blob: d9adb70de2306b8d5a5d3e7f2ee4aade2f0ffb23 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2011-2020, The Linux Foundation. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/workqueue.h>
#include <linux/io.h>
#include <linux/jiffies.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/uaccess.h>
#include <linux/elf.h>
#include <linux/wait.h>
#include <linux/cdev.h>
#include <linux/srcu.h>
#include <linux/atomic.h>
#include <soc/qcom/ramdump.h>
#include <linux/dma-mapping.h>
#include <linux/of.h>
#define RAMDUMP_NUM_DEVICES 256
#define RAMDUMP_NAME "ramdump"
static struct class *ramdump_class;
static dev_t ramdump_dev;
static DEFINE_MUTEX(rd_minor_mutex);
static DEFINE_IDA(rd_minor_id);
static bool ramdump_devnode_inited;
#define RAMDUMP_WAIT_MSECS 120000
#define MAX_STRTBL_SIZE 512
#define MAX_NAME_LENGTH 16
struct consumer_entry {
bool data_ready;
struct ramdump_device *rd_dev;
struct list_head list;
};
struct ramdump_device {
char name[256];
unsigned int consumers;
atomic_t readers_left;
int ramdump_status;
struct completion ramdump_complete;
struct mutex consumer_lock;
struct list_head consumer_list;
struct cdev cdev;
struct device *dev;
wait_queue_head_t dump_wait_q;
int nsegments;
struct ramdump_segment *segments;
size_t elfcore_size;
char *elfcore_buf;
unsigned long attrs;
bool complete_ramdump;
bool abort_ramdump;
struct srcu_struct rd_srcu;
};
static int ramdump_open(struct inode *inode, struct file *filep)
{
struct ramdump_device *rd_dev = container_of(inode->i_cdev,
struct ramdump_device, cdev);
struct consumer_entry *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
INIT_LIST_HEAD(&entry->list);
entry->rd_dev = rd_dev;
mutex_lock(&rd_dev->consumer_lock);
rd_dev->consumers++;
rd_dev->ramdump_status = 0;
list_add_tail(&entry->list, &rd_dev->consumer_list);
mutex_unlock(&rd_dev->consumer_lock);
filep->private_data = entry;
return 0;
}
static void reset_ramdump_entry(struct consumer_entry *entry)
{
struct ramdump_device *rd_dev = entry->rd_dev;
entry->data_ready = false;
if (atomic_dec_return(&rd_dev->readers_left) == 0)
complete(&rd_dev->ramdump_complete);
}
static int ramdump_release(struct inode *inode, struct file *filep)
{
struct ramdump_device *rd_dev = container_of(inode->i_cdev,
struct ramdump_device, cdev);
struct consumer_entry *entry = filep->private_data;
mutex_lock(&rd_dev->consumer_lock);
/*
* Avoid double decrementing in cases where we finish reading the dump
* and then close the file, but there are other readers that have not
* yet finished.
*/
if (entry->data_ready)
reset_ramdump_entry(entry);
rd_dev->consumers--;
list_del(&entry->list);
mutex_unlock(&rd_dev->consumer_lock);
entry->rd_dev = NULL;
kfree(entry);
return 0;
}
static unsigned long offset_translate(loff_t user_offset,
struct ramdump_device *rd_dev, unsigned long *data_left,
void **vaddr)
{
int i = 0;
*vaddr = NULL;
for (i = 0; i < rd_dev->nsegments; i++)
if (user_offset >= rd_dev->segments[i].size)
user_offset -= rd_dev->segments[i].size;
else
break;
if (i == rd_dev->nsegments) {
pr_debug("Ramdump(%s): offset_translate returning zero\n",
rd_dev->name);
*data_left = 0;
return 0;
}
*data_left = rd_dev->segments[i].size - user_offset;
pr_debug("Ramdump(%s): Returning address: %llx, data_left = %ld\n",
rd_dev->name, rd_dev->segments[i].address + user_offset,
*data_left);
if (rd_dev->segments[i].v_address)
*vaddr = rd_dev->segments[i].v_address + user_offset;
return rd_dev->segments[i].address + user_offset;
}
#define MAX_IOREMAP_SIZE SZ_1M
static ssize_t ramdump_read(struct file *filep, char __user *buf, size_t count,
loff_t *pos)
{
struct consumer_entry *entry = filep->private_data;
struct ramdump_device *rd_dev = entry->rd_dev;
void *device_mem = NULL, *origdevice_mem = NULL, *vaddr = NULL;
unsigned long data_left = 0, bytes_before, bytes_after;
unsigned long addr = 0;
size_t copy_size = 0, alignsize;
unsigned char *alignbuf = NULL, *finalbuf = NULL;
int ret = 0;
int srcu_idx;
loff_t orig_pos = *pos;
if ((filep->f_flags & O_NONBLOCK) && !entry->data_ready)
return -EAGAIN;
ret = wait_event_interruptible(rd_dev->dump_wait_q,
(entry->data_ready || rd_dev->abort_ramdump));
if (ret)
return ret;
srcu_idx = srcu_read_lock(&rd_dev->rd_srcu);
if (rd_dev->abort_ramdump) {
pr_err("Ramdump(%s): Ramdump aborted\n", rd_dev->name);
rd_dev->ramdump_status = -1;
ret = -ETIME;
goto ramdump_done;
}
if (*pos < rd_dev->elfcore_size) {
copy_size = rd_dev->elfcore_size - *pos;
copy_size = min(copy_size, count);
if (copy_to_user(buf, rd_dev->elfcore_buf + *pos, copy_size)) {
ret = -EFAULT;
goto ramdump_done;
}
*pos += copy_size;
count -= copy_size;
buf += copy_size;
if (count == 0) {
srcu_read_unlock(&rd_dev->rd_srcu, srcu_idx);
return copy_size;
}
}
addr = offset_translate(*pos - rd_dev->elfcore_size, rd_dev,
&data_left, &vaddr);
/* EOF check */
if (data_left == 0) {
pr_debug("Ramdump(%s): Ramdump complete. %lld bytes read.",
rd_dev->name, *pos);
rd_dev->ramdump_status = 0;
ret = 0;
goto ramdump_done;
}
copy_size = min_t(size_t, count, (size_t)MAX_IOREMAP_SIZE);
copy_size = min_t(unsigned long, (unsigned long)copy_size, data_left);
rd_dev->attrs = 0;
rd_dev->attrs |= DMA_ATTR_SKIP_ZEROING;
device_mem = vaddr ?: dma_remap(rd_dev->dev->parent, NULL, addr,
copy_size, rd_dev->attrs);
origdevice_mem = device_mem;
if (device_mem == NULL) {
pr_err("Ramdump(%s): Unable to ioremap: addr %lx, size %zd\n",
rd_dev->name, addr, copy_size);
rd_dev->ramdump_status = -1;
ret = -ENOMEM;
goto ramdump_done;
}
alignbuf = kzalloc(copy_size, GFP_KERNEL);
if (!alignbuf) {
rd_dev->ramdump_status = -1;
ret = -ENOMEM;
goto ramdump_done;
}
finalbuf = alignbuf;
alignsize = copy_size;
if ((unsigned long)device_mem & 0x7) {
bytes_before = 8 - ((unsigned long)device_mem & 0x7);
memcpy_fromio(alignbuf, device_mem, bytes_before);
device_mem += bytes_before;
alignbuf += bytes_before;
alignsize -= bytes_before;
}
if (alignsize & 0x7) {
bytes_after = alignsize & 0x7;
memcpy(alignbuf, device_mem, alignsize - bytes_after);
device_mem += alignsize - bytes_after;
alignbuf += (alignsize - bytes_after);
alignsize = bytes_after;
memcpy_fromio(alignbuf, device_mem, alignsize);
} else
memcpy(alignbuf, device_mem, alignsize);
if (copy_to_user(buf, finalbuf, copy_size)) {
pr_err("Ramdump(%s): Couldn't copy all data to user.",
rd_dev->name);
rd_dev->ramdump_status = -1;
ret = -EFAULT;
goto ramdump_done;
}
kfree(finalbuf);
if (!vaddr && origdevice_mem)
dma_unremap(rd_dev->dev->parent, origdevice_mem, copy_size);
*pos += copy_size;
pr_debug("Ramdump(%s): Read %zd bytes from address %lx.",
rd_dev->name, copy_size, addr);
srcu_read_unlock(&rd_dev->rd_srcu, srcu_idx);
return *pos - orig_pos;
ramdump_done:
if (!vaddr && origdevice_mem)
dma_unremap(rd_dev->dev->parent, origdevice_mem, copy_size);
srcu_read_unlock(&rd_dev->rd_srcu, srcu_idx);
kfree(finalbuf);
*pos = 0;
reset_ramdump_entry(entry);
return ret;
}
static unsigned int ramdump_poll(struct file *filep,
struct poll_table_struct *wait)
{
struct consumer_entry *entry = filep->private_data;
struct ramdump_device *rd_dev = entry->rd_dev;
unsigned int mask = 0;
if (entry->data_ready)
mask |= (POLLIN | POLLRDNORM);
poll_wait(filep, &rd_dev->dump_wait_q, wait);
return mask;
}
static const struct file_operations ramdump_file_ops = {
.open = ramdump_open,
.release = ramdump_release,
.read = ramdump_read,
.poll = ramdump_poll
};
static int ramdump_devnode_init(void)
{
int ret;
ramdump_class = class_create(THIS_MODULE, RAMDUMP_NAME);
ret = alloc_chrdev_region(&ramdump_dev, 0, RAMDUMP_NUM_DEVICES,
RAMDUMP_NAME);
if (ret < 0) {
pr_warn("%s: unable to allocate major\n", __func__);
return ret;
}
ramdump_devnode_inited = true;
return 0;
}
void *create_ramdump_device(const char *dev_name, struct device *parent)
{
int ret, minor;
struct ramdump_device *rd_dev;
if (!dev_name) {
pr_err("%s: Invalid device name.\n", __func__);
return NULL;
}
mutex_lock(&rd_minor_mutex);
if (!ramdump_devnode_inited) {
ret = ramdump_devnode_init();
if (ret)
return ERR_PTR(ret);
}
mutex_unlock(&rd_minor_mutex);
rd_dev = kzalloc(sizeof(struct ramdump_device), GFP_KERNEL);
if (!rd_dev)
return NULL;
/* get a minor number */
minor = ida_simple_get(&rd_minor_id, 0, RAMDUMP_NUM_DEVICES,
GFP_KERNEL);
if (minor < 0) {
pr_err("%s: No more minor numbers left! rc:%d\n", __func__,
minor);
ret = -ENODEV;
goto fail_out_of_minors;
}
snprintf(rd_dev->name, ARRAY_SIZE(rd_dev->name), "ramdump_%s",
dev_name);
init_completion(&rd_dev->ramdump_complete);
if (parent) {
rd_dev->complete_ramdump = of_property_read_bool(
parent->of_node, "qcom,complete-ramdump");
if (!rd_dev->complete_ramdump)
dev_info(parent,
"for %s segments only will be dumped.", dev_name);
}
INIT_LIST_HEAD(&rd_dev->consumer_list);
init_waitqueue_head(&rd_dev->dump_wait_q);
rd_dev->dev = device_create(ramdump_class, parent,
MKDEV(MAJOR(ramdump_dev), minor),
rd_dev, rd_dev->name);
if (IS_ERR(rd_dev->dev)) {
ret = PTR_ERR(rd_dev->dev);
pr_err("%s: device_create failed for %s (%d)", __func__,
dev_name, ret);
goto fail_return_minor;
}
mutex_init(&rd_dev->consumer_lock);
atomic_set(&rd_dev->readers_left, 0);
init_srcu_struct(&rd_dev->rd_srcu);
cdev_init(&rd_dev->cdev, &ramdump_file_ops);
ret = cdev_add(&rd_dev->cdev, MKDEV(MAJOR(ramdump_dev), minor), 1);
if (ret < 0) {
pr_err("%s: cdev_add failed for %s (%d)", __func__,
dev_name, ret);
goto fail_cdev_add;
}
return (void *)rd_dev;
fail_cdev_add:
cleanup_srcu_struct(&rd_dev->rd_srcu);
mutex_destroy(&rd_dev->consumer_lock);
device_unregister(rd_dev->dev);
fail_return_minor:
ida_simple_remove(&rd_minor_id, minor);
fail_out_of_minors:
kfree(rd_dev);
return ERR_PTR(ret);
}
EXPORT_SYMBOL(create_ramdump_device);
void destroy_ramdump_device(void *dev)
{
struct ramdump_device *rd_dev = dev;
int minor = MINOR(rd_dev->cdev.dev);
if (IS_ERR_OR_NULL(rd_dev))
return;
cdev_del(&rd_dev->cdev);
device_unregister(rd_dev->dev);
cleanup_srcu_struct(&rd_dev->rd_srcu);
ida_simple_remove(&rd_minor_id, minor);
kfree(rd_dev);
}
EXPORT_SYMBOL(destroy_ramdump_device);
static int _do_ramdump(void *handle, struct ramdump_segment *segments,
int nsegments, bool use_elf, bool complete_ramdump)
{
int ret, i;
struct ramdump_device *rd_dev = (struct ramdump_device *)handle;
struct consumer_entry *entry;
Elf32_Phdr *phdr;
Elf32_Ehdr *ehdr;
unsigned long offset;
/*
* Acquire the consumer lock here, and hold the lock until we are done
* preparing the data structures required for the ramdump session, and
* have woken all readers. This essentially freezes the current readers
* when the lock is taken here, such that the readers at that time are
* the only ones that will participate in the ramdump session. After
* the current list of readers has been awoken, new readers that add
* themselves to the reader list will not participate in the current
* ramdump session. This allows for the lock to be free while the
* ramdump is occurring, which prevents stalling readers who want to
* close the ramdump node or new readers that want to open it.
*/
mutex_lock(&rd_dev->consumer_lock);
if (!rd_dev->consumers) {
pr_err("Ramdump(%s): No consumers. Aborting..\n", rd_dev->name);
mutex_unlock(&rd_dev->consumer_lock);
return -EPIPE;
}
if (complete_ramdump) {
for (i = 0; i < nsegments-1; i++)
segments[i].size =
segments[i + 1].address - segments[i].address;
}
rd_dev->segments = segments;
rd_dev->nsegments = nsegments;
if (use_elf) {
rd_dev->elfcore_size = sizeof(*ehdr) +
sizeof(*phdr) * nsegments;
ehdr = kzalloc(rd_dev->elfcore_size, GFP_KERNEL);
rd_dev->elfcore_buf = (char *)ehdr;
if (!rd_dev->elfcore_buf) {
mutex_unlock(&rd_dev->consumer_lock);
return -ENOMEM;
}
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
ehdr->e_ident[EI_CLASS] = ELFCLASS32;
ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
ehdr->e_type = ET_CORE;
ehdr->e_version = EV_CURRENT;
ehdr->e_phoff = sizeof(*ehdr);
ehdr->e_ehsize = sizeof(*ehdr);
ehdr->e_phentsize = sizeof(*phdr);
ehdr->e_phnum = nsegments;
offset = rd_dev->elfcore_size;
phdr = (Elf32_Phdr *)(ehdr + 1);
for (i = 0; i < nsegments; i++, phdr++) {
phdr->p_type = PT_LOAD;
phdr->p_offset = offset;
phdr->p_vaddr = phdr->p_paddr = segments[i].address;
phdr->p_filesz = phdr->p_memsz = segments[i].size;
phdr->p_flags = PF_R | PF_W | PF_X;
offset += phdr->p_filesz;
}
}
list_for_each_entry(entry, &rd_dev->consumer_list, list)
entry->data_ready = true;
rd_dev->ramdump_status = -1;
rd_dev->abort_ramdump = false;
reinit_completion(&rd_dev->ramdump_complete);
atomic_set(&rd_dev->readers_left, rd_dev->consumers);
/* Tell userspace that the data is ready */
wake_up(&rd_dev->dump_wait_q);
mutex_unlock(&rd_dev->consumer_lock);
/* Wait (with a timeout) to let the ramdump complete */
ret = wait_for_completion_timeout(&rd_dev->ramdump_complete,
msecs_to_jiffies(RAMDUMP_WAIT_MSECS));
if (!ret) {
pr_err("Ramdump(%s): Timed out waiting for userspace.\n",
rd_dev->name);
ret = -EPIPE;
rd_dev->abort_ramdump = true;
/* Wait for pending readers to complete (if any) */
synchronize_srcu(&rd_dev->rd_srcu);
} else
ret = (rd_dev->ramdump_status == 0) ? 0 : -EPIPE;
rd_dev->elfcore_size = 0;
kfree(rd_dev->elfcore_buf);
rd_dev->elfcore_buf = NULL;
return ret;
}
static inline unsigned int set_section_name(const char *name,
struct elfhdr *ehdr,
int *strtable_idx)
{
char *strtab = elf_str_table(ehdr);
int idx, ret = 0;
idx = *strtable_idx;
if ((strtab == NULL) || (name == NULL))
return 0;
ret = idx;
idx += strlcpy((strtab + idx), name, MAX_NAME_LENGTH);
*strtable_idx = idx + 1;
return ret;
}
static int _do_minidump(void *handle, struct ramdump_segment *segments,
int nsegments)
{
int ret, i;
struct ramdump_device *rd_dev = (struct ramdump_device *)handle;
struct consumer_entry *entry;
struct elfhdr *ehdr;
struct elf_shdr *shdr;
unsigned long offset, strtbl_off;
int strtable_idx = 1;
/*
* Acquire the consumer lock here, and hold the lock until we are done
* preparing the data structures required for the ramdump session, and
* have woken all readers. This essentially freezes the current readers
* when the lock is taken here, such that the readers at that time are
* the only ones that will participate in the ramdump session. After
* the current list of readers has been awoken, new readers that add
* themselves to the reader list will not participate in the current
* ramdump session. This allows for the lock to be free while the
* ramdump is occurring, which prevents stalling readers who want to
* close the ramdump node or new readers that want to open it.
*/
mutex_lock(&rd_dev->consumer_lock);
if (!rd_dev->consumers) {
pr_err("Ramdump(%s): No consumers. Aborting..\n", rd_dev->name);
mutex_unlock(&rd_dev->consumer_lock);
return -EPIPE;
}
rd_dev->segments = segments;
rd_dev->nsegments = nsegments;
rd_dev->elfcore_size = sizeof(*ehdr) +
(sizeof(*shdr) * (nsegments + 2)) + MAX_STRTBL_SIZE;
ehdr = kzalloc(rd_dev->elfcore_size, GFP_KERNEL);
rd_dev->elfcore_buf = (char *)ehdr;
if (!rd_dev->elfcore_buf) {
mutex_unlock(&rd_dev->consumer_lock);
return -ENOMEM;
}
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
ehdr->e_ident[EI_CLASS] = ELF_CLASS;
ehdr->e_ident[EI_DATA] = ELF_DATA;
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
ehdr->e_ident[EI_OSABI] = ELF_OSABI;
ehdr->e_type = ET_CORE;
ehdr->e_machine = ELF_ARCH;
ehdr->e_version = EV_CURRENT;
ehdr->e_ehsize = sizeof(*ehdr);
ehdr->e_shoff = sizeof(*ehdr);
ehdr->e_shentsize = sizeof(*shdr);
ehdr->e_shstrndx = 1;
offset = rd_dev->elfcore_size;
shdr = (struct elf_shdr *)(ehdr + 1);
strtbl_off = sizeof(*ehdr) + sizeof(*shdr) * (nsegments + 2);
shdr++;
shdr->sh_type = SHT_STRTAB;
shdr->sh_offset = (elf_addr_t)strtbl_off;
shdr->sh_size = MAX_STRTBL_SIZE;
shdr->sh_entsize = 0;
shdr->sh_flags = 0;
shdr->sh_name = set_section_name("STR_TBL", ehdr, &strtable_idx);
shdr++;
for (i = 0; i < nsegments; i++, shdr++) {
/* Update elf header */
shdr->sh_type = SHT_PROGBITS;
shdr->sh_name = set_section_name(segments[i].name, ehdr,
&strtable_idx);
shdr->sh_addr = (elf_addr_t)segments[i].address;
shdr->sh_size = segments[i].size;
shdr->sh_flags = SHF_WRITE;
shdr->sh_offset = offset;
shdr->sh_entsize = 0;
offset += shdr->sh_size;
}
ehdr->e_shnum = nsegments + 2;
list_for_each_entry(entry, &rd_dev->consumer_list, list)
entry->data_ready = true;
rd_dev->ramdump_status = -1;
rd_dev->abort_ramdump = false;
reinit_completion(&rd_dev->ramdump_complete);
atomic_set(&rd_dev->readers_left, rd_dev->consumers);
/* Tell userspace that the data is ready */
wake_up(&rd_dev->dump_wait_q);
mutex_unlock(&rd_dev->consumer_lock);
/* Wait (with a timeout) to let the ramdump complete */
ret = wait_for_completion_timeout(&rd_dev->ramdump_complete,
msecs_to_jiffies(RAMDUMP_WAIT_MSECS));
if (!ret) {
pr_err("Ramdump(%s): Timed out waiting for userspace.\n",
rd_dev->name);
ret = -EPIPE;
rd_dev->abort_ramdump = true;
/* Wait for pending readers to complete (if any) */
synchronize_srcu(&rd_dev->rd_srcu);
} else {
ret = (rd_dev->ramdump_status == 0) ? 0 : -EPIPE;
}
rd_dev->elfcore_size = 0;
kfree(rd_dev->elfcore_buf);
rd_dev->elfcore_buf = NULL;
return ret;
}
int do_ramdump(void *handle, struct ramdump_segment *segments, int nsegments)
{
struct ramdump_device *rd_dev = (struct ramdump_device *)handle;
return _do_ramdump(handle, segments, nsegments, false,
rd_dev->complete_ramdump);
}
EXPORT_SYMBOL(do_ramdump);
int do_minidump(void *handle, struct ramdump_segment *segments, int nsegments)
{
return _do_minidump(handle, segments, nsegments);
}
EXPORT_SYMBOL(do_minidump);
int do_minidump_elf32(void *handle, struct ramdump_segment *segments,
int nsegments)
{
return _do_ramdump(handle, segments, nsegments, true, false);
}
EXPORT_SYMBOL(do_minidump_elf32);
int
do_elf_ramdump(void *handle, struct ramdump_segment *segments, int nsegments)
{
struct ramdump_device *rd_dev = (struct ramdump_device *)handle;
return _do_ramdump(handle, segments, nsegments, true,
rd_dev->complete_ramdump);
}
EXPORT_SYMBOL(do_elf_ramdump);
MODULE_LICENSE("GPL v2");