blob: 39729284b594e9ee7b9be0f7549cfd1cf76dc4aa [file] [log] [blame]
/*
* Atmel maXTouch Touchscreen driver
*
* Copyright (C) 2010 Samsung Electronics Co.Ltd
* Copyright (C) 2011-2012 Atmel Corporation
* Copyright (C) 2012 Google, Inc.
*
* Author: Joonyoung Shim <jy0922.shim@samsung.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#define pr_fmt(fmt) "atmel_mxt_ts_mmi: %s: " fmt, __func__
#include <linux/module.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/i2c/atmel_mxt_ts_mmi.h>
#include <linux/input/mt.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio.h>
#include <linux/pinctrl/consumer.h>
#include <linux/semaphore.h>
#include <linux/atomic.h>
enum {
STATE_UNKNOWN,
STATE_ACTIVE,
STATE_SUSPEND,
STATE_STANDBY = 4,
STATE_BL,
STATE_INIT,
STATE_FLASH,
STATE_QUERY,
STATE_INVALID
};
#define STATE_UI (STATE_ACTIVE | STATE_SUSPEND)
#ifdef CONFIG_OF
#include <linux/of.h>
#include <linux/of_gpio.h>
#endif
#ifdef CONFIG_FB
#include <linux/notifier.h>
#include <linux/fb.h>
#include <linux/workqueue.h>
static int fb_notifier_callback(struct notifier_block *self,
unsigned long event, void *data);
static void mxt_queued_resume(struct work_struct *w);
#endif
#define DRIVER_NAME "atmel_mxt_ts"
#define MXT_MAX_RETRIES 10
#define MXT_MAX_BLOCK_WRITE 256
#define MXT_MAX_BUTTONS 8
#define DEBUG_MSG_MAX 200
/* Configuration file */
#define MXT_CFG_MAGIC "OBP_RAW V1"
/* Registers */
#define MXT_OBJECT_START 0x07
#define MXT_OBJECT_SIZE 6
#define MXT_INFO_CHECKSUM_SIZE 3
#define MXT_T37_REVISION 21
/* Object types */
#define MXT_DEBUG_DIAGNOSTIC_T37 37
#define MXT_GEN_MESSAGE_T5 5
#define MXT_GEN_COMMAND_T6 6
#define MXT_GEN_POWER_T7 7
#define MXT_GEN_ACQUIRE_T8 8
#define MXT_GEN_DATASOURCE_T53 53
#define MXT_TOUCH_MULTI_T9 9
#define MXT_TOUCH_KEYARRAY_T15 15
#define MXT_TOUCH_PROXIMITY_T23 23
#define MXT_TOUCH_PROXKEY_T52 52
#define MXT_PROCI_GRIPFACE_T20 20
#define MXT_PROCG_NOISE_T22 22
#define MXT_PROCI_ONETOUCH_T24 24
#define MXT_PROCI_TWOTOUCH_T27 27
#define MXT_PROCI_GRIP_T40 40
#define MXT_PROCI_PALM_T41 41
#define MXT_PROCI_TOUCHSUPPRESSION_T42 42
#define MXT_PROCI_STYLUS_T47 47
#define MXT_PROCG_NOISESUPPRESSION_T48 48
#define MXT_SPT_COMMSCONFIG_T18 18
#define MXT_SPT_GPIOPWM_T19 19
#define MXT_SPT_SELFTEST_T25 25
#define MXT_SPT_CTECONFIG_T28 28
#define MXT_SPT_USERDATA_T38 38
#define MXT_SPT_DIGITIZER_T43 43
#define MXT_SPT_MESSAGECOUNT_T44 44
#define MXT_SPT_CTECONFIG_T46 46
#define MXT_PROCI_ACTIVE_STYLUS_T63 63
#define MXT_PROCI_LENSEBENDING_T65 65
#define MXT_PROCG_NOISESUPPRESSION_T72 72
#define MXT_PROCI_TOUCHSEQUENCELOGGER_T93 93
#define MXT_TOUCH_MULTITOUCHSCREEN_T100 100
/* MXT_GEN_MESSAGE_T5 object */
#define MXT_RPTID_NOMSG 0xff
/* MXT_GEN_COMMAND_T6 field */
#define MXT_COMMAND_RESET 0
#define MXT_COMMAND_BACKUPNV 1
#define MXT_COMMAND_CALIBRATE 2
#define MXT_COMMAND_REPORTALL 3
#define MXT_COMMAND_DIAGNOSTIC 5
/* Define for T6 status byte */
#define MXT_T6_STATUS_RESET (1 << 7)
#define MXT_T6_STATUS_OFL (1 << 6)
#define MXT_T6_STATUS_SIGERR (1 << 5)
#define MXT_T6_STATUS_CAL (1 << 4)
#define MXT_T6_STATUS_CFGERR (1 << 3)
#define MXT_T6_STATUS_COMSERR (1 << 2)
/* MXT_GEN_POWER_T7 field */
struct t7_config {
u8 idle;
u8 active;
u8 actv2idle;
} __packed;
#define MXT_POWER_CFG_RUN 0
#define MXT_POWER_CFG_DEEPSLEEP 1
/* MXT_TOUCH_MULTI_T9 field */
#define MXT_T9_ORIENT 9
#define MXT_T9_RANGE 18
/* MXT_TOUCH_MULTI_T9 status */
#define MXT_T9_UNGRIP (1 << 0)
#define MXT_T9_SUPPRESS (1 << 1)
#define MXT_T9_AMP (1 << 2)
#define MXT_T9_VECTOR (1 << 3)
#define MXT_T9_MOVE (1 << 4)
#define MXT_T9_RELEASE (1 << 5)
#define MXT_T9_PRESS (1 << 6)
#define MXT_T9_DETECT (1 << 7)
struct t9_range {
u16 x;
u16 y;
} __packed;
/* MXT_TOUCH_MULTI_T9 orient */
#define MXT_T9_ORIENT_SWITCH (1 << 0)
/* MXT_SPT_COMMSCONFIG_T18 */
#define MXT_COMMS_CTRL 0
#define MXT_COMMS_CMD 1
#define MXT_COMMS_RETRIGEN (1 << 6)
/* Define for MXT_GEN_COMMAND_T6 */
#define MXT_BOOT_VALUE 0xa5
#define MXT_RESET_VALUE 0x01
#define MXT_BACKUP_VALUE 0x55
#define MXT_IDENT_VALUE 0x80
/* Define for MXT_PROCI_TOUCHSUPPRESSION_T42 */
#define MXT_T42_MSG_TCHSUP (1 << 0)
/* T47 Stylus */
#define MXT_TOUCH_MAJOR_T47_STYLUS 1
/* T63 Stylus */
#define MXT_T63_STYLUS_PRESS (1 << 0)
#define MXT_T63_STYLUS_RELEASE (1 << 1)
#define MXT_T63_STYLUS_MOVE (1 << 2)
#define MXT_T63_STYLUS_SUPPRESS (1 << 3)
#define MXT_T63_STYLUS_DETECT (1 << 4)
#define MXT_T63_STYLUS_TIP (1 << 5)
#define MXT_T63_STYLUS_ERASER (1 << 6)
#define MXT_T63_STYLUS_BARREL (1 << 7)
#define MXT_T63_STYLUS_PRESSURE_MASK 0x3F
/* T100 Multiple Touch Touchscreen */
#define MXT_T100_CTRL 0
#define MXT_T100_CFG1 1
#define MXT_T100_TCHAUX 3
#define MXT_T100_NUMTCH 6
#define MXT_T100_XRANGE 13
#define MXT_T100_YRANGE 24
#define MXT_T100_MOVHYSTI 47
#define MXT_T100_MOVHYSTN 49
#define MXT_T100_CFG_SWITCHXY (1 << 5)
#define MXT_T100_TCHAUX_VECT (1 << 0)
#define MXT_T100_TCHAUX_AMPL (1 << 1)
#define MXT_T100_TCHAUX_AREA (1 << 2)
#define MXT_T100_DETECT (1 << 7)
#define MXT_T100_TYPE_MASK 0x70
#define MXT_T100_TYPE_STYLUS 0x20
/* Delay times */
#define MXT_BACKUP_TIME 50 /* msec */
#define MXT_RESET_TIME 200 /* msec */
#define MXT_RESET_TIMEOUT 3000 /* msec */
#define MXT_CRC_TIMEOUT 2000 /* msec */
#define MXT_FW_RESET_TIME 3500 /* msec */
#define MXT_FW_CHG_TIMEOUT 300 /* msec */
#define MXT_WAKEUP_TIME 25 /* msec */
#define MXT_REGULATOR_DELAY 150 /* msec */
#define MXT_POWERON_DELAY 150 /* msec */
/* Command to unlock bootloader */
#define MXT_UNLOCK_CMD_MSB 0xaa
#define MXT_UNLOCK_CMD_LSB 0xdc
/* Bootloader mode status */
#define MXT_WAITING_BOOTLOAD_CMD 0xc0 /* valid 7 6 bit only */
#define MXT_WAITING_FRAME_DATA 0x80 /* valid 7 6 bit only */
#define MXT_FRAME_CRC_CHECK 0x02
#define MXT_FRAME_CRC_FAIL 0x03
#define MXT_FRAME_CRC_PASS 0x04
#define MXT_APP_CRC_FAIL 0x40 /* valid 7 8 bit only */
#define MXT_BOOT_STATUS_MASK 0x3f
#define MXT_BOOT_EXTENDED_ID (1 << 5)
#define MXT_BOOT_ID_MASK 0x1f
/* Touchscreen absolute values */
#define MXT_MAX_AREA 0xff
#define MXT_MAX_PRESSURE 0xff
#define MXT_PIXELS_PER_MM 20
struct mxt_obj_patch {
u8 number;
u8 instance;
u8 offset;
u8 value;
struct list_head link;
};
struct mxt_patch {
const char *name;
int cfg_num;
struct list_head cfg_head;
};
struct mxt_patchset {
int patch_num;
struct mxt_patch *patch_data;
};
struct mxt_object {
u8 type;
u16 start_address;
u8 size_minus_one;
u8 instances_minus_one;
u8 num_report_ids;
} __packed;
struct mxt_tdat_section {
const unsigned char *data;
size_t size;
};
#define ACTIVE_IDX 0
#define SUSPEND_IDX 1
#define MAX_NUM_STATES 2
/* Each client has this additional data */
struct mxt_data {
struct i2c_client *client;
struct input_dev *input_dev;
char phys[64]; /* device physical location */
struct mxt_platform_data *pdata;
struct mxt_object *object_table;
struct mxt_info *info;
void *raw_info_block;
atomic_t state;
unsigned int irq;
unsigned int max_x;
unsigned int max_y;
bool in_bootloader;
u16 mem_size;
u32 config_id;
u32 firmware_id;
u8 t100_aux_ampl;
u8 t100_aux_area;
u8 t100_aux_vect;
bool mem_access_created;
struct bin_attribute mem_access_attr;
bool debug_enabled;
bool debug_v2_enabled;
u8 *debug_msg_data;
u16 debug_msg_count;
struct bin_attribute debug_msg_attr;
struct mutex debug_msg_lock;
u8 revision_id;
u8 max_reportid;
u32 config_crc;
u32 info_crc;
u8 bootloader_addr;
struct t7_config t7_on_cfg;
u8 *msg_buf;
u8 t6_status;
bool update_input;
u8 last_message_count;
u8 num_touchids;
u8 num_stylusids;
unsigned long t15_keystatus;
bool use_retrigen_workaround;
bool use_regulator;
bool poweron;
bool input_registered;
bool buttons_enabled;
bool mode_is_wakeable;
bool mode_is_persistent;
struct mxt_patchset *default_mode;
struct mxt_patchset *alternate_mode;
struct mxt_patchset *current_mode;
bool irq_enabled;
struct regulator *reg_vdd;
struct regulator *reg_avdd;
char *fw_name;
char *cfg_name;
u8 *T100_data;
/* Cached parameters from object table */
u16 T5_address;
u8 T5_msg_size;
u8 T6_reportid;
u16 T6_address;
u16 T7_address;
u16 T38_address;
u8 T9_reportid_min;
u8 T9_reportid_max;
u8 T15_reportid_min;
u8 T15_reportid_max;
u16 T18_address;
u8 T19_reportid;
u8 T42_reportid_min;
u8 T42_reportid_max;
u16 T44_address;
u8 T48_reportid;
u8 T63_reportid_min;
u8 T63_reportid_max;
u8 T93_reportid;
u8 T100_reportid_min;
u8 T100_reportid_max;
/* for fw update in bootloader */
struct completion bl_completion;
/* for reset handling */
struct completion reset_completion;
/* for reset handling */
struct completion crc_completion;
/* Enable reporting of input events */
bool enable_reporting;
/* Indicates whether device is in suspend */
atomic_t suspended;
#ifdef CONFIG_FB
struct notifier_block fb_notif;
struct work_struct resume_work;
#endif
struct semaphore crit_section_lock;
const struct firmware *tdat;
struct mxt_tdat_section fw;
struct mxt_tdat_section tsett;
};
#define mxt_unlock(s) {\
up(s);\
pr_debug("critical section RELEASED (count %d)\n",\
((struct semaphore *)(s))->count);\
}
static void mxt_lock(struct semaphore *sem)
{
ktime_t after, before;
int retval, elapsed_time;
retval = down_trylock(sem);
if (!retval)
goto done;
/* will have to wait */
before = ktime_get();
retval = down_interruptible(sem);
if (retval) {
pr_err("cannot lock critical section\n");
return;
}
after = ktime_get();
elapsed_time = (ktime_to_timeval(after).tv_sec -
ktime_to_timeval(before).tv_sec) * 1000;
elapsed_time += (ktime_to_timeval(after).tv_usec -
ktime_to_timeval(before).tv_usec) / 1000;
pr_info("lock delayed by %d ms\n", elapsed_time);
done:
pr_debug("critical section LOCKED (count %d)\n", sem->count);
}
static int mxt_suspend(struct device *dev);
static int mxt_resume(struct device *dev);
static int mxt_get_sensor_state(struct mxt_data *data);
static int mxt_init_t7_power_cfg(struct mxt_data *data);
static void mxt_regulator_disable(struct mxt_data *data);
static void mxt_regulator_enable(struct mxt_data *data);
static void mxt_reset_slots(struct mxt_data *data);
struct debug_section {
unsigned long j;
unsigned int count;
};
static struct debug_section mxt_proc_t100_dbg;
static struct debug_section mxt_dump_message_dbg;
/* Function: throttle_dbgout
* Print no more than n messages in msec interval
* Return
* - false if printing is allowed
* - true if printing is NOT allowed
*/
bool throttle_dbgout(struct debug_section *dbg, int n, unsigned int msec)
{
if (printk_timed_ratelimit(&dbg->j, msec))
dbg->count = 0;
if (dbg->count < n) {
++dbg->count;
return false;
} else
return true;
}
struct touch_up_down {
int mismatch;
u8 up_down;
unsigned int counter;
};
struct touch_area_stats {
struct touch_up_down *ud;
ssize_t ud_len;
ssize_t ud_id;
ssize_t unknown_counter;
const char *name;
};
static struct touch_up_down display_ud[20];
static struct touch_area_stats display_ud_stats = {
.ud = display_ud,
.ud_len = ARRAY_SIZE(display_ud),
.name = "ts"
};
static struct touch_up_down button_ud[10];
static struct touch_area_stats button_ud_stats = {
.ud = button_ud,
.ud_len = ARRAY_SIZE(button_ud),
.name = "btn"
};
static void ud_set_id(struct touch_area_stats *tas, int id)
{
tas->ud_id = id;
}
static void ud_log_status(struct touch_area_stats *tas, bool down)
{
struct touch_up_down *ud = tas->ud;
ssize_t id = tas->ud_id;
if (id >= tas->ud_len)
tas->unknown_counter++;
if (!down) { /* up */
if (ud[id].up_down == 0x10) {
pr_debug("%s UP[%d]\n", tas->name, id);
ud[id].up_down |= 1;
ud[id].mismatch--;
}
} else if (down) { /* down */
if (ud[id].up_down == 0) {
ud[id].up_down |= (1 << 4);
pr_debug("%s DOWN[%d]\n", tas->name, id);
ud[id].mismatch++;
} else if (ud[id].up_down == 0x10)
return;
}
if (ud[id].up_down == 0x11) {
pr_debug("%s CLEAR[%d]\n", tas->name, id);
ud[id].up_down = 0;
ud[id].counter++;
}
}
static void TSI_state(struct input_dev *dev, unsigned int tool, bool status)
{
ud_log_status(&display_ud_stats, status);
input_mt_report_slot_state(dev, tool, status);
}
static void TSI_id(struct input_dev *dev, int id)
{
ud_set_id(&display_ud_stats, id);
input_mt_slot(dev, id);
}
#define input_mt_report_slot_state TSI_state
#define input_mt_slot TSI_id
static ssize_t mxt_ud_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int i;
struct mxt_data *data = dev_get_drvdata(dev);
ssize_t total = 0;
total += scnprintf(buf + total, PAGE_SIZE - total, "display:\n");
for (i = 0; i < display_ud_stats.ud_len; i++)
total += scnprintf(buf + total, PAGE_SIZE - total,
"[%d]: full cycles-%u, mismatch-%d\n", i,
display_ud[i].counter,
display_ud[i].mismatch);
if (data->buttons_enabled) {
total += scnprintf(buf + total, PAGE_SIZE - total,
"buttons:\n");
for (i = 0; i < button_ud_stats.ud_len; i++)
total += scnprintf(buf + total, PAGE_SIZE - total,
"[%d]: full cycles-%u, mismatch-%d\n",
i,
button_ud[i].counter,
button_ud[i].mismatch);
}
return total;
}
static ssize_t mxt_ud_stat(char *buf, ssize_t size)
{
int i;
ssize_t total = 0;
total += scnprintf(buf + total, size - total, "screen: ");
for (i = 0; i < display_ud_stats.ud_len; i++)
if (display_ud[i].mismatch)
total += scnprintf(buf + total, size - total,
"%d)%u,%d ", i,
display_ud[i].counter,
display_ud[i].mismatch);
else if (display_ud[i].counter)
total += scnprintf(buf + total, size - total,
"%d)%u ", i,
display_ud[i].counter);
total += scnprintf(buf + total, size - total, "buttons: ");
for (i = 0; i < button_ud_stats.ud_len; i++)
if (button_ud[i].mismatch)
total += scnprintf(buf + total, size - total,
"%d)%u,%d ", i,
button_ud[i].counter,
button_ud[i].mismatch);
else if (button_ud[i].counter)
total += scnprintf(buf + total, size - total,
"%d)%u ", i,
button_ud[i].counter);
return total;
}
static char *mxt_find_patch(char *head, char *delimiters, char **next)
{
char *patch = head;
for (; patch; patch = *next) {
*next = strpbrk(patch, delimiters);
if (*next)
*(*next)++ = '\0';
patch = skip_spaces(patch);
if (!patch || !*patch || *patch == '#')
continue;
else
break;
}
return patch;
}
static int mxt_parse_patch(int object, int instance, char *query,
struct mxt_patch *patch_ptr)
{
int i, error;
char *next, *value_p, *pair = query;
long offset_v, value_v;
struct mxt_obj_patch *patch;
for (i = 0; pair; pair = next, i++) {
pair = mxt_find_patch(pair, ",", &next);
value_p = strpbrk(pair, "=");
if (!value_p) {
pr_err("T%d[%d]: invalid syntax '%s'\n",
object, i, pair);
continue;
}
/* make sure string is null terminated */
*value_p = '\0';
error = kstrtol(pair, 10, &offset_v);
if (error) {
pr_err("T%d[%d]: dec conversion error\n", object, i);
continue;
}
error = kstrtol(++value_p, 16, &value_v);
if (error) {
pr_err("T%d[%d]: hex conversion error\n", object, i);
continue;
}
/* primitive data validation */
if (object <= 0 || object > 255 ||
offset_v < 0 || offset_v > 255) {
pr_err("T%d[%d]: invalid values\n", object, i);
continue;
}
patch = kzalloc(sizeof(*patch), GFP_KERNEL);
if (!patch) {
pr_err("failed to alloc mem\n");
return -ENOMEM;
}
patch->number = (u8)object;
patch->instance = (u8)instance;
patch->offset = (u8)offset_v;
patch->value = (u8)value_v;
pr_debug("T%d[%d], instance %d, offset %d, value 0x%02x\n",
patch->number, i,
patch->instance, patch->offset, patch->value);
patch_ptr->cfg_num++;
list_add_tail(&patch->link, &patch_ptr->cfg_head);
}
return 0;
}
/*
* Special settings can be passed to the driver via kernel cmd line
* Example: atmxt="T100@0=1f,1=a0;T72@47=b2;T110-3@26=a"
* Where:
* T100 - decimal object number
* @ - delimits object number and following patch sets
* 0=1f - patch set decimal offset and hex value
* 110-3 - object number and instance
*/
static void mxt_parse_setup_string(struct mxt_data *data,
const char *patch_ptr, struct mxt_patch *patch)
{
struct device *dev = &data->client->dev;
long number_v, instance_v;
char *patch_string;
char *config_p, *instance_p, *next, *patch_set;
int i, error;
patch_string = kstrdup(patch_ptr, GFP_KERNEL);
for (i = 0, patch_set = patch_string; patch_set; patch_set = next) {
patch_set = mxt_find_patch(patch_set, ";\n", &next);
if (!patch_set)
break;
dev_dbg(dev, "patch set %d: \"%s\"\n", i, patch_set);
config_p = strpbrk(patch_set, "@");
if ((*patch_set != 'T' && *patch_set != 't') || !config_p) {
dev_err(dev, "invalid syntax '%s'\n", patch_set);
continue;
}
/* strip non digits */
*config_p++ = '\0';
instance_v = 0L;
instance_p = strpbrk(patch_set, "-");
if (instance_p) {
*instance_p++ = '\0';
error = kstrtol(instance_p, 10, &instance_v);
if (error)
dev_err(dev, "kstrtol error %d\n", error);
}
error = kstrtol(++patch_set, 10, &number_v);
if (error) {
dev_err(dev, "kstrtol error %d\n", error);
continue;
}
error = mxt_parse_patch((int)number_v, (int)instance_v,
config_p, patch);
if (error < 0) {
dev_err(dev, "invalid patch; parse error %d\n", error);
continue;
}
i++;
}
kfree(patch_string);
if (patch->cfg_num)
dev_info(dev, "processed %d patch sets for %d objects\n",
patch->cfg_num, i);
else
dev_info(dev, "no valid patch sets found\n");
}
static inline size_t mxt_obj_size(const struct mxt_object *obj)
{
return obj->size_minus_one + 1;
}
static inline size_t mxt_obj_instances(const struct mxt_object *obj)
{
return obj->instances_minus_one + 1;
}
static bool mxt_object_readable(unsigned int type)
{
switch (type) {
case MXT_GEN_POWER_T7:
case MXT_GEN_ACQUIRE_T8:
case MXT_SPT_SELFTEST_T25:
case MXT_SPT_USERDATA_T38:
case MXT_SPT_CTECONFIG_T46:
case MXT_PROCI_LENSEBENDING_T65:
case MXT_PROCG_NOISESUPPRESSION_T72:
case MXT_TOUCH_MULTITOUCHSCREEN_T100:
return true;
case MXT_GEN_DATASOURCE_T53:
case MXT_TOUCH_MULTI_T9:
case MXT_TOUCH_KEYARRAY_T15:
case MXT_TOUCH_PROXIMITY_T23:
case MXT_TOUCH_PROXKEY_T52:
case MXT_PROCI_GRIPFACE_T20:
case MXT_PROCG_NOISE_T22:
case MXT_PROCI_ONETOUCH_T24:
case MXT_PROCI_TWOTOUCH_T27:
case MXT_PROCI_GRIP_T40:
case MXT_PROCI_PALM_T41:
case MXT_PROCI_TOUCHSUPPRESSION_T42:
case MXT_PROCI_STYLUS_T47:
case MXT_PROCG_NOISESUPPRESSION_T48:
case MXT_SPT_COMMSCONFIG_T18:
case MXT_SPT_GPIOPWM_T19:
case MXT_SPT_CTECONFIG_T28:
case MXT_SPT_DIGITIZER_T43:
default:
return false;
}
}
static void mxt_dump_message(struct mxt_data *data, u8 *message)
{
if (!throttle_dbgout(&mxt_dump_message_dbg, 20, 300000))
print_hex_dump_bytes("atmel_mxt_ts_mmi: MXT MSG:",
DUMP_PREFIX_NONE, message, data->T5_msg_size);
}
static void mxt_debug_msg_enable(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
if (data->debug_v2_enabled)
return;
mutex_lock(&data->debug_msg_lock);
data->debug_msg_data = kcalloc(DEBUG_MSG_MAX,
data->T5_msg_size, GFP_KERNEL);
if (!data->debug_msg_data) {
mutex_unlock(&data->debug_msg_lock);
dev_err(&data->client->dev, "Failed to allocate buffer\n");
return;
}
data->debug_v2_enabled = true;
mutex_unlock(&data->debug_msg_lock);
dev_info(dev, "Enabled message output\n");
}
static void mxt_debug_msg_disable(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
if (!data->debug_v2_enabled)
return;
dev_info(dev, "disabling message output\n");
data->debug_v2_enabled = false;
mutex_lock(&data->debug_msg_lock);
kfree(data->debug_msg_data);
data->debug_msg_data = NULL;
data->debug_msg_count = 0;
mutex_unlock(&data->debug_msg_lock);
dev_info(dev, "Disabled message output\n");
}
static void mxt_debug_msg_add(struct mxt_data *data, u8 *msg)
{
struct device *dev = &data->client->dev;
mutex_lock(&data->debug_msg_lock);
if (!data->debug_msg_data) {
mutex_unlock(&data->debug_msg_lock);
dev_err(dev, "No buffer!\n");
return;
}
if (data->debug_msg_count < DEBUG_MSG_MAX) {
memcpy(data->debug_msg_data +
data->debug_msg_count * data->T5_msg_size,
msg, data->T5_msg_size);
data->debug_msg_count++;
} else {
dev_dbg(dev, "Discarding %u messages\n", data->debug_msg_count);
data->debug_msg_count = 0;
}
mutex_unlock(&data->debug_msg_lock);
sysfs_notify(&data->client->dev.kobj, NULL, "debug_notify");
}
static ssize_t mxt_debug_msg_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf, loff_t off,
size_t count)
{
return -EIO;
}
static ssize_t mxt_debug_msg_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf, loff_t off, size_t bytes)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct mxt_data *data = dev_get_drvdata(dev);
size_t count, bytes_read;
if (!data->debug_msg_data) {
dev_err(dev, "No buffer!\n");
return 0;
}
count = bytes / data->T5_msg_size;
if (count > DEBUG_MSG_MAX)
count = DEBUG_MSG_MAX;
mutex_lock(&data->debug_msg_lock);
if (count > data->debug_msg_count)
count = data->debug_msg_count;
bytes_read = count * data->T5_msg_size;
memcpy(buf, data->debug_msg_data, bytes_read);
data->debug_msg_count = 0;
mutex_unlock(&data->debug_msg_lock);
return bytes_read;
}
static int mxt_debug_msg_init(struct mxt_data *data)
{
sysfs_bin_attr_init(&data->debug_msg_attr);
data->debug_msg_attr.attr.name = "debug_msg";
data->debug_msg_attr.attr.mode = S_IRUGO | S_IWUSR | S_IWGRP;
data->debug_msg_attr.read = mxt_debug_msg_read;
data->debug_msg_attr.write = mxt_debug_msg_write;
data->debug_msg_attr.size = data->T5_msg_size * DEBUG_MSG_MAX;
if (sysfs_create_bin_file(&data->client->dev.kobj,
&data->debug_msg_attr) < 0) {
dev_err(&data->client->dev, "Failed to create %s\n",
data->debug_msg_attr.attr.name);
return -EINVAL;
}
return 0;
}
static void mxt_debug_msg_remove(struct mxt_data *data)
{
if (data->debug_msg_attr.attr.name) {
sysfs_remove_bin_file(&data->client->dev.kobj,
&data->debug_msg_attr);
data->debug_msg_attr.attr.name = NULL;
}
}
static int mxt_wait_for_completion(struct mxt_data *data,
struct completion *comp, unsigned int timeout_ms)
{
struct device *dev = &data->client->dev;
unsigned long timeout = msecs_to_jiffies(timeout_ms);
long ret;
ret = wait_for_completion_interruptible_timeout(comp, timeout);
if (ret < 0) {
dev_err(dev, "Wait for completion interrupted.\n");
return -EINTR;
} else if (ret == 0) {
dev_err(dev, "Wait for completion timed out.\n");
return -ETIMEDOUT;
}
return 0;
}
static int mxt_bootloader_read(struct mxt_data *data,
u8 *val, unsigned int count)
{
int ret;
struct i2c_msg msg;
msg.addr = data->bootloader_addr;
msg.flags = data->client->flags & I2C_M_TEN;
msg.flags |= I2C_M_RD;
msg.len = count;
msg.buf = val;
ret = i2c_transfer(data->client->adapter, &msg, 1);
if (ret == 1) {
ret = 0;
} else {
ret = (ret < 0) ? ret : -EIO;
dev_err(&data->client->dev, "%s: i2c recv failed (%d)\n",
__func__, ret);
}
return ret;
}
static int mxt_bootloader_write(struct mxt_data *data,
const u8 * const val, unsigned int count)
{
int ret;
struct i2c_msg msg;
msg.addr = data->bootloader_addr;
msg.flags = data->client->flags & I2C_M_TEN;
msg.len = count;
msg.buf = (u8 *)val;
ret = i2c_transfer(data->client->adapter, &msg, 1);
if (ret == 1) {
ret = 0;
} else {
ret = (ret < 0) ? ret : -EIO;
dev_err(&data->client->dev, "%s: i2c send failed (%d)\n",
__func__, ret);
}
return ret;
}
static int mxt_lookup_bootloader_address(struct mxt_data *data, bool retry)
{
u8 appmode = data->client->addr;
u8 bootloader;
u8 family_id = 0;
if (data->info)
family_id = data->info->family_id;
else
family_id = data->pdata->dt_info.family_id;
switch (appmode) {
case 0x4a:
case 0x4b:
/* Chips after 1664S use different scheme */
if (retry || family_id >= 0xa2) {
bootloader = appmode - 0x24;
break;
}
/* Fall through for normal case */
case 0x4c:
case 0x4d:
case 0x5a:
case 0x5b:
bootloader = appmode - 0x26;
break;
default:
dev_err(&data->client->dev,
"Appmode i2c address 0x%02x not found\n",
appmode);
return -EINVAL;
}
data->bootloader_addr = bootloader;
dev_dbg(&data->client->dev, "Bootloader address set to %x\n",
data->bootloader_addr);
return 0;
}
static int mxt_probe_bootloader(struct mxt_data *data, bool retry)
{
struct device *dev = &data->client->dev;
int ret;
u8 val;
bool crc_failure;
ret = mxt_lookup_bootloader_address(data, retry);
if (ret)
return ret;
ret = mxt_bootloader_read(data, &val, 1);
if (ret)
return ret;
/* Check app crc fail mode */
crc_failure = (val & ~MXT_BOOT_STATUS_MASK) == MXT_APP_CRC_FAIL;
dev_err(dev, "Detected bootloader, status:%02X%s\n",
val, crc_failure ? ", APP_CRC_FAIL" : "");
return 0;
}
static u8 mxt_get_bootloader_version(struct mxt_data *data, u8 val)
{
struct device *dev = &data->client->dev;
u8 buf[3];
if (val & MXT_BOOT_EXTENDED_ID) {
if (mxt_bootloader_read(data, &buf[0], 3) != 0) {
dev_err(dev, "%s: i2c failure\n", __func__);
return -EIO;
}
dev_info(dev, "Bootloader ID:%d Version:%d\n", buf[1], buf[2]);
return buf[0];
} else {
dev_info(dev, "Bootloader ID:%d\n", val & MXT_BOOT_ID_MASK);
return val;
}
}
static int mxt_check_bootloader(struct mxt_data *data, unsigned int state,
bool wait)
{
struct device *dev = &data->client->dev;
u8 val;
int ret;
recheck:
if (wait) {
/*
* In application update mode, the interrupt
* line signals state transitions. We must wait for the
* CHG assertion before reading the status byte.
* Once the status byte has been read, the line is deasserted.
*/
ret = mxt_wait_for_completion(data, &data->bl_completion,
MXT_FW_CHG_TIMEOUT);
if (ret) {
/*
* TODO: handle -EINTR better by terminating fw update
* process before returning to userspace by writing
* length 0x000 to device (if we are in
* WAITING_FRAME_DATA state).
*/
dev_err(dev, "Update wait error %d\n", ret);
return ret;
}
}
ret = mxt_bootloader_read(data, &val, 1);
if (ret)
return ret;
if (state == MXT_WAITING_BOOTLOAD_CMD)
val = mxt_get_bootloader_version(data, val);
switch (state) {
case MXT_WAITING_BOOTLOAD_CMD:
case MXT_WAITING_FRAME_DATA:
case MXT_APP_CRC_FAIL:
val &= ~MXT_BOOT_STATUS_MASK;
break;
case MXT_FRAME_CRC_PASS:
if (val == MXT_FRAME_CRC_CHECK) {
goto recheck;
} else if (val == MXT_FRAME_CRC_FAIL) {
dev_err(dev, "Bootloader CRC fail\n");
return -EINVAL;
}
break;
default:
return -EINVAL;
}
if (val != state) {
dev_err(dev, "Invalid bootloader state %02X != %02X\n",
val, state);
return -EINVAL;
}
return 0;
}
static int mxt_send_bootloader_cmd(struct mxt_data *data, bool unlock)
{
int ret;
u8 buf[2];
if (unlock) {
buf[0] = MXT_UNLOCK_CMD_LSB;
buf[1] = MXT_UNLOCK_CMD_MSB;
} else {
buf[0] = 0x01;
buf[1] = 0x01;
}
ret = mxt_bootloader_write(data, buf, 2);
if (ret)
return ret;
return 0;
}
static int __mxt_read_reg(struct i2c_client *client,
u16 reg, u16 len, void *val)
{
struct i2c_msg xfer[2];
u8 buf[2];
int ret;
int retry = MXT_MAX_RETRIES;
buf[0] = reg & 0xff;
buf[1] = (reg >> 8) & 0xff;
/* Write register */
xfer[0].addr = client->addr;
xfer[0].flags = 0;
xfer[0].len = 2;
xfer[0].buf = buf;
/* Read data */
xfer[1].addr = client->addr;
xfer[1].flags = I2C_M_RD;
xfer[1].len = len;
xfer[1].buf = val;
retry_read:
ret = i2c_transfer(client->adapter, xfer, ARRAY_SIZE(xfer));
if (ret != ARRAY_SIZE(xfer)) {
if (--retry) {
dev_dbg(&client->dev, "%s: i2c retry %d\n",
__func__, MXT_MAX_RETRIES - retry);
msleep(MXT_WAKEUP_TIME);
goto retry_read;
} else {
dev_err(&client->dev, "%s: i2c read @%d failed (%d)\n",
__func__, reg, ret);
return -EIO;
}
}
return 0;
}
static int __mxt_write_reg(struct i2c_client *client, u16 reg, u16 len,
const void *val)
{
u8 *buf;
size_t count;
int ret;
int retry = MXT_MAX_RETRIES;
count = len + 2;
buf = kmalloc(count, GFP_KERNEL);
if (!buf)
return -ENOMEM;
buf[0] = reg & 0xff;
buf[1] = (reg >> 8) & 0xff;
memcpy(&buf[2], val, len);
retry_write:
ret = i2c_master_send(client, buf, count);
if (ret != count) {
if (--retry) {
dev_dbg(&client->dev, "%s: i2c retry %d\n",
__func__, MXT_MAX_RETRIES - retry);
msleep(MXT_WAKEUP_TIME);
goto retry_write;
} else {
dev_err(&client->dev, "%s: i2c write @%d failed (%d)\n",
__func__, reg, ret);
ret = -EIO;
}
} else {
ret = 0;
}
kfree(buf);
return ret;
}
static int mxt_write_reg(struct i2c_client *client, u16 reg, u8 val)
{
return __mxt_write_reg(client, reg, 1, &val);
}
static struct mxt_object *mxt_get_object(struct mxt_data *data, u8 type)
{
struct mxt_object *object;
int i;
for (i = 0; i < data->info->object_num; i++) {
object = data->object_table + i;
if (object->type == type)
return object;
}
dev_warn(&data->client->dev, "Invalid object type T%u\n", type);
return NULL;
}
static void mxt_proc_t6_messages(struct mxt_data *data, u8 *msg)
{
struct device *dev = &data->client->dev;
u8 status = msg[1];
u32 crc = msg[2] | (msg[3] << 8) | (msg[4] << 16);
if (crc != data->config_crc) {
data->config_crc = crc;
dev_dbg(dev, "T6 Config Checksum: 0x%06X\n", crc);
complete(&data->crc_completion);
}
/* Detect transition out of reset */
if ((data->t6_status & MXT_T6_STATUS_RESET) &&
!(status & MXT_T6_STATUS_RESET))
complete(&data->reset_completion);
/* Output debug if status has changed */
if (status != data->t6_status)
dev_dbg(dev, "T6 Status 0x%02X%s%s%s%s%s%s%s\n",
status,
(status == 0) ? " OK" : "",
(status & MXT_T6_STATUS_RESET) ? " RESET" : "",
(status & MXT_T6_STATUS_OFL) ? " OFL" : "",
(status & MXT_T6_STATUS_SIGERR) ? " SIGERR" : "",
(status & MXT_T6_STATUS_CAL) ? " CAL" : "",
(status & MXT_T6_STATUS_CFGERR) ? " CFGERR" : "",
(status & MXT_T6_STATUS_COMSERR) ? " COMSERR" : "");
/* Save current status */
data->t6_status = status;
}
static void mxt_input_button(struct mxt_data *data, u8 *message)
{
struct input_dev *input = data->input_dev;
const struct mxt_platform_data *pdata = data->pdata;
bool button;
int i;
/* do not report events if input device not yet registered */
if (!data->enable_reporting)
return;
/* Active-low switch */
for (i = 0; i < pdata->t19_num_keys; i++) {
if (pdata->t19_keymap[i] == KEY_RESERVED)
continue;
button = !(message[1] & (1 << i));
input_report_key(input, pdata->t19_keymap[i], button);
}
}
static void mxt_input_sync(struct input_dev *input_dev)
{
input_mt_report_pointer_emulation(input_dev, false);
input_sync(input_dev);
}
static void mxt_proc_t9_message(struct mxt_data *data, u8 *message)
{
struct device *dev = &data->client->dev;
struct input_dev *input_dev = data->input_dev;
int id;
u8 status;
int x;
int y;
int area;
int amplitude;
u8 vector;
int tool;
/* do not report events if input device not yet registered */
if (!data->enable_reporting)
return;
id = message[0] - data->T9_reportid_min;
status = message[1];
x = (message[2] << 4) | ((message[4] >> 4) & 0xf);
y = (message[3] << 4) | ((message[4] & 0xf));
/* Handle 10/12 bit switching */
if (data->max_x < 1024)
x >>= 2;
if (data->max_y < 1024)
y >>= 2;
area = message[5];
amplitude = message[6];
vector = message[7];
dev_dbg(dev,
"[%u] %c%c%c%c%c%c%c%c x: %5u y: %5u area: %3u amp: %3u vector: %02X\n",
id,
(status & MXT_T9_DETECT) ? 'D' : '.',
(status & MXT_T9_PRESS) ? 'P' : '.',
(status & MXT_T9_RELEASE) ? 'R' : '.',
(status & MXT_T9_MOVE) ? 'M' : '.',
(status & MXT_T9_VECTOR) ? 'V' : '.',
(status & MXT_T9_AMP) ? 'A' : '.',
(status & MXT_T9_SUPPRESS) ? 'S' : '.',
(status & MXT_T9_UNGRIP) ? 'U' : '.',
x, y, area, amplitude, vector);
input_mt_slot(input_dev, id);
if (status & MXT_T9_DETECT) {
/* Multiple bits may be set if the host is slow to read the
* status messages, indicating all the events that have
* happened */
if (status & MXT_T9_RELEASE) {
input_mt_report_slot_state(input_dev,
MT_TOOL_FINGER, 0);
mxt_input_sync(input_dev);
}
/* A reported size of zero indicates that the reported touch
* is a stylus from a linked Stylus T47 object. */
if (area == 0) {
area = MXT_TOUCH_MAJOR_T47_STYLUS;
tool = MT_TOOL_PEN;
} else {
tool = MT_TOOL_FINGER;
}
/* Touch active */
input_mt_report_slot_state(input_dev, tool, 1);
input_report_abs(input_dev, ABS_MT_POSITION_X, x);
input_report_abs(input_dev, ABS_MT_POSITION_Y, y);
input_report_abs(input_dev, ABS_MT_PRESSURE, amplitude);
input_report_abs(input_dev, ABS_MT_TOUCH_MAJOR, area);
input_report_abs(input_dev, ABS_MT_ORIENTATION, vector);
} else {
/* Touch no longer active, close out slot */
input_mt_report_slot_state(input_dev, MT_TOOL_FINGER, 0);
}
data->update_input = true;
}
static void mxt_proc_t100_message(struct mxt_data *data, u8 *message)
{
struct input_dev *input_dev = data->input_dev;
int id;
u8 status;
int x;
int y;
int tool;
/* do not report events if input device not yet registered */
if (!data->enable_reporting)
return;
id = message[0] - data->T100_reportid_min - 2;
/* ignore SCRSTATUS events */
if (id < 0)
return;
status = message[1];
x = (message[3] << 8) | message[2];
y = (message[5] << 8) | message[4];
if (!throttle_dbgout(&mxt_proc_t100_dbg, 20, 60000))
dev_dbg(&data->client->dev,
"[%u] status:%02X x:%u y:%u area:%02X amp:%02X vec:%02X\n",
id,
status,
x, y,
(data->t100_aux_area) ? message[data->t100_aux_area] : 0,
(data->t100_aux_ampl) ? message[data->t100_aux_ampl] : 0,
(data->t100_aux_vect) ? message[data->t100_aux_vect] : 0);
input_mt_slot(input_dev, id);
if (status & MXT_T100_DETECT) {
/* A reported size of zero indicates that the reported touch
* is a stylus from a linked Stylus T47 object. */
if ((status & MXT_T100_TYPE_MASK) == MXT_T100_TYPE_STYLUS)
tool = MT_TOOL_PEN;
else
tool = MT_TOOL_FINGER;
/* Touch active */
input_mt_report_slot_state(input_dev, tool, 1);
input_report_abs(input_dev, ABS_MT_POSITION_X, x);
input_report_abs(input_dev, ABS_MT_POSITION_Y, y);
if (data->t100_aux_ampl)
input_report_abs(input_dev, ABS_MT_PRESSURE,
message[data->t100_aux_ampl]);
if (data->t100_aux_area) {
if (tool == MT_TOOL_PEN)
input_report_abs(input_dev, ABS_MT_TOUCH_MAJOR,
MXT_TOUCH_MAJOR_T47_STYLUS);
else
input_report_abs(input_dev, ABS_MT_TOUCH_MAJOR,
message[data->t100_aux_area]);
}
if (data->t100_aux_vect)
input_report_abs(input_dev, ABS_MT_ORIENTATION,
message[data->t100_aux_vect]);
} else {
/* Touch no longer active, close out slot */
input_mt_report_slot_state(input_dev, MT_TOOL_FINGER, 0);
}
data->update_input = true;
}
static void mxt_proc_t15_messages(struct mxt_data *data, u8 *msg)
{
struct input_dev *input_dev = data->input_dev;
int key;
bool curr_state, new_state;
bool sync = false;
unsigned long keystates = le32_to_cpu(msg[2]);
/* do not report events if input device not yet registered */
if (!data->enable_reporting)
return;
for (key = 0; key < data->pdata->t15_num_keys; key++) {
curr_state = test_bit(key, &data->t15_keystatus);
new_state = test_bit(key, &keystates);
ud_set_id(&button_ud_stats, key);
if (!curr_state && new_state) {
__set_bit(key, &data->t15_keystatus);
input_event(input_dev, EV_KEY,
data->pdata->t15_keymap[key], 1);
sync = true;
ud_log_status(&button_ud_stats, true);
} else if (curr_state && !new_state) {
__clear_bit(key, &data->t15_keystatus);
input_event(input_dev, EV_KEY,
data->pdata->t15_keymap[key], 0);
sync = true;
ud_log_status(&button_ud_stats, false);
}
}
if (sync)
input_sync(input_dev);
}
static void mxt_proc_t42_messages(struct mxt_data *data, u8 *msg)
{
struct device *dev = &data->client->dev;
u8 status = msg[1];
if (status & MXT_T42_MSG_TCHSUP)
dev_info(dev, "T42 suppress\n");
else
dev_info(dev, "T42 normal\n");
}
static void mxt_proc_t93_messages(struct mxt_data *data, u8 *msg)
{
u8 status = msg[1];
if (status & 0x2) {
struct device *dev = &data->client->dev;
struct input_dev *input_dev = data->input_dev;
input_report_key(input_dev, KEY_POWER, 1);
input_report_key(input_dev, KEY_POWER, 0);
input_sync(input_dev);
dev_dbg(dev, "T93 status %s\n", (status & 0x2) ? "DBLTAP" : "");
}
}
static int mxt_proc_t48_messages(struct mxt_data *data, u8 *msg)
{
struct device *dev = &data->client->dev;
u8 status, state;
status = msg[1];
state = msg[4];
dev_dbg(dev, "T48 state %d status %02X %s%s%s%s%s\n",
state,
status,
(status & 0x01) ? "FREQCHG " : "",
(status & 0x02) ? "APXCHG " : "",
(status & 0x04) ? "ALGOERR " : "",
(status & 0x10) ? "STATCHG " : "",
(status & 0x20) ? "NLVLCHG " : "");
return 0;
}
static void mxt_proc_t63_messages(struct mxt_data *data, u8 *msg)
{
struct device *dev = &data->client->dev;
struct input_dev *input_dev = data->input_dev;
u8 id;
u16 x, y;
u8 pressure;
/* do not report events if input device not yet registered */
if (!data->enable_reporting)
return;
/* stylus slots come after touch slots */
id = data->num_touchids + (msg[0] - data->T63_reportid_min);
if (id < 0 || id > (data->num_touchids + data->num_stylusids)) {
dev_err(dev, "invalid stylus id %d, max slot is %d\n",
id, data->num_stylusids);
return;
}
x = msg[3] | (msg[4] << 8);
y = msg[5] | (msg[6] << 8);
pressure = msg[7] & MXT_T63_STYLUS_PRESSURE_MASK;
dev_dbg(dev,
"[%d] %c%c%c%c x: %d y: %d pressure: %d stylus:%c%c%c%c\n",
id,
(msg[1] & MXT_T63_STYLUS_SUPPRESS) ? 'S' : '.',
(msg[1] & MXT_T63_STYLUS_MOVE) ? 'M' : '.',
(msg[1] & MXT_T63_STYLUS_RELEASE) ? 'R' : '.',
(msg[1] & MXT_T63_STYLUS_PRESS) ? 'P' : '.',
x, y, pressure,
(msg[2] & MXT_T63_STYLUS_BARREL) ? 'B' : '.',
(msg[2] & MXT_T63_STYLUS_ERASER) ? 'E' : '.',
(msg[2] & MXT_T63_STYLUS_TIP) ? 'T' : '.',
(msg[2] & MXT_T63_STYLUS_DETECT) ? 'D' : '.');
input_mt_slot(input_dev, id);
if (msg[2] & MXT_T63_STYLUS_DETECT) {
input_mt_report_slot_state(input_dev, MT_TOOL_PEN, 1);
input_report_abs(input_dev, ABS_MT_POSITION_X, x);
input_report_abs(input_dev, ABS_MT_POSITION_Y, y);
input_report_abs(input_dev, ABS_MT_PRESSURE, pressure);
} else {
input_mt_report_slot_state(input_dev, MT_TOOL_PEN, 0);
}
input_report_key(input_dev, BTN_STYLUS,
(msg[2] & MXT_T63_STYLUS_ERASER));
input_report_key(input_dev, BTN_STYLUS2,
(msg[2] & MXT_T63_STYLUS_BARREL));
mxt_input_sync(input_dev);
}
static int mxt_proc_message(struct mxt_data *data, u8 *message)
{
u8 report_id = message[0];
bool dump = data->debug_enabled;
if (report_id == MXT_RPTID_NOMSG)
return 0;
if (report_id == data->T6_reportid) {
mxt_proc_t6_messages(data, message);
} else if (report_id >= data->T9_reportid_min
&& report_id <= data->T9_reportid_max) {
mxt_proc_t9_message(data, message);
} else if (report_id >= data->T100_reportid_min
&& report_id <= data->T100_reportid_max) {
mxt_proc_t100_message(data, message);
} else if (report_id == data->T19_reportid) {
mxt_input_button(data, message);
data->update_input = true;
} else if (report_id >= data->T63_reportid_min
&& report_id <= data->T63_reportid_max) {
mxt_proc_t63_messages(data, message);
} else if (report_id >= data->T42_reportid_min
&& report_id <= data->T42_reportid_max) {
mxt_proc_t42_messages(data, message);
} else if (report_id == data->T48_reportid) {
mxt_proc_t48_messages(data, message);
} else if (report_id >= data->T15_reportid_min
&& report_id <= data->T15_reportid_max) {
mxt_proc_t15_messages(data, message);
} else if (report_id == data->T93_reportid) {
mxt_proc_t93_messages(data, message);
} else {
dump = true;
}
if (dump)
mxt_dump_message(data, message);
if (data->debug_v2_enabled)
mxt_debug_msg_add(data, message);
return 1;
}
static int mxt_read_and_process_messages(struct mxt_data *data, u8 count)
{
struct device *dev = &data->client->dev;
int ret;
int i;
u8 num_valid = 0;
/* Safety check for msg_buf */
if (count > data->max_reportid)
return -EINVAL;
/* Process remaining messages if necessary */
ret = __mxt_read_reg(data->client, data->T5_address,
data->T5_msg_size * count, data->msg_buf);
if (ret) {
dev_err(dev, "Failed to read %u messages (%d)\n", count, ret);
return ret;
}
for (i = 0; i < count; i++) {
ret = mxt_proc_message(data,
data->msg_buf + data->T5_msg_size * i);
if (ret == 1)
num_valid++;
}
/* return number of messages read */
return num_valid;
}
static irqreturn_t mxt_process_messages_t44(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
int ret;
u8 count, num_left;
if (!data->msg_buf) {
dev_err(dev, "Message buffer not allocated!!!\n");
return IRQ_NONE;
}
/* Read T44 and T5 together */
ret = __mxt_read_reg(data->client, data->T44_address,
data->T5_msg_size + 1, data->msg_buf);
if (ret) {
dev_err(dev, "Failed to read T44 and T5 (%d)\n", ret);
return IRQ_NONE;
}
count = data->msg_buf[0];
if (count == 0) {
dev_warn(dev, "Interrupt triggered but zero messages\n");
return IRQ_NONE;
} else if (count > data->max_reportid) {
dev_err(dev, "T44 count %d exceeded max report id\n", count);
count = data->max_reportid;
}
/* Process first message */
ret = mxt_proc_message(data, data->msg_buf + 1);
if (ret < 0) {
dev_warn(dev, "Unexpected invalid message\n");
return IRQ_NONE;
}
num_left = count - 1;
/* Process remaining messages if necessary */
if (num_left) {
ret = mxt_read_and_process_messages(data, num_left);
if (ret < 0)
goto end;
else if (ret != num_left)
dev_warn(dev, "Unexpected invalid message\n");
}
end:
if (data->update_input) {
mxt_input_sync(data->input_dev);
data->update_input = false;
}
return IRQ_HANDLED;
}
static int mxt_process_messages_until_invalid(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
int num_handled, processed = 0;
bool pin_high;
do {
/* It appears host has to read "beyond" the message */
/* with invalid id to ensure CHG line gets deasserted */
num_handled = mxt_read_and_process_messages(data, 3);
processed += num_handled;
} while (num_handled > 0);
if (processed)
dev_dbg(dev, "processed %d messages\n", processed);
pin_high = gpio_get_value(data->pdata->gpio_irq) == 1;
if (!pin_high)
dev_err(dev, "CHG pin still asserted\n");
return 0;
}
static irqreturn_t mxt_process_messages(struct mxt_data *data)
{
int total_handled, num_handled;
u8 count = data->last_message_count;
if (count < 1 || count > data->max_reportid)
count = 1;
/* include final invalid message */
total_handled = mxt_read_and_process_messages(data, count + 1);
if (total_handled < 0)
return IRQ_NONE;
/* if there were invalid messages, then we are done */
else if (total_handled <= count)
goto update_count;
/* read two at a time until an invalid message or else we reach
* reportid limit */
do {
num_handled = mxt_read_and_process_messages(data, 2);
if (num_handled < 0)
return IRQ_NONE;
total_handled += num_handled;
if (num_handled < 2)
break;
} while (total_handled < data->num_touchids);
update_count:
data->last_message_count = total_handled;
if (data->enable_reporting && data->update_input) {
mxt_input_sync(data->input_dev);
data->update_input = false;
}
return IRQ_HANDLED;
}
static irqreturn_t mxt_interrupt(int irq, void *dev_id)
{
struct mxt_data *data = dev_id;
int state = mxt_get_sensor_state(data);
if (data->in_bootloader ||
(!data->poweron && !data->mode_is_wakeable) ||
(state == STATE_UNKNOWN)) {
/* bootloader state transition completion */
complete(&data->bl_completion);
return IRQ_HANDLED;
}
if (!data->object_table)
return IRQ_NONE;
if (data->T44_address)
return mxt_process_messages_t44(data);
else
return mxt_process_messages(data);
}
static int mxt_t6_command(struct mxt_data *data, u16 cmd_offset,
u8 value, bool wait)
{
u16 reg;
u8 command_register;
int timeout_counter = 0;
int ret;
reg = data->T6_address + cmd_offset;
ret = mxt_write_reg(data->client, reg, value);
if (ret)
return ret;
if (!wait)
return 0;
do {
msleep(20);
ret = __mxt_read_reg(data->client, reg, 1, &command_register);
if (ret)
return ret;
} while ((command_register != 0) && (timeout_counter++ <= 100));
if (timeout_counter > 100) {
dev_err(&data->client->dev, "Command failed!\n");
return -EIO;
}
return 0;
}
static int mxt_read_revision_id(struct mxt_data *data, u8 *revision)
{
struct mxt_object *object;
int error = -EINVAL;
object = mxt_get_object(data, MXT_DEBUG_DIAGNOSTIC_T37);
if (!object)
goto err_exit;
error = mxt_t6_command(data, MXT_COMMAND_DIAGNOSTIC,
MXT_IDENT_VALUE, true);
if (error)
goto err_exit;
error = __mxt_read_reg(data->client,
object->start_address + MXT_T37_REVISION,
sizeof(*revision), revision);
err_exit:
return error;
}
static int mxt_soft_reset(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
int ret = 0;
dev_info(dev, "Resetting chip\n");
INIT_COMPLETION(data->reset_completion);
ret = mxt_t6_command(data, MXT_COMMAND_RESET, MXT_RESET_VALUE, false);
if (ret)
return ret;
ret = mxt_wait_for_completion(data, &data->reset_completion,
MXT_RESET_TIMEOUT);
if (ret)
return ret;
return 0;
}
static void mxt_update_crc(struct mxt_data *data, u8 cmd, u8 value)
{
/* on failure, CRC is set to 0 and config will always be downloaded */
data->config_crc = 0;
INIT_COMPLETION(data->crc_completion);
mxt_t6_command(data, cmd, value, true);
/* Wait for crc message. On failure, CRC is set to 0 and config will
* always be downloaded */
mxt_wait_for_completion(data, &data->crc_completion, MXT_CRC_TIMEOUT);
}
static void mxt_calc_crc24(u32 *crc, u8 firstbyte, u8 secondbyte)
{
static const unsigned int crcpoly = 0x80001B;
u32 result;
u32 data_word;
data_word = (secondbyte << 8) | firstbyte;
result = ((*crc << 1) ^ data_word);
if (result & 0x1000000)
result ^= crcpoly;
*crc = result;
}
static u32 mxt_calculate_crc(u8 *base, off_t start_off, off_t end_off)
{
u32 crc = 0;
u8 *ptr = base + start_off;
u8 *last_val = base + end_off - 1;
if (end_off < start_off)
return -EINVAL;
while (ptr < last_val) {
mxt_calc_crc24(&crc, *ptr, *(ptr + 1));
ptr += 2;
}
/* if len is odd, fill the last byte with 0 */
if (ptr == last_val)
mxt_calc_crc24(&crc, *ptr, 0);
/* Mask to 24-bit */
crc &= 0x00FFFFFF;
return crc;
}
static int mxt_check_retrigen(struct mxt_data *data)
{
struct i2c_client *client = data->client;
int error;
int val;
if (data->pdata->irqflags & IRQF_TRIGGER_LOW)
return 0;
if (data->T18_address) {
error = __mxt_read_reg(client,
data->T18_address + MXT_COMMS_CTRL,
1, &val);
if (error)
return error;
if (val & MXT_COMMS_RETRIGEN)
return 0;
}
dev_warn(&client->dev, "Enabling RETRIGEN workaround\n");
data->use_retrigen_workaround = true;
return 0;
}
/*
* mxt_check_reg_init - download configuration to chip
*
* Atmel Raw Config File Format
*
* The first four lines of the raw config file contain:
* 1) Version
* 2) Chip ID Information (first 7 bytes of device memory)
* 3) Chip Information Block 24-bit CRC Checksum
* 4) Chip Configuration 24-bit CRC Checksum
*
* The rest of the file consists of one line per object instance:
* <TYPE> <INSTANCE> <SIZE> <CONTENTS>
*
* <TYPE> - 2-byte object type as hex
* <INSTANCE> - 2-byte object instance number as hex
* <SIZE> - 2-byte object size as hex
* <CONTENTS> - array of <SIZE> 1-byte hex values
*/
static int mxt_check_reg_init(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
struct mxt_info cfg_info;
struct mxt_object *object;
const struct firmware *cfg = NULL;
int ret;
int offset;
int data_pos;
int byte_offset;
int i;
int cfg_start_ofs;
u32 info_crc, config_crc, calculated_crc;
u8 *config_mem;
size_t config_mem_size;
unsigned int type, instance, size;
u8 val;
u16 reg;
if (!data->cfg_name)
return 0;
ret = request_firmware(&cfg, data->cfg_name, dev);
if (ret < 0) {
dev_err(dev, "Failure to request config file %s\n",
data->cfg_name);
return 0;
}
mxt_update_crc(data, MXT_COMMAND_REPORTALL, 1);
if (strncmp(cfg->data, MXT_CFG_MAGIC, strlen(MXT_CFG_MAGIC))) {
dev_err(dev, "Unrecognised config file\n");
ret = -EINVAL;
goto release;
}
data_pos = strlen(MXT_CFG_MAGIC);
/* Load information block and check */
for (i = 0; i < sizeof(struct mxt_info); i++) {
ret = sscanf(cfg->data + data_pos, "%hhx%n",
(unsigned char *)&cfg_info + i,
&offset);
if (ret != 1) {
dev_err(dev, "Bad format\n");
ret = -EINVAL;
goto release;
}
data_pos += offset;
}
if (cfg_info.family_id != data->info->family_id) {
dev_err(dev, "Family ID mismatch!\n");
ret = -EINVAL;
goto release;
}
if (cfg_info.variant_id != data->info->variant_id) {
dev_err(dev, "Variant ID mismatch!\n");
ret = -EINVAL;
goto release;
}
/* Read CRCs */
ret = sscanf(cfg->data + data_pos, "%x%n", &info_crc, &offset);
if (ret != 1) {
dev_err(dev, "Bad format: failed to parse Info CRC\n");
ret = -EINVAL;
goto release;
}
data_pos += offset;
ret = sscanf(cfg->data + data_pos, "%x%n", &config_crc, &offset);
if (ret != 1) {
dev_err(dev, "Bad format: failed to parse Config CRC\n");
ret = -EINVAL;
goto release;
}
data_pos += offset;
/* The Info Block CRC is calculated over mxt_info and the object table
* If it does not match then we are trying to load the configuration
* from a different chip or firmware version, so the configuration CRC
* is invalid anyway. */
if (info_crc == data->info_crc) {
if (config_crc == 0 || data->config_crc == 0) {
dev_info(dev, "CRC zero, attempting to apply config\n");
} else if (config_crc == data->config_crc) {
dev_info(dev, "Config CRC 0x%06X: OK\n",
data->config_crc);
ret = 0;
goto release;
} else {
dev_info(dev, "Config CRC 0x%06X: does not match file 0x%06X\n",
data->config_crc, config_crc);
}
} else {
dev_warn(dev,
"Warning: Info CRC error - device=0x%06X file=0x%06X\n",
data->info_crc, info_crc);
}
/* Malloc memory to store configuration */
cfg_start_ofs = MXT_OBJECT_START
+ data->info->object_num * sizeof(struct mxt_object)
+ MXT_INFO_CHECKSUM_SIZE;
config_mem_size = data->mem_size - cfg_start_ofs;
config_mem = kzalloc(config_mem_size, GFP_KERNEL);
if (!config_mem) {
dev_err(dev, "Failed to allocate memory\n");
ret = -ENOMEM;
goto release;
}
while (data_pos < cfg->size) {
/* Read type, instance, length */
ret = sscanf(cfg->data + data_pos, "%x %x %x%n",
&type, &instance, &size, &offset);
if (ret == 0) {
/* EOF */
break;
} else if (ret != 3) {
dev_err(dev, "Bad format: failed to parse object\n");
ret = -EINVAL;
goto release_mem;
}
data_pos += offset;
object = mxt_get_object(data, type);
if (!object) {
/* Skip object */
for (i = 0; i < size; i++) {
ret = sscanf(cfg->data + data_pos, "%hhx%n",
&val,
&offset);
data_pos += offset;
}
continue;
}
if (size > mxt_obj_size(object)) {
/* Either we are in fallback mode due to wrong
* config or config from a later fw version,
* or the file is corrupt or hand-edited */
dev_warn(dev, "Discarding %u byte(s) in T%u\n",
size - mxt_obj_size(object), type);
} else if (mxt_obj_size(object) > size) {
/* If firmware is upgraded, new bytes may be added to
* end of objects. It is generally forward compatible
* to zero these bytes - previous behaviour will be
* retained. However this does invalidate the CRC and
* will force fallback mode until the configuration is
* updated. We warn here but do nothing else - the
* malloc has zeroed the entire configuration. */
dev_warn(dev, "Zeroing %u byte(s) in T%d\n",
mxt_obj_size(object) - size, type);
}
if (instance >= mxt_obj_instances(object)) {
dev_err(dev, "Object instances exceeded!\n");
ret = -EINVAL;
goto release_mem;
}
reg = object->start_address + mxt_obj_size(object) * instance;
for (i = 0; i < size; i++) {
ret = sscanf(cfg->data + data_pos, "%hhx%n",
&val,
&offset);
if (ret != 1) {
dev_err(dev, "Bad format in T%d\n", type);
ret = -EINVAL;
goto release_mem;
}
data_pos += offset;
if (i > mxt_obj_size(object))
continue;
byte_offset = reg + i - cfg_start_ofs;
if ((byte_offset >= 0)
&& (byte_offset <= config_mem_size)) {
*(config_mem + byte_offset) = val;
} else {
dev_err(dev, "Bad object: reg:%d, T%d, ofs=%d\n",
reg, object->type, byte_offset);
ret = -EINVAL;
goto release_mem;
}
}
}
/* calculate crc of the received configs (not the raw config file) */
if (data->T7_address < cfg_start_ofs) {
dev_err(dev, "Bad T7 address, T7addr = %x, config offset %x\n",
data->T7_address, cfg_start_ofs);
ret = 0;
goto release_mem;
}
calculated_crc = mxt_calculate_crc(config_mem,
data->T7_address - cfg_start_ofs,
config_mem_size);
if (config_crc > 0 && (config_crc != calculated_crc))
dev_warn(dev, "Config CRC error, calculated=%06X, file=%06X\n",
calculated_crc, config_crc);
/* Write configuration as blocks */
byte_offset = 0;
while (byte_offset < config_mem_size) {
size = config_mem_size - byte_offset;
if (size > MXT_MAX_BLOCK_WRITE)
size = MXT_MAX_BLOCK_WRITE;
ret = __mxt_write_reg(data->client,
cfg_start_ofs + byte_offset,
size, config_mem + byte_offset);
if (ret != 0) {
dev_err(dev, "Config write error, ret=%d\n", ret);
goto release_mem;
}
byte_offset += size;
}
mxt_update_crc(data, MXT_COMMAND_BACKUPNV, MXT_BACKUP_VALUE);
ret = mxt_check_retrigen(data);
if (ret)
goto release_mem;
ret = mxt_soft_reset(data);
if (ret)
goto release_mem;
dev_info(dev, "Config written\n");
/* T7 config may have changed */
mxt_init_t7_power_cfg(data);
release_mem:
kfree(config_mem);
release:
release_firmware(cfg);
return ret;
}
static int mxt_set_t7_power_cfg(struct mxt_data *data, u8 sleep)
{
struct device *dev = &data->client->dev;
int error;
struct t7_config *new_config;
struct t7_config deepsleep = { .active = 0, .idle = 0 };
if (sleep == MXT_POWER_CFG_DEEPSLEEP)
new_config = &deepsleep;
else
new_config = &data->t7_on_cfg;
error = __mxt_write_reg(data->client, data->T7_address,
sizeof(*new_config),
new_config);
if (error)
return error;
dev_dbg(dev, "Set T7 ACTV:%d IDLE:%d ACTV2IDLE:%d\n",
new_config->active, new_config->idle, new_config->actv2idle);
return 0;
}
static int mxt_init_t7_power_cfg(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
int error;
bool retry = false;
recheck:
error = __mxt_read_reg(data->client, data->T7_address,
sizeof(data->t7_on_cfg), &data->t7_on_cfg);
if (error)
return error;
if (data->t7_on_cfg.active == 0 || data->t7_on_cfg.idle == 0) {
if (!retry) {
dev_info(dev, "T7 cfg zero, resetting\n");
mxt_soft_reset(data);
retry = true;
goto recheck;
}
dev_dbg(dev, "T7 cfg zero after reset, overriding\n");
data->t7_on_cfg.active = 20;
data->t7_on_cfg.idle = 100;
data->t7_on_cfg.actv2idle = 50;
return mxt_set_t7_power_cfg(data, MXT_POWER_CFG_RUN);
}
dev_info(dev, "Initialized power cfg: ACTV %d, IDLE %d\n",
data->t7_on_cfg.active, data->t7_on_cfg.idle);
return 0;
}
static bool mxt_t47_stylus_state(struct mxt_data *data)
{
struct mxt_object *object;
int error;
u8 control = 0;
object = mxt_get_object(data, MXT_PROCI_STYLUS_T47);
if (!object)
return false;
error = __mxt_read_reg(data->client, object->start_address,
sizeof(control), &control);
if (error)
dev_warn(&data->client->dev, "Unable to read T47\n");
return control ? true : false;
}
static inline int mxt_acquire_irq(struct mxt_data *data)
{
return mxt_process_messages_until_invalid(data);
}
static void mxt_irq_enable(struct mxt_data *data, bool enable)
{
if (enable && !data->irq_enabled) {
enable_irq(data->irq);
data->irq_enabled = true;
} else if (!enable && data->irq_enabled) {
disable_irq(data->irq);
data->irq_enabled = false;
}
}
static void mxt_apply_patchset(struct mxt_data *data, struct mxt_patch *patch)
{
struct mxt_obj_patch *mo_patch;
struct mxt_object *object;
u16 reg2w;
int error;
if (!patch || !patch->cfg_num) {
pr_debug("patchset is empty!\n");
return;
}
list_for_each_entry(mo_patch, &patch->cfg_head, link) {
object = mxt_get_object(data, mo_patch->number);
if (!object)
continue;
if (mo_patch->offset > object->size_minus_one)
continue;
reg2w = object->start_address +
mxt_obj_size(object) * mo_patch->instance +
mo_patch->offset;
dev_dbg(&data->client->dev, "patching T%d-%d@%d,0x%x off=%d\n",
mo_patch->number, mo_patch->instance,
mo_patch->offset, mo_patch->value, reg2w);
error = __mxt_write_reg(data->client, reg2w,
1, &mo_patch->value);
if (error)
dev_warn(&data->client->dev, "patch failed\n");
}
}
static void mxt_enable_wakeup_source(struct mxt_data *data, bool enable)
{
int error;
error = irq_set_irq_wake(data->irq, (int)enable);
pr_debug("%s wakeup; rc=%d\n", enable ? "enabled" : "disabled", error);
}
static void mxt_sensor_state_config(struct mxt_data *data, int state)
{
if (data->mode_is_wakeable)
mxt_enable_wakeup_source(data, true);
mxt_apply_patchset(data, &data->current_mode->patch_data[state]);
pr_debug("applying %s in mode %s\n",
state == ACTIVE_IDX ? "ACTIVE" : "SUSPEND",
data->current_mode == data->default_mode ? "DEFAULT" : "OTHER");
}
static void mxt_wait_for_idle(struct mxt_data *data)
{
int state, timeout_retries = 0;
unsigned long start_wait_jiffies = jiffies;
/* Reset completion indicated by asserting CHG */
/* Wait for CHG asserted or timeout after 200ms */
do {
state = gpio_get_value(data->pdata->gpio_irq);
if (!state)
break;
usleep_range(1000, 1000);
} while (++timeout_retries < 100);
if (!state)
dev_dbg(&data->client->dev, "reset took %ums\n",
jiffies_to_msecs(jiffies - start_wait_jiffies));
else
dev_warn(&data->client->dev, "timeout waiting for idle %ums\n",
jiffies_to_msecs(jiffies - start_wait_jiffies));
}
static inline void mxt_set_alternate_mode(struct mxt_data *data,
struct mxt_patchset *mode, bool wakeable, bool persistent)
{
data->mode_is_wakeable = wakeable;
data->mode_is_persistent = persistent;
data->current_mode = mode;
if (wakeable)
mxt_enable_wakeup_source(data, true);
}
static inline void mxt_restore_default_mode(struct mxt_data *data)
{
if (data->mode_is_wakeable)
mxt_enable_wakeup_source(data, false);
data->mode_is_wakeable = false;
data->mode_is_persistent = true;
data->current_mode = data->default_mode;
}
static const char * const mxt_state_names[] = { "UNKNOWN", "ACTIVE", "SUSPEND",
"UNUSED", "STANDBY", "BL", "INIT", "FLASH", "QUERY", "INVALID" };
static const char *mxt_state_name(int state)
{
int index = state < 0 || state > STATE_INVALID ? STATE_INVALID : state;
return mxt_state_names[index];
}
static int mxt_get_sensor_state(struct mxt_data *data)
{
return atomic_read(&data->state);
}
static void mxt_set_sensor_state(struct mxt_data *data, int state)
{
int current_state = mxt_get_sensor_state(data);
if (current_state == state)
return;
switch (state) {
case STATE_QUERY:
/* drop flag to allow object specific message handling */
if (data->in_bootloader)
data->in_bootloader = false;
case STATE_UNKNOWN:
case STATE_FLASH:
/* no special handling for these states */
break;
case STATE_SUSPEND:
if (!data->mode_is_wakeable)
mxt_irq_enable(data, false);
data->enable_reporting = false;
if (!data->in_bootloader)
mxt_sensor_state_config(data, SUSPEND_IDX);
break;
case STATE_ACTIVE:
if (!data->in_bootloader)
mxt_sensor_state_config(data, ACTIVE_IDX);
data->enable_reporting = true;
if (!data->mode_is_persistent) {
mxt_restore_default_mode(data);
pr_debug("Non-persistent mode; restoring default\n");
}
break;
case STATE_STANDBY:
mxt_irq_enable(data, false);
break;
case STATE_BL:
if (!data->in_bootloader)
data->in_bootloader = true;
mxt_irq_enable(data, false);
break;
case STATE_INIT:
/* set flag to avoid object specific message handling */
if (!data->in_bootloader)
data->in_bootloader = true;
break;
}
pr_info("state change %s -> %s\n", mxt_state_name(current_state),
mxt_state_name(state));
atomic_set(&data->state, state);
if (state == STATE_ACTIVE)
mxt_irq_enable(data, true);
}
static void mxt_free_input_device(struct mxt_data *data)
{
if (data->input_dev) {
if (data->input_registered)
input_unregister_device(data->input_dev);
else
input_free_device(data->input_dev);
data->input_dev = NULL;
data->input_registered = false;
}
}
static void mxt_free_object_table(struct mxt_data *data)
{
mxt_debug_msg_remove(data);
kfree(data->raw_info_block);
data->object_table = NULL;
data->info = NULL;
data->raw_info_block = NULL;
kfree(data->msg_buf);
data->msg_buf = NULL;
kfree(data->T100_data);
data->T100_data = NULL;
mxt_free_input_device(data);
data->enable_reporting = false;
data->T5_address = 0;
data->T5_msg_size = 0;
data->T6_reportid = 0;
data->T7_address = 0;
data->T9_reportid_min = 0;
data->T9_reportid_max = 0;
data->T15_reportid_min = 0;
data->T15_reportid_max = 0;
data->T18_address = 0;
data->T19_reportid = 0;
data->T42_reportid_min = 0;
data->T42_reportid_max = 0;
data->T44_address = 0;
data->T48_reportid = 0;
data->T63_reportid_min = 0;
data->T63_reportid_max = 0;
data->T93_reportid = 0;
data->T100_reportid_min = 0;
data->T100_reportid_max = 0;
data->max_reportid = 0;
data->T38_address = 0;
}
static int mxt_parse_object_table(struct mxt_data *data)
{
struct i2c_client *client = data->client;
int i;
u8 reportid;
u16 end_address;
/* Valid Report IDs start counting from 1 */
reportid = 1;
data->mem_size = 0;
for (i = 0; i < data->info->object_num; i++) {
struct mxt_object *object = data->object_table + i;
u8 min_id, max_id;
le16_to_cpus(&object->start_address);
if (object->num_report_ids) {
min_id = reportid;
reportid += object->num_report_ids *
mxt_obj_instances(object);
max_id = reportid - 1;
} else {
min_id = 0;
max_id = 0;
}
dev_dbg(&data->client->dev,
"T%-3u Start:%-4u Size:%-3u Instances:%u Report IDs:%u-%u\n",
object->type, object->start_address,
mxt_obj_size(object), mxt_obj_instances(object),
min_id, max_id);
switch (object->type) {
case MXT_GEN_MESSAGE_T5:
if (data->info->family_id == 0x80) {
/* On mXT224 read and discard unused CRC byte
* otherwise DMA reads are misaligned */
data->T5_msg_size = mxt_obj_size(object);
} else {
/* CRC not enabled, so skip last byte */
data->T5_msg_size = mxt_obj_size(object) - 1;
}
data->T5_address = object->start_address;
case MXT_GEN_COMMAND_T6:
data->T6_reportid = min_id;
data->T6_address = object->start_address;
break;
case MXT_GEN_POWER_T7:
data->T7_address = object->start_address;
break;
case MXT_SPT_USERDATA_T38:
data->T38_address = object->start_address;
break;
case MXT_TOUCH_MULTI_T9:
/* Only handle messages from first T9 instance */
data->T9_reportid_min = min_id;
data->T9_reportid_max = min_id +
object->num_report_ids - 1;
data->num_touchids = object->num_report_ids;
break;
case MXT_TOUCH_KEYARRAY_T15:
data->T15_reportid_min = min_id;
data->T15_reportid_max = max_id;
break;
case MXT_SPT_COMMSCONFIG_T18:
data->T18_address = object->start_address;
break;
case MXT_PROCI_TOUCHSUPPRESSION_T42:
data->T42_reportid_min = min_id;
data->T42_reportid_max = max_id;
break;
case MXT_SPT_MESSAGECOUNT_T44:
data->T44_address = object->start_address;
break;
case MXT_SPT_GPIOPWM_T19:
data->T19_reportid = min_id;
break;
case MXT_PROCG_NOISESUPPRESSION_T48:
data->T48_reportid = min_id;
break;
case MXT_PROCI_ACTIVE_STYLUS_T63:
/* Only handle messages from first T63 instance */
data->T63_reportid_min = min_id;
data->T63_reportid_max = min_id;
data->num_stylusids = 1;
break;
case MXT_PROCI_TOUCHSEQUENCELOGGER_T93:
data->T93_reportid = min_id;
break;
case MXT_TOUCH_MULTITOUCHSCREEN_T100:
data->T100_reportid_min = min_id;
data->T100_reportid_max = max_id;
/* first two report IDs reserved */
data->num_touchids = object->num_report_ids - 2;
break;
}
end_address = object->start_address
+ mxt_obj_size(object) * mxt_obj_instances(object) - 1;
if (end_address >= data->mem_size)
data->mem_size = end_address + 1;
}
/* Store maximum reportid */
data->max_reportid = reportid;
/* If T44 exists, T5 position has to be directly after */
if (data->T44_address && (data->T5_address != data->T44_address + 1)) {
dev_err(&client->dev, "Invalid T44 position\n");
return -EINVAL;
}
data->msg_buf = kcalloc(data->max_reportid,
data->T5_msg_size, GFP_KERNEL);
if (!data->msg_buf) {
dev_err(&client->dev, "Failed to allocate message buffer\n");
return -ENOMEM;
}
return 0;
}
static u32 mxt_update_config_id(struct mxt_data *data)
{
struct i2c_client *client = data->client;
u8 userdata[4] = {0};
u32 config_id = 0;
int error;
error = __mxt_read_reg(client, data->T38_address,
sizeof(userdata), userdata);
if (error)
dev_warn(&client->dev, "Unable to read config id\n");
else
config_id = be32_to_cpu(*(unsigned int *)&userdata[0]);
return config_id;
}
static int mxt_read_info_block(struct mxt_data *data)
{
struct i2c_client *client = data->client;
int error;
size_t size;
void *buf;
uint8_t num_objects;
u32 calculated_crc;
u8 *crc_ptr;
u8 revision = 0;
/* If info block already allocated, free it */
if (data->raw_info_block != NULL)
mxt_free_object_table(data);
/* Read 7-byte ID information block starting at address 0 */
size = sizeof(struct mxt_info);
buf = kzalloc(size, GFP_KERNEL);
if (!buf) {
dev_err(&client->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
error = __mxt_read_reg(client, 0, size, buf);
if (error) {
dev_err(&client->dev, "error reading info block\n");
goto err_free_mem;
}
/* Resize buffer to give space for rest of info block */
num_objects = ((struct mxt_info *)buf)->object_num;
size += (num_objects * sizeof(struct mxt_object))
+ MXT_INFO_CHECKSUM_SIZE;
buf = krealloc(buf, size, GFP_KERNEL);
if (!buf) {
dev_err(&client->dev, "Failed to allocate memory\n");
error = -ENOMEM;
goto err_free_mem;
}
/* Read rest of info block */
error = __mxt_read_reg(client, MXT_OBJECT_START,
size - MXT_OBJECT_START,
buf + MXT_OBJECT_START);
if (error) {
dev_err(&client->dev, "error reading object table\n");
goto err_free_mem;
}
/* Extract & calculate checksum */
crc_ptr = buf + size - MXT_INFO_CHECKSUM_SIZE;
data->info_crc = crc_ptr[0] | (crc_ptr[1] << 8) | (crc_ptr[2] << 16);
calculated_crc = mxt_calculate_crc(buf, 0,
size - MXT_INFO_CHECKSUM_SIZE);
/* CRC mismatch can be caused by data corruption due to I2C comms
* issue or else device is not using Object Based Protocol */
if ((data->info_crc == 0) || (data->info_crc != calculated_crc)) {
dev_err(&client->dev,
"Info Block CRC error calculated=0x%06X read=0x%06X\n",
data->info_crc, calculated_crc);
return -EIO;
}
/* Save pointers in device data structure */
data->raw_info_block = buf;
data->info = (struct mxt_info *)buf;
data->object_table = (struct mxt_object *)(buf + MXT_OBJECT_START);
dev_info(&client->dev,
"Family: 0x%X Variant: 0x%X Firmware V%u.%u.%02X Objects: %u\n",
data->info->family_id, data->info->variant_id,
data->info->version >> 4, data->info->version & 0xf,
data->info->build, data->info->object_num);
/* Parse object table information */
error = mxt_parse_object_table(data);
if (error) {
dev_err(&client->dev, "Error %d reading object table\n", error);
mxt_free_object_table(data);
return error;
}
if (data->T38_address)
data->config_id = mxt_update_config_id(data);
error = mxt_read_revision_id(data, &revision);
if (!error) {
data->revision_id = revision;
dev_info(&client->dev,
"Revision ID: 0x%02x\n", data->revision_id);
}
return 0;
err_free_mem:
kfree(buf);
return error;
}
static int mxt_read_t9_resolution(struct mxt_data *data)
{
struct i2c_client *client = data->client;
int error;
struct t9_range range;
unsigned char orient;
struct mxt_object *object;
object = mxt_get_object(data, MXT_TOUCH_MULTI_T9);
if (!object)
return -EINVAL;
error = __mxt_read_reg(client,
object->start_address + MXT_T9_RANGE,
sizeof(range), &range);
if (error)
return error;
le16_to_cpus(range.x);
le16_to_cpus(range.y);
error = __mxt_read_reg(client,
object->start_address + MXT_T9_ORIENT,
1, &orient);
if (error)
return error;
/* Handle default values */
if (range.x == 0)
range.x = 1023;
if (range.y == 0)
range.y = 1023;
if (orient & MXT_T9_ORIENT_SWITCH) {
data->max_x = range.y;
data->max_y = range.x;
} else {
data->max_x = range.x;
data->max_y = range.y;
}
dev_info(&client->dev,
"Touchscreen size X%uY%u\n", data->max_x, data->max_y);
return 0;
}
static void mxt_regulator_enable(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
int error;
gpio_set_value(data->pdata->gpio_reset, 0);
error = regulator_enable(data->reg_vdd);
if (error) {
dev_err(dev, "Error %d enabling vdd regulator\n", error);
return;
}
if (data->pdata->common_vdd_supply == 0) {
error = regulator_enable(data->reg_avdd);
if (error) {
regulator_disable(data->reg_vdd);
dev_err(dev, "Error %d enabling avdd regulator\n",
error);
return;
}
}
msleep(MXT_WAKEUP_TIME);
dev_dbg(&data->client->dev, "Regulator On\n");
gpio_set_value(data->pdata->gpio_reset, 1);
mxt_wait_for_idle(data);
}
static void mxt_regulator_disable(struct mxt_data *data)
{
gpio_set_value(data->pdata->gpio_reset, 0);
regulator_disable(data->reg_vdd);
if (data->pdata->common_vdd_supply == 0)
regulator_disable(data->reg_avdd);
dev_dbg(&data->client->dev, "Regulator Off\n");
}
static int mxt_gpio_configure(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
int error = -EINVAL;
struct pinctrl *pinctrl;
pinctrl = devm_pinctrl_get_select(dev, "active");
if (IS_ERR(pinctrl)) {
error = PTR_ERR(pinctrl);
dev_err(dev, "pinctrl failed err %d\n", error);
return error;
}
/* According to maXTouch power sequencing specification, RESET line
* must be kept low until some time after regulators come up to
* voltage */
if (gpio_is_valid(data->pdata->gpio_reset)) {
/* configure touchscreen reset out gpio */
error = gpio_request(data->pdata->gpio_reset, "mxt_reset_gpio");
if (error) {
dev_err(dev, "unable to request gpio [%u]\n",
data->pdata->gpio_reset);
goto fail;
}
error = gpio_direction_output(data->pdata->gpio_reset, 0);
if (error) {
dev_err(dev, "unable to set direction for gpio [%u]\n",
data->pdata->gpio_reset);
goto fail_release_reset_gpio;
}
} else {
dev_err(dev, "reset gpio not provided\n");
goto fail;
}
if (gpio_is_valid(data->pdata->gpio_irq)) {
/* configure touchscreen irq gpio */
error = gpio_request(data->pdata->gpio_irq, "mxt_irq_gpio");
if (error) {
dev_err(dev, "unable to request gpio [%u]\n",
data->pdata->gpio_irq);
goto fail_release_reset_gpio;
}
error = gpio_direction_input(data->pdata->gpio_irq);
if (error) {
dev_err(dev, "unable to set direction for gpio [%u]\n",
data->pdata->gpio_irq);
goto fail_release_gpios;
}
} else {
dev_err(dev, "irq gpio not provided\n");
goto fail_release_reset_gpio;
}
return 0;
fail_release_gpios:
gpio_free(data->pdata->gpio_irq);
fail_release_reset_gpio:
gpio_free(data->pdata->gpio_reset);
fail:
return error;
}
static void mxt_gpio_free(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
struct pinctrl *pinctrl;
gpio_free(data->pdata->gpio_reset);
gpio_free(data->pdata->gpio_irq);
pinctrl = devm_pinctrl_get_select_default(dev);
if (IS_ERR(pinctrl))
dev_err(dev, "pinctrl failed err %ld\n", PTR_ERR(pinctrl));
}
static int mxt_power_init(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
int error;
#ifdef CONFIG_OF
data->reg_vdd = regulator_get(&data->client->dev, "touch_vdd");
#else
data->reg_vdd = regulator_get("vdd");
#endif
if (IS_ERR(data->reg_vdd)) {
error = PTR_ERR(data->reg_vdd);
dev_err(dev, "Error %d getting vdd regulator\n", error);
goto fail;
}
if (data->pdata->common_vdd_supply == 0) {
#ifdef CONFIG_OF
data->reg_avdd = regulator_get(
&data->client->dev, "touch_avdd");
#else
data->reg_avdd = regulator_get("avdd");
#endif
if (IS_ERR(data->reg_avdd)) {
error = PTR_ERR(data->reg_avdd);
dev_err(dev, "Error %d avdd regulator get\n", error);
goto fail_release_vdd;
}
}
return 0;
fail_release_vdd:
regulator_put(data->reg_vdd);
fail:
data->reg_vdd = NULL;
data->reg_avdd = NULL;
return error;
}
static int mxt_read_t100_config(struct mxt_data *data)
{
struct i2c_client *client = data->client;
int error;
struct mxt_object *object;
u16 range_x, range_y;
u8 cfg, tchaux;
u8 aux;
object = mxt_get_object(data, MXT_TOUCH_MULTITOUCHSCREEN_T100);
if (!object)
return -EINVAL;
error = __mxt_read_reg(client,
object->start_address + MXT_T100_XRANGE,
sizeof(range_x), &range_x);
if (error)
return error;
le16_to_cpus(range_x);
error = __mxt_read_reg(client,
object->start_address + MXT_T100_YRANGE,
sizeof(range_y), &range_y);
if (error)
return error;
le16_to_cpus(range_y);
error = __mxt_read_reg(client,
object->start_address + MXT_T100_CFG1,
1, &cfg);
if (error)
return error;
error = __mxt_read_reg(client,
object->start_address + MXT_T100_TCHAUX,
1, &tchaux);
if (error)
return error;
/* Handle default values */
if (range_x == 0)
range_x = 1023;
if (range_y == 0)
range_y = 1023;
if (cfg & MXT_T100_CFG_SWITCHXY) {
data->max_x = range_y;
data->max_y = range_x;
} else {
data->max_x = range_x;
data->max_y = range_y;
}
/* allocate aux bytes */
aux = 6;
if (tchaux & MXT_T100_TCHAUX_VECT)
data->t100_aux_vect = aux++;
if (tchaux & MXT_T100_TCHAUX_AMPL)
data->t100_aux_ampl = aux++;
if (tchaux & MXT_T100_TCHAUX_AREA)
data->t100_aux_area = aux++;
dev_info(&client->dev,
"T100 Touchscreen size X%uY%u\n", data->max_x, data->max_y);
/* T100 object size might change, thus free allocated buffer */
kfree(data->T100_data);
/* allocate memory to keep a copy of T100 */
data->T100_data = kzalloc(mxt_obj_size(object), GFP_KERNEL);
if (!data->T100_data)
dev_warn(&client->dev, "Cannot allocate T100 data buffer\n");
else {
error = __mxt_read_reg(client, object->start_address,
mxt_obj_size(object), data->T100_data);
if (error) {
dev_warn(&client->dev, "T100: failed to store data\n");
kfree(data->T100_data);
data->T100_data = NULL;
} else
dev_dbg(&client->dev, "T100: stored %d bytes\n",
mxt_obj_size(object));
}
return 0;
}
static int mxt_initialize_t100_input_device(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
struct input_dev *input_dev;
int i, error;
error = mxt_read_t100_config(data);
if (error)
dev_warn(dev, "Failed to initialize T100 resolution\n");
input_dev = data->input_dev;
#ifdef MXT_DISTINCT_INPUT_NAME
input_dev->name = "Atmel maXTouch T100 Touchscreen";
#endif
set_bit(INPUT_PROP_DIRECT, input_dev->propbit);
/* For multi touch */
input_mt_init_slots(input_dev, data->num_touchids, 0);
if (mxt_t47_stylus_state(data))
input_set_abs_params(input_dev, ABS_MT_TOOL_TYPE,
0, MT_TOOL_MAX, 0, 0);
input_set_abs_params(input_dev, ABS_MT_POSITION_X,
0, data->max_x, 0, 0);
input_set_abs_params(input_dev, ABS_MT_POSITION_Y,
0, data->max_y, 0, 0);
if (data->t100_aux_area)
input_set_abs_params(input_dev, ABS_MT_TOUCH_MAJOR,
0, MXT_MAX_AREA, 0, 0);
if (data->t100_aux_ampl)
input_set_abs_params(input_dev, ABS_MT_PRESSURE,
0, MXT_MAX_PRESSURE, 0, 0);
if (data->t100_aux_vect)
input_set_abs_params(input_dev, ABS_MT_ORIENTATION,
0, 255, 0, 0);
/* For T15 key array */
if (data->T15_reportid_min) {
data->t15_keystatus = 0;
for (i = 0; i < data->pdata->t15_num_keys; i++)
if (data->pdata->t15_keymap[i])
input_set_capability(input_dev, EV_KEY,
data->pdata->t15_keymap[i]);
}
input_set_capability(input_dev, EV_KEY, KEY_POWER);
return 0;
}
static int mxt_initialize_t9_input_device(struct mxt_data *data);
static int mxt_configure_objects(struct mxt_data *data);
static int mxt_apply_tdat_tsett(struct mxt_data *data);
static int mxt_alloc_input_device(struct mxt_data *data);
static void mxt_request_irq(struct mxt_data *data, unsigned long flags)
{
int error;
dev_dbg(&data->client->dev, "requesting IRQ, flags: %lu\n", flags);
error = request_threaded_irq(data->irq, NULL, mxt_interrupt,
flags, data->client->name, data);
/* no need to stay alive, touch is not functional */
BUG_ON(error);
data->irq_enabled = true;
}
static int mxt_initialize(struct mxt_data *data)
{
struct i2c_client *client = data->client;
int error, current_state = mxt_get_sensor_state(data);
bool alt_bootloader_addr = false;
bool retry = false;
retry_info:
error = mxt_read_info_block(data);
if (error) {
retry_bootloader:
error = mxt_probe_bootloader(data, alt_bootloader_addr);
if (error) {
if (alt_bootloader_addr) {
/* Chip is not in appmode or bootloader mode */
return error;
}
dev_info(&client->dev, "Trying alternate bootloader address\n");
alt_bootloader_addr = true;
goto retry_bootloader;
} else {
if (retry) {
dev_err(&client->dev,
"Could not recover device from "
"bootloader mode\n");
/* this is not an error state, we can reflash
* from here */
mxt_set_sensor_state(data, STATE_BL);
return 0;
}
/* Attempt to exit bootloader into app mode */
mxt_send_bootloader_cmd(data, false);
msleep(MXT_FW_RESET_TIME);
retry = true;
goto retry_info;
}
}
error = mxt_check_retrigen(data);
if (error)
return error;
mxt_acquire_irq(data);
error = mxt_configure_objects(data);
if (error)
return error;
/* Touch IC is in UI mode, re-register to level */
/* triggered IRQ mode per Atmel specification */
free_irq(data->irq, data);
mxt_request_irq(data, data->pdata->irqflags);
mxt_set_sensor_state(data, (current_state == STATE_UNKNOWN) ?
STATE_STANDBY : STATE_ACTIVE);
return 0;
}
static int mxt_configure_objects(struct mxt_data *data)
{
struct i2c_client *client = data->client;
int error;
if (!data->input_dev) {
error = mxt_alloc_input_device(data);
if (error) {
dev_err(&client->dev,
"Failed to allocate input device\n");
return error;
}
}
error = mxt_debug_msg_init(data);
if (error)
return error;
error = mxt_init_t7_power_cfg(data);
if (error) {
dev_err(&client->dev, "Failed to initialize power cfg\n");
return error;
}
/* Check register init values */
if (data->tdat)
error = mxt_apply_tdat_tsett(data);
else
error = mxt_check_reg_init(data);
if (error) {
dev_err(&client->dev, "Error %d initializing configuration\n",
error);
return error;
}
if (data->T9_reportid_min) {
error = mxt_initialize_t9_input_device(data);
if (error)
return error;
} else if (data->T100_reportid_min) {
error = mxt_initialize_t100_input_device(data);
if (error)
return error;
} else
dev_warn(&client->dev, "No touch object detected\n");
if (!data->in_bootloader && !data->input_registered) {
error = input_register_device(data->input_dev);
if (error) {
dev_err(&client->dev,
"Error %d registering input device\n", error);
return error;
}
data->input_registered = true;
}
return 0;
}
/* Firmware Version is returned as Major.Minor.Build */
static ssize_t mxt_fw_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%u.%u.%02X\n",
data->info->version >> 4, data->info->version & 0xf,
data->info->build);
}
/* Hardware Version is returned as FamilyID.VariantID */
static ssize_t mxt_hw_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%u.%u\n",
data->info->family_id, data->info->variant_id);
}
/* Build Id is returned as FamilyID-ConfigID */
static ssize_t mxt_buildid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
struct mxt_info *info = data->info ? data->info : &data->pdata->dt_info;
return scnprintf(buf, PAGE_SIZE, "%02x%02x%02x-%08x\n",
info->version >> 4,
info->version & 0xf,
info->build,
data->config_id);
}
/* Product Id returned as FamilyID */
static ssize_t mxt_productinfo_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
struct mxt_info *info = data->info ? data->info : &data->pdata->dt_info;
return scnprintf(buf, PAGE_SIZE, "%02x%02x\n",
info->family_id, data->revision_id);
}
static ssize_t mxt_poweron_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%d\n", data->poweron);
}
static ssize_t mxt_ic_ver_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
struct mxt_info *info = data->info ? data->info : &data->pdata->dt_info;
return scnprintf(buf, PAGE_SIZE,
"%s%02x%02x(%02x)\n%s%02x%02x%02x\n%s%08x\n",
"Product ID: ",
info->family_id,
data->revision_id,
info->variant_id,
"Build ID: ",
info->version >> 4,
info->version & 0xf,
info->build,
"Config ID: ",
data->config_id);
}
static ssize_t mxt_drv_irq_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%s\n",
data->irq_enabled ? "ENABLED" : "DISABLED");
}
static ssize_t mxt_drv_irq_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct mxt_data *data = dev_get_drvdata(dev);
unsigned long value = 0;
int err = 0;
err = kstrtoul(buf, 10, &value);
if (err < 0) {
dev_err(dev, "%s: Failed to convert value.\n", __func__);
return -EINVAL;
}
switch (value) {
case 0: /* Disable irq */
mxt_irq_enable(data, false);
data->enable_reporting = false;
break;
case 1: /* Enable irq */
mxt_irq_enable(data, true);
data->enable_reporting = true;
break;
default:
dev_err(dev, "%s: Invalid value\n", __func__);
return -EINVAL;
}
return count;
}
static ssize_t mxt_hw_irqstat_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
switch (gpio_get_value(data->pdata->gpio_irq)) {
case 0:
return scnprintf(buf, PAGE_SIZE, "Low\n");
case 1:
return scnprintf(buf, PAGE_SIZE, "High\n");
default:
dev_err(dev, "%s: Failed to get GPIO for irq %d.\n",
__func__,
data->irq);
return scnprintf(buf, PAGE_SIZE, "Unknown\n");
}
}
static void mxt_hw_reset(struct mxt_data *data)
{
gpio_set_value(data->pdata->gpio_reset, 0);
udelay(1500);
gpio_set_value(data->pdata->gpio_reset, 1);
mxt_wait_for_idle(data);
mxt_acquire_irq(data);
}
static ssize_t mxt_reset_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned int reset;
struct mxt_data *data = dev_get_drvdata(dev);
if (sscanf(buf, "%u", &reset) != 1)
return -EINVAL;
if (reset != 1)
return -EINVAL;
if (atomic_read(&data->suspended))
mxt_resume(&data->client->dev);
else {
data->enable_reporting = false;
mxt_hw_reset(data);
data->enable_reporting = true;
}
return count;
}
static ssize_t mxt_show_instance(char *buf, int count,
struct mxt_object *object, int instance,
const u8 *val)
{
int i;
if (mxt_obj_instances(object) > 1)
count += scnprintf(buf + count, PAGE_SIZE - count,
"Instance %u\n", instance);
for (i = 0; i < mxt_obj_size(object); i++)
count += scnprintf(buf + count, PAGE_SIZE - count,
"\t[%2u]: %02x (%d)\n", i, val[i], val[i]);
count += scnprintf(buf + count, PAGE_SIZE - count, "\n");
return count;
}
static ssize_t mxt_object_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
struct mxt_object *object;
int count = 0;
int i, j;
int error;
u8 *obuf;
/* Pre-allocate buffer large enough to hold max sized object. */
obuf = kmalloc(256, GFP_KERNEL);
if (!obuf)
return -ENOMEM;
error = 0;
for (i = 0; i < data->info->object_num; i++) {
object = data->object_table + i;
if (!mxt_object_readable(object->type))
continue;
count += scnprintf(buf + count, PAGE_SIZE - count,
"T%u:\n", object->type);
for (j = 0; j < mxt_obj_instances(object); j++) {
u16 size = mxt_obj_size(object);
u16 addr = object->start_address + j * size;
error = __mxt_read_reg(data->client, addr, size, obuf);
if (error)
goto done;
count = mxt_show_instance(buf, count, object, j, obuf);
}
}
done:
kfree(obuf);
return error ?: count;
}
static int mxt_check_firmware_format(struct device *dev,
const struct firmware *fw)
{
unsigned int pos = 0;
char c;
while (pos < fw->size) {
c = *(fw->data + pos);
if (c < '0' || (c > '9' && c < 'A') || c > 'F')
return 0;
pos++;
}
/* To convert file try
* xxd -r -p mXTXXX__APP_VX-X-XX.enc > maxtouch.fw */
dev_err(dev, "Aborting: firmware file must be in binary format\n");
return -EINVAL;
}
static int mxt_load_fw(struct device *dev)
{
struct mxt_data *data = dev_get_drvdata(dev);
const struct firmware *fw = NULL;
unsigned int frame_size;
unsigned int pos = 0;
unsigned int retry = 0;
unsigned int frame = 0;
int ret;
ret = request_firmware(&fw, data->fw_name, dev);
if (ret) {
dev_err(dev, "Unable to open firmware %s\n", data->fw_name);
return ret;
}
/* Check for incorrect enc file */
ret = mxt_check_firmware_format(dev, fw);
if (ret)
goto release_firmware;
if (atomic_read(&data->suspended))
mxt_resume(&data->client->dev);
if (!data->in_bootloader) {
mxt_irq_enable(data, false);
/* Change to the bootloader mode */
ret = mxt_t6_command(data, MXT_COMMAND_RESET,
MXT_BOOT_VALUE, false);
if (ret)
goto release_firmware;
msleep(MXT_RESET_TIME);
/* At this stage, do not need to scan since we know
* family ID */
ret = mxt_lookup_bootloader_address(data, 0);
if (ret)
goto release_firmware;
mxt_irq_enable(data, true);
}
mxt_set_sensor_state(data, STATE_INIT);
mxt_free_object_table(data);
ret = mxt_check_bootloader(data, MXT_WAITING_BOOTLOAD_CMD, false);
if (ret) {
/* Bootloader may still be unlocked from previous update
* attempt */
ret = mxt_check_bootloader(data, MXT_WAITING_FRAME_DATA, false);
if (ret)
goto release_firmware;
} else {
dev_info(dev, "Unlocking bootloader\n");
/* Unlock bootloader */
ret = mxt_send_bootloader_cmd(data, true);
if (ret)
goto release_firmware;
}
mxt_set_sensor_state(data, STATE_FLASH);
while (pos < fw->size) {
ret = mxt_check_bootloader(data, MXT_WAITING_FRAME_DATA, true);
if (ret)
goto release_firmware;
frame_size = ((*(fw->data + pos) << 8) | *(fw->data + pos + 1));
/* Take account of CRC bytes */
frame_size += 2;
/* Write one frame to device */
ret = mxt_bootloader_write(data, fw->data + pos, frame_size);
if (ret)
goto release_firmware;
ret = mxt_check_bootloader(data, MXT_FRAME_CRC_PASS, true);
if (ret) {
retry++;
/* Back off by 20ms per retry */
msleep(retry * 20);
if (retry > 20) {
dev_err(dev, "Retry count exceeded\n");
goto release_firmware;
}
} else {
retry = 0;
pos += frame_size;
frame++;
}
if (frame % 50 == 0)
dev_info(dev, "Sent %d frames, %d/%zd bytes\n",
frame, pos, fw->size);
}
dev_info(dev, "Sent %d frames, %zd bytes\n", frame, pos);
INIT_COMPLETION(data->bl_completion);
/* Wait for flash. */
ret = mxt_wait_for_completion(data, &data->bl_completion,
MXT_FW_RESET_TIME);
if (ret)
goto release_firmware;
/* Wait for device to reset. Some bootloader versions do not assert
* the CHG line after bootloading has finished, so ignore error */
mxt_wait_for_completion(data, &data->bl_completion,
MXT_FW_RESET_TIME);
release_firmware:
release_firmware(fw);
return ret;
}
static int mxt_update_file_name(struct device *dev, char **file_name,
const char *buf, size_t count)
{
char *file_name_tmp;
/* Simple sanity check */
if (count > 64) {
dev_warn(dev, "File name too long\n");
return -EINVAL;
}
file_name_tmp = krealloc(*file_name, count + 1, GFP_KERNEL);
if (!file_name_tmp) {
dev_warn(dev, "no memory\n");
return -ENOMEM;
}
*file_name = file_name_tmp;
memcpy(*file_name, buf, count);
/* Echo into the sysfs entry may append newline at the end of buf */
if (buf[count - 1] == '\n')
(*file_name)[count - 1] = '\0';
else
(*file_name)[count] = '\0';
return 0;
}
static ssize_t mxt_update_fw_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct mxt_data *data = dev_get_drvdata(dev);
int error;
error = mxt_update_file_name(dev, &data->fw_name, buf, count);
if (error)
return error;
error = mxt_load_fw(dev);
if (error) {
dev_err(dev, "The firmware update failed(%d)\n", error);
count = error;
} else {
dev_info(dev, "The firmware update succeeded\n");
mxt_set_sensor_state(data, STATE_QUERY);
error = mxt_initialize(data);
if (error)
return error;
}
return count;
}
static ssize_t mxt_update_cfg_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct mxt_data *data = dev_get_drvdata(dev);
int ret;
if (data->in_bootloader) {
dev_err(dev, "Not in appmode\n");
return -EINVAL;
}
ret = mxt_update_file_name(dev, &data->cfg_name, buf, count);
if (ret)
return ret;
data->enable_reporting = false;
mxt_free_input_device(data);
if (atomic_read(&data->suspended))
mxt_resume(&data->client->dev);
ret = mxt_configure_objects(data);
if (ret)
goto out;
ret = count;
out:
return ret;
}
static ssize_t mxt_debug_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
char c;
c = data->debug_enabled ? '1' : '0';
return scnprintf(buf, PAGE_SIZE, "%c\n", c);
}
static ssize_t mxt_debug_notify_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "0\n");
}
static ssize_t mxt_debug_v2_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct mxt_data *data = dev_get_drvdata(dev);
int i;
if (sscanf(buf, "%u", &i) == 1 && i < 2) {
if (i == 1)
mxt_debug_msg_enable(data);
else
mxt_debug_msg_disable(data);
return count;
} else {
dev_dbg(dev, "debug_enabled write error\n");
return -EINVAL;
}
}
static ssize_t mxt_debug_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct mxt_data *data = dev_get_drvdata(dev);
int i;
if (sscanf(buf, "%u", &i) == 1 && i < 2) {
data->debug_enabled = (i == 1);
dev_dbg(dev, "%s\n", i ? "debug enabled" : "debug disabled");
return count;
} else {
dev_dbg(dev, "debug_enabled write error\n");
return -EINVAL;
}
}
static int mxt_check_mem_access_params(struct mxt_data *data, loff_t off,
size_t *count)
{
if (off >= data->mem_size)
return -EIO;
if (off + *count > data->mem_size)
*count = data->mem_size - off;
if (*count > MXT_MAX_BLOCK_WRITE)
*count = MXT_MAX_BLOCK_WRITE;
return 0;
}
static ssize_t mxt_mem_access_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct mxt_data *data = dev_get_drvdata(dev);
int ret = 0;
ret = mxt_check_mem_access_params(data, off, &count);
if (ret < 0)
return ret;
if (count > 0)
ret = __mxt_read_reg(data->client, off, count, buf);
return ret == 0 ? count : ret;
}
static ssize_t mxt_mem_access_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf, loff_t off,
size_t count)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct mxt_data *data = dev_get_drvdata(dev);
int ret = 0;
ret = mxt_check_mem_access_params(data, off, &count);
if (ret < 0)
return ret;
if (count > 0)
ret = __mxt_write_reg(data->client, off, count, buf);
return ret == 0 ? count : 0;
}
static int mxt_apply_tdat_tsett(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
struct mxt_object *object;
int ret = 0;
int offset = 0;
int byte_offset;
int cfg_start_ofs;
u8 *config_mem;
size_t config_mem_size;
const unsigned char *cfg_data, *obj_data;
unsigned int type, instance, size;
u16 reg;
pr_info("Applying TDAT settings\n");
/* Alloc memory to store configuration */
cfg_start_ofs = MXT_OBJECT_START
+ data->info->object_num * sizeof(struct mxt_object)
+ MXT_INFO_CHECKSUM_SIZE;
config_mem_size = data->mem_size - cfg_start_ofs;
config_mem = kzalloc(config_mem_size, GFP_KERNEL);
if (!config_mem) {
dev_err(dev, "Failed to allocate memory\n");
ret = -ENOMEM;
goto just_leave;
}
dev_dbg(dev, "Config memory: size %u, start_ofs %u\n",
config_mem_size, cfg_start_ofs);
cfg_data = data->tsett.data;
while (offset < data->tsett.size) {
/* Read type, instance, length */
type = (cfg_data[offset+1] << 8) | cfg_data[offset];
instance = cfg_data[offset+2];
size = (cfg_data[offset+4] << 8) | cfg_data[offset+3];
obj_data = &cfg_data[offset+5];
dev_dbg(dev, "T%u, instance: %u, size: %u, Tsett-offset: %d\n",
type, instance, size, offset);
offset += size + 5;
object = mxt_get_object(data, type);
if (!object)
continue;
if (size > mxt_obj_size(object)) {
/* Either we are in fallback mode due to wrong
* config or config from a later fw version,
* or the file is corrupt or hand-edited */
dev_warn(dev, "Discarding %u byte(s) in T%u\n",
size - mxt_obj_size(object), type);
} else if (mxt_obj_size(object) > size) {
/* If firmware is upgraded, new bytes may be added to
* end of objects. It is generally forward compatible
* to zero these bytes - previous behaviour will be
* retained. However this does invalidate the CRC and
* will force fallback mode until the configuration is
* updated. We warn here but do nothing else - the
* malloc has zeroed the entire configuration. */
dev_warn(dev, "Zeroing %u byte(s) in T%d\n",
mxt_obj_size(object) - size, type);
}
if (instance >= mxt_obj_instances(object)) {
dev_err(dev, "Object instances exceeded!\n");
ret = -EINVAL;
goto release_mem;
}
/* config data address in registers memory map */
reg = object->start_address + mxt_obj_size(object) * instance;
dev_dbg(dev, "T%u address: %u, instance[%u] data offset %u\n",
type, object->start_address,
instance, mxt_obj_size(object) * instance);
/* copy new config data to config memory buffer */
memcpy(config_mem + reg - cfg_start_ofs, obj_data, size);
dev_dbg(dev, "Copied %u bytes at offset %u\n",
size, (unsigned)(reg - cfg_start_ofs));
}
/* calculate crc of the received configs (not the raw config file) */
if (data->T7_address < cfg_start_ofs) {
dev_err(dev, "Bad T7 address, T7addr = %x, config offset %x\n",
data->T7_address, cfg_start_ofs);
goto release_mem;
}
/* Write configuration as blocks */
byte_offset = 0;
while (byte_offset < config_mem_size) {
size = config_mem_size - byte_offset;
if (size > MXT_MAX_BLOCK_WRITE)
size = MXT_MAX_BLOCK_WRITE;
dev_dbg(dev, "Writing config chunk size %u, at address %u\n",
size, cfg_start_ofs + byte_offset);
ret = __mxt_write_reg(data->client,
cfg_start_ofs + byte_offset,
size, config_mem + byte_offset);
if (ret != 0) {
dev_err(dev, "Config write error, ret=%d\n", ret);
goto release_mem;
}
byte_offset += size;
}
mxt_update_crc(data, MXT_COMMAND_BACKUPNV, MXT_BACKUP_VALUE);
ret = mxt_check_retrigen(data);
if (ret)
goto release_mem;
mxt_soft_reset(data);
dev_info(dev, "Config written\n");
/* T7 config may have changed */
mxt_init_t7_power_cfg(data);
/* T38 may have changed */
if (data->T38_address)
data->config_id = mxt_update_config_id(data);
release_mem:
kfree(config_mem);
just_leave:
return ret;
}
static bool forcereflash;
static ssize_t mxt_forcereflash_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned int input;
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
if (input != 1)
return -EINVAL;
forcereflash = true;
return count;
}
static bool mxt_check_tdat_format(const unsigned char *image)
{
return image[0] == 0x31;
}
static int mxt_get_tdat_config_id(const unsigned char *data, size_t size,
u32 *config_id, u8 *revision)
{
unsigned short id;
int error = -EINVAL;
size_t length, offset;
for (offset = 0; offset < size; offset += length+5) {
id = (data[offset+1] << 8) | data[offset];
length = (data[offset+4] << 8) | data[offset+3];
if (id == MXT_SPT_USERDATA_T38) {
*config_id = be32_to_cpu(
*(unsigned int *)&data[offset+5]);
*revision = data[offset+9];
error = 0;
break;
}
}
return error;
}
static int mxt_parse_tdat_image(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
u32 firmware_id;
u8 *section, id;
size_t ii, length, offset, header_sz, raw_size = data->tdat->size;
const u8 *raw_image = data->tdat->data;
int error;
u32 config_id = 0;
u8 revision_id = 0;
pr_info("Start TDAT image processing\n");
for (ii = 0, offset = 1; offset < raw_size; offset += length+4) {
length = (raw_image[offset+3] << 16) |
(raw_image[offset+2] << 8) | raw_image[offset+1];
dev_dbg(dev, "Record[%d]: length %u, offset %u\n",
ii++, length, offset);
if ((offset+length+4) > raw_size) {
dev_err(dev, "Data overflow at offset %u (%u)\n",
offset, raw_image[offset]);
return -EINVAL;
}
}
if (offset != raw_size) {
dev_err(dev, "Data is misaligned\n");
return -EINVAL;
}
for (offset = 1; offset < raw_size; offset += length+4) {
/* byte 0 - section id */
/* byte 1-3 - section length */
/* byte 4-... - section data */
id = raw_image[offset];
length = (raw_image[offset+3] << 16) |
(raw_image[offset+2] << 8) | raw_image[offset+1];
section = (u8 *)&raw_image[offset+4];
dev_dbg(dev, "Section [%u], size %u\n", id, length);
switch (id) {
case 1: /* config */
error = mxt_get_tdat_config_id(section, length,
&config_id, &revision_id);
if (error)
return -EINVAL;
pr_info("TDAT: Config ID %x, revision 0x%02x\n",
config_id, revision_id);
data->tsett.data = section;
data->tsett.size = length;
break;
case 2: /* firmware */
firmware_id = be32_to_cpu(
*(unsigned int *)(&section[1]));
pr_info("TDAT: FW build ID %x\n", firmware_id);
/* skip section header */
header_sz = section[0] + 1;
data->fw.data = section + header_sz;
data->fw.size = length - header_sz;
break;
default:
break;
}
}
if (revision_id != data->revision_id) {
dev_err(dev, "Incorrect firmware (revision id %x <-> %x\n",
revision_id, data->revision_id);
return -EINVAL;
}
if ((config_id <= data->config_id) && !forcereflash) {
dev_err(dev, "Firmware upgrade is not required\n");
return -EINVAL;
}
data->config_id = config_id;
data->firmware_id = firmware_id;
data->revision_id = revision_id;
return 0;
}
static ssize_t mxt_doreflash_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct mxt_data *data = dev_get_drvdata(dev);
unsigned int frame_size;
unsigned int pos = 0;
unsigned int retry = 0;
unsigned int frame = 0;
int error;
error = mxt_update_file_name(dev, &data->fw_name, buf, count);
if (error)
return error;
pr_info("TDAT file name: %s\n", data->fw_name);
error = request_firmware(&data->tdat, data->fw_name, dev);
if (error) {
dev_err(dev, "Unable to load firmware %s\n", data->fw_name);
return error;
}
if (mxt_check_tdat_format(data->tdat->data)) {
error = mxt_parse_tdat_image(data);
if (error)
goto release_firmware;
forcereflash = false;
} else {
dev_err(dev, "invalid TDAT format\n");
goto release_firmware;
}
mxt_lock(&data->crit_section_lock);
mxt_irq_enable(data, false);
if (!data->in_bootloader) {
dev_dbg(dev, "Reboot to bootloader\n\n");
/* Change to the bootloader mode */
error = mxt_t6_command(data, MXT_COMMAND_RESET,
MXT_BOOT_VALUE, false);
if (error)
goto release_firmware;
msleep(MXT_RESET_TIME);
/* At this stage, no need to scan since family ID is known */
error = mxt_lookup_bootloader_address(data, 0);
if (error)
goto release_firmware;
/* Level triggered IRQ causes WD reset due to soft IRQ */
/* lockup, thus change to edge for the duration of flash */
free_irq(data->irq, data);
mxt_request_irq(data, IRQF_TRIGGER_FALLING | IRQF_ONESHOT);
} else
mxt_irq_enable(data, true);
mxt_set_sensor_state(data, STATE_INIT);
mxt_free_object_table(data);
dev_dbg(dev, "confirming bootloader mode\n");
error = mxt_check_bootloader(data, MXT_WAITING_BOOTLOAD_CMD, false);
if (error) {
error = mxt_check_bootloader(data,
MXT_WAITING_FRAME_DATA, false);
if (error)
goto flash_error;
} else {
dev_info(dev, "Unlocking bootloader\n");
/* Unlock bootloader */
error = mxt_send_bootloader_cmd(data, true);
if (error)
goto flash_error;
}
dev_dbg(dev, "start flashing frames\n");
mxt_set_sensor_state(data, STATE_FLASH);
while (pos < data->fw.size) {
error = mxt_check_bootloader(data,
MXT_WAITING_FRAME_DATA, true);
if (error)
goto flash_error;
frame_size = ((*(data->fw.data + pos) << 8) |
*(data->fw.data + pos + 1));
/* Take account of CRC bytes */
frame_size += 2;
/* Write one frame to device */
error = mxt_bootloader_write(data,
data->fw.data + pos, frame_size);
if (error)
goto flash_error;
error = mxt_check_bootloader(data,
MXT_FRAME_CRC_PASS, true);
if (error) {
retry++;
msleep(retry * 20);
if (retry > 20) {
dev_err(dev, "Retry count exceeded\n");
goto flash_error;
}
} else {
retry = 0;
pos += frame_size;
frame++;
}
if (frame % 50 == 0)
dev_info(dev, "Sent %d frames, %u/%u bytes\n",
frame, pos, data->fw.size);
}
dev_info(dev, "FW: sent %d frames, %u bytes\n", frame, pos);
INIT_COMPLETION(data->bl_completion);
error = mxt_wait_for_completion(data, &data->bl_completion,
MXT_FW_RESET_TIME);
if (error)
goto flash_error;
dev_info(dev, "The firmware update succeeded\n");
goto initialize;
flash_error:
mxt_soft_reset(data);
initialize:
mxt_set_sensor_state(data, STATE_QUERY);
error = mxt_initialize(data);
if (error) {
mxt_set_sensor_state(data, STATE_BL);
dev_info(dev, "Init failed after firmware upgrade\n");
}
mxt_unlock(&data->crit_section_lock);
memset(&data->fw, 0, sizeof(data->fw));
memset(&data->tsett, 0, sizeof(data->tsett));
release_firmware:
release_firmware(data->tdat);
data->tdat = NULL;
return count;
}
static ssize_t mxt_flashprog_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%d", data->in_bootloader);
}
enum wakeup_modes {
WAKEUP_OFF = 0,
WAKEUP_ON,
WAKEUP_AUTO
};
static u8 tsp_mode;
static char *wakeup_mode_names[] = { "OFF", "ON", "AUTO" };
static char const *mxt_wakeup_mode_name(int mode)
{
int index = mode < 0 || mode > WAKEUP_AUTO ? WAKEUP_OFF : mode;
return wakeup_mode_names[index];
}
static ssize_t mxt_tsp_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct mxt_data *mxt_dev_data = dev_get_drvdata(dev);
int state, mode;
state = mxt_get_sensor_state(mxt_dev_data);
pr_debug("state: %s(%d), suspend flag: %d, BL flag: %d\n",
mxt_state_name(state), state,
atomic_read(&mxt_dev_data->suspended),
mxt_dev_data->in_bootloader);
if (!strncmp(buf, "on", 2) || !strncmp(buf, "ON", 2))
mode = WAKEUP_ON;
else if (!strncmp(buf, "auto", 4) || !strncmp(buf, "AUTO", 4))
mode = WAKEUP_AUTO;
else if (!strncmp(buf, "off", 2) || !strncmp(buf, "OFF", 2))
mode = WAKEUP_OFF;
else
return -EINVAL;
if (mode == tsp_mode)
return count;
tsp_mode = mode;
switch (mode) {
case WAKEUP_AUTO:
mxt_set_alternate_mode(mxt_dev_data,
mxt_dev_data->alternate_mode, true, true);
break;
case WAKEUP_ON:
mxt_set_alternate_mode(mxt_dev_data,
mxt_dev_data->alternate_mode, true, false);
break;
case WAKEUP_OFF:
mxt_restore_default_mode(mxt_dev_data);
break;
}
dev_dbg(&mxt_dev_data->client->dev, "TAP: %s\n",
mxt_wakeup_mode_name(tsp_mode));
return count;
}
static ssize_t mxt_tsp_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%s\n",
mxt_wakeup_mode_name(tsp_mode));
}
static DEVICE_ATTR(fw_version, S_IRUGO, mxt_fw_version_show, NULL);
static DEVICE_ATTR(hw_version, S_IRUGO, mxt_hw_version_show, NULL);
static DEVICE_ATTR(buildid, S_IRUGO, mxt_buildid_show, NULL);
static DEVICE_ATTR(productinfo, S_IRUGO, mxt_productinfo_show, NULL);
static DEVICE_ATTR(object, S_IRUGO, mxt_object_show, NULL);
static DEVICE_ATTR(poweron, S_IRUGO, mxt_poweron_show, NULL);
static DEVICE_ATTR(ic_ver, S_IRUGO, mxt_ic_ver_show, NULL);
static DEVICE_ATTR(flashprog, S_IRUGO, mxt_flashprog_show, NULL);
static DEVICE_ATTR(update_fw, S_IWUSR, NULL, mxt_update_fw_store);
static DEVICE_ATTR(update_cfg, S_IWUSR, NULL, mxt_update_cfg_store);
static DEVICE_ATTR(doreflash, S_IWUSR, NULL, mxt_doreflash_store);
static DEVICE_ATTR(forcereflash, S_IWUSR, NULL, mxt_forcereflash_store);
static DEVICE_ATTR(hw_irqstat, S_IRUGO, mxt_hw_irqstat_show, NULL);
static DEVICE_ATTR(reset, S_IWUSR | S_IWGRP, NULL, mxt_reset_store);
static DEVICE_ATTR(drv_irq, S_IRUGO | S_IWUSR | S_IWGRP,
mxt_drv_irq_show, mxt_drv_irq_store);
static DEVICE_ATTR(debug_v2_enable, S_IWUSR | S_IRUSR, NULL,
mxt_debug_v2_enable_store);
static DEVICE_ATTR(debug_notify, S_IRUGO, mxt_debug_notify_show, NULL);
static DEVICE_ATTR(debug_enable, S_IWUSR | S_IRUSR, mxt_debug_enable_show,
mxt_debug_enable_store);
static DEVICE_ATTR(tsi, S_IRUGO, mxt_ud_show, NULL);
static DEVICE_ATTR(tsp, S_IWUSR | S_IWGRP | S_IRUGO,
mxt_tsp_show, mxt_tsp_store);
static struct attribute *mxt_attrs[] = {
&dev_attr_fw_version.attr,
&dev_attr_hw_version.attr,
&dev_attr_object.attr,
&dev_attr_update_fw.attr,
&dev_attr_update_cfg.attr,
&dev_attr_ic_ver.attr,
&dev_attr_doreflash.attr,
&dev_attr_flashprog.attr,
&dev_attr_buildid.attr,
&dev_attr_productinfo.attr,
&dev_attr_poweron.attr,
&dev_attr_forcereflash.attr,
&dev_attr_drv_irq.attr,
&dev_attr_hw_irqstat.attr,
&dev_attr_reset.attr,
&dev_attr_debug_enable.attr,
&dev_attr_debug_v2_enable.attr,
&dev_attr_debug_notify.attr,
&dev_attr_tsi.attr,
&dev_attr_tsp.attr,
NULL
};
static const struct attribute_group mxt_attr_group = {
.attrs = mxt_attrs,
};
static void mxt_reset_slots(struct mxt_data *data)
{
struct input_dev *input_dev = data->input_dev;
unsigned int num_mt_slots;
int id;
if (data->buttons_enabled)
data->t15_keystatus = 0;
if (!input_dev)
return;
num_mt_slots = data->num_touchids + data->num_stylusids;
for (id = 0; id < num_mt_slots; id++) {
input_mt_slot(input_dev, id);
input_mt_report_slot_state(input_dev, MT_TOOL_FINGER, 0);
}
mxt_input_sync(input_dev);
}
#ifndef CONFIG_FB
static int mxt_input_open(struct input_dev *dev)
{
struct mxt_data *data = input_get_drvdata(dev);
mxt_irq_enable(data, true);
if (data->use_regulator) {
mxt_regulator_enable(data);
mxt_acquire_irq(data);
} else if (!data->in_bootloader)
mxt_hw_reset(hw);
mxt_unlock(&data->crit_section_lock);
return 0;
}
static void mxt_input_close(struct input_dev *dev)
{
struct mxt_data *data = input_get_drvdata(dev);
mxt_reset_slots(data);
mxt_irq_enable(data, false);
if (data->use_regulator)
mxt_regulator_disable(data);
mxt_lock(&data->crit_section_lock);
}
#endif
#ifdef CONFIG_OF
int mxt_dt_parse_state(struct mxt_data *data, struct device_node *np_config,
struct mxt_patch *state)
{
const char *patch_data;
struct device_node *np_state;
int err;
np_state = of_node_get(np_config);
err = of_property_read_string(np_config, "patch-data",
(const char **)&patch_data);
if (err < 0) {
pr_err("unable to read patch-data\n");
return err;
}
pr_debug("processing state: %s\n", patch_data);
mxt_parse_setup_string(data, patch_data, state);
return 0;
}
int mxt_dt_parse_mode(struct mxt_data *data, const char *mode_name,
struct mxt_patchset *mode)
{
struct device *dev = &data->client->dev;
struct device_node *np = dev->of_node;
struct device_node *np_modes;
int ret;
char *propname;
struct property *prop;
const __be32 *list;
int size, config;
phandle phandle;
struct device_node *np_config;
np_modes = of_find_node_by_name(np, "touchstate_modes");
if (!np_modes) {
pr_err("can't find touchstate modes node\n");
ret = -EINVAL;
goto err;
}
pr_debug("processing mode %s\n", mode_name);
propname = kasprintf(GFP_KERNEL, "touchmode-%s", mode_name);
prop = of_find_property(np_modes, propname, &size);
kfree(propname);
of_node_put(np_modes);
if (!prop) {
pr_err("can't find mode %s\n", mode_name);
ret = -EINVAL;
goto err;
}
list = prop->value;
size /= sizeof(*list);
if (size > MAX_NUM_STATES) {
pr_err("unexpected number of states %d\n", size);
ret = -EINVAL;
goto err;
}
for (config = 0; config < size; config++) {
phandle = be32_to_cpup(list++);
/* Look up the touchstate configuration node */
np_config = of_find_node_by_phandle(phandle);
if (!np_config) {
dev_err(dev,
"prop %s index %i invalid phandle\n",
prop->name, config);
ret = -EINVAL;
goto err;
}
/* Parse the node */
ret = mxt_dt_parse_state(data, np_config,
&mode->patch_data[config]);
of_node_put(np_config);
if (ret < 0)
goto err;
}
err:
return ret;
}
static int mxt_parse_dt(struct mxt_data *data)
{
unsigned resolution[2], key_codes[MXT_MAX_BUTTONS];
struct device *dev = &data->client->dev;
struct mxt_platform_data *pdata = data->pdata;
int error = 0;
u32 value;
struct device_node *config, *np = dev->of_node;
error = mxt_dt_parse_mode(data, "default", data->default_mode);
if (error) {
pr_err("failed to load default mode\n");
goto exit_parser;
}
error = mxt_dt_parse_mode(data, "alternate", data->alternate_mode);
if (error) {
pr_warn("alternate mode not found; using default instead\n");
data->alternate_mode = data->default_mode;
}
pdata->common_vdd_supply = of_property_read_bool(np,
"atmel,common-vdd-supply");
data->use_regulator = of_property_read_bool(np,
"atmel,suspend-power-off");
if (data->use_regulator)
pr_info("using suspend method: power off\n");
error = of_property_read_u32_array(np, "atmel,panel-resolution",
resolution, 2);
if (!error) {
pdata->res.x_max = resolution[0];
pdata->res.y_max = resolution[1];
pr_debug("panel resolution X%d,Y%d\n",
pdata->res.x_max, pdata->res.y_max);
}
/* reset, irq gpio info */
pdata->gpio_irq = of_get_gpio(np, 0);
pdata->gpio_reset = of_get_gpio(np, 1);
/* defaults in case DTS is not populated */
pdata->dt_info.family_id = 0xa4;
pdata->dt_info.variant_id = 0x2;
pdata->dt_info.version = 0x5;
pdata->dt_info.build = 0x2;
memset(key_codes, 0, sizeof(key_codes));
error = of_property_read_u32_array(np, "atmel,key-buttons",
key_codes, MXT_MAX_BUTTONS);
if (!error) {
int i, keys;
pdata->t15_num_keys = MXT_MAX_BUTTONS;
pdata->t15_keymap = devm_kzalloc(dev,
sizeof(unsigned) * pdata->t15_num_keys, GFP_KERNEL);
if (!pdata->t15_keymap) {
dev_err(dev, "T15 keymap allocation failure\n");
goto exit_parser;
}
for (i = 0, keys = 0; i < pdata->t15_num_keys; i++)
if (key_codes[i]) {
*(pdata->t15_keymap + i) = key_codes[i];
keys++;
}
data->buttons_enabled = true;
pr_info("T15 has %d buttons\n", keys);
}
config = of_find_node_by_name(np, "atmel,cfg");
if (!config) {
dev_err(dev, "can't find default config node\n");
error = -EINVAL;
goto exit_parser;
}
error = of_property_read_u32(config, "atmel,family-id", &value);
if (error) {
dev_err(dev, "Unable to read family id\n");
goto exit_parser;
}
pdata->dt_info.family_id = (u8)value;
error = of_property_read_u32(config, "atmel,variant-id", &value);
if (error) {
dev_err(dev, "Unable to read variant id\n");
goto exit_parser;
}
pdata->dt_info.variant_id = (u8)value;
error = of_property_read_u32(config, "atmel,version", &value);
if (error) {
dev_err(dev, "Unable to read controller version\n");
goto exit_parser;
}
pdata->dt_info.version = (u8)value;
error = of_property_read_u32(config, "atmel,build", &value);
if (error) {
dev_err(dev, "Unable to read build id\n");
goto exit_parser;
}
pdata->dt_info.build = (u8)value;
error = of_property_read_u32(config, "atmel,revision-id", &value);
if (error) {
dev_err(dev, "Unable to read revision id\n");
goto exit_parser;
}
data->revision_id = (u8)value;
exit_parser:
if (!error)
dev_dbg(dev, "DT parsed successfully\n");
return 0;
}
#else
static int mxt_parse_dt(struct device *dev, struct mxt_platform_data *pdata)
{
return -ENODEV;
}
#endif
static int mxt_handle_pdata(struct mxt_data *data)
{
int error;
data->pdata = dev_get_platdata(&data->client->dev);
/* Use provided platform data if present */
if (data->pdata) {
if (data->pdata->cfg_name)
mxt_update_file_name(&data->client->dev,
&data->cfg_name,
data->pdata->cfg_name,
strlen(data->pdata->cfg_name));
return 0;
}
data->pdata = kzalloc(sizeof(*data->pdata), GFP_KERNEL);
if (!data->pdata) {
dev_err(&data->client->dev, "Failed to allocate pdata\n");
return -ENOMEM;
}
/* Set default parameters */
data->pdata->irqflags = IRQF_TRIGGER_LOW | IRQF_ONESHOT;
if (data->client->dev.of_node) {
error = mxt_parse_dt(data);
if (error)
return error;
}
return 0;
}
static int mxt_initialize_t9_input_device(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
const struct mxt_platform_data *pdata = data->pdata;
struct input_dev *input_dev;
int error;
unsigned int num_mt_slots;
int i;
error = mxt_read_t9_resolution(data);
if (error)
dev_warn(dev, "Failed to initialize T9 resolution\n");
input_dev = data->input_dev;
#ifdef MXT_DISTINCT_INPUT_NAME
input_dev->name = "Atmel maXTouch T9 Touchscreen";
#endif
if (pdata->t19_num_keys) {
__set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
for (i = 0; i < pdata->t19_num_keys; i++)
if (pdata->t19_keymap[i] != KEY_RESERVED)
input_set_capability(input_dev, EV_KEY,
pdata->t19_keymap[i]);
input_abs_set_res(input_dev, ABS_X, MXT_PIXELS_PER_MM);
input_abs_set_res(input_dev, ABS_Y, MXT_PIXELS_PER_MM);
input_abs_set_res(input_dev, ABS_MT_POSITION_X,
MXT_PIXELS_PER_MM);
input_abs_set_res(input_dev, ABS_MT_POSITION_Y,
MXT_PIXELS_PER_MM);
#ifdef MXT_DISTINCT_INPUT_NAME
input_dev->name = "Atmel maXTouch Touchpad";
#endif
} else
set_bit(INPUT_PROP_DIRECT, input_dev->propbit);
/* For single touch */
input_set_abs_params(input_dev, ABS_X,
0, data->max_x, 0, 0);
input_set_abs_params(input_dev, ABS_Y,
0, data->max_y, 0, 0);
input_set_abs_params(input_dev, ABS_PRESSURE,
0, 255, 0, 0);
/* For multi touch */
num_mt_slots = data->num_touchids + data->num_stylusids;
input_mt_init_slots(input_dev, num_mt_slots, 0);
input_set_abs_params(input_dev, ABS_MT_TOUCH_MAJOR,
0, MXT_MAX_AREA, 0, 0);
input_set_abs_params(input_dev, ABS_MT_POSITION_X,
0, data->max_x, 0, 0);
input_set_abs_params(input_dev, ABS_MT_POSITION_Y,
0, data->max_y, 0, 0);
input_set_abs_params(input_dev, ABS_MT_PRESSURE,
0, 255, 0, 0);
input_set_abs_params(input_dev, ABS_MT_ORIENTATION,
0, 255, 0, 0);
/* For T63 active stylus */
if (data->T63_reportid_min) {
input_set_capability(input_dev, EV_KEY, BTN_STYLUS);
input_set_capability(input_dev, EV_KEY, BTN_STYLUS2);
input_set_abs_params(input_dev, ABS_MT_TOOL_TYPE,
0, MT_TOOL_MAX, 0, 0);
}
/* For T15 key array */
if (data->T15_reportid_min) {
data->t15_keystatus = 0;
for (i = 0; i < data->pdata->t15_num_keys; i++)
input_set_capability(input_dev, EV_KEY,
data->pdata->t15_keymap[i]);
}
return 0;
}
static int mxt_alloc_input_device(struct mxt_data *data)
{
data->input_dev = input_allocate_device();
if (IS_ERR_OR_NULL(data->input_dev))
return -ENOMEM;
#ifndef MXT_DISTINCT_INPUT_NAME
data->input_dev->name = DRIVER_NAME;
#endif
data->input_dev->id.bustype = BUS_I2C;
data->input_dev->dev.parent = &data->client->dev;
#ifndef CONFIG_FB
input_dev->open = mxt_input_open;
input_dev->close = mxt_input_close;
#endif
set_bit(EV_SYN, data->input_dev->evbit);
set_bit(EV_ABS, data->input_dev->evbit);
input_set_drvdata(data->input_dev, data);
return 0;
}
static int mxt_init_mode(struct mxt_data *data, struct mxt_patchset **pmode)
{
int i;
struct mxt_patchset *mode = *pmode =
kzalloc(sizeof(struct mxt_patchset), GFP_KERNEL);
if (!mode)
return -ENOMEM;
mode->patch_num = MAX_NUM_STATES;
mode->patch_data = kzalloc(sizeof(struct mxt_patch) *
mode->patch_num, GFP_KERNEL);
if (!mode->patch_data) {
kfree(mode);
return -ENOMEM;
}
for (i = 0; i < mode->patch_num; i++)
INIT_LIST_HEAD(&mode->patch_data[i].cfg_head);
return 0;
}
static int mxt_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct mxt_data *data;
int error;
data = kzalloc(sizeof(struct mxt_data), GFP_KERNEL);
if (!data) {
dev_err(&client->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
snprintf(data->phys, sizeof(data->phys), "i2c-%u-%04x/input0",
client->adapter->nr, client->addr);
data->client = client;
data->irq = client->irq;
i2c_set_clientdata(client, data);
mxt_init_mode(data, &data->default_mode);
mxt_init_mode(data, &data->alternate_mode);
error = mxt_handle_pdata(data);
if (error)
goto err_free_mem;
data->current_mode = data->default_mode;
init_completion(&data->bl_completion);
init_completion(&data->reset_completion);
init_completion(&data->crc_completion);
mutex_init(&data->debug_msg_lock);
atomic_set(&data->suspended, 0);
data->poweron = true;
error = mxt_gpio_configure(data);
if (error)
goto err_free_pdata;
/* Handle power up in edge triggered IRQ mode */
mxt_request_irq(data, IRQF_TRIGGER_FALLING | IRQF_ONESHOT);
error = mxt_power_init(data);
if (error)
goto err_free_irq;
mxt_regulator_enable(data);
error = mxt_initialize(data);
if (error)
goto err_disable_reg;
sema_init(&data->crit_section_lock, 1);
#ifdef CONFIG_FB
data->fb_notif.notifier_call = fb_notifier_callback;
error = fb_register_client(&data->fb_notif);
if (error)
dev_err(&client->dev, "Error registering fb_notifier: %d\n",
error);
INIT_WORK(&data->resume_work, mxt_queued_resume);
#endif
error = sysfs_create_group(&client->dev.kobj, &mxt_attr_group);
if (error) {
dev_err(&client->dev, "Failure %d creating sysfs group\n",
error);
goto err_free_object;
}
sysfs_bin_attr_init(&data->mem_access_attr);
data->mem_access_attr.attr.name = "mem_access";
data->mem_access_attr.attr.mode = S_IRUGO | S_IWUSR | S_IWGRP;
data->mem_access_attr.read = mxt_mem_access_read;
data->mem_access_attr.write = mxt_mem_access_write;
data->mem_access_attr.size = data->mem_size;
if (sysfs_create_bin_file(&client->dev.kobj,
&data->mem_access_attr) < 0) {
dev_err(&client->dev, "Failed to create %s\n",
data->mem_access_attr.attr.name);
goto err_remove_sysfs_group;
}
data->mem_access_created = true;
data->mode_is_persistent = true;
return 0;
err_remove_sysfs_group:
sysfs_remove_group(&client->dev.kobj, &mxt_attr_group);
err_free_object:
mxt_free_object_table(data);
err_disable_reg:
mxt_regulator_disable(data);
err_free_irq:
free_irq(data->irq, data);
mxt_gpio_free(data);
err_free_pdata:
if (!dev_get_platdata(&data->client->dev))
kfree(data->pdata);
err_free_mem:
kfree(data);
return error;
}
static int mxt_remove(struct i2c_client *client)
{
struct mxt_data *data = i2c_get_clientdata(client);
if (data->mem_access_created)
sysfs_remove_bin_file(&client->dev.kobj,
&data->mem_access_attr);
sysfs_remove_group(&client->dev.kobj, &mxt_attr_group);
free_irq(data->irq, data);
regulator_put(data->reg_avdd);
if (data->pdata->common_vdd_supply == 0)
regulator_put(data->reg_vdd);
mxt_gpio_free(data);
mxt_free_object_table(data);
if (!dev_get_platdata(&data->client->dev))
kfree(data->pdata);
kfree(data);
return 0;
}
#ifdef CONFIG_PM
static int mxt_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct mxt_data *data = i2c_get_clientdata(client);
static char ud_stats[PAGE_SIZE];
if (atomic_cmpxchg(&data->suspended, 0, 1) == 0) {
mxt_lock(&data->crit_section_lock);
mxt_set_sensor_state(data, STATE_SUSPEND);
mxt_reset_slots(data);
if (data->use_regulator)
mxt_regulator_disable(data);
}
data->poweron = false;
mxt_ud_stat(ud_stats, sizeof(ud_stats));
pr_info("%s\n", ud_stats);
return 0;
}
static int mxt_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct mxt_data *data = i2c_get_clientdata(client);
int state = mxt_get_sensor_state(data);
if (atomic_cmpxchg(&data->suspended, 1, 0) == 1) {
if (data->use_regulator) {
mxt_regulator_enable(data);
mxt_acquire_irq(data);
} else if (!data->in_bootloader)
mxt_hw_reset(data);
mxt_unlock(&data->crit_section_lock);
}
if (data->in_bootloader)
state = (state == STATE_INIT ||
state == STATE_FLASH) ? state : STATE_BL;
else
state = STATE_ACTIVE;
data->poweron = true;
mxt_set_sensor_state(data, state);
return 0;
}
#ifdef CONFIG_FB
static void mxt_queued_resume(struct work_struct *w)
{
struct mxt_data *mxt_dev_data =
container_of(w, struct mxt_data, resume_work);
mxt_resume(&mxt_dev_data->client->dev);
dev_dbg(&mxt_dev_data->client->dev, "DISPLAY-ON\n");
}
static int fb_notifier_callback(struct notifier_block *self,
unsigned long event, void *data)
{
struct fb_event *evdata = data;
int *blank;
struct mxt_data *mxt_dev_data =
container_of(self, struct mxt_data, fb_notif);
if (evdata && evdata->data && event == FB_EVENT_BLANK && mxt_dev_data &&
mxt_dev_data->client) {
blank = evdata->data;
if (*blank == FB_BLANK_UNBLANK ||
(*blank == FB_BLANK_VSYNC_SUSPEND &&
atomic_read(&mxt_dev_data->suspended))) {
queue_work(system_wq, &mxt_dev_data->resume_work);
dev_dbg(&mxt_dev_data->client->dev, "queued RESUME\n");
} else if (*blank == FB_BLANK_POWERDOWN) {
/* ensure no work left in queue */
cancel_work_sync(&mxt_dev_data->resume_work);
mxt_suspend(&mxt_dev_data->client->dev);
dev_dbg(&mxt_dev_data->client->dev, "DISPLAY-OFF\n");
}
}
return 0;
}
#endif
static const struct dev_pm_ops mxt_pm_ops = {
#if !defined(CONFIG_FB)
.suspend = mxt_suspend,
.resume = mxt_resume,
#endif
};
#endif
static void mxt_shutdown(struct i2c_client *client)
{
struct mxt_data *data = i2c_get_clientdata(client);
disable_irq(data->irq);
}
static const struct i2c_device_id mxt_id[] = {
{ "qt602240_ts", 0 },
{ "atmel_mxt_ts", 0 },
{ "atmel_mxt_tp", 0 },
{ "mXT224", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, mxt_id);
#ifdef CONFIG_OF
static struct of_device_id mxt_match_table[] = {
{ .compatible = "atmel,mxt-ts",},
{ },
};
#else
#define mxt_match_table NULL
#endif
static struct i2c_driver mxt_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = mxt_match_table,
#ifdef CONFIG_PM
.pm = &mxt_pm_ops,
#endif
},
.probe = mxt_probe,
.remove = mxt_remove,
.shutdown = mxt_shutdown,
.id_table = mxt_id,
};
module_i2c_driver(mxt_driver);
/* Module information */
MODULE_AUTHOR("Joonyoung Shim <jy0922.shim@samsung.com>");
MODULE_DESCRIPTION("Atmel maXTouch Touchscreen driver");
MODULE_LICENSE("GPL");