blob: 0c6c71565827838b2ee93ef98abed41841cc6e9e [file] [log] [blame]
/* Copyright (c) 2012, 2016 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>
#include <linux/spinlock.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/coresight.h>
#include <linux/amba/bus.h>
#include <asm/cacheflush.h>
#include <linux/msm-sps.h>
#include <linux/usb_bam.h>
#include <linux/usb/usb_qdss.h>
#include "coresight-priv.h"
#define TMC_RSZ 0x004
#define TMC_STS 0x00c
#define TMC_RRD 0x010
#define TMC_RRP 0x014
#define TMC_RWP 0x018
#define TMC_TRG 0x01c
#define TMC_CTL 0x020
#define TMC_RWD 0x024
#define TMC_MODE 0x028
#define TMC_LBUFLEVEL 0x02c
#define TMC_CBUFLEVEL 0x030
#define TMC_BUFWM 0x034
#define TMC_RRPHI 0x038
#define TMC_RWPHI 0x03c
#define TMC_AXICTL 0x110
#define TMC_DBALO 0x118
#define TMC_DBAHI 0x11c
#define TMC_FFSR 0x300
#define TMC_FFCR 0x304
#define TMC_PSCR 0x308
#define TMC_ITMISCOP0 0xee0
#define TMC_ITTRFLIN 0xee8
#define TMC_ITATBDATA0 0xeec
#define TMC_ITATBCTR2 0xef0
#define TMC_ITATBCTR1 0xef4
#define TMC_ITATBCTR0 0xef8
/* register description */
/* TMC_CTL - 0x020 */
#define TMC_CTL_CAPT_EN BIT(0)
/* TMC_STS - 0x00C */
#define TMC_STS_TRIGGERED BIT(1)
/* TMC_AXICTL - 0x110 */
#define TMC_AXICTL_PROT_CTL_B0 BIT(0)
#define TMC_AXICTL_PROT_CTL_B1 BIT(1)
#define TMC_AXICTL_SCT_GAT_MODE BIT(7)
#define TMC_AXICTL_WR_BURST_LEN 0xF00
/* TMC_FFCR - 0x304 */
#define TMC_FFCR_EN_FMT BIT(0)
#define TMC_FFCR_EN_TI BIT(1)
#define TMC_FFCR_FON_FLIN BIT(4)
#define TMC_FFCR_FON_TRIG_EVT BIT(5)
#define TMC_FFCR_FLUSHMAN BIT(6)
#define TMC_FFCR_TRIGON_TRIGIN BIT(8)
#define TMC_FFCR_STOP_ON_FLUSH BIT(12)
#define TMC_STS_TRIGGERED_BIT 2
#define TMC_FFCR_FLUSHMAN_BIT 6
#define TMC_ETR_SG_ENT_TO_BLK(phys_pte) (((phys_addr_t)phys_pte >> 4) \
<< PAGE_SHIFT)
#define TMC_ETR_SG_ENT(phys_pte) (((phys_pte >> PAGE_SHIFT) << 4) | 0x2)
#define TMC_ETR_SG_NXT_TBL(phys_pte) (((phys_pte >> PAGE_SHIFT) << 4) | 0x3)
#define TMC_ETR_SG_LST_ENT(phys_pte) (((phys_pte >> PAGE_SHIFT) << 4) | 0x1)
#define TMC_ETR_BAM_PIPE_INDEX 0
#define TMC_ETR_BAM_NR_PIPES 2
enum tmc_config_type {
TMC_CONFIG_TYPE_ETB,
TMC_CONFIG_TYPE_ETR,
TMC_CONFIG_TYPE_ETF,
};
enum tmc_mode {
TMC_MODE_CIRCULAR_BUFFER,
TMC_MODE_SOFTWARE_FIFO,
TMC_MODE_HARDWARE_FIFO,
};
enum tmc_mem_intf_width {
TMC_MEM_INTF_WIDTH_32BITS = 0x2,
TMC_MEM_INTF_WIDTH_64BITS = 0x3,
TMC_MEM_INTF_WIDTH_128BITS = 0x4,
TMC_MEM_INTF_WIDTH_256BITS = 0x5,
};
enum tmc_etr_mem_type {
TMC_ETR_MEM_TYPE_CONTIG,
TMC_ETR_MEM_TYPE_SG,
};
static const char * const str_tmc_etr_mem_type[] = {
[TMC_ETR_MEM_TYPE_CONTIG] = "contig",
[TMC_ETR_MEM_TYPE_SG] = "sg",
};
enum tmc_etr_out_mode {
TMC_ETR_OUT_MODE_NONE,
TMC_ETR_OUT_MODE_MEM,
TMC_ETR_OUT_MODE_USB,
};
static const char * const str_tmc_etr_out_mode[] = {
[TMC_ETR_OUT_MODE_NONE] = "none",
[TMC_ETR_OUT_MODE_MEM] = "mem",
[TMC_ETR_OUT_MODE_USB] = "usb",
};
struct tmc_etr_bam_data {
struct sps_bam_props props;
unsigned long handle;
struct sps_pipe *pipe;
struct sps_connect connect;
uint32_t src_pipe_idx;
unsigned long dest;
uint32_t dest_pipe_idx;
struct sps_mem_buffer desc_fifo;
struct sps_mem_buffer data_fifo;
bool enable;
};
/**
* struct tmc_drvdata - specifics associated to an TMC component
* @base: memory mapped base address for this component.
* @dev: the device entity associated to this component.
* @csdev: component vitals needed by the framework.
* @miscdev: specifics to handle "/dev/xyz.tmc" entry.
* @clk: the clock this component is associated to.
* @spinlock: only one at a time pls.
* @read_count: manages preparation of buffer for reading.
* @buf: area of memory where trace data get sent.
* @paddr: DMA start location in RAM.
* @vaddr: virtual representation of @paddr.
* @size: @buf size.
* @enable: this TMC is being used.
* @config_type: TMC variant, must be of type @tmc_config_type.
* @trigger_cntr: amount of words to store after a trigger.
*/
struct tmc_drvdata {
void __iomem *base;
struct device *dev;
struct coresight_device *csdev;
struct miscdevice miscdev;
struct clk *clk;
spinlock_t spinlock;
int read_count;
bool reading;
char *buf;
dma_addr_t paddr;
void __iomem *vaddr;
u32 size;
struct mutex mem_lock;
u32 mem_size;
bool enable;
enum tmc_config_type config_type;
u32 trigger_cntr;
enum tmc_etr_mem_type mem_type;
enum tmc_etr_mem_type memtype;
u32 delta_bottom;
int sg_blk_num;
enum tmc_etr_out_mode out_mode;
struct usb_qdss_ch *usbch;
struct tmc_etr_bam_data *bamdata;
bool enable_to_bam;
};
static void tmc_wait_for_ready(struct tmc_drvdata *drvdata)
{
/* Ensure formatter, unformatter and hardware fifo are empty */
if (coresight_timeout(drvdata->base,
TMC_STS, TMC_STS_TRIGGERED_BIT, 1)) {
dev_err(drvdata->dev,
"timeout observed when probing at offset %#x\n",
TMC_STS);
}
}
static void tmc_flush_and_stop(struct tmc_drvdata *drvdata)
{
u32 ffcr;
ffcr = readl_relaxed(drvdata->base + TMC_FFCR);
ffcr |= TMC_FFCR_STOP_ON_FLUSH;
writel_relaxed(ffcr, drvdata->base + TMC_FFCR);
ffcr |= TMC_FFCR_FLUSHMAN;
writel_relaxed(ffcr, drvdata->base + TMC_FFCR);
/* Ensure flush completes */
if (coresight_timeout(drvdata->base,
TMC_FFCR, TMC_FFCR_FLUSHMAN_BIT, 0)) {
dev_err(drvdata->dev,
"timeout observed when probing at offset %#x\n",
TMC_FFCR);
}
tmc_wait_for_ready(drvdata);
}
static void tmc_enable_hw(struct tmc_drvdata *drvdata)
{
writel_relaxed(TMC_CTL_CAPT_EN, drvdata->base + TMC_CTL);
}
static void tmc_disable_hw(struct tmc_drvdata *drvdata)
{
writel_relaxed(0x0, drvdata->base + TMC_CTL);
}
static void tmc_etb_enable_hw(struct tmc_drvdata *drvdata)
{
/* Zero out the memory to help with debug */
memset(drvdata->buf, 0, drvdata->size);
CS_UNLOCK(drvdata->base);
writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
TMC_FFCR_TRIGON_TRIGIN,
drvdata->base + TMC_FFCR);
writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
tmc_enable_hw(drvdata);
CS_LOCK(drvdata->base);
}
static void tmc_etr_sg_tbl_free(uint32_t *vaddr, uint32_t size, uint32_t ents)
{
uint32_t i = 0, pte_n = 0, last_pte;
uint32_t *virt_st_tbl, *virt_pte;
void *virt_blk;
phys_addr_t phys_pte;
int total_ents = DIV_ROUND_UP(size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_st_tbl = vaddr;
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = virt_st_tbl + pte_n;
/* Do not go beyond number of entries allocated */
if (i == ents) {
free_page((unsigned long)virt_st_tbl);
return;
}
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_blk = phys_to_virt(phys_pte);
if ((last_pte - i) > 1) {
free_page((unsigned long)virt_blk);
pte_n++;
} else if (last_pte == total_ents) {
free_page((unsigned long)virt_blk);
free_page((unsigned long)virt_st_tbl);
} else {
free_page((unsigned long)virt_st_tbl);
virt_st_tbl = (uint32_t *)virt_blk;
pte_n = 0;
break;
}
i++;
}
}
}
static void tmc_etr_sg_tbl_flush(uint32_t *vaddr, uint32_t size)
{
uint32_t i = 0, pte_n = 0, last_pte;
uint32_t *virt_st_tbl, *virt_pte;
void *virt_blk;
phys_addr_t phys_pte;
int total_ents = DIV_ROUND_UP(size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_st_tbl = vaddr;
dmac_flush_range((void *)virt_st_tbl, (void *)virt_st_tbl + PAGE_SIZE);
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = virt_st_tbl + pte_n;
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_blk = phys_to_virt(phys_pte);
dmac_flush_range(virt_blk, virt_blk + PAGE_SIZE);
if ((last_pte - i) > 1) {
pte_n++;
} else if (last_pte != total_ents) {
virt_st_tbl = (uint32_t *)virt_blk;
pte_n = 0;
break;
}
i++;
}
}
}
/*
* Scatter gather table layout in memory:
* 1. Table contains 32-bit entries
* 2. Each entry in the table points to 4K block of memory
* 3. Last entry in the table points to next table
* 4. (*) Based on mem_size requested, if there is no need for next level of
* table, last entry in the table points directly to 4K block of memory.
*
* sg_tbl_num=0
* |---------------|<-- drvdata->vaddr
* | blk_num=0 |
* |---------------|
* | blk_num=1 |
* |---------------|
* | blk_num=2 |
* |---------------| sg_tbl_num=1
* |(*)Nxt Tbl Addr|------>|---------------|
* |---------------| | blk_num=3 |
* |---------------|
* | blk_num=4 |
* |---------------|
* | blk_num=5 |
* |---------------| sg_tbl_num=2
* |(*)Nxt Tbl Addr|------>|---------------|
* |---------------| | blk_num=6 |
* |---------------|
* | blk_num=7 |
* |---------------|
* | blk_num=8 |
* |---------------|
* | |End of
* |---------------|-----
* Table
* For simplicity above diagram assumes following:
* a. mem_size = 36KB --> total_ents = 9
* b. ents_per_blk = 4
*/
static int tmc_etr_sg_tbl_alloc(struct tmc_drvdata *drvdata)
{
int ret;
uint32_t i = 0, last_pte;
uint32_t *virt_pgdir, *virt_st_tbl;
void *virt_pte;
int total_ents = DIV_ROUND_UP(drvdata->size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_pgdir = (uint32_t *)get_zeroed_page(GFP_KERNEL);
if (!virt_pgdir)
return -ENOMEM;
virt_st_tbl = virt_pgdir;
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = (void *)get_zeroed_page(GFP_KERNEL);
if (!virt_pte) {
ret = -ENOMEM;
goto err;
}
if ((last_pte - i) > 1) {
*virt_st_tbl =
TMC_ETR_SG_ENT(virt_to_phys(virt_pte));
virt_st_tbl++;
} else if (last_pte == total_ents) {
*virt_st_tbl =
TMC_ETR_SG_LST_ENT(virt_to_phys(virt_pte));
} else {
*virt_st_tbl =
TMC_ETR_SG_NXT_TBL(virt_to_phys(virt_pte));
virt_st_tbl = (uint32_t *)virt_pte;
break;
}
i++;
}
}
drvdata->vaddr = virt_pgdir;
drvdata->paddr = virt_to_phys(virt_pgdir);
/* Flush the dcache before proceeding */
tmc_etr_sg_tbl_flush((uint32_t *)drvdata->vaddr, drvdata->size);
dev_dbg(drvdata->dev, "%s: table starts at %#lx, total entries %d\n",
__func__, (unsigned long)drvdata->paddr, total_ents);
return 0;
err:
tmc_etr_sg_tbl_free(virt_pgdir, drvdata->size, i);
return ret;
}
static void tmc_etr_sg_mem_reset(uint32_t *vaddr, uint32_t size)
{
uint32_t i = 0, pte_n = 0, last_pte;
uint32_t *virt_st_tbl, *virt_pte;
void *virt_blk;
phys_addr_t phys_pte;
int total_ents = DIV_ROUND_UP(size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_st_tbl = vaddr;
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = virt_st_tbl + pte_n;
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_blk = phys_to_virt(phys_pte);
if ((last_pte - i) > 1) {
memset(virt_blk, 0, PAGE_SIZE);
pte_n++;
} else if (last_pte == total_ents) {
memset(virt_blk, 0, PAGE_SIZE);
} else {
virt_st_tbl = (uint32_t *)virt_blk;
pte_n = 0;
break;
}
i++;
}
}
/* Flush the dcache before proceeding */
tmc_etr_sg_tbl_flush(vaddr, size);
}
static int tmc_etr_alloc_mem(struct tmc_drvdata *drvdata)
{
int ret;
if (!drvdata->vaddr) {
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG) {
drvdata->vaddr = dma_zalloc_coherent(drvdata->dev,
drvdata->size,
&drvdata->paddr,
GFP_KERNEL);
if (!drvdata->vaddr) {
ret = -ENOMEM;
goto err;
}
} else {
ret = tmc_etr_sg_tbl_alloc(drvdata);
if (ret)
goto err;
}
}
/*
* Need to reinitialize buf for each tmc enable session since it is
* getting modified during tmc etr dump.
*/
drvdata->buf = drvdata->vaddr;
return 0;
err:
dev_err(drvdata->dev, "etr ddr memory allocation failed\n");
return ret;
}
static void tmc_etr_free_mem(struct tmc_drvdata *drvdata)
{
if (drvdata->vaddr) {
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG)
dma_free_coherent(drvdata->dev, drvdata->size,
drvdata->vaddr, drvdata->paddr);
else
tmc_etr_sg_tbl_free((uint32_t *)drvdata->vaddr,
drvdata->size,
DIV_ROUND_UP(drvdata->size, PAGE_SIZE));
drvdata->vaddr = 0;
drvdata->paddr = 0;
}
}
static void tmc_etr_mem_reset(struct tmc_drvdata *drvdata)
{
if (drvdata->vaddr) {
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG)
memset(drvdata->vaddr, 0, drvdata->size);
else
tmc_etr_sg_mem_reset((uint32_t *)drvdata->vaddr,
drvdata->size);
}
}
static void tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
{
u32 axictl;
/* Zero out the memory to help with debug */
tmc_etr_mem_reset(drvdata);
CS_UNLOCK(drvdata->base);
writel_relaxed(drvdata->size / 4, drvdata->base + TMC_RSZ);
writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
axictl |= TMC_AXICTL_WR_BURST_LEN;
writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG)
axictl &= ~TMC_AXICTL_SCT_GAT_MODE;
else
axictl |= TMC_AXICTL_SCT_GAT_MODE;
writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
axictl = (axictl &
~(TMC_AXICTL_PROT_CTL_B0 | TMC_AXICTL_PROT_CTL_B1)) |
TMC_AXICTL_PROT_CTL_B1;
writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
writel_relaxed(drvdata->paddr, drvdata->base + TMC_DBALO);
writel_relaxed(0x0, drvdata->base + TMC_DBAHI);
writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
TMC_FFCR_TRIGON_TRIGIN,
drvdata->base + TMC_FFCR);
writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
tmc_enable_hw(drvdata);
CS_LOCK(drvdata->base);
}
static void tmc_etf_enable_hw(struct tmc_drvdata *drvdata)
{
CS_UNLOCK(drvdata->base);
writel_relaxed(TMC_MODE_HARDWARE_FIFO, drvdata->base + TMC_MODE);
writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI,
drvdata->base + TMC_FFCR);
writel_relaxed(0x0, drvdata->base + TMC_BUFWM);
tmc_enable_hw(drvdata);
CS_LOCK(drvdata->base);
}
static void tmc_etr_fill_usb_bam_data(struct tmc_drvdata *drvdata)
{
struct tmc_etr_bam_data *bamdata = drvdata->bamdata;
get_qdss_bam_connection_info(&bamdata->dest,
&bamdata->dest_pipe_idx,
&bamdata->src_pipe_idx,
&bamdata->desc_fifo,
&bamdata->data_fifo,
NULL);
}
static void __tmc_etr_enable_to_bam(struct tmc_drvdata *drvdata)
{
struct tmc_etr_bam_data *bamdata = drvdata->bamdata;
uint32_t axictl;
if (drvdata->enable_to_bam)
return;
/* Configure and enable required CSR registers */
msm_qdss_csr_enable_bam_to_usb();
/* Configure and enable ETR for usb bam output */
CS_UNLOCK(drvdata->base);
writel_relaxed(bamdata->data_fifo.size / 4, drvdata->base + TMC_RSZ);
writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
axictl |= (0xF << 8);
writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
axictl &= ~(0x1 << 7);
writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
axictl = (axictl & ~0x3) | 0x2;
writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
writel_relaxed((uint32_t)bamdata->data_fifo.phys_base,
drvdata->base + TMC_DBALO);
writel_relaxed((((uint64_t)bamdata->data_fifo.phys_base) >> 32) & 0xFF,
drvdata->base + TMC_DBAHI);
/* Set FOnFlIn for periodic flush */
writel_relaxed(0x133, drvdata->base + TMC_FFCR);
writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
tmc_enable_hw(drvdata);
CS_LOCK(drvdata->base);
drvdata->enable_to_bam = true;
}
static int tmc_etr_bam_enable(struct tmc_drvdata *drvdata)
{
struct tmc_etr_bam_data *bamdata = drvdata->bamdata;
int ret;
if (bamdata->enable)
return 0;
/* Reset bam to start with */
ret = sps_device_reset(bamdata->handle);
if (ret)
goto err0;
/* Now configure and enable bam */
bamdata->pipe = sps_alloc_endpoint();
if (!bamdata->pipe)
return -ENOMEM;
ret = sps_get_config(bamdata->pipe, &bamdata->connect);
if (ret)
goto err1;
bamdata->connect.mode = SPS_MODE_SRC;
bamdata->connect.source = bamdata->handle;
bamdata->connect.event_thresh = 0x4;
bamdata->connect.src_pipe_index = TMC_ETR_BAM_PIPE_INDEX;
bamdata->connect.options = SPS_O_AUTO_ENABLE;
bamdata->connect.destination = bamdata->dest;
bamdata->connect.dest_pipe_index = bamdata->dest_pipe_idx;
bamdata->connect.desc = bamdata->desc_fifo;
bamdata->connect.data = bamdata->data_fifo;
ret = sps_connect(bamdata->pipe, &bamdata->connect);
if (ret)
goto err1;
bamdata->enable = true;
return 0;
err1:
sps_free_endpoint(bamdata->pipe);
err0:
return ret;
}
static void tmc_wait_for_flush(struct tmc_drvdata *drvdata)
{
int count;
/* Ensure no flush is in progress */
for (count = TIMEOUT_US;
BVAL(readl_relaxed(drvdata->base + TMC_FFSR), 0) != 0
&& count > 0; count--)
udelay(1);
WARN(count == 0, "timeout while waiting for TMC flush, TMC_FFSR: %#x\n",
readl_relaxed(drvdata->base + TMC_FFSR));
}
static void __tmc_etr_disable_to_bam(struct tmc_drvdata *drvdata)
{
if (!drvdata->enable_to_bam)
return;
/* Ensure periodic flush is disabled in CSR block */
msm_qdss_csr_disable_flush();
CS_UNLOCK(drvdata->base);
tmc_wait_for_flush(drvdata);
tmc_disable_hw(drvdata);
CS_LOCK(drvdata);
/* Disable CSR configuration */
msm_qdss_csr_disable_bam_to_usb();
drvdata->enable_to_bam = false;
}
static void tmc_etr_bam_disable(struct tmc_drvdata *drvdata)
{
struct tmc_etr_bam_data *bamdata = drvdata->bamdata;
if (!bamdata->enable)
return;
sps_disconnect(bamdata->pipe);
sps_free_endpoint(bamdata->pipe);
bamdata->enable = false;
}
static void usb_notifier(void *priv, unsigned int event,
struct qdss_request *d_req, struct usb_qdss_ch *ch)
{
struct tmc_drvdata *drvdata = priv;
unsigned long flags;
int ret = 0;
mutex_lock(&drvdata->mem_lock);
if (event == USB_QDSS_CONNECT) {
tmc_etr_fill_usb_bam_data(drvdata);
ret = tmc_etr_bam_enable(drvdata);
if (ret)
dev_err(drvdata->dev, "ETR BAM enable failed\n");
spin_lock_irqsave(&drvdata->spinlock, flags);
__tmc_etr_enable_to_bam(drvdata);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
} else if (event == USB_QDSS_DISCONNECT) {
spin_lock_irqsave(&drvdata->spinlock, flags);
__tmc_etr_disable_to_bam(drvdata);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
tmc_etr_bam_disable(drvdata);
}
mutex_unlock(&drvdata->mem_lock);
}
static int tmc_enable(struct tmc_drvdata *drvdata, enum tmc_mode mode)
{
int ret;
unsigned long flags;
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
mutex_lock(&drvdata->mem_lock);
if (drvdata->config_type == TMC_CONFIG_TYPE_ETR &&
drvdata->out_mode == TMC_ETR_OUT_MODE_MEM) {
/*
* ETR DDR memory is not allocated until user enables
* tmc at least once. If user specifies different ETR
* DDR size than the default size or switches between
* contiguous or scatter-gather memory type after
* enabling tmc; the new selection will be honored from
* next tmc enable session.
*/
if (drvdata->size != drvdata->mem_size ||
drvdata->memtype != drvdata->mem_type) {
tmc_etr_free_mem(drvdata);
drvdata->size = drvdata->mem_size;
drvdata->memtype = drvdata->mem_type;
}
ret = tmc_etr_alloc_mem(drvdata);
if (ret) {
clk_disable_unprepare(drvdata->clk);
mutex_unlock(&drvdata->mem_lock);
return ret;
}
} else if (drvdata->config_type == TMC_CONFIG_TYPE_ETR &&
drvdata->out_mode == TMC_ETR_OUT_MODE_USB) {
drvdata->usbch = usb_qdss_open("qdss", drvdata,
usb_notifier);
if (IS_ERR(drvdata->usbch)) {
dev_err(drvdata->dev, "usb_qdss_open failed\n");
ret = PTR_ERR(drvdata->usbch);
clk_disable_unprepare(drvdata->clk);
mutex_unlock(&drvdata->mem_lock);
return ret;
}
}
mutex_unlock(&drvdata->mem_lock);
spin_lock_irqsave(&drvdata->spinlock, flags);
if (drvdata->reading) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
if (drvdata->config_type == TMC_CONFIG_TYPE_ETR
&& drvdata->out_mode == TMC_ETR_OUT_MODE_USB)
usb_qdss_close(drvdata->usbch);
clk_disable_unprepare(drvdata->clk);
return -EBUSY;
}
if (drvdata->config_type == TMC_CONFIG_TYPE_ETB) {
tmc_etb_enable_hw(drvdata);
} else if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
if (drvdata->out_mode == TMC_ETR_OUT_MODE_MEM)
tmc_etr_enable_hw(drvdata);
} else {
if (mode == TMC_MODE_CIRCULAR_BUFFER)
tmc_etb_enable_hw(drvdata);
else
tmc_etf_enable_hw(drvdata);
}
drvdata->enable = true;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
dev_info(drvdata->dev, "TMC enabled\n");
return 0;
}
static int tmc_enable_sink(struct coresight_device *csdev)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
return tmc_enable(drvdata, TMC_MODE_CIRCULAR_BUFFER);
}
static int tmc_enable_link(struct coresight_device *csdev, int inport,
int outport)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
return tmc_enable(drvdata, TMC_MODE_HARDWARE_FIFO);
}
static void tmc_etb_dump_hw(struct tmc_drvdata *drvdata)
{
enum tmc_mem_intf_width memwidth;
u8 memwords;
char *bufp;
u32 read_data;
int i;
memwidth = BMVAL(readl_relaxed(drvdata->base + CORESIGHT_DEVID), 8, 10);
if (memwidth == TMC_MEM_INTF_WIDTH_32BITS)
memwords = 1;
else if (memwidth == TMC_MEM_INTF_WIDTH_64BITS)
memwords = 2;
else if (memwidth == TMC_MEM_INTF_WIDTH_128BITS)
memwords = 4;
else
memwords = 8;
bufp = drvdata->buf;
while (1) {
for (i = 0; i < memwords; i++) {
read_data = readl_relaxed(drvdata->base + TMC_RRD);
if (read_data == 0xFFFFFFFF)
return;
memcpy(bufp, &read_data, 4);
bufp += 4;
}
}
}
static void tmc_etb_disable_hw(struct tmc_drvdata *drvdata)
{
CS_UNLOCK(drvdata->base);
tmc_flush_and_stop(drvdata);
tmc_etb_dump_hw(drvdata);
tmc_disable_hw(drvdata);
CS_LOCK(drvdata->base);
}
static void tmc_etr_sg_rwp_pos(struct tmc_drvdata *drvdata, uint32_t rwp)
{
uint32_t i = 0, pte_n = 0, last_pte;
uint32_t *virt_st_tbl, *virt_pte;
void *virt_blk;
bool found = false;
phys_addr_t phys_pte;
int total_ents = DIV_ROUND_UP(drvdata->size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_st_tbl = drvdata->vaddr;
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = virt_st_tbl + pte_n;
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
/*
* When the trace buffer is full; RWP could be on any
* 4K block from scatter gather table. Compute below -
* 1. Block number where RWP is currently residing
* 2. RWP position in that 4K block
* 3. Delta offset from current RWP position to end of
* block.
*/
if (phys_pte <= rwp && rwp < (phys_pte + PAGE_SIZE)) {
virt_blk = phys_to_virt(phys_pte);
drvdata->sg_blk_num = i;
drvdata->buf = virt_blk + rwp - phys_pte;
drvdata->delta_bottom =
phys_pte + PAGE_SIZE - rwp;
found = true;
break;
}
if ((last_pte - i) > 1) {
pte_n++;
} else if (i < (total_ents - 1)) {
virt_blk = phys_to_virt(phys_pte);
virt_st_tbl = (uint32_t *)virt_blk;
pte_n = 0;
break;
}
i++;
}
if (found)
break;
}
}
static void tmc_etr_dump_hw(struct tmc_drvdata *drvdata)
{
u32 rwp, val;
rwp = readl_relaxed(drvdata->base + TMC_RWP);
val = readl_relaxed(drvdata->base + TMC_STS);
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG) {
/* How much memory do we still have */
if (val & BIT(0))
drvdata->buf = drvdata->vaddr + rwp - drvdata->paddr;
else
drvdata->buf = drvdata->vaddr;
} else {
/*
* Reset these variables before computing since we
* rely on their values during tmc read
*/
drvdata->sg_blk_num = 0;
drvdata->delta_bottom = 0;
if (val & BIT(0))
tmc_etr_sg_rwp_pos(drvdata, rwp);
else
drvdata->buf = drvdata->vaddr;
}
}
static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
{
CS_UNLOCK(drvdata->base);
tmc_flush_and_stop(drvdata);
tmc_etr_dump_hw(drvdata);
tmc_disable_hw(drvdata);
CS_LOCK(drvdata->base);
}
static void tmc_etf_disable_hw(struct tmc_drvdata *drvdata)
{
CS_UNLOCK(drvdata->base);
tmc_flush_and_stop(drvdata);
tmc_disable_hw(drvdata);
CS_LOCK(drvdata->base);
}
static void tmc_disable(struct tmc_drvdata *drvdata, enum tmc_mode mode)
{
unsigned long flags;
spin_lock_irqsave(&drvdata->spinlock, flags);
if (drvdata->reading)
goto out;
if (drvdata->config_type == TMC_CONFIG_TYPE_ETB) {
tmc_etb_disable_hw(drvdata);
} else if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
if (drvdata->out_mode == TMC_ETR_OUT_MODE_USB)
__tmc_etr_disable_to_bam(drvdata);
else
tmc_etr_disable_hw(drvdata);
} else {
if (mode == TMC_MODE_CIRCULAR_BUFFER)
tmc_etb_disable_hw(drvdata);
else
tmc_etf_disable_hw(drvdata);
}
out:
drvdata->enable = false;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
if (drvdata->config_type == TMC_CONFIG_TYPE_ETR
&& drvdata->out_mode == TMC_ETR_OUT_MODE_USB) {
tmc_etr_bam_disable(drvdata);
usb_qdss_close(drvdata->usbch);
}
clk_disable_unprepare(drvdata->clk);
dev_info(drvdata->dev, "TMC disabled\n");
}
static void tmc_disable_sink(struct coresight_device *csdev)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
tmc_disable(drvdata, TMC_MODE_CIRCULAR_BUFFER);
}
static void tmc_disable_link(struct coresight_device *csdev, int inport,
int outport)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
tmc_disable(drvdata, TMC_MODE_HARDWARE_FIFO);
}
static const struct coresight_ops_sink tmc_sink_ops = {
.enable = tmc_enable_sink,
.disable = tmc_disable_sink,
};
static const struct coresight_ops_link tmc_link_ops = {
.enable = tmc_enable_link,
.disable = tmc_disable_link,
};
static const struct coresight_ops tmc_etb_cs_ops = {
.sink_ops = &tmc_sink_ops,
};
static const struct coresight_ops tmc_etr_cs_ops = {
.sink_ops = &tmc_sink_ops,
};
static const struct coresight_ops tmc_etf_cs_ops = {
.sink_ops = &tmc_sink_ops,
.link_ops = &tmc_link_ops,
};
static int tmc_read_prepare(struct tmc_drvdata *drvdata)
{
int ret;
unsigned long flags;
enum tmc_mode mode;
spin_lock_irqsave(&drvdata->spinlock, flags);
if (!drvdata->enable)
goto out;
if (drvdata->config_type == TMC_CONFIG_TYPE_ETB) {
tmc_etb_disable_hw(drvdata);
} else if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
tmc_etr_disable_hw(drvdata);
} else {
mode = readl_relaxed(drvdata->base + TMC_MODE);
if (mode == TMC_MODE_CIRCULAR_BUFFER) {
tmc_etb_disable_hw(drvdata);
} else {
ret = -ENODEV;
goto err;
}
}
out:
drvdata->reading = true;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
dev_info(drvdata->dev, "TMC read start\n");
return 0;
err:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return ret;
}
static void tmc_read_unprepare(struct tmc_drvdata *drvdata)
{
unsigned long flags;
enum tmc_mode mode;
spin_lock_irqsave(&drvdata->spinlock, flags);
if (!drvdata->enable)
goto out;
if (drvdata->config_type == TMC_CONFIG_TYPE_ETB) {
tmc_etb_enable_hw(drvdata);
} else if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
tmc_etr_enable_hw(drvdata);
} else {
mode = readl_relaxed(drvdata->base + TMC_MODE);
if (mode == TMC_MODE_CIRCULAR_BUFFER)
tmc_etb_enable_hw(drvdata);
}
out:
drvdata->reading = false;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
dev_info(drvdata->dev, "TMC read end\n");
}
static int tmc_open(struct inode *inode, struct file *file)
{
struct tmc_drvdata *drvdata = container_of(file->private_data,
struct tmc_drvdata, miscdev);
int ret = 0;
if (drvdata->read_count++)
goto out;
ret = tmc_read_prepare(drvdata);
if (ret)
return ret;
out:
nonseekable_open(inode, file);
dev_dbg(drvdata->dev, "%s: successfully opened\n", __func__);
return 0;
}
/*
* TMC read logic when scatter gather feature is enabled:
*
* sg_tbl_num=0
* |---------------|<-- drvdata->vaddr
* | blk_num=0 |
* | blk_num_rel=5 |
* |---------------|
* | blk_num=1 |
* | blk_num_rel=6 |
* |---------------|
* | blk_num=2 |
* | blk_num_rel=7 |
* |---------------| sg_tbl_num=1
* | Next Table |------>|---------------|
* | Addr | | blk_num=3 |
* |---------------| | blk_num_rel=8 |
* |---------------|
* 4k Block Addr | blk_num=4 |
* |--------------| blk_num_rel=0 |
* | |---------------|
* | | blk_num=5 |
* | | blk_num_rel=1 |
* | |---------------| sg_tbl_num=2
* |---------------| | Next Table |------>|---------------|
* | | | Addr | | blk_num=6 |
* | | |---------------| | blk_num_rel=2 |
* | read_off | |---------------|
* | | | blk_num=7 |
* | | ppos | blk_num_rel=3 |
* |---------------|----- |---------------|
* | | | blk_num=8 |
* | delta_up | | blk_num_rel=4 |
* | | RWP/drvdata->buf |---------------|
* |---------------|----------------- | |
* | | | | |End of
* | | | |---------------|-----
* | | drvdata->delta_bottom Table
* | | |
* |_______________| _|_
* 4K Block
*
* For simplicity above diagram assumes following:
* a. mem_size = 36KB --> total_ents = 9
* b. ents_per_blk = 4
* c. RWP is on 5th block (blk_num = 5); so we have to start reading from RWP
* position
*/
static void tmc_etr_sg_compute_read(struct tmc_drvdata *drvdata, loff_t *ppos,
char **bufpp, size_t *len)
{
uint32_t i = 0, blk_num_rel = 0, read_len = 0;
uint32_t blk_num, sg_tbl_num, blk_num_loc, read_off;
uint32_t *virt_pte, *virt_st_tbl;
void *virt_blk;
phys_addr_t phys_pte = 0;
int total_ents = DIV_ROUND_UP(drvdata->size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
/*
* Find relative block number from ppos and reading offset
* within block and find actual block number based on relative
* block number
*/
if (drvdata->buf == drvdata->vaddr) {
blk_num = *ppos / PAGE_SIZE;
read_off = *ppos % PAGE_SIZE;
} else {
if (*ppos < drvdata->delta_bottom) {
read_off = PAGE_SIZE - drvdata->delta_bottom;
} else {
blk_num_rel = (*ppos / PAGE_SIZE) + 1;
read_off = (*ppos - drvdata->delta_bottom) % PAGE_SIZE;
}
blk_num = (drvdata->sg_blk_num + blk_num_rel) % total_ents;
}
virt_st_tbl = (uint32_t *)drvdata->vaddr;
/* Compute table index and block entry index within that table */
if (blk_num && (blk_num == (total_ents - 1)) &&
!(blk_num % (ents_per_blk - 1))) {
sg_tbl_num = blk_num / ents_per_blk;
blk_num_loc = ents_per_blk - 1;
} else {
sg_tbl_num = blk_num / (ents_per_blk - 1);
blk_num_loc = blk_num % (ents_per_blk - 1);
}
for (i = 0; i < sg_tbl_num; i++) {
virt_pte = virt_st_tbl + (ents_per_blk - 1);
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_st_tbl = (uint32_t *)phys_to_virt(phys_pte);
}
virt_pte = virt_st_tbl + blk_num_loc;
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_blk = phys_to_virt(phys_pte);
*bufpp = virt_blk + read_off;
if (*len > (PAGE_SIZE - read_off))
*len = PAGE_SIZE - read_off;
/*
* When buffer is wrapped around and trying to read last relative
* block (i.e. delta_up), compute len differently
*/
if (blk_num_rel && (blk_num == drvdata->sg_blk_num)) {
read_len = PAGE_SIZE - drvdata->delta_bottom - read_off;
if (*len > read_len)
*len = read_len;
}
dev_dbg_ratelimited(drvdata->dev,
"%s: read at %p, phys %pa len %zu blk %d, rel blk %d RWP blk %d\n",
__func__, *bufpp, &phys_pte, *len, blk_num, blk_num_rel,
drvdata->sg_blk_num);
}
static ssize_t tmc_read(struct file *file, char __user *data, size_t len,
loff_t *ppos)
{
struct tmc_drvdata *drvdata = container_of(file->private_data,
struct tmc_drvdata, miscdev);
char *bufp = drvdata->buf + *ppos;
if (*ppos + len > drvdata->size)
len = drvdata->size - *ppos;
if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG) {
if (bufp == (char *)(drvdata->vaddr + drvdata->size))
bufp = drvdata->vaddr;
else if (bufp >
(char *)(drvdata->vaddr + drvdata->size))
bufp -= drvdata->size;
if ((bufp + len) >
(char *)(drvdata->vaddr + drvdata->size))
len = (char *)(drvdata->vaddr + drvdata->size)
- bufp;
} else
tmc_etr_sg_compute_read(drvdata, ppos, &bufp, &len);
}
if (copy_to_user(data, bufp, len)) {
dev_dbg(drvdata->dev, "%s: copy_to_user failed\n", __func__);
return -EFAULT;
}
*ppos += len;
dev_dbg(drvdata->dev, "%s: %zu bytes copied, %d bytes left\n",
__func__, len, (int)(drvdata->size - *ppos));
return len;
}
static int tmc_release(struct inode *inode, struct file *file)
{
struct tmc_drvdata *drvdata = container_of(file->private_data,
struct tmc_drvdata, miscdev);
if (--drvdata->read_count) {
if (drvdata->read_count < 0) {
dev_err(drvdata->dev, "mismatched close\n");
drvdata->read_count = 0;
}
goto out;
}
tmc_read_unprepare(drvdata);
out:
dev_dbg(drvdata->dev, "%s: released\n", __func__);
return 0;
}
static int tmc_etr_bam_init(struct amba_device *adev,
struct tmc_drvdata *drvdata)
{
int ret;
struct device *dev = &adev->dev;
struct resource res;
struct tmc_etr_bam_data *bamdata;
bamdata = devm_kzalloc(dev, sizeof(*bamdata), GFP_KERNEL);
if (!bamdata)
return -ENOMEM;
drvdata->bamdata = bamdata;
ret = of_address_to_resource(adev->dev.of_node, 1, &res);
if (ret)
return -ENODEV;
bamdata->props.phys_addr = res.start;
bamdata->props.virt_addr = devm_ioremap(dev, res.start,
resource_size(&res));
if (!bamdata->props.virt_addr)
return -ENOMEM;
bamdata->props.virt_size = resource_size(&res);
bamdata->props.event_threshold = 0x4; /* Pipe event threshold */
bamdata->props.summing_threshold = 0x10; /* BAM event threshold */
bamdata->props.irq = 0;
bamdata->props.num_pipes = TMC_ETR_BAM_NR_PIPES;
return sps_register_bam_device(&bamdata->props, &bamdata->handle);
}
static void tmc_etr_bam_exit(struct tmc_drvdata *drvdata)
{
struct tmc_etr_bam_data *bamdata = drvdata->bamdata;
if (!bamdata->handle)
return;
sps_deregister_bam_device(bamdata->handle);
}
static const struct file_operations tmc_fops = {
.owner = THIS_MODULE,
.open = tmc_open,
.read = tmc_read,
.release = tmc_release,
.llseek = no_llseek,
};
static ssize_t status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
unsigned long flags;
u32 tmc_rsz, tmc_sts, tmc_rrp, tmc_rwp, tmc_trg;
u32 tmc_ctl, tmc_ffsr, tmc_ffcr, tmc_mode, tmc_pscr;
u32 devid;
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = clk_prepare_enable(drvdata->clk);
if (ret)
goto out;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
tmc_rsz = readl_relaxed(drvdata->base + TMC_RSZ);
tmc_sts = readl_relaxed(drvdata->base + TMC_STS);
tmc_rrp = readl_relaxed(drvdata->base + TMC_RRP);
tmc_rwp = readl_relaxed(drvdata->base + TMC_RWP);
tmc_trg = readl_relaxed(drvdata->base + TMC_TRG);
tmc_ctl = readl_relaxed(drvdata->base + TMC_CTL);
tmc_ffsr = readl_relaxed(drvdata->base + TMC_FFSR);
tmc_ffcr = readl_relaxed(drvdata->base + TMC_FFCR);
tmc_mode = readl_relaxed(drvdata->base + TMC_MODE);
tmc_pscr = readl_relaxed(drvdata->base + TMC_PSCR);
devid = readl_relaxed(drvdata->base + CORESIGHT_DEVID);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
return sprintf(buf,
"Depth:\t\t0x%x\n"
"Status:\t\t0x%x\n"
"RAM read ptr:\t0x%x\n"
"RAM wrt ptr:\t0x%x\n"
"Trigger cnt:\t0x%x\n"
"Control:\t0x%x\n"
"Flush status:\t0x%x\n"
"Flush ctrl:\t0x%x\n"
"Mode:\t\t0x%x\n"
"PSRC:\t\t0x%x\n"
"DEVID:\t\t0x%x\n",
tmc_rsz, tmc_sts, tmc_rrp, tmc_rwp, tmc_trg,
tmc_ctl, tmc_ffsr, tmc_ffcr, tmc_mode, tmc_pscr, devid);
out:
return -EINVAL;
}
static DEVICE_ATTR_RO(status);
static ssize_t trigger_cntr_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->trigger_cntr;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t trigger_cntr_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->trigger_cntr = val;
return size;
}
static DEVICE_ATTR_RW(trigger_cntr);
static ssize_t mem_size_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->mem_size;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t mem_size_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
mutex_lock(&drvdata->mem_lock);
if (kstrtoul(buf, 16, &val) != 1) {
return -EINVAL;
mutex_unlock(&drvdata->mem_lock);
}
drvdata->mem_size = val;
mutex_unlock(&drvdata->mem_lock);
return size;
}
static DEVICE_ATTR_RW(mem_size);
static ssize_t mem_type_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
return scnprintf(buf, PAGE_SIZE, "%s\n",
str_tmc_etr_mem_type[drvdata->mem_type]);
}
static ssize_t mem_type_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t size)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
char str[10] = "";
if (strlen(buf) >= 10)
return -EINVAL;
if (sscanf(buf, "%s", str) != 1)
return -EINVAL;
mutex_lock(&drvdata->mem_lock);
if (!strcmp(str, str_tmc_etr_mem_type[TMC_ETR_MEM_TYPE_CONTIG])) {
drvdata->mem_type = TMC_ETR_MEM_TYPE_CONTIG;
} else if (!strcmp(str, str_tmc_etr_mem_type[TMC_ETR_MEM_TYPE_SG])) {
drvdata->mem_type = TMC_ETR_MEM_TYPE_SG;
} else {
mutex_unlock(&drvdata->mem_lock);
return -EINVAL;
}
mutex_unlock(&drvdata->mem_lock);
return size;
}
static DEVICE_ATTR_RW(mem_type);
static ssize_t out_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
return scnprintf(buf, PAGE_SIZE, "%s\n",
str_tmc_etr_out_mode[drvdata->out_mode]);
}
static ssize_t out_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
char str[10] = "";
unsigned long flags;
int ret;
if (strlen(buf) >= 10)
return -EINVAL;
if (sscanf(buf, "%s", str) != 1)
return -EINVAL;
mutex_lock(&drvdata->mem_lock);
if (!strcmp(str, str_tmc_etr_out_mode[TMC_ETR_OUT_MODE_MEM])) {
if (drvdata->out_mode == TMC_ETR_OUT_MODE_MEM)
goto out;
spin_lock_irqsave(&drvdata->spinlock, flags);
if (!drvdata->enable) {
drvdata->out_mode = TMC_ETR_OUT_MODE_MEM;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
goto out;
}
__tmc_etr_disable_to_bam(drvdata);
tmc_etr_enable_hw(drvdata);
drvdata->out_mode = TMC_ETR_OUT_MODE_MEM;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
tmc_etr_bam_disable(drvdata);
usb_qdss_close(drvdata->usbch);
} else if (!strcmp(str, str_tmc_etr_out_mode[TMC_ETR_OUT_MODE_USB])) {
if (drvdata->out_mode == TMC_ETR_OUT_MODE_USB)
goto out;
spin_lock_irqsave(&drvdata->spinlock, flags);
if (!drvdata->enable) {
drvdata->out_mode = TMC_ETR_OUT_MODE_USB;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
goto out;
}
if (drvdata->reading) {
ret = -EBUSY;
goto err1;
}
tmc_etr_disable_hw(drvdata);
drvdata->out_mode = TMC_ETR_OUT_MODE_USB;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
drvdata->usbch = usb_qdss_open("qdss", drvdata,
usb_notifier);
if (IS_ERR(drvdata->usbch)) {
dev_err(drvdata->dev, "usb_qdss_open failed\n");
ret = PTR_ERR(drvdata->usbch);
goto err0;
}
}
out:
mutex_unlock(&drvdata->mem_lock);
return size;
err1:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
err0:
mutex_unlock(&drvdata->mem_lock);
return ret;
}
static DEVICE_ATTR_RW(out_mode);
static ssize_t available_out_modes_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t len = 0;
int i;
for (i = 0; i < ARRAY_SIZE(str_tmc_etr_out_mode); i++)
len += scnprintf(buf + len, PAGE_SIZE - len, "%s ",
str_tmc_etr_out_mode[i]);
len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
return len;
}
static DEVICE_ATTR_RO(available_out_modes);
static struct attribute *coresight_etb_attrs[] = {
&dev_attr_trigger_cntr.attr,
&dev_attr_status.attr,
NULL,
};
ATTRIBUTE_GROUPS(coresight_etb);
static struct attribute *coresight_etr_attrs[] = {
&dev_attr_available_out_modes.attr,
&dev_attr_mem_size.attr,
&dev_attr_mem_type.attr,
&dev_attr_out_mode.attr,
&dev_attr_trigger_cntr.attr,
&dev_attr_status.attr,
NULL,
};
ATTRIBUTE_GROUPS(coresight_etr);
static struct attribute *coresight_etf_attrs[] = {
&dev_attr_trigger_cntr.attr,
&dev_attr_status.attr,
NULL,
};
ATTRIBUTE_GROUPS(coresight_etf);
static int tmc_probe(struct amba_device *adev, const struct amba_id *id)
{
int ret = 0;
u32 devid;
void __iomem *base;
struct device *dev = &adev->dev;
struct coresight_platform_data *pdata = NULL;
struct tmc_drvdata *drvdata;
struct resource *res = &adev->res;
struct coresight_desc *desc;
struct device_node *np = adev->dev.of_node;
if (np) {
pdata = of_get_coresight_platform_data(dev, np);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
adev->dev.platform_data = pdata;
}
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
drvdata->dev = &adev->dev;
dev_set_drvdata(dev, drvdata);
/* Validity for the resource is already checked by the AMBA core */
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
drvdata->base = base;
spin_lock_init(&drvdata->spinlock);
mutex_init(&drvdata->mem_lock);
drvdata->clk = adev->pclk;
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
devid = readl_relaxed(drvdata->base + CORESIGHT_DEVID);
drvdata->config_type = BMVAL(devid, 6, 7);
if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
drvdata->out_mode = TMC_ETR_OUT_MODE_MEM;
if (np)
ret = of_property_read_u32(np,
"arm,buffer-size",
&drvdata->size);
if (ret)
drvdata->size = SZ_1M;
drvdata->mem_size = drvdata->size;
drvdata->memtype = TMC_ETR_MEM_TYPE_CONTIG;
drvdata->mem_type = drvdata->memtype;
} else {
drvdata->size = readl_relaxed(drvdata->base + TMC_RSZ) * 4;
}
clk_disable_unprepare(drvdata->clk);
if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
ret = tmc_etr_bam_init(adev, drvdata);
if (ret)
return ret;
} else {
drvdata->buf = devm_kzalloc(dev, drvdata->size, GFP_KERNEL);
if (!drvdata->buf)
return -ENOMEM;
}
desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
desc->pdata = pdata;
desc->dev = dev;
desc->subtype.sink_subtype = CORESIGHT_DEV_SUBTYPE_SINK_BUFFER;
if (drvdata->config_type == TMC_CONFIG_TYPE_ETB) {
desc->type = CORESIGHT_DEV_TYPE_SINK;
desc->ops = &tmc_etb_cs_ops;
desc->groups = coresight_etb_groups;
} else if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
desc->type = CORESIGHT_DEV_TYPE_SINK;
desc->ops = &tmc_etr_cs_ops;
desc->groups = coresight_etr_groups;
} else {
desc->type = CORESIGHT_DEV_TYPE_LINKSINK;
desc->subtype.link_subtype = CORESIGHT_DEV_SUBTYPE_LINK_FIFO;
desc->ops = &tmc_etf_cs_ops;
desc->groups = coresight_etf_groups;
}
drvdata->csdev = coresight_register(desc);
if (IS_ERR(drvdata->csdev))
return PTR_ERR(drvdata->csdev);
drvdata->miscdev.name = pdata->name;
drvdata->miscdev.minor = MISC_DYNAMIC_MINOR;
drvdata->miscdev.fops = &tmc_fops;
ret = misc_register(&drvdata->miscdev);
if (ret)
goto err_misc_register;
dev_info(dev, "TMC initialized\n");
return 0;
err_misc_register:
coresight_unregister(drvdata->csdev);
return ret;
}
static int tmc_remove(struct amba_device *adev)
{
struct tmc_drvdata *drvdata = amba_get_drvdata(adev);
misc_deregister(&drvdata->miscdev);
coresight_unregister(drvdata->csdev);
if (drvdata->config_type == TMC_CONFIG_TYPE_ETR)
tmc_etr_free_mem(drvdata);
tmc_etr_bam_exit(drvdata);
return 0;
}
static struct amba_id tmc_ids[] = {
{
.id = 0x0003b961,
.mask = 0x0003ffff,
},
{ 0, 0},
};
static struct amba_driver tmc_driver = {
.drv = {
.name = "coresight-tmc",
.owner = THIS_MODULE,
},
.probe = tmc_probe,
.remove = tmc_remove,
.id_table = tmc_ids,
};
module_amba_driver(tmc_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CoreSight Trace Memory Controller driver");