blob: f1abcff154454ca41d7695f12fe1bc214fe2c575 [file] [log] [blame]
/* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/uaccess.h>
#include <linux/diagchar.h>
#include <linux/sched.h>
#include <linux/err.h>
#include <linux/ratelimit.h>
#include <linux/workqueue.h>
#include <linux/pm_runtime.h>
#include <linux/platform_device.h>
#include <linux/smux.h>
#include <asm/current.h>
#ifdef CONFIG_DIAG_OVER_USB
#include <mach/usbdiag.h>
#endif
#include "diagchar_hdlc.h"
#include "diagmem.h"
#include "diagchar.h"
#include "diagfwd.h"
#include "diagfwd_hsic.h"
#include "diagfwd_smux.h"
#include "diagfwd_bridge.h"
#include "diag_dci.h"
#define READ_HSIC_BUF_SIZE 2048
#define READ_HSIC_BUF_SIZE_DCI 4096
struct diag_hsic_dev *diag_hsic;
struct diag_hsic_dci_dev *diag_hsic_dci;
static struct diag_hsic_bridge_map hsic_map[MAX_HSIC_CH] = {
{ 0, HSIC_DATA_TYPE, HSIC_DATA_CH, DIAG_DATA_BRIDGE_IDX },
{ 1, HSIC_DCI_TYPE, HSIC_DCI_CH, DIAG_DCI_BRIDGE_IDX },
{ 2, HSIC_DATA_TYPE, HSIC_DATA_CH_2, DIAG_DATA_BRIDGE_IDX_2 },
{ 3, HSIC_DCI_TYPE, HSIC_DCI_CH_2, DIAG_DCI_BRIDGE_IDX_2 }
};
/*
* This array is the inverse of hsic_map indexed by the Bridge index
* for HSIC data channels
*/
int hsic_data_bridge_map[MAX_HSIC_DATA_CH] = {
DIAG_DATA_BRIDGE_IDX,
DIAG_DATA_BRIDGE_IDX_2
};
/*
* This array is the inverse of hsic_map indexed by the Bridge index
* for HSIC DCI channels
*/
int hsic_dci_bridge_map[MAX_HSIC_DCI_CH] = {
DIAG_DCI_BRIDGE_IDX,
DIAG_DCI_BRIDGE_IDX_2
};
static void diag_read_hsic_work_fn(struct work_struct *work)
{
unsigned char *buf_in_hsic = NULL;
int num_reads_submitted = 0;
int err = 0;
int write_ptrs_available;
struct diag_hsic_dev *hsic_struct = container_of(work,
struct diag_hsic_dev, diag_read_hsic_work);
int index = hsic_struct->id;
static DEFINE_RATELIMIT_STATE(rl, 10*HZ, 1);
if (!diag_hsic[index].hsic_ch) {
pr_err("DIAG in %s: diag_hsic[index].hsic_ch == 0\n", __func__);
return;
}
/*
* Determine the current number of available buffers for writing after
* reading from the HSIC has completed.
*/
if (driver->logging_mode == MEMORY_DEVICE_MODE)
write_ptrs_available = diag_hsic[index].poolsize_hsic_write -
diag_hsic[index].
num_hsic_buf_tbl_entries;
else
write_ptrs_available = diag_hsic[index].poolsize_hsic_write -
diag_hsic[index].count_hsic_write_pool;
/*
* Queue up a read on the HSIC for all available buffers in the
* pool, exhausting the pool.
*/
do {
/*
* If no more write buffers are available,
* stop queuing reads
*/
if (write_ptrs_available <= 0)
break;
write_ptrs_available--;
/*
* No sense queuing a read if the HSIC bridge was
* closed in another thread
*/
if (!diag_hsic[index].hsic_ch)
break;
buf_in_hsic = diagmem_alloc(driver, READ_HSIC_BUF_SIZE,
index+POOL_TYPE_HSIC);
if (buf_in_hsic) {
/*
* Initiate the read from the HSIC. The HSIC read is
* asynchronous. Once the read is complete the read
* callback function will be called.
*/
pr_debug("diag: read from HSIC\n");
num_reads_submitted++;
err = diag_bridge_read(hsic_data_bridge_map[index],
(char *)buf_in_hsic,
READ_HSIC_BUF_SIZE);
if (err) {
num_reads_submitted--;
/* Return the buffer to the pool */
diagmem_free(driver, buf_in_hsic,
index+POOL_TYPE_HSIC);
if (__ratelimit(&rl))
pr_err("diag: Error initiating HSIC read, err: %d\n",
err);
/*
* An error occurred, discontinue queuing
* reads
*/
break;
}
}
} while (buf_in_hsic);
/*
* If there are read buffers available and for some reason the
* read was not queued, and if no unrecoverable error occurred
* (-ENODEV is an unrecoverable error), then set up the next read
*/
if ((diag_hsic[index].count_hsic_pool <
diag_hsic[index].poolsize_hsic) &&
(num_reads_submitted == 0) && (err != -ENODEV) &&
(diag_hsic[index].hsic_ch != 0))
queue_work(diag_bridge[index].wq,
&diag_hsic[index].diag_read_hsic_work);
}
static void diag_process_hsic_work_fn(struct work_struct *work)
{
struct diag_hsic_dci_dev *hsic_struct = container_of(work,
struct diag_hsic_dci_dev,
diag_process_hsic_work);
int index = hsic_struct->id;
if (!diag_hsic_dci[index].data) {
diagmem_free(driver, diag_hsic_dci[index].data_buf,
POOL_TYPE_HSIC_DCI + index);
return;
}
if (diag_hsic_dci[index].data_len <= 0) {
diagmem_free(driver, diag_hsic_dci[index].data_buf,
POOL_TYPE_HSIC_DCI + index);
return;
}
diag_process_hsic_dci_read_data(index, diag_hsic_dci[index].data,
diag_hsic_dci[index].data_len);
diagmem_free(driver, diag_hsic_dci[index].data_buf,
POOL_TYPE_HSIC_DCI + index);
queue_work(diag_bridge_dci[index].wq,
&diag_hsic_dci[index].diag_read_hsic_work);
}
static void diag_read_hsic_dci_work_fn(struct work_struct *work)
{
unsigned char *buf_in_hsic = NULL;
int num_reads_submitted = 0;
int err = 0;
struct diag_hsic_dci_dev *hsic_struct = container_of(work,
struct diag_hsic_dci_dev,
diag_read_hsic_work);
int index = hsic_struct->id;
if (!diag_hsic_dci[index].hsic_ch) {
pr_err("diag: Invalid HSIC channel in %s\n", __func__);
return;
}
/*
* Queue up a read on the HSIC for all available buffers in the
* pool, exhausting the pool.
*/
do {
/*
* No sense queuing a read if the HSIC bridge was
* closed in another thread
*/
if (!diag_hsic_dci[index].hsic_ch)
break;
buf_in_hsic = diagmem_alloc(driver, READ_HSIC_BUF_SIZE_DCI,
POOL_TYPE_HSIC_DCI + index);
if (buf_in_hsic) {
/*
* Initiate the read from the HSIC. The HSIC read is
* asynchronous. Once the read is complete the read
* callback function will be called.
*/
num_reads_submitted++;
err = diag_bridge_read(hsic_dci_bridge_map[index],
(char *)buf_in_hsic,
READ_HSIC_BUF_SIZE_DCI);
if (err) {
num_reads_submitted--;
/* Return the buffer to the pool */
diagmem_free(driver, buf_in_hsic,
POOL_TYPE_HSIC_DCI + index);
pr_err_ratelimited("diag: Error initiating HSIC read, err: %d\n",
err);
/*
* An error occurred, discontinue queuing
* reads
*/
break;
}
}
} while (buf_in_hsic);
/*
* If there are read buffers available and for some reason the
* read was not queued, and if no unrecoverable error occurred
* (-ENODEV is an unrecoverable error), then set up the next read
*/
if ((diag_hsic_dci[index].count_hsic_pool <
diag_hsic_dci[index].poolsize_hsic) &&
(num_reads_submitted == 0) && (err != -ENODEV) &&
(diag_hsic_dci[index].hsic_ch != 0))
queue_work(diag_bridge_dci[index].wq,
&diag_hsic_dci[index].diag_read_hsic_work);
}
static void diag_hsic_read_complete_callback(void *ctxt, char *buf,
int buf_size, int actual_size)
{
int err = 0;
int index = (int)ctxt;
static DEFINE_RATELIMIT_STATE(rl, 10*HZ, 1);
if (!diag_hsic[index].hsic_ch) {
/*
* The HSIC channel is closed. Return the buffer to
* the pool. Do not send it on.
*/
diagmem_free(driver, buf, index+POOL_TYPE_HSIC);
pr_debug("diag: In %s: hsic_ch == 0, actual_size: %d\n",
__func__, actual_size);
return;
}
/*
* Note that zero length is valid and still needs to be sent to
* the USB only when we are logging data to the USB
*/
if ((actual_size > 0) ||
((actual_size == 0) && (driver->logging_mode == USB_MODE))) {
if (!buf) {
pr_err("diag: Out of diagmem for HSIC\n");
} else {
/*
* Send data in buf to be written on the
* appropriate device, e.g. USB MDM channel
*/
diag_bridge[index].write_len = actual_size;
if (driver->logging_mode == MEMORY_DEVICE_MODE)
diag_ws_on_notify();
err = diag_device_write((void *)buf, index+HSIC_DATA,
NULL);
/* If an error, return buffer to the pool */
if (err) {
if (driver->logging_mode == MEMORY_DEVICE_MODE)
diag_ws_release();
diagmem_free(driver, buf, index +
POOL_TYPE_HSIC);
if (__ratelimit(&rl))
pr_err("diag: In %s, error calling diag_device_write, err: %d\n",
__func__, err);
}
}
} else {
/*
* The buffer has an error status associated with it. Do not
* pass it on. Note that -ENOENT is sent when the diag bridge
* is closed.
*/
diagmem_free(driver, buf, index+POOL_TYPE_HSIC);
pr_debug("diag: In %s: error status: %d\n", __func__,
actual_size);
}
/*
* Actual Size is a negative error value when read complete
* fails. Don't queue a read in this case. Doing so will not let
* HSIC to goto suspend.
*
* Queue another read only when the read completes successfully
* and Diag is either in Memory device mode or USB is connected.
*/
if (actual_size >= 0 && (driver->logging_mode == MEMORY_DEVICE_MODE ||
diag_bridge[index].usb_connected)) {
queue_work(diag_bridge[index].wq,
&diag_hsic[index].diag_read_hsic_work);
}
}
static void diag_hsic_dci_read_complete_callback(void *ctxt, char *buf,
int buf_size, int actual_size)
{
int index = (int)ctxt;
if (!diag_hsic_dci[index].hsic_ch) {
/*
* The HSIC channel is closed. Return the buffer to
* the pool. Do not send it on.
*/
diagmem_free(driver, buf, POOL_TYPE_HSIC_DCI + index);
pr_debug("diag: In %s: hsic_ch == 0, actual_size: %d\n",
__func__, actual_size);
return;
}
if (actual_size > 0 && actual_size <= READ_HSIC_BUF_SIZE_DCI) {
if (!buf) {
pr_err("diag: Out of diagmem for HSIC\n");
} else {
diag_ws_on_notify();
diag_hsic_dci[index].data_len = actual_size;
diag_hsic_dci[index].data_buf = buf;
memcpy(diag_hsic_dci[index].data, buf, actual_size);
queue_work(diag_bridge_dci[index].wq,
&diag_hsic_dci[index].diag_process_hsic_work);
}
} else {
/*
* The buffer has an error status associated with it. Do not
* pass it on. Note that -ENOENT is sent when the diag bridge
* is closed.
*/
diagmem_free(driver, buf, POOL_TYPE_HSIC_DCI + index);
pr_debug("diag: In %s: error status: %d\n", __func__,
actual_size);
}
/*
* Actual Size can be negative error codes. In such cases, don't
* queue another read. The HSIC channel can goto suspend.
* Queuing a read will prevent HSIC from going to suspend.
*/
if (actual_size >= 0)
queue_work(diag_bridge_dci[index].wq,
&diag_hsic_dci[index].diag_read_hsic_work);
}
static void diag_hsic_write_complete_callback(void *ctxt, char *buf,
int buf_size, int actual_size)
{
int index = (int)ctxt;
/* The write of the data to the HSIC bridge is complete */
diag_hsic[index].in_busy_hsic_write = 0;
wake_up_interruptible(&driver->wait_q);
if (!diag_hsic[index].hsic_ch) {
pr_err("DIAG in %s: hsic_ch == 0, ch = %d\n", __func__, index);
return;
}
if (actual_size < 0)
pr_err("DIAG in %s: actual_size: %d\n", __func__, actual_size);
if (diag_bridge[index].usb_connected &&
(driver->logging_mode == USB_MODE))
queue_work(diag_bridge[index].wq,
&diag_bridge[index].diag_read_work);
}
static void diag_hsic_dci_write_complete_callback(void *ctxt, char *buf,
int buf_size, int actual_size)
{
int index = (int)ctxt;
/* The write of the data to the HSIC bridge is complete */
diag_hsic_dci[index].in_busy_hsic_write = 0;
if (!diag_hsic_dci[index].hsic_ch) {
pr_err("DIAG in %s: hsic_ch == 0, ch = %d\n", __func__, index);
return;
}
if (actual_size < 0)
pr_err("DIAG in %s: actual_size: %d\n", __func__, actual_size);
diagmem_free(driver, (unsigned char *)buf, POOL_TYPE_HSIC_DCI_WRITE +
index);
queue_work(diag_bridge_dci[index].wq,
&diag_hsic_dci[index].diag_read_hsic_work);
}
static int diag_hsic_suspend(void *ctxt)
{
int index = (int)ctxt;
pr_debug("diag: hsic_suspend\n");
/* Don't allow suspend if a write in the HSIC is in progress */
if (diag_hsic[index].in_busy_hsic_write)
return -EBUSY;
diag_hsic[index].hsic_suspend = 1;
return 0;
}
static int diag_hsic_dci_suspend(void *ctxt)
{
int index = (int)ctxt;
pr_debug("diag: hsic_suspend\n");
/* Don't allow suspend if a write in the HSIC is in progress */
if (diag_hsic_dci[index].in_busy_hsic_write)
return -EBUSY;
diag_hsic_dci[index].hsic_suspend = 1;
return 0;
}
static void diag_hsic_resume(void *ctxt)
{
int index = (int)ctxt;
pr_debug("diag: hsic_resume\n");
diag_hsic[index].hsic_suspend = 0;
if ((diag_hsic[index].count_hsic_pool <
diag_hsic[index].poolsize_hsic) &&
((driver->logging_mode == MEMORY_DEVICE_MODE) ||
(diag_bridge[index].usb_connected)))
queue_work(diag_bridge[index].wq,
&diag_hsic[index].diag_read_hsic_work);
}
static void diag_hsic_dci_resume(void *ctxt)
{
int index = (int)ctxt;
pr_debug("diag: hsic_dci_resume\n");
diag_hsic_dci[index].hsic_suspend = 0;
queue_work(diag_bridge_dci[index].wq,
&diag_hsic_dci[index].diag_read_hsic_work);
}
struct diag_bridge_ops hsic_diag_bridge_ops[MAX_HSIC_DATA_CH] = {
{
.ctxt = NULL,
.read_complete_cb = diag_hsic_read_complete_callback,
.write_complete_cb = diag_hsic_write_complete_callback,
.suspend = diag_hsic_suspend,
.resume = diag_hsic_resume,
},
{
.ctxt = NULL,
.read_complete_cb = diag_hsic_read_complete_callback,
.write_complete_cb = diag_hsic_write_complete_callback,
.suspend = diag_hsic_suspend,
.resume = diag_hsic_resume,
}
};
struct diag_bridge_ops hsic_diag_dci_bridge_ops[MAX_HSIC_DCI_CH] = {
{
.ctxt = NULL,
.read_complete_cb = diag_hsic_dci_read_complete_callback,
.write_complete_cb = diag_hsic_dci_write_complete_callback,
.suspend = diag_hsic_dci_suspend,
.resume = diag_hsic_dci_resume,
},
};
void diag_hsic_close(int ch_id)
{
if (diag_hsic[ch_id].hsic_device_enabled) {
diag_hsic[ch_id].hsic_ch = 0;
if (diag_hsic[ch_id].hsic_device_opened) {
diag_hsic[ch_id].hsic_device_opened = 0;
diag_bridge_close(hsic_data_bridge_map[ch_id]);
pr_debug("diag: %s: closed successfully ch %d\n",
__func__, ch_id);
} else {
pr_debug("diag: %s: already closed ch %d\n",
__func__, ch_id);
}
} else {
pr_debug("diag: %s: HSIC device already removed ch %d\n",
__func__, ch_id);
}
}
void diag_hsic_dci_close(int ch_id)
{
if (diag_hsic_dci[ch_id].hsic_device_enabled) {
diag_hsic_dci[ch_id].hsic_ch = 0;
if (diag_hsic_dci[ch_id].hsic_device_opened) {
diag_hsic_dci[ch_id].hsic_device_opened = 0;
diag_bridge_close(hsic_dci_bridge_map[ch_id]);
dci_ops_tbl[DCI_MDM_PROC].peripheral_status = 0;
diag_dci_notify_client(DIAG_CON_APSS,
DIAG_STATUS_CLOSED,
DCI_MDM_PROC);
pr_debug("diag: %s: closed successfully ch %d\n",
__func__, ch_id);
} else {
pr_debug("diag: %s: already closed ch %d\n",
__func__, ch_id);
}
} else {
pr_debug("diag: %s: HSIC device already removed ch %d\n",
__func__, ch_id);
}
}
/* diagfwd_cancel_hsic is called to cancel outstanding read/writes */
int diagfwd_cancel_hsic(int reopen)
{
int err, i;
/* Cancel it for all active HSIC bridges */
for (i = 0; i < MAX_HSIC_DATA_CH; i++) {
if (!diag_bridge[i].enabled)
continue;
mutex_lock(&diag_bridge[i].bridge_mutex);
if (diag_hsic[i].hsic_device_enabled) {
if (diag_hsic[i].hsic_device_opened) {
diag_hsic[i].hsic_ch = 0;
diag_hsic[i].hsic_device_opened = 0;
diag_bridge_close(hsic_data_bridge_map[i]);
if (reopen) {
hsic_diag_bridge_ops[i].ctxt =
(void *)(i);
err = diag_bridge_open(
hsic_data_bridge_map[i],
&hsic_diag_bridge_ops[i]);
if (err) {
pr_err("diag: HSIC %d channel open error: %d\n",
i, err);
} else {
pr_debug("diag: opened HSIC channel: %d\n",
i);
diag_hsic[i].
hsic_device_opened = 1;
diag_hsic[i].hsic_ch = 1;
}
diag_hsic[i].hsic_data_requested = 1;
} else {
diag_hsic[i].hsic_data_requested = 0;
}
}
}
mutex_unlock(&diag_bridge[i].bridge_mutex);
}
return 0;
}
/*
* diagfwd_write_complete_hsic is called after the asynchronous
* usb_diag_write() on mdm channel is complete
*/
int diagfwd_write_complete_hsic(struct diag_request *diag_write_ptr, int index)
{
unsigned char *buf = (diag_write_ptr) ? diag_write_ptr->buf : NULL;
if (buf) {
/* Return buffers to their pools */
diagmem_free(driver, (unsigned char *)buf, index +
POOL_TYPE_HSIC);
diagmem_free(driver, (unsigned char *)diag_write_ptr,
index +
POOL_TYPE_HSIC_WRITE);
}
if (!diag_hsic[index].hsic_ch) {
pr_err("diag: In %s: hsic_ch == 0\n", __func__);
return 0;
}
/* Read data from the HSIC */
queue_work(diag_bridge[index].wq,
&diag_hsic[index].diag_read_hsic_work);
return 0;
}
void diag_usb_read_complete_hsic_fn(struct work_struct *w)
{
struct diag_bridge_dev *bridge_struct = container_of(w,
struct diag_bridge_dev, usb_read_complete_work);
diagfwd_read_complete_bridge(
diag_bridge[bridge_struct->id].usb_read_ptr);
}
void diag_read_usb_hsic_work_fn(struct work_struct *work)
{
struct diag_bridge_dev *bridge_struct = container_of(work,
struct diag_bridge_dev, diag_read_work);
int index = bridge_struct->id;
if (!diag_hsic[index].hsic_ch) {
pr_err("diag: in %s: hsic_ch == 0\n", __func__);
return;
}
/*
* If there is no data being read from the usb mdm channel
* and there is no mdm channel data currently being written
* to the HSIC
*/
if (!diag_hsic[index].in_busy_hsic_read_on_device &&
!diag_hsic[index].in_busy_hsic_write) {
APPEND_DEBUG('x');
/* Setup the next read from usb mdm channel */
diag_hsic[index].in_busy_hsic_read_on_device = 1;
diag_bridge[index].usb_read_ptr->buf =
diag_bridge[index].usb_buf_out;
diag_bridge[index].usb_read_ptr->length = USB_MAX_OUT_BUF;
diag_bridge[index].usb_read_ptr->context = (void *)index;
usb_diag_read(diag_bridge[index].ch,
diag_bridge[index].usb_read_ptr);
APPEND_DEBUG('y');
}
/* If for some reason there was no mdm channel read initiated,
* queue up the reading of data from the mdm channel
*/
if (!diag_hsic[index].in_busy_hsic_read_on_device &&
(driver->logging_mode == USB_MODE))
queue_work(diag_bridge[index].wq,
&(diag_bridge[index].diag_read_work));
}
static int diag_hsic_probe_data(int pdev_id)
{
int err = 0;
int index = hsic_map[pdev_id].struct_idx;
int b_index = hsic_map[pdev_id].bridge_idx;
mutex_lock(&diag_bridge[index].bridge_mutex);
if (!diag_hsic[index].hsic_inited) {
spin_lock_init(&diag_hsic[index].hsic_spinlock);
diag_hsic[index].num_hsic_buf_tbl_entries = 0;
if (diag_hsic[index].hsic_buf_tbl == NULL)
diag_hsic[index].hsic_buf_tbl =
kzalloc(NUM_HSIC_BUF_TBL_ENTRIES *
sizeof(struct diag_write_device), GFP_KERNEL);
if (diag_hsic[index].hsic_buf_tbl == NULL) {
mutex_unlock(&diag_bridge[index].bridge_mutex);
return -ENOMEM;
}
diag_hsic[index].id = index;
diag_hsic[index].count_hsic_pool = 0;
diag_hsic[index].count_hsic_write_pool = 0;
diag_hsic[index].itemsize_hsic = READ_HSIC_BUF_SIZE;
diag_hsic[index].poolsize_hsic = N_MDM_WRITE;
diag_hsic[index].itemsize_hsic_write =
sizeof(struct diag_request);
diag_hsic[index].poolsize_hsic_write = N_MDM_WRITE;
diagmem_hsic_init(index);
INIT_WORK(&(diag_hsic[index].diag_read_hsic_work),
diag_read_hsic_work_fn);
diag_hsic[index].hsic_data_requested =
(driver->logging_mode == MEMORY_DEVICE_MODE) ? 0 : 1;
diag_hsic[index].hsic_inited = 1;
}
/*
* The probe function was called after the usb was connected
* on the legacy channel OR ODL is turned on and hsic data is
* requested. Communication over usb mdm and HSIC needs to be
* turned on.
*/
if ((diag_bridge[index].usb_connected &&
(driver->logging_mode != MEMORY_DEVICE_MODE)) ||
((driver->logging_mode == MEMORY_DEVICE_MODE) &&
diag_hsic[index].hsic_data_requested)) {
if (diag_hsic[index].hsic_device_opened) {
/* should not happen. close it before re-opening */
pr_warn("diag: HSIC channel already opened in probe\n");
diag_bridge_close(hsic_data_bridge_map[index]);
}
hsic_diag_bridge_ops[index].ctxt = (void *)(index);
err = diag_bridge_open(b_index,
&hsic_diag_bridge_ops[index]);
if (err) {
pr_err("diag: could not open HSIC, err: %d\n", err);
diag_hsic[index].hsic_device_opened = 0;
mutex_unlock(&diag_bridge[index].bridge_mutex);
return err;
}
pr_info("diag: opened HSIC bridge, ch = %d\n", index);
diag_hsic[index].hsic_device_opened = 1;
diag_hsic[index].hsic_ch = 1;
diag_hsic[index].in_busy_hsic_read_on_device = 0;
diag_hsic[index].in_busy_hsic_write = 0;
if (diag_bridge[index].usb_connected) {
/* Poll USB mdm channel to check for data */
queue_work(diag_bridge[index].wq,
&diag_bridge[index].diag_read_work);
}
/* Poll HSIC channel to check for data */
queue_work(diag_bridge[index].wq,
&diag_hsic[index].diag_read_hsic_work);
}
/* The HSIC (diag_bridge) platform device driver is enabled */
diag_hsic[index].hsic_device_enabled = 1;
mutex_unlock(&diag_bridge[index].bridge_mutex);
return err;
}
static int diag_hsic_probe_dci(int pdev_id)
{
int err = 0;
int index = hsic_map[pdev_id].struct_idx;
int b_index = hsic_map[pdev_id].bridge_idx;
if (!diag_bridge_dci || !diag_hsic_dci)
return -ENOMEM;
mutex_lock(&diag_bridge_dci[index].bridge_mutex);
if (!diag_hsic_dci[index].hsic_inited) {
diag_hsic_dci[index].data_buf = NULL;
if (diag_hsic_dci[index].data == NULL)
diag_hsic_dci[index].data =
kzalloc(READ_HSIC_BUF_SIZE_DCI, GFP_KERNEL);
if (!diag_hsic_dci[index].data) {
mutex_unlock(&diag_bridge_dci[index].bridge_mutex);
return -ENOMEM;
}
diag_hsic_dci[index].id = index;
diag_hsic_dci[index].count_hsic_pool = 0;
diag_hsic_dci[index].count_hsic_write_pool = 0;
diag_hsic_dci[index].itemsize_hsic = READ_HSIC_BUF_SIZE_DCI;
diag_hsic_dci[index].poolsize_hsic = N_MDM_READ;
diag_hsic_dci[index].itemsize_hsic_write =
WRITE_HSIC_BUF_SIZE_DCI;
diag_hsic_dci[index].poolsize_hsic_write = N_MDM_WRITE;
diagmem_hsic_dci_init(index);
INIT_WORK(&(diag_hsic_dci[index].diag_read_hsic_work),
diag_read_hsic_dci_work_fn);
INIT_WORK(&(diag_hsic_dci[index].diag_process_hsic_work),
diag_process_hsic_work_fn);
diag_hsic_dci[index].hsic_inited = 1;
}
if (!diag_hsic_dci[index].hsic_device_opened) {
hsic_diag_dci_bridge_ops[index].ctxt =
(void *)(int)(index);
err = diag_bridge_open(b_index,
&hsic_diag_dci_bridge_ops[index]);
if (err) {
pr_err("diag: HSIC channel open error: %d\n", err);
} else {
pr_debug("diag: opened DCI HSIC channel at index %d\n",
index);
diag_hsic_dci[index].hsic_device_opened = 1;
diag_hsic_dci[index].hsic_ch = 1;
queue_work(diag_bridge_dci[index].wq,
&diag_hsic_dci[index].diag_read_hsic_work);
diag_send_dci_log_mask_remote(index + 1);
diag_send_dci_event_mask_remote(index + 1);
}
} else {
pr_debug("diag: HSIC DCI channel already open\n");
queue_work(diag_bridge_dci[index].wq,
&diag_hsic_dci[index].diag_read_hsic_work);
diag_send_dci_log_mask_remote(index + 1);
diag_send_dci_event_mask_remote(index + 1);
}
diag_hsic_dci[index].hsic_device_enabled = 1;
mutex_unlock(&diag_bridge_dci[index].bridge_mutex);
return err;
}
static int diag_hsic_probe(struct platform_device *pdev)
{
int err = 0;
/*
* pdev->Id will indicate which HSIC is working. 0 stands for HSIC
* or CP1 1 indicates HS-USB or CP2
*/
pr_debug("diag: in %s, ch = %d\n", __func__, pdev->id);
if (pdev->id >= MAX_HSIC_CH) {
pr_alert("diag: No support for HSIC device, %d\n", pdev->id);
return -EIO;
}
if (hsic_map[pdev->id].type == HSIC_DATA_TYPE)
err = diag_hsic_probe_data(pdev->id);
else
err = diag_hsic_probe_dci(pdev->id);
return err;
}
static int diag_hsic_remove(struct platform_device *pdev)
{
int index = hsic_map[pdev->id].struct_idx;
pr_debug("diag: %s called, pdev_id %d\n", __func__, pdev->id);
if (hsic_map[pdev->id].type == HSIC_DATA_TYPE) {
if (diag_hsic[index].hsic_device_enabled) {
mutex_lock(&diag_bridge[index].bridge_mutex);
diag_hsic_close(index);
diag_hsic[index].hsic_device_enabled = 0;
mutex_unlock(&diag_bridge[index].bridge_mutex);
}
} else {
if (diag_hsic_dci[index].hsic_device_enabled) {
mutex_lock(&diag_bridge_dci[index].bridge_mutex);
diag_hsic_dci_close(index);
diag_hsic_dci[index].hsic_device_enabled = 0;
mutex_unlock(&diag_bridge_dci[index].bridge_mutex);
}
}
return 0;
}
static int diagfwd_hsic_runtime_suspend(struct device *dev)
{
dev_dbg(dev, "pm_runtime: suspending...\n");
return 0;
}
static int diagfwd_hsic_runtime_resume(struct device *dev)
{
dev_dbg(dev, "pm_runtime: resuming...\n");
return 0;
}
static const struct dev_pm_ops diagfwd_hsic_dev_pm_ops = {
.runtime_suspend = diagfwd_hsic_runtime_suspend,
.runtime_resume = diagfwd_hsic_runtime_resume,
};
struct platform_driver msm_hsic_ch_driver = {
.probe = diag_hsic_probe,
.remove = diag_hsic_remove,
.driver = {
.name = "diag_bridge",
.owner = THIS_MODULE,
.pm = &diagfwd_hsic_dev_pm_ops,
},
};