blob: d81be4d590ade26b9a48ce2961414581b07b3fd1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2002,2007-2020, The Linux Foundation. All rights reserved.
*/
#include <asm/cacheflush.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <soc/qcom/scm.h>
#include <soc/qcom/secure_buffer.h>
#include <linux/shmem_fs.h>
#include <linux/bitfield.h>
#include "kgsl_device.h"
#include "kgsl_sharedmem.h"
/*
* The user can set this from debugfs to force failed memory allocations to
* fail without trying OOM first. This is a debug setting useful for
* stress applications that want to test failure cases without pushing the
* system into unrecoverable OOM panics
*/
static bool sharedmem_noretry_flag;
static DEFINE_MUTEX(kernel_map_global_lock);
struct cp2_mem_chunks {
unsigned int chunk_list;
unsigned int chunk_list_size;
unsigned int chunk_size;
} __attribute__ ((__packed__));
struct cp2_lock_req {
struct cp2_mem_chunks chunks;
unsigned int mem_usage;
unsigned int lock;
} __attribute__ ((__packed__));
#define MEM_PROTECT_LOCK_ID2 0x0A
#define MEM_PROTECT_LOCK_ID2_FLAT 0x11
int kgsl_allocate_global(struct kgsl_device *device,
struct kgsl_memdesc *memdesc, uint64_t size, uint64_t flags,
unsigned int priv, const char *name)
{
int ret;
kgsl_memdesc_init(device, memdesc, flags);
memdesc->priv |= priv;
if (((memdesc->priv & KGSL_MEMDESC_CONTIG) != 0) ||
(kgsl_mmu_get_mmutype(device) == KGSL_MMU_TYPE_NONE))
ret = kgsl_sharedmem_alloc_contig(device, memdesc,
(size_t) size);
else {
ret = kgsl_sharedmem_page_alloc_user(memdesc, (size_t) size);
if (ret == 0) {
if (kgsl_memdesc_map(memdesc) == NULL) {
kgsl_sharedmem_free(memdesc);
ret = -ENOMEM;
}
}
}
if (ret == 0)
kgsl_mmu_add_global(device, memdesc, name);
return ret;
}
void kgsl_free_global(struct kgsl_device *device,
struct kgsl_memdesc *memdesc)
{
kgsl_mmu_remove_global(device, memdesc);
kgsl_sharedmem_free(memdesc);
}
/* An attribute for showing per-process memory statistics */
struct kgsl_mem_entry_attribute {
struct attribute attr;
int memtype;
ssize_t (*show)(struct kgsl_process_private *priv,
int type, char *buf);
};
#define to_mem_entry_attr(a) \
container_of(a, struct kgsl_mem_entry_attribute, attr)
#define __MEM_ENTRY_ATTR(_type, _name, _show) \
{ \
.attr = { .name = __stringify(_name), .mode = 0444 }, \
.memtype = _type, \
.show = _show, \
}
/*
* A structure to hold the attributes for a particular memory type.
* For each memory type in each process we store the current and maximum
* memory usage and display the counts in sysfs. This structure and
* the following macro allow us to simplify the definition for those
* adding new memory types
*/
struct mem_entry_stats {
int memtype;
struct kgsl_mem_entry_attribute attr;
struct kgsl_mem_entry_attribute max_attr;
};
#define MEM_ENTRY_STAT(_type, _name) \
{ \
.memtype = _type, \
.attr = __MEM_ENTRY_ATTR(_type, _name, mem_entry_show), \
.max_attr = __MEM_ENTRY_ATTR(_type, _name##_max, \
mem_entry_max_show), \
}
static void kgsl_cma_unlock_secure(struct kgsl_memdesc *memdesc);
static ssize_t
imported_mem_show(struct kgsl_process_private *priv,
int type, char *buf)
{
struct kgsl_mem_entry *entry;
uint64_t imported_mem = 0;
int id = 0;
spin_lock(&priv->mem_lock);
for (entry = idr_get_next(&priv->mem_idr, &id); entry;
id++, entry = idr_get_next(&priv->mem_idr, &id)) {
int egl_surface_count = 0, egl_image_count = 0;
struct kgsl_memdesc *m;
if (kgsl_mem_entry_get(entry) == 0)
continue;
spin_unlock(&priv->mem_lock);
m = &entry->memdesc;
if (kgsl_memdesc_usermem_type(m) == KGSL_MEM_ENTRY_ION) {
kgsl_get_egl_counts(entry, &egl_surface_count,
&egl_image_count);
if (kgsl_memdesc_get_memtype(m) ==
KGSL_MEMTYPE_EGL_SURFACE)
imported_mem += m->size;
else if (egl_surface_count == 0) {
uint64_t size = m->size;
do_div(size, (egl_image_count ?
egl_image_count : 1));
imported_mem += size;
}
}
kgsl_mem_entry_put(entry);
spin_lock(&priv->mem_lock);
}
spin_unlock(&priv->mem_lock);
return scnprintf(buf, PAGE_SIZE, "%llu\n", imported_mem);
}
static ssize_t
gpumem_mapped_show(struct kgsl_process_private *priv,
int type, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%ld\n",
atomic_long_read(&priv->gpumem_mapped));
}
static ssize_t
gpumem_unmapped_show(struct kgsl_process_private *priv, int type, char *buf)
{
u64 gpumem_total = atomic_long_read(&priv->stats[type].cur);
u64 gpumem_mapped = atomic_long_read(&priv->gpumem_mapped);
if (gpumem_mapped > gpumem_total)
return -EIO;
return scnprintf(buf, PAGE_SIZE, "%llu\n",
gpumem_total - gpumem_mapped);
}
static struct kgsl_mem_entry_attribute debug_memstats[] = {
__MEM_ENTRY_ATTR(0, imported_mem, imported_mem_show),
__MEM_ENTRY_ATTR(0, gpumem_mapped, gpumem_mapped_show),
__MEM_ENTRY_ATTR(KGSL_MEM_ENTRY_KERNEL, gpumem_unmapped,
gpumem_unmapped_show),
};
/**
* Show the current amount of memory allocated for the given memtype
*/
static ssize_t
mem_entry_show(struct kgsl_process_private *priv, int type, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%ld\n",
atomic_long_read(&priv->stats[type].cur));
}
/**
* Show the maximum memory allocated for the given memtype through the life of
* the process
*/
static ssize_t
mem_entry_max_show(struct kgsl_process_private *priv, int type, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%llu\n", priv->stats[type].max);
}
static ssize_t mem_entry_sysfs_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct kgsl_mem_entry_attribute *pattr = to_mem_entry_attr(attr);
struct kgsl_process_private *priv;
ssize_t ret;
/*
* kgsl_process_init_sysfs takes a refcount to the process_private,
* which is put when the kobj is released. This implies that priv will
* not be freed until this function completes, and no further locking
* is needed.
*/
priv = kobj ? container_of(kobj, struct kgsl_process_private, kobj) :
NULL;
if (priv && pattr->show)
ret = pattr->show(priv, pattr->memtype, buf);
else
ret = -EIO;
return ret;
}
static void mem_entry_release(struct kobject *kobj)
{
struct kgsl_process_private *priv;
priv = container_of(kobj, struct kgsl_process_private, kobj);
/* Put the refcount we got in kgsl_process_init_sysfs */
kgsl_process_private_put(priv);
}
static const struct sysfs_ops mem_entry_sysfs_ops = {
.show = mem_entry_sysfs_show,
};
static struct kobj_type ktype_mem_entry = {
.sysfs_ops = &mem_entry_sysfs_ops,
.release = &mem_entry_release,
};
static struct mem_entry_stats mem_stats[] = {
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_KERNEL, kernel),
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_USER, user),
#if IS_ENABLED(CONFIG_ION)
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ION, ion),
#endif
};
void
kgsl_process_uninit_sysfs(struct kgsl_process_private *private)
{
int i;
for (i = 0; i < ARRAY_SIZE(mem_stats); i++) {
sysfs_remove_file(&private->kobj, &mem_stats[i].attr.attr);
sysfs_remove_file(&private->kobj,
&mem_stats[i].max_attr.attr);
}
kobject_put(&private->kobj);
}
/**
* kgsl_process_init_sysfs() - Initialize and create sysfs files for a process
*
* @device: Pointer to kgsl device struct
* @private: Pointer to the structure for the process
*
* kgsl_process_init_sysfs() is called at the time of creating the
* process struct when a process opens the kgsl device for the first time.
* This function creates the sysfs files for the process.
*/
void kgsl_process_init_sysfs(struct kgsl_device *device,
struct kgsl_process_private *private)
{
int i;
/* Keep private valid until the sysfs enries are removed. */
kgsl_process_private_get(private);
if (kobject_init_and_add(&private->kobj, &ktype_mem_entry,
kgsl_driver.prockobj, "%d", pid_nr(private->pid))) {
dev_err(device->dev, "Unable to add sysfs for process %d\n",
pid_nr(private->pid));
return;
}
for (i = 0; i < ARRAY_SIZE(mem_stats); i++) {
int ret;
ret = sysfs_create_file(&private->kobj,
&mem_stats[i].attr.attr);
ret |= sysfs_create_file(&private->kobj,
&mem_stats[i].max_attr.attr);
if (ret)
dev_err(device->dev,
"Unable to create sysfs files for process %d\n",
pid_nr(private->pid));
}
for (i = 0; i < ARRAY_SIZE(debug_memstats); i++) {
if (sysfs_create_file(&private->kobj,
&debug_memstats[i].attr))
WARN(1, "Couldn't create sysfs file '%s'\n",
debug_memstats[i].attr.name);
}
}
static ssize_t memstat_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
uint64_t val = 0;
if (!strcmp(attr->attr.name, "vmalloc"))
val = atomic_long_read(&kgsl_driver.stats.vmalloc);
else if (!strcmp(attr->attr.name, "vmalloc_max"))
val = atomic_long_read(&kgsl_driver.stats.vmalloc_max);
else if (!strcmp(attr->attr.name, "page_alloc"))
val = atomic_long_read(&kgsl_driver.stats.page_alloc);
else if (!strcmp(attr->attr.name, "page_alloc_max"))
val = atomic_long_read(&kgsl_driver.stats.page_alloc_max);
else if (!strcmp(attr->attr.name, "coherent"))
val = atomic_long_read(&kgsl_driver.stats.coherent);
else if (!strcmp(attr->attr.name, "coherent_max"))
val = atomic_long_read(&kgsl_driver.stats.coherent_max);
else if (!strcmp(attr->attr.name, "secure"))
val = atomic_long_read(&kgsl_driver.stats.secure);
else if (!strcmp(attr->attr.name, "secure_max"))
val = atomic_long_read(&kgsl_driver.stats.secure_max);
else if (!strcmp(attr->attr.name, "mapped"))
val = atomic_long_read(&kgsl_driver.stats.mapped);
else if (!strcmp(attr->attr.name, "mapped_max"))
val = atomic_long_read(&kgsl_driver.stats.mapped_max);
return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
}
static ssize_t full_cache_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned int thresh = 0;
ret = kgsl_sysfs_store(buf, &thresh);
if (ret)
return ret;
kgsl_driver.full_cache_threshold = thresh;
return count;
}
static ssize_t full_cache_threshold_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%d\n",
kgsl_driver.full_cache_threshold);
}
static DEVICE_ATTR(vmalloc, 0444, memstat_show, NULL);
static DEVICE_ATTR(vmalloc_max, 0444, memstat_show, NULL);
static DEVICE_ATTR(page_alloc, 0444, memstat_show, NULL);
static DEVICE_ATTR(page_alloc_max, 0444, memstat_show, NULL);
static DEVICE_ATTR(coherent, 0444, memstat_show, NULL);
static DEVICE_ATTR(coherent_max, 0444, memstat_show, NULL);
static DEVICE_ATTR(secure, 0444, memstat_show, NULL);
static DEVICE_ATTR(secure_max, 0444, memstat_show, NULL);
static DEVICE_ATTR(mapped, 0444, memstat_show, NULL);
static DEVICE_ATTR(mapped_max, 0444, memstat_show, NULL);
static DEVICE_ATTR_RW(full_cache_threshold);
static const struct attribute *drv_attr_list[] = {
&dev_attr_vmalloc.attr,
&dev_attr_vmalloc_max.attr,
&dev_attr_page_alloc.attr,
&dev_attr_page_alloc_max.attr,
&dev_attr_coherent.attr,
&dev_attr_coherent_max.attr,
&dev_attr_secure.attr,
&dev_attr_secure_max.attr,
&dev_attr_mapped.attr,
&dev_attr_mapped_max.attr,
&dev_attr_full_cache_threshold.attr,
NULL,
};
void
kgsl_sharedmem_uninit_sysfs(void)
{
sysfs_remove_files(&kgsl_driver.virtdev.kobj, drv_attr_list);
}
int
kgsl_sharedmem_init_sysfs(void)
{
return sysfs_create_files(&kgsl_driver.virtdev.kobj, drv_attr_list);
}
static int kgsl_cma_alloc_secure(struct kgsl_device *device,
struct kgsl_memdesc *memdesc, uint64_t size);
static int kgsl_allocate_secure(struct kgsl_device *device,
struct kgsl_memdesc *memdesc,
uint64_t size)
{
int ret;
if (MMU_FEATURE(&device->mmu, KGSL_MMU_HYP_SECURE_ALLOC))
ret = kgsl_sharedmem_page_alloc_user(memdesc, size);
else
ret = kgsl_cma_alloc_secure(device, memdesc, size);
return ret;
}
int kgsl_allocate_user(struct kgsl_device *device,
struct kgsl_memdesc *memdesc,
uint64_t size, uint64_t flags)
{
int ret;
kgsl_memdesc_init(device, memdesc, flags);
if (kgsl_mmu_get_mmutype(device) == KGSL_MMU_TYPE_NONE)
ret = kgsl_sharedmem_alloc_contig(device, memdesc, size);
else if (flags & KGSL_MEMFLAGS_SECURE)
ret = kgsl_allocate_secure(device, memdesc, size);
else
ret = kgsl_sharedmem_page_alloc_user(memdesc, size);
return ret;
}
static int kgsl_page_alloc_vmfault(struct kgsl_memdesc *memdesc,
struct vm_area_struct *vma,
struct vm_fault *vmf)
{
int pgoff;
unsigned int offset;
offset = vmf->address - vma->vm_start;
if (offset >= memdesc->size)
return VM_FAULT_SIGBUS;
pgoff = offset >> PAGE_SHIFT;
if (pgoff < memdesc->page_count) {
struct page *page = memdesc->pages[pgoff];
get_page(page);
vmf->page = page;
return 0;
}
return VM_FAULT_SIGBUS;
}
/*
* kgsl_page_alloc_unmap_kernel() - Unmap the memory in memdesc
*
* @memdesc: The memory descriptor which contains information about the memory
*
* Unmaps the memory mapped into kernel address space
*/
static void kgsl_page_alloc_unmap_kernel(struct kgsl_memdesc *memdesc)
{
mutex_lock(&kernel_map_global_lock);
if (!memdesc->hostptr) {
/* If already unmapped the refcount should be 0 */
WARN_ON(memdesc->hostptr_count);
goto done;
}
memdesc->hostptr_count--;
if (memdesc->hostptr_count)
goto done;
vunmap(memdesc->hostptr);
atomic_long_sub(memdesc->size, &kgsl_driver.stats.vmalloc);
memdesc->hostptr = NULL;
done:
mutex_unlock(&kernel_map_global_lock);
}
static int kgsl_lock_sgt(struct sg_table *sgt, u64 size)
{
int dest_perms = PERM_READ | PERM_WRITE;
int source_vm = VMID_HLOS;
int dest_vm = VMID_CP_PIXEL;
int ret;
do {
ret = hyp_assign_table(sgt, &source_vm, 1, &dest_vm,
&dest_perms, 1);
} while (ret == -EAGAIN);
if (ret) {
/*
* If returned error code is EADDRNOTAVAIL, then this
* memory may no longer be in a usable state as security
* state of the pages is unknown after this failure. This
* memory can neither be added back to the pool nor buddy
* system.
*/
if (ret == -EADDRNOTAVAIL)
pr_err("Failure to lock secure GPU memory 0x%llx bytes will not be recoverable\n",
size);
return ret;
}
return 0;
}
static int kgsl_unlock_sgt(struct sg_table *sgt)
{
int dest_perms = PERM_READ | PERM_WRITE | PERM_EXEC;
int source_vm = VMID_CP_PIXEL;
int dest_vm = VMID_HLOS;
int ret;
do {
ret = hyp_assign_table(sgt, &source_vm, 1, &dest_vm,
&dest_perms, 1);
} while (ret == -EAGAIN);
if (ret)
return ret;
return 0;
}
static void kgsl_page_alloc_free(struct kgsl_memdesc *memdesc)
{
kgsl_page_alloc_unmap_kernel(memdesc);
/* we certainly do not expect the hostptr to still be mapped */
BUG_ON(memdesc->hostptr);
/* Secure buffers need to be unlocked before being freed */
if (memdesc->priv & KGSL_MEMDESC_TZ_LOCKED) {
int ret;
ret = kgsl_unlock_sgt(memdesc->sgt);
if (ret) {
/*
* Unlock of the secure buffer failed. This buffer will
* be stuck in secure side forever and is unrecoverable.
* Give up on the buffer and don't return it to the
* pool.
*/
pr_err("kgsl: secure buf unlock failed: gpuaddr: %llx size: %llx ret: %d\n",
memdesc->gpuaddr, memdesc->size, ret);
return;
}
atomic_long_sub(memdesc->size, &kgsl_driver.stats.secure);
} else {
atomic_long_sub(memdesc->size, &kgsl_driver.stats.page_alloc);
}
/* Free pages using the pages array for non secure paged memory */
if (memdesc->pages != NULL)
kgsl_free_pages(memdesc);
else
kgsl_free_pages_from_sgt(memdesc);
if (memdesc->shmem_filp) {
fput(memdesc->shmem_filp);
memdesc->shmem_filp = NULL;
}
}
/*
* kgsl_page_alloc_map_kernel - Map the memory in memdesc to kernel address
* space
*
* @memdesc - The memory descriptor which contains information about the memory
*
* Return: 0 on success else error code
*/
static int kgsl_page_alloc_map_kernel(struct kgsl_memdesc *memdesc)
{
int ret = 0;
/* Sanity check - don't map more than we could possibly chew */
if (memdesc->size > ULONG_MAX)
return -ENOMEM;
mutex_lock(&kernel_map_global_lock);
if ((!memdesc->hostptr) && (memdesc->pages != NULL)) {
pgprot_t page_prot = pgprot_writecombine(PAGE_KERNEL);
memdesc->hostptr = vmap(memdesc->pages, memdesc->page_count,
VM_IOREMAP, page_prot);
if (memdesc->hostptr)
KGSL_STATS_ADD(memdesc->size,
&kgsl_driver.stats.vmalloc,
&kgsl_driver.stats.vmalloc_max);
else
ret = -ENOMEM;
}
if (memdesc->hostptr)
memdesc->hostptr_count++;
mutex_unlock(&kernel_map_global_lock);
return ret;
}
static int kgsl_contiguous_vmfault(struct kgsl_memdesc *memdesc,
struct vm_area_struct *vma,
struct vm_fault *vmf)
{
unsigned long offset, pfn;
int ret;
offset = ((unsigned long) vmf->address - vma->vm_start) >>
PAGE_SHIFT;
pfn = (memdesc->physaddr >> PAGE_SHIFT) + offset;
ret = vm_insert_pfn(vma, (unsigned long) vmf->address, pfn);
if (ret == -ENOMEM || ret == -EAGAIN)
return VM_FAULT_OOM;
else if (ret == -EFAULT)
return VM_FAULT_SIGBUS;
return VM_FAULT_NOPAGE;
}
static void kgsl_cma_coherent_free(struct kgsl_memdesc *memdesc)
{
unsigned long attrs = 0;
if (memdesc->hostptr) {
if (memdesc->priv & KGSL_MEMDESC_SECURE) {
atomic_long_sub(memdesc->size,
&kgsl_driver.stats.secure);
kgsl_cma_unlock_secure(memdesc);
attrs = memdesc->attrs;
} else
atomic_long_sub(memdesc->size,
&kgsl_driver.stats.coherent);
mod_node_page_state(page_pgdat(phys_to_page(memdesc->physaddr)),
NR_UNRECLAIMABLE_PAGES, -(memdesc->size >> PAGE_SHIFT));
dma_free_attrs(memdesc->dev, (size_t) memdesc->size,
memdesc->hostptr, memdesc->physaddr, attrs);
}
}
/* Global */
static struct kgsl_memdesc_ops kgsl_page_alloc_ops = {
.free = kgsl_page_alloc_free,
.vmflags = VM_DONTDUMP | VM_DONTEXPAND | VM_DONTCOPY,
.vmfault = kgsl_page_alloc_vmfault,
.map_kernel = kgsl_page_alloc_map_kernel,
.unmap_kernel = kgsl_page_alloc_unmap_kernel,
};
/* CMA ops - used during NOMMU mode */
static struct kgsl_memdesc_ops kgsl_cma_ops = {
.free = kgsl_cma_coherent_free,
.vmflags = VM_DONTDUMP | VM_PFNMAP | VM_DONTEXPAND | VM_DONTCOPY,
.vmfault = kgsl_contiguous_vmfault,
};
#ifdef CONFIG_ARM64
/*
* For security reasons, ARMv8 doesn't allow invalidate only on read-only
* mapping. It would be performance prohibitive to read the permissions on
* the buffer before the operation. Every use case that we have found does not
* assume that an invalidate operation is invalidate only, so we feel
* comfortable turning invalidates into flushes for these targets
*/
static inline unsigned int _fixup_cache_range_op(unsigned int op)
{
if (op == KGSL_CACHE_OP_INV)
return KGSL_CACHE_OP_FLUSH;
return op;
}
#else
static inline unsigned int _fixup_cache_range_op(unsigned int op)
{
return op;
}
#endif
static inline void _cache_op(unsigned int op,
const void *start, const void *end)
{
/*
* The dmac_xxx_range functions handle addresses and sizes that
* are not aligned to the cacheline size correctly.
*/
switch (_fixup_cache_range_op(op)) {
case KGSL_CACHE_OP_FLUSH:
dmac_flush_range(start, end);
break;
case KGSL_CACHE_OP_CLEAN:
dmac_clean_range(start, end);
break;
case KGSL_CACHE_OP_INV:
dmac_inv_range(start, end);
break;
}
}
static int kgsl_do_cache_op(struct page *page, void *addr,
uint64_t offset, uint64_t size, unsigned int op)
{
if (page != NULL) {
unsigned long pfn = page_to_pfn(page) + offset / PAGE_SIZE;
/*
* page_address() returns the kernel virtual address of page.
* For high memory kernel virtual address exists only if page
* has been mapped. So use a version of kmap rather than
* page_address() for high memory.
*/
if (PageHighMem(page)) {
offset &= ~PAGE_MASK;
do {
unsigned int len = size;
if (len + offset > PAGE_SIZE)
len = PAGE_SIZE - offset;
page = pfn_to_page(pfn++);
addr = kmap_atomic(page);
_cache_op(op, addr + offset,
addr + offset + len);
kunmap_atomic(addr);
size -= len;
offset = 0;
} while (size);
return 0;
}
addr = page_address(page);
}
_cache_op(op, addr + offset, addr + offset + (size_t) size);
return 0;
}
int kgsl_cache_range_op(struct kgsl_memdesc *memdesc, uint64_t offset,
uint64_t size, unsigned int op)
{
void *addr = NULL;
struct sg_table *sgt = NULL;
struct scatterlist *sg;
unsigned int i, pos = 0;
int ret = 0;
if (size == 0 || size > UINT_MAX)
return -EINVAL;
/* Make sure that the offset + size does not overflow */
if ((offset + size < offset) || (offset + size < size))
return -ERANGE;
/* Check that offset+length does not exceed memdesc->size */
if (offset + size > memdesc->size)
return -ERANGE;
if (memdesc->hostptr) {
addr = memdesc->hostptr;
/* Make sure the offset + size do not overflow the address */
if (addr + ((size_t) offset + (size_t) size) < addr)
return -ERANGE;
ret = kgsl_do_cache_op(NULL, addr, offset, size, op);
return ret;
}
/*
* If the buffer is not to mapped to kernel, perform cache
* operations after mapping to kernel.
*/
if (memdesc->sgt != NULL)
sgt = memdesc->sgt;
else {
if (memdesc->pages == NULL)
return ret;
sgt = kgsl_alloc_sgt_from_pages(memdesc);
if (IS_ERR(sgt))
return PTR_ERR(sgt);
}
for_each_sg(sgt->sgl, sg, sgt->nents, i) {
uint64_t sg_offset, sg_left;
if (offset >= (pos + sg->length)) {
pos += sg->length;
continue;
}
sg_offset = offset > pos ? offset - pos : 0;
sg_left = (sg->length - sg_offset > size) ? size :
sg->length - sg_offset;
ret = kgsl_do_cache_op(sg_page(sg), NULL, sg_offset,
sg_left, op);
size -= sg_left;
if (size == 0)
break;
pos += sg->length;
}
if (memdesc->sgt == NULL)
kgsl_free_sgt(sgt);
return ret;
}
EXPORT_SYMBOL(kgsl_cache_range_op);
void kgsl_memdesc_init(struct kgsl_device *device,
struct kgsl_memdesc *memdesc, uint64_t flags)
{
struct kgsl_mmu *mmu = &device->mmu;
unsigned int align;
u32 cachemode;
memset(memdesc, 0, sizeof(*memdesc));
/* Turn off SVM if the system doesn't support it */
if (!kgsl_mmu_use_cpu_map(mmu))
flags &= ~((uint64_t) KGSL_MEMFLAGS_USE_CPU_MAP);
/* Secure memory disables advanced addressing modes */
if (flags & KGSL_MEMFLAGS_SECURE)
flags &= ~((uint64_t) KGSL_MEMFLAGS_USE_CPU_MAP);
/* Disable IO coherence if it is not supported on the chip */
if (!MMU_FEATURE(mmu, KGSL_MMU_IO_COHERENT))
flags &= ~((uint64_t) KGSL_MEMFLAGS_IOCOHERENT);
/*
* We can't enable I/O coherency on uncached surfaces because of
* situations where hardware might snoop the cpu caches which can
* have stale data. This happens primarily due to the limitations
* of dma caching APIs available on arm64
*/
cachemode = FIELD_GET(KGSL_CACHEMODE_MASK, flags);
if ((cachemode == KGSL_CACHEMODE_WRITECOMBINE ||
cachemode == KGSL_CACHEMODE_UNCACHED))
flags &= ~((u64) KGSL_MEMFLAGS_IOCOHERENT);
if (MMU_FEATURE(mmu, KGSL_MMU_NEED_GUARD_PAGE))
memdesc->priv |= KGSL_MEMDESC_GUARD_PAGE;
if (flags & KGSL_MEMFLAGS_SECURE)
memdesc->priv |= KGSL_MEMDESC_SECURE;
memdesc->flags = flags;
memdesc->dev = device->dev->parent;
align = max_t(unsigned int,
(memdesc->flags & KGSL_MEMALIGN_MASK) >> KGSL_MEMALIGN_SHIFT,
ilog2(PAGE_SIZE));
kgsl_memdesc_set_align(memdesc, align);
spin_lock_init(&memdesc->gpuaddr_lock);
}
#ifdef CONFIG_QCOM_KGSL_USE_SHMEM
static int kgsl_alloc_page(int *page_size, struct page **pages,
unsigned int pages_len, unsigned int *align,
struct file *shmem_filp, unsigned int page_off)
{
struct page *page;
if (pages == NULL)
return -EINVAL;
page = shmem_read_mapping_page_gfp(shmem_filp->f_mapping, page_off,
kgsl_gfp_mask(0));
if (IS_ERR(page))
return PTR_ERR(page);
kgsl_zero_page(page, 0);
*pages = page;
return 1;
}
void kgsl_free_pages(struct kgsl_memdesc *memdesc)
{
int i;
for (i = 0; i < memdesc->page_count; i++)
put_page(memdesc->pages[i]);
}
static void kgsl_free_page(struct page *p)
{
put_page(p);
}
static int kgsl_memdesc_file_setup(struct kgsl_memdesc *memdesc, uint64_t size)
{
int ret;
memdesc->shmem_filp = shmem_file_setup("kgsl-3d0", size,
VM_NORESERVE);
if (IS_ERR(memdesc->shmem_filp)) {
ret = PTR_ERR(memdesc->shmem_filp);
pr_err("kgsl: unable to setup shmem file err %d\n",
ret);
memdesc->shmem_filp = NULL;
return ret;
}
return 0;
}
#else
static int kgsl_alloc_page(int *page_size, struct page **pages,
unsigned int pages_len, unsigned int *align,
struct file *shmem_filp, unsigned int page_off)
{
return kgsl_pool_alloc_page(page_size, pages, pages_len, align);
}
void kgsl_free_pages(struct kgsl_memdesc *memdesc)
{
kgsl_pool_free_pages(memdesc->pages, memdesc->page_count);
}
static void kgsl_free_page(struct page *p)
{
kgsl_pool_free_page(p);
}
static int kgsl_memdesc_file_setup(struct kgsl_memdesc *memdesc, uint64_t size)
{
return 0;
}
#endif
void kgsl_free_pages_from_sgt(struct kgsl_memdesc *memdesc)
{
int i;
struct scatterlist *sg;
for_each_sg(memdesc->sgt->sgl, sg, memdesc->sgt->nents, i) {
/*
* sg_alloc_table_from_pages() will collapse any physically
* adjacent pages into a single scatterlist entry. We cannot
* just call __free_pages() on the entire set since we cannot
* ensure that the size is a whole order. Instead, free each
* page or compound page group individually.
*/
struct page *p = sg_page(sg), *next;
unsigned int count;
unsigned int j = 0;
while (j < (sg->length/PAGE_SIZE)) {
count = 1 << compound_order(p);
next = nth_page(p, count);
kgsl_free_page(p);
p = next;
j += count;
}
}
}
int
kgsl_sharedmem_page_alloc_user(struct kgsl_memdesc *memdesc,
uint64_t size)
{
int ret = 0;
unsigned int j, page_size, len_alloc;
unsigned int pcount = 0;
size_t len;
unsigned int align;
bool memwq_flush_done = false;
static DEFINE_RATELIMIT_STATE(_rs,
DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
size = PAGE_ALIGN(size);
if (size == 0 || size > UINT_MAX)
return -EINVAL;
align = (memdesc->flags & KGSL_MEMALIGN_MASK) >> KGSL_MEMALIGN_SHIFT;
/*
* As 1MB is the max supported page size, use the alignment
* corresponding to 1MB page to make sure higher order pages
* are used if possible for a given memory size. Also, we
* don't need to update alignment in memdesc flags in case
* higher order page is used, as memdesc flags represent the
* virtual alignment specified by the user which is anyways
* getting satisfied.
*/
if (align < ilog2(SZ_1M))
align = ilog2(SZ_1M);
page_size = kgsl_get_page_size(size, align);
/*
* The alignment cannot be less than the intended page size - it can be
* larger however to accommodate hardware quirks
*/
if (align < ilog2(page_size)) {
kgsl_memdesc_set_align(memdesc, ilog2(page_size));
align = ilog2(page_size);
}
/*
* There needs to be enough room in the page array to be able to
* service the allocation entirely with PAGE_SIZE sized chunks
*/
len_alloc = PAGE_ALIGN(size) >> PAGE_SHIFT;
memdesc->ops = &kgsl_page_alloc_ops;
/*
* Allocate space to store the list of pages. This is an array of
* pointers so we can track 1024 pages per page of allocation.
* Keep this array around for non global non secure buffers that
* are allocated by kgsl. This helps with improving the vm fault
* routine by finding the faulted page in constant time.
*/
memdesc->pages = kvcalloc(len_alloc, sizeof(*memdesc->pages),
GFP_KERNEL);
memdesc->page_count = 0;
memdesc->size = 0;
if (memdesc->pages == NULL) {
ret = -ENOMEM;
goto done;
}
len = size;
ret = kgsl_memdesc_file_setup(memdesc, size);
if (ret)
goto done;
while (len > 0) {
int page_count;
page_count = kgsl_alloc_page(&page_size,
memdesc->pages + pcount,
len_alloc - pcount,
&align, memdesc->shmem_filp, pcount);
if (page_count <= 0) {
if (page_count == -EAGAIN)
continue;
/* if OoM, retry once after flushing mem_wq */
if (page_count == -ENOMEM && !memwq_flush_done) {
flush_workqueue(kgsl_driver.mem_workqueue);
memwq_flush_done = true;
continue;
}
/*
* Update sglen and memdesc size,as requested allocation
* not served fully. So that they can be correctly freed
* in kgsl_sharedmem_free().
*/
memdesc->size = (size - len);
if (!sharedmem_noretry_flag && __ratelimit(&_rs))
pr_err(
"kgsl: out of memory: only allocated %lldKB of %lldKB requested\n",
(size - len) >> 10, size >> 10);
ret = -ENOMEM;
goto done;
}
pcount += page_count;
len -= page_size;
memdesc->size += page_size;
memdesc->page_count += page_count;
/* Get the needed page size for the next iteration */
page_size = kgsl_get_page_size(len, align);
}
/* Call to the hypervisor to lock any secure buffer allocations */
if (memdesc->flags & KGSL_MEMFLAGS_SECURE) {
memdesc->sgt = kmalloc(sizeof(struct sg_table), GFP_KERNEL);
if (memdesc->sgt == NULL) {
ret = -ENOMEM;
goto done;
}
ret = sg_alloc_table_from_pages(memdesc->sgt, memdesc->pages,
memdesc->page_count, 0, memdesc->size, GFP_KERNEL);
if (ret) {
kfree(memdesc->sgt);
goto done;
}
ret = kgsl_lock_sgt(memdesc->sgt, memdesc->size);
if (ret) {
sg_free_table(memdesc->sgt);
kfree(memdesc->sgt);
memdesc->sgt = NULL;
if (ret == -EADDRNOTAVAIL) {
kvfree(memdesc->pages);
memset(memdesc, 0, sizeof(*memdesc));
return ret;
}
goto done;
}
memdesc->priv |= KGSL_MEMDESC_TZ_LOCKED;
/* Record statistics */
KGSL_STATS_ADD(memdesc->size, &kgsl_driver.stats.secure,
&kgsl_driver.stats.secure_max);
/*
* We don't need the array for secure buffers because they are
* not mapped to CPU
*/
kvfree(memdesc->pages);
memdesc->pages = NULL;
memdesc->page_count = 0;
/* Don't map and zero the locked secure buffer */
goto done;
}
KGSL_STATS_ADD(memdesc->size, &kgsl_driver.stats.page_alloc,
&kgsl_driver.stats.page_alloc_max);
done:
if (ret) {
if (memdesc->pages) {
unsigned int count = 1;
for (j = 0; j < pcount; j += count) {
count = 1 << compound_order(memdesc->pages[j]);
kgsl_free_page(memdesc->pages[j]);
}
}
kvfree(memdesc->pages);
if (memdesc->shmem_filp)
fput(memdesc->shmem_filp);
memset(memdesc, 0, sizeof(*memdesc));
}
return ret;
}
void kgsl_sharedmem_free(struct kgsl_memdesc *memdesc)
{
if (memdesc == NULL || memdesc->size == 0)
return;
/* Make sure the memory object has been unmapped */
kgsl_mmu_put_gpuaddr(memdesc);
if (memdesc->ops && memdesc->ops->free)
memdesc->ops->free(memdesc);
if (memdesc->sgt) {
sg_free_table(memdesc->sgt);
kvfree(memdesc->sgt);
}
memdesc->page_count = 0;
kvfree(memdesc->pages);
memdesc->pages = NULL;
}
EXPORT_SYMBOL(kgsl_sharedmem_free);
void kgsl_free_secure_page(struct page *page)
{
struct sg_table sgt;
struct scatterlist sgl;
if (!page)
return;
sgt.sgl = &sgl;
sgt.nents = 1;
sgt.orig_nents = 1;
sg_init_table(&sgl, 1);
sg_set_page(&sgl, page, PAGE_SIZE, 0);
kgsl_unlock_sgt(&sgt);
__free_page(page);
}
struct page *kgsl_alloc_secure_page(void)
{
struct page *page;
struct sg_table sgt;
struct scatterlist sgl;
int status;
page = alloc_page(GFP_KERNEL | __GFP_ZERO |
__GFP_NORETRY | __GFP_HIGHMEM);
if (!page)
return NULL;
sgt.sgl = &sgl;
sgt.nents = 1;
sgt.orig_nents = 1;
sg_init_table(&sgl, 1);
sg_set_page(&sgl, page, PAGE_SIZE, 0);
status = kgsl_lock_sgt(&sgt, PAGE_SIZE);
if (status) {
if (status == -EADDRNOTAVAIL)
return NULL;
__free_page(page);
return NULL;
}
return page;
}
int
kgsl_sharedmem_readl(const struct kgsl_memdesc *memdesc,
uint32_t *dst,
uint64_t offsetbytes)
{
uint32_t *src;
if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL ||
dst == NULL))
return -EINVAL;
WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
if (offsetbytes % sizeof(uint32_t) != 0)
return -EINVAL;
WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t)));
if (offsetbytes > (memdesc->size - sizeof(uint32_t)))
return -ERANGE;
/*
* We are reading shared memory between CPU and GPU.
* Make sure reads before this are complete
*/
rmb();
src = (uint32_t *)(memdesc->hostptr + offsetbytes);
*dst = *src;
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_readl);
int
kgsl_sharedmem_writel(struct kgsl_device *device,
const struct kgsl_memdesc *memdesc,
uint64_t offsetbytes,
uint32_t src)
{
uint32_t *dst;
if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL))
return -EINVAL;
WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
if (offsetbytes % sizeof(uint32_t) != 0)
return -EINVAL;
WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t)));
if (offsetbytes > (memdesc->size - sizeof(uint32_t)))
return -ERANGE;
dst = (uint32_t *)(memdesc->hostptr + offsetbytes);
*dst = src;
/*
* We are writing to shared memory between CPU and GPU.
* Make sure write above is posted immediately
*/
wmb();
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_writel);
int
kgsl_sharedmem_readq(const struct kgsl_memdesc *memdesc,
uint64_t *dst,
uint64_t offsetbytes)
{
uint64_t *src;
if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL ||
dst == NULL))
return -EINVAL;
WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
if (offsetbytes % sizeof(uint32_t) != 0)
return -EINVAL;
WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t)));
if (offsetbytes > (memdesc->size - sizeof(uint32_t)))
return -ERANGE;
/*
* We are reading shared memory between CPU and GPU.
* Make sure reads before this are complete
*/
rmb();
src = (uint64_t *)(memdesc->hostptr + offsetbytes);
*dst = *src;
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_readq);
int
kgsl_sharedmem_writeq(struct kgsl_device *device,
const struct kgsl_memdesc *memdesc,
uint64_t offsetbytes,
uint64_t src)
{
uint64_t *dst;
if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL))
return -EINVAL;
WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
if (offsetbytes % sizeof(uint32_t) != 0)
return -EINVAL;
WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t)));
if (offsetbytes > (memdesc->size - sizeof(uint32_t)))
return -ERANGE;
dst = (uint64_t *)(memdesc->hostptr + offsetbytes);
*dst = src;
/*
* We are writing to shared memory between CPU and GPU.
* Make sure write above is posted immediately
*/
wmb();
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_writeq);
int
kgsl_sharedmem_set(struct kgsl_device *device,
const struct kgsl_memdesc *memdesc, uint64_t offsetbytes,
unsigned int value, uint64_t sizebytes)
{
if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL))
return -EINVAL;
if (WARN_ON(offsetbytes + sizebytes > memdesc->size))
return -EINVAL;
memset(memdesc->hostptr + offsetbytes, value, sizebytes);
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_set);
static const char * const memtype_str[] = {
[KGSL_MEMTYPE_OBJECTANY] = "any(0)",
[KGSL_MEMTYPE_FRAMEBUFFER] = "framebuffer",
[KGSL_MEMTYPE_RENDERBUFFER] = "renderbuffer",
[KGSL_MEMTYPE_ARRAYBUFFER] = "arraybuffer",
[KGSL_MEMTYPE_ELEMENTARRAYBUFFER] = "elementarraybuffer",
[KGSL_MEMTYPE_VERTEXARRAYBUFFER] = "vertexarraybuffer",
[KGSL_MEMTYPE_TEXTURE] = "texture",
[KGSL_MEMTYPE_SURFACE] = "surface",
[KGSL_MEMTYPE_EGL_SURFACE] = "egl_surface",
[KGSL_MEMTYPE_GL] = "gl",
[KGSL_MEMTYPE_CL] = "cl",
[KGSL_MEMTYPE_CL_BUFFER_MAP] = "cl_buffer_map",
[KGSL_MEMTYPE_CL_BUFFER_NOMAP] = "cl_buffer_nomap",
[KGSL_MEMTYPE_CL_IMAGE_MAP] = "cl_image_map",
[KGSL_MEMTYPE_CL_IMAGE_NOMAP] = "cl_image_nomap",
[KGSL_MEMTYPE_CL_KERNEL_STACK] = "cl_kernel_stack",
[KGSL_MEMTYPE_COMMAND] = "command",
[KGSL_MEMTYPE_2D] = "2d",
[KGSL_MEMTYPE_EGL_IMAGE] = "egl_image",
[KGSL_MEMTYPE_EGL_SHADOW] = "egl_shadow",
[KGSL_MEMTYPE_MULTISAMPLE] = "egl_multisample",
/* KGSL_MEMTYPE_KERNEL handled below, to avoid huge array */
};
void kgsl_get_memory_usage(char *name, size_t name_size, uint64_t memflags)
{
unsigned int type = MEMFLAGS(memflags, KGSL_MEMTYPE_MASK,
KGSL_MEMTYPE_SHIFT);
if (type == KGSL_MEMTYPE_KERNEL)
strlcpy(name, "kernel", name_size);
else if (type < ARRAY_SIZE(memtype_str) && memtype_str[type] != NULL)
strlcpy(name, memtype_str[type], name_size);
else
snprintf(name, name_size, "VK/others(%3d)", type);
}
EXPORT_SYMBOL(kgsl_get_memory_usage);
int kgsl_memdesc_sg_dma(struct kgsl_memdesc *memdesc,
phys_addr_t addr, u64 size)
{
int ret;
struct page *page = phys_to_page(addr);
memdesc->sgt = kmalloc(sizeof(*memdesc->sgt), GFP_KERNEL);
if (memdesc->sgt == NULL)
return -ENOMEM;
ret = sg_alloc_table(memdesc->sgt, 1, GFP_KERNEL);
if (ret) {
kfree(memdesc->sgt);
memdesc->sgt = NULL;
return ret;
}
sg_set_page(memdesc->sgt->sgl, page, (size_t) size, 0);
return 0;
}
int kgsl_sharedmem_alloc_contig(struct kgsl_device *device,
struct kgsl_memdesc *memdesc, uint64_t size)
{
int result = 0;
size = PAGE_ALIGN(size);
if (size == 0 || size > SIZE_MAX)
return -EINVAL;
memdesc->size = size;
memdesc->ops = &kgsl_cma_ops;
memdesc->dev = device->dev->parent;
memdesc->hostptr = dma_alloc_attrs(memdesc->dev, (size_t) size,
&memdesc->physaddr, GFP_KERNEL, 0);
if (memdesc->hostptr == NULL) {
result = -ENOMEM;
goto err;
}
result = kgsl_memdesc_sg_dma(memdesc, memdesc->physaddr, size);
if (result)
goto err;
/* Record statistics */
if (kgsl_mmu_get_mmutype(device) == KGSL_MMU_TYPE_NONE)
memdesc->gpuaddr = memdesc->physaddr;
KGSL_STATS_ADD(size, &kgsl_driver.stats.coherent,
&kgsl_driver.stats.coherent_max);
mod_node_page_state(page_pgdat(phys_to_page(memdesc->physaddr)),
NR_UNRECLAIMABLE_PAGES, (size >> PAGE_SHIFT));
err:
if (result)
kgsl_sharedmem_free(memdesc);
return result;
}
EXPORT_SYMBOL(kgsl_sharedmem_alloc_contig);
static int scm_lock_chunk(struct kgsl_memdesc *memdesc, int lock)
{
struct cp2_lock_req request;
unsigned int resp;
unsigned int *chunk_list;
struct scm_desc desc = {0};
int result;
/*
* Flush the virt addr range before sending the memory to the
* secure environment to ensure the data is actually present
* in RAM
*
* Chunk_list holds the physical address of secure memory.
* Pass in the virtual address of chunk_list to flush.
* Chunk_list size is 1 because secure memory is physically
* contiguous.
*/
chunk_list = kzalloc(sizeof(unsigned int), GFP_KERNEL);
if (!chunk_list)
return -ENOMEM;
chunk_list[0] = memdesc->physaddr;
dmac_flush_range((void *)chunk_list, (void *)chunk_list + 1);
request.chunks.chunk_list = virt_to_phys(chunk_list);
/*
* virt_to_phys(chunk_list) may be an address > 4GB. It is guaranteed
* that when using scm_call (the older interface), the phys addresses
* will be restricted to below 4GB.
*/
desc.args[0] = virt_to_phys(chunk_list);
desc.args[1] = request.chunks.chunk_list_size = 1;
desc.args[2] = request.chunks.chunk_size = (unsigned int) memdesc->size;
desc.args[3] = request.mem_usage = 0;
desc.args[4] = request.lock = lock;
desc.args[5] = 0;
desc.arginfo = SCM_ARGS(6, SCM_RW, SCM_VAL, SCM_VAL, SCM_VAL, SCM_VAL,
SCM_VAL);
kmap_flush_unused();
kmap_atomic_flush_unused();
/*
* scm_call2 now supports both 32 and 64 bit calls
* so we dont need scm_call separately.
*/
result = scm_call2(SCM_SIP_FNID(SCM_SVC_MP,
MEM_PROTECT_LOCK_ID2_FLAT), &desc);
resp = desc.ret[0];
kfree(chunk_list);
return result;
}
static int kgsl_cma_alloc_secure(struct kgsl_device *device,
struct kgsl_memdesc *memdesc, uint64_t size)
{
struct kgsl_iommu *iommu = KGSL_IOMMU_PRIV(device);
int result = 0;
size_t aligned;
/* Align size to 1M boundaries */
aligned = ALIGN(size, SZ_1M);
/* The SCM call uses an unsigned int for the size */
if (aligned == 0 || aligned > UINT_MAX)
return -EINVAL;
/*
* If there is more than a page gap between the requested size and the
* aligned size we don't need to add more memory for a guard page. Yay!
*/
if (memdesc->priv & KGSL_MEMDESC_GUARD_PAGE)
if (aligned - size >= SZ_4K)
memdesc->priv &= ~KGSL_MEMDESC_GUARD_PAGE;
memdesc->size = aligned;
memdesc->ops = &kgsl_cma_ops;
memdesc->dev = iommu->ctx[KGSL_IOMMU_CONTEXT_SECURE].dev;
memdesc->attrs |= DMA_ATTR_STRONGLY_ORDERED;
memdesc->hostptr = dma_alloc_attrs(memdesc->dev, aligned,
&memdesc->physaddr, GFP_KERNEL, memdesc->attrs);
if (memdesc->hostptr == NULL) {
result = -ENOMEM;
goto err;
}
result = kgsl_memdesc_sg_dma(memdesc, memdesc->physaddr, aligned);
if (result)
goto err;
result = scm_lock_chunk(memdesc, 1);
if (result != 0)
goto err;
memdesc->priv |= KGSL_MEMDESC_TZ_LOCKED;
/* Record statistics */
KGSL_STATS_ADD(aligned, &kgsl_driver.stats.secure,
&kgsl_driver.stats.secure_max);
mod_node_page_state(page_pgdat(phys_to_page(memdesc->physaddr)),
NR_UNRECLAIMABLE_PAGES, (aligned >> PAGE_SHIFT));
err:
if (result)
kgsl_sharedmem_free(memdesc);
return result;
}
/**
* kgsl_cma_unlock_secure() - Unlock secure memory by calling TZ
* @memdesc: memory descriptor
*/
static void kgsl_cma_unlock_secure(struct kgsl_memdesc *memdesc)
{
if (memdesc->size == 0 || !(memdesc->priv & KGSL_MEMDESC_TZ_LOCKED))
return;
scm_lock_chunk(memdesc, 0);
}
void kgsl_sharedmem_set_noretry(bool val)
{
sharedmem_noretry_flag = val;
}
bool kgsl_sharedmem_get_noretry(void)
{
return sharedmem_noretry_flag;
}
void kgsl_zero_page(struct page *p, unsigned int order)
{
int i;
for (i = 0; i < (1 << order); i++) {
struct page *page = nth_page(p, i);
void *addr = kmap_atomic(page);
memset(addr, 0, PAGE_SIZE);
dmac_flush_range(addr, addr + PAGE_SIZE);
kunmap_atomic(addr);
}
}
unsigned int kgsl_gfp_mask(unsigned int page_order)
{
unsigned int gfp_mask = __GFP_HIGHMEM;
if (page_order > 0) {
gfp_mask |= __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN;
gfp_mask &= ~__GFP_RECLAIM;
} else
gfp_mask |= GFP_KERNEL;
if (kgsl_sharedmem_get_noretry())
gfp_mask |= __GFP_NORETRY | __GFP_NOWARN;
return gfp_mask;
}