_rate = clk_generic_pll_postdiv_recalc_rate,
.round_rate = clk_generic_pll_postdiv_round_rate,
.set_rate = clk_generic_pll_postdiv_set_rate,
.bus_vote = clk_debug_bus_vote,
};
EXPORT_SYMBOL(clk_generic_pll_postdiv_ops);
int clk_agera_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
u32 val, mask;
if (!config) {
pr_err("PLL configuration missing.\n");
return -EINVAL;
}
if (config->l)
regmap_write(regmap, pll->offset + PLL_L_VAL,
config->l);
if (config->alpha)
regmap_write(regmap, pll->offset + PLL_ALPHA_VAL,
config->alpha);
if (config->post_div_mask) {
mask = config->post_div_mask;
val = config->post_div_val;
regmap_update_bits(regmap, pll->offset + AGERA_PLL_USER_CTL,
mask, val);
}
if (config->main_output_mask || config->aux_output_mask ||
config->aux2_output_mask || config->early_output_mask) {
val = config->main_output_mask;
val |= config->aux_output_mask;
val |= config->aux2_output_mask;
val |= config->early_output_mask;
mask = config->main_output_mask;
mask |= config->aux_output_mask;
mask |= config->aux2_output_mask;
mask |= config->early_output_mask;
regmap_update_bits(regmap, pll->offset + AGERA_PLL_USER_CTL,
mask, val);
}
if (config->config_ctl_val)
regmap_write(regmap, pll->offset + AGERA_PLL_CONFIG_CTL,
config->config_ctl_val);
if (config->config_ctl_hi_val)
regmap_write(regmap, pll->offset + AGERA_PLL_CONFIG_CTL_U,
config->config_ctl_hi_val);
if (config->test_ctl_val)
regmap_write(regmap, pll->offset + AGERA_PLL_TEST_CTL,
config->test_ctl_val);
if (config->test_ctl_hi_val)
regmap_write(regmap, pll->offset + AGERA_PLL_TEST_CTL_U,
config->test_ctl_hi_val);
return 0;
}
static unsigned long
clk_agera_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
u32 l, a;
u64 prate = parent_rate;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 off = pll->offset;
regmap_read(pll->clkr.regmap, off + PLL_L_VAL, &l);
regmap_read(pll->clkr.regmap, off + PLL_ALPHA_VAL, &a);
return alpha_pll_calc_rate(pll, prate, l, a);
}
static int clk_agera_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
unsigned long rrate;
int ret;
u32 l, off = pll->offset;
u64 a;
rrate = alpha_pll_round_rate(pll, rate, prate, &l, &a);
/*
* Due to limited number of bits for fractional rate programming, the
* rounded up rate could be marginally higher than the requested rate.
*/
if (rrate > (rate + ALPHA_16_BIT_PLL_RATE_MARGIN) || rrate < rate) {
pr_err("Call set rate on the PLL with rounded rates!\n");
return -EINVAL;
}
/* change L_VAL without having to go through the power on sequence */
regmap_write(pll->clkr.regmap, off + PLL_L_VAL, l);
regmap_write(pll->clkr.regmap, off + PLL_ALPHA_VAL, a);
/* Ensure that the write above goes through before proceeding. */
mb();
if (clk_hw_is_enabled(hw)) {
ret = wait_for_pll_enable_lock(pll);
if (ret) {
pr_err("Failed to lock after L_VAL update\n");
return ret;
}
}
return 0;
}
static void clk_agera_pll_list_registers(struct seq_file *f, struct clk_hw *hw)
{
static struct clk_register_data pll_regs[] = {
{"PLL_MODE", 0x0},
{"PLL_L_VAL", 0x4},
{"PLL_ALPHA_VAL", 0x8},
{"PLL_USER_CTL", 0xc},
{"PLL_CONFIG_CTL", 0x10},
{"PLL_CONFIG_CTL_U", 0x14},
{"PLL_TEST_CTL", 0x18},
{"PLL_TEST_CTL_U", 0x1c},
{"PLL_STATUS", 0x2c},
};
static struct clk_register_data pll_vote_reg = {
"APSS_PLL_VOTE", 0x0
};
print_pll_registers(f, hw, pll_regs, ARRAY_SIZE(pll_regs),
&pll_vote_reg);
}
const struct clk_ops clk_agera_pll_ops = {
.enable = clk_alpha_pll_enable,
.disable = clk_alpha_pll_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = clk_agera_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_agera_pll_set_rate,
.list_registers = clk_agera_pll_list_registers,
.bus_vote = clk_debug_bus_vote,
};
EXPORT_SYMBOL(clk_agera_pll_ops);
static void clk_alpha_pll_lucid_list_registers(struct seq_file *f,
struct clk_hw *hw)
{
static struct clk_register_data pll_regs[] = {
{"PLL_MODE", 0x0},
{"PLL_L_VAL", 0x4},
{"PLL_CAL_L_VAL", 0x8},
{"PLL_USER_CTL", 0x0c},
{"PLL_USER_CTL_U", 0x10},
{"PLL_USER_CTL_U1", 0x14},
{"PLL_CONFIG_CTL", 0x18},
{"PLL_CONFIG_CTL_U", 0x1c},
{"PLL_CONFIG_CTL_U1", 0x20},
{"PLL_TEST_CTL", 0x24},
{"PLL_TEST_CTL_U", 0x28},
{"PLL_STATUS", 0x30},
{"PLL_ALPHA_VAL", 0x40},
};
static struct clk_register_data pll_vote_reg = {
"APSS_PLL_VOTE", 0x0
};
print_pll_registers(f, hw, pll_regs, ARRAY_SIZE(pll_regs),
&pll_vote_reg);
}
static int lucid_pll_is_enabled(struct clk_alpha_pll *pll,
struct regmap *regmap)
{
u32 mode_regval, opmode_regval;
int ret;
ret = regmap_read(regmap, pll->offset + PLL_MODE, &mode_regval);
ret |= regmap_read(regmap, pll->offset + LUCID_PLL_OFF_OPMODE,
&opmode_regval);
if (ret)
return 0;
return ((opmode_regval & LUCID_PLL_RUN) &&
(mode_regval & PLL_OUTCTRL));
}
int clk_lucid_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
int ret;
if (config->l)
regmap_write(regmap, pll->offset + LUCID_PLL_OFF_L_VAL,
config->l);
regmap_write(regmap, pll->offset + LUCID_PLL_OFF_CAL_L_VAL,
LUCID_PLL_CAL_VAL);
if (config->alpha)
regmap_write(regmap, pll->offset + LUCID_PLL_OFF_ALPHA_VAL,
config->alpha);
if (config->config_ctl_val)
regmap_write(regmap, pll->offset + LUCID_PLL_OFF_CONFIG_CTL,
config->config_ctl_val);
if (config->config_ctl_hi_val)
regmap_write(regmap, pll->offset + LUCID_PLL_OFF_CONFIG_CTL_U,
config->config_ctl_hi_val);
if (config->config_ctl_hi1_val)
regmap_write(regmap, pll->offset + LUCID_PLL_OFF_USER_CTL_U1,
config->config_ctl_hi1_val);
if (config->post_div_mask)
regmap_update_bits(regmap, pll->offset + LUCID_PLL_OFF_USER_CTL,
config->post_div_mask, config->post_div_val);
regmap_update_bits(regmap, pll->offset + PLL_MODE,
LUCID_PLL_HW_UPDATE_LOGIC_BYPASS,
LUCID_PLL_HW_UPDATE_LOGIC_BYPASS);
/* Disable PLL output */
ret = regmap_update_bits(regmap, pll->offset + PLL_MODE,
PLL_OUTCTRL, 0);
if (ret)
return ret;
/* Set operation mode to OFF */
regmap_write(regmap, pll->offset + LUCID_PLL_OFF_OPMODE,
LUCID_PLL_STANDBY);
/* PLL should be in OFF mode before continuing */
wmb();
/* Place the PLL in STANDBY mode */
ret = regmap_update_bits(regmap, pll->offset + PLL_MODE,
PLL_RESET_N, PLL_RESET_N);
if (ret)
return ret;
pll->inited = true;
return 0;
}
static int alpha_pll_lucid_enable(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val;
int ret;
ret = regmap_read(pll->clkr.regmap, pll->offset + PLL_MODE, &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & PLL_VOTE_FSM_ENA) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable_active(pll);
}
/* Set operation mode to RUN */
regmap_write(pll->clkr.regmap, pll->offset + LUCID_PLL_OFF_OPMODE,
LUCID_PLL_RUN);
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
/* Enable the PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, pll->offset +
LUCID_PLL_OFF_USER_CTL,
LUCID_PLL_OUT_MASK, LUCID_PLL_OUT_MASK);
if (ret)
return ret;
/* Enable the global PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_MODE,
PLL_OUTCTRL, PLL_OUTCTRL);
if (ret)
return ret;
/* Ensure that the write above goes through before returning. */
mb();
return ret;
}
static void alpha_pll_lucid_disable(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val;
int ret;
ret = regmap_read(pll->clkr.regmap, pll->offset + PLL_MODE, &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & PLL_VOTE_FSM_ENA) {
clk_disable_regmap(hw);
return;
}
/* Disable the global PLL output */
ret = regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_MODE,
PLL_OUTCTRL, 0);
if (ret)
return;
/* Disable the PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, pll->offset +
LUCID_PLL_OFF_USER_CTL,
LUCID_PLL_OUT_MASK, 0);
if (ret)
return;
/* Place the PLL mode in STANDBY */
regmap_write(pll->clkr.regmap, pll->offset + LUCID_PLL_OFF_OPMODE,
LUCID_PLL_STANDBY);
regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_MODE,
PLL_RESET_N, PLL_RESET_N);
}
/*
* The Lucid PLL requires a power-on self-calibration which happens when the
* PLL comes out of reset. The calibration is performed at an output frequency
* of ~1300 MHz which means that SW will have to vote on a voltage that's
* equal to or greater than SVS_L1 on the corresponding rail. Since this is not
* feasable to do in the atomic enable path, temporarily bring up the PLL here,
* let it calibrate, and place it in standby before returning.
*/
static int alpha_pll_lucid_prepare(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
struct clk_hw *p;
u32 regval;
unsigned long prate;
int ret;
if (pll->flags & SUPPORTS_NO_SLEW)
return 0;
/* Return early if calibration is not needed. */
ret = regmap_read(pll->clkr.regmap, pll->offset, &regval);
if (regval & LUCID_PCAL_DONE)
return ret;
p = clk_hw_get_parent(hw);
if (!p)
return -EINVAL;
prate = clk_hw_get_rate(p);
ret = clk_vote_rate_vdd(hw->core, LUCID_PLL_CAL_VAL * prate);
if (ret)
return ret;
ret = alpha_pll_lucid_enable(hw);
if (ret)
goto ret_path;
alpha_pll_lucid_disable(hw);
ret_path:
clk_unvote_rate_vdd(hw->core, LUCID_PLL_CAL_VAL * prate);
return 0;
}
static unsigned long
alpha_pll_lucid_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l = 0, frac = 0;
regmap_read(pll->clkr.regmap, pll->offset + LUCID_PLL_OFF_L_VAL, &l);
regmap_read(pll->clkr.regmap, pll->offset + LUCID_PLL_OFF_ALPHA_VAL,
&frac);
return alpha_pll_calc_rate(pll, parent_rate, l, frac);
}
static int alpha_pll_lucid_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
unsigned long rrate;
u32 regval, l;
u64 a;
int ret;
rrate = alpha_pll_round_rate(pll, rate, prate, &l, &a);
/*
* Due to a limited number of bits for fractional rate programming, the
* rounded up rate could be marginally higher than the requested rate.
*/
if (rrate > (rate + LUCID_PLL_RATE_MARGIN) || rrate < rate) {
pr_err("Call set rate on the PLL with rounded rates!\n");
return -EINVAL;
}
if (pll->flags & SUPPORTS_NO_SLEW)
alpha_pll_lucid_disable(hw);
regmap_write(pll->clkr.regmap, pll->offset + LUCID_PLL_OFF_L_VAL, l);
regmap_write(pll->clkr.regmap, pll->offset + LUCID_PLL_OFF_ALPHA_VAL,
a);
if (pll->flags & SUPPORTS_NO_SLEW)
return alpha_pll_lucid_enable(hw);
/* Latch the PLL input */
ret = regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_MODE,
LUCID_PLL_UPDATE, LUCID_PLL_UPDATE);
if (ret)
return ret;
/*
* When PLL_HW_UPDATE_LOGIC_BYPASS bit is not set then waiting for
* pll_ack_latch to return to zero can be bypassed.
*/
if (!(pll->flags & SUPPORTS_NO_PLL_LATCH)) {
/* Wait for 2 reference cycles before checking the ACK bit. */
udelay(1);
regmap_read(pll->clkr.regmap, pll->offset + PLL_MODE, &regval);
if (!(regval & LUCID_PLL_ACK_LATCH)) {
WARN(1, "PLL latch failed. Output may be unstable!\n");
return -EINVAL;
}
}
/* Return the latch input to 0 */
ret = regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_MODE,
LUCID_PLL_UPDATE, 0);
if (ret)
return ret;
if (clk_hw_is_enabled(hw)) {
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
}
/* Wait for PLL output to stabilize */
udelay(100);
return 0;
}
static int alpha_pll_lucid_is_enabled(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
return lucid_pll_is_enabled(pll, pll->clkr.regmap);
}
const struct clk_ops clk_alpha_pll_lucid_ops = {
.prepare = alpha_pll_lucid_prepare,
.enable = alpha_pll_lucid_enable,
.disable = alpha_pll_lucid_disable,
.is_enabled = alpha_pll_lucid_is_enabled,
.recalc_rate = alpha_pll_lucid_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = alpha_pll_lucid_set_rate,
.list_registers = clk_alpha_pll_lucid_list_registers,
};
EXPORT_SYMBOL(clk_alpha_pll_lucid_ops);
const struct clk_ops clk_alpha_pll_fixed_lucid_ops = {
.enable = alpha_pll_lucid_enable,
.disable = alpha_pll_lucid_disable,
.is_enabled = alpha_pll_lucid_is_enabled,
.recalc_rate = alpha_pll_lucid_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.list_registers = clk_alpha_pll_lucid_list_registers,
};
EXPORT_SYMBOL(clk_alpha_pll_fixed_lucid_ops);
const struct clk_ops clk_alpha_pll_postdiv_lucid_ops = {
.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
.round_rate = clk_alpha_pll_postdiv_round_rate,
.set_rate = clk_alpha_pll_postdiv_set_rate,
};
EXPORT_SYMBOL(clk_alpha_pll_postdiv_lucid_ops);