blob: 247df349283529efd7ca40cdc438d984424149ec [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2020, The Linux Foundation. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/reboot.h>
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/spinlock.h>
#include <linux/of_gpio.h>
#include <linux/of_device.h>
#include <linux/uaccess.h>
#include "nq-nci.h"
#include <linux/clk.h>
#ifdef CONFIG_COMPAT
#include <linux/compat.h>
#endif
#include <linux/jiffies.h>
#include <linux/regulator/consumer.h>
struct nqx_platform_data {
unsigned int irq_gpio;
unsigned int en_gpio;
unsigned int clkreq_gpio;
unsigned int firm_gpio;
unsigned int ese_gpio;
int vdd_levels[2];
int max_current;
const char *clk_src_name;
/* NFC_CLK pin voting state */
bool clk_pin_voting;
};
static const struct of_device_id msm_match_table[] = {
{.compatible = "qcom,nq-nci"},
{}
};
MODULE_DEVICE_TABLE(of, msm_match_table);
struct nqx_dev {
wait_queue_head_t read_wq;
wait_queue_head_t cold_reset_read_wq;
struct mutex read_mutex;
struct mutex dev_ref_mutex;
struct i2c_client *client;
dev_t devno;
struct class *nqx_class;
struct device *nqx_device;
struct cdev c_dev;
union nqx_uinfo nqx_info;
/* NFC GPIO variables */
unsigned int irq_gpio;
unsigned int en_gpio;
unsigned int firm_gpio;
unsigned int clkreq_gpio;
unsigned int ese_gpio;
/* NFC VEN pin state powered by Nfc */
bool nfc_ven_enabled;
/* NFC state reflected from MW */
bool nfc_enabled;
/* NFC_IRQ state */
bool irq_enabled;
/* NFC_IRQ wake-up state */
bool irq_wake_up;
bool cold_reset_rsp_pending;
bool is_vreg_enabled;
bool is_ese_session_active;
uint8_t cold_reset_status;
spinlock_t irq_enabled_lock;
unsigned int count_irq;
/* NFC_IRQ Count */
unsigned int dev_ref_count;
/* Initial CORE RESET notification */
unsigned int core_reset_ntf;
/* CLK control */
bool clk_run;
struct clk *s_clk;
/* read buffer*/
size_t kbuflen;
u8 *kbuf;
struct nqx_platform_data *pdata;
struct regulator *reg;
};
static int nfcc_reboot(struct notifier_block *notifier, unsigned long val,
void *v);
/*clock enable function*/
static int nqx_clock_select(struct nqx_dev *nqx_dev);
/*clock disable function*/
static int nqx_clock_deselect(struct nqx_dev *nqx_dev);
static int nqx_standby_write(struct nqx_dev *nqx_dev,
const unsigned char *buf, size_t len);
static struct notifier_block nfcc_notifier = {
.notifier_call = nfcc_reboot,
.next = NULL,
.priority = 0
};
unsigned int disable_ctrl;
static void nqx_init_stat(struct nqx_dev *nqx_dev)
{
nqx_dev->count_irq = 0;
}
static void nqx_disable_irq(struct nqx_dev *nqx_dev)
{
unsigned long flags;
spin_lock_irqsave(&nqx_dev->irq_enabled_lock, flags);
if (nqx_dev->irq_enabled) {
disable_irq_nosync(nqx_dev->client->irq);
nqx_dev->irq_enabled = false;
}
spin_unlock_irqrestore(&nqx_dev->irq_enabled_lock, flags);
}
/**
* nqx_enable_irq()
*
* Check if interrupt is enabled or not
* and enable interrupt
*
* Return: void
*/
static void nqx_enable_irq(struct nqx_dev *nqx_dev)
{
unsigned long flags;
spin_lock_irqsave(&nqx_dev->irq_enabled_lock, flags);
if (!nqx_dev->irq_enabled) {
nqx_dev->irq_enabled = true;
enable_irq(nqx_dev->client->irq);
}
spin_unlock_irqrestore(&nqx_dev->irq_enabled_lock, flags);
}
static irqreturn_t nqx_dev_irq_handler(int irq, void *dev_id)
{
struct nqx_dev *nqx_dev = dev_id;
unsigned long flags;
if (device_may_wakeup(&nqx_dev->client->dev))
pm_wakeup_event(&nqx_dev->client->dev, WAKEUP_SRC_TIMEOUT);
nqx_disable_irq(nqx_dev);
spin_lock_irqsave(&nqx_dev->irq_enabled_lock, flags);
nqx_dev->count_irq++;
spin_unlock_irqrestore(&nqx_dev->irq_enabled_lock, flags);
wake_up(&nqx_dev->read_wq);
return IRQ_HANDLED;
}
static int is_data_available_for_read(struct nqx_dev *nqx_dev)
{
int ret;
nqx_enable_irq(nqx_dev);
ret = wait_event_interruptible_timeout(nqx_dev->read_wq,
!nqx_dev->irq_enabled, msecs_to_jiffies(MAX_IRQ_WAIT_TIME));
return ret;
}
static int send_cold_reset_cmd(struct nqx_dev *nqx_dev)
{
int ret;
char *cold_reset_cmd = NULL;
if (gpio_get_value(nqx_dev->firm_gpio)) {
dev_err(&nqx_dev->client->dev, "FW download in-progress\n");
return -EBUSY;
}
if (!gpio_get_value(nqx_dev->en_gpio)) {
dev_err(&nqx_dev->client->dev, "VEN LOW - NFCC powered off\n");
return -ENODEV;
}
cold_reset_cmd = kzalloc(COLD_RESET_CMD_LEN, GFP_DMA | GFP_KERNEL);
if (!cold_reset_cmd)
return -ENOMEM;
cold_reset_cmd[0] = COLD_RESET_CMD_GID;
cold_reset_cmd[1] = COLD_RESET_OID;
cold_reset_cmd[2] = COLD_RESET_CMD_PAYLOAD_LEN;
ret = nqx_standby_write(nqx_dev, cold_reset_cmd, COLD_RESET_CMD_LEN);
if (ret < 0) {
dev_err(&nqx_dev->client->dev,
"%s: write failed after max retry\n", __func__);
}
kfree(cold_reset_cmd);
return ret;
}
static void read_cold_reset_rsp(struct nqx_dev *nqx_dev, bool isNfcEnabled,
char *header)
{
int ret = -1;
char *cold_reset_rsp = NULL;
cold_reset_rsp = kzalloc(COLD_RESET_RSP_LEN, GFP_DMA | GFP_KERNEL);
if (!cold_reset_rsp)
return;
/*
* read header also if NFC is disabled
* for enable case, will be taken care by nfc_read thread
*/
if (!isNfcEnabled) {
ret = i2c_master_recv(nqx_dev->client, cold_reset_rsp,
NCI_HEADER_LEN);
if (ret != NCI_HEADER_LEN) {
dev_err(&nqx_dev->client->dev,
"%s: failure to read cold reset rsp header\n",
__func__);
goto error;
}
} else {
memcpy(cold_reset_rsp, header, NCI_HEADER_LEN);
}
if ((NCI_HEADER_LEN + cold_reset_rsp[2]) > COLD_RESET_RSP_LEN) {
dev_err(&nqx_dev->client->dev,
"%s: - invalid response for cold_reset\n", __func__);
ret = -EINVAL;
goto error;
}
ret = i2c_master_recv(nqx_dev->client, &cold_reset_rsp[NCI_PAYLOAD_IDX],
cold_reset_rsp[2]);
if (ret != cold_reset_rsp[2]) {
dev_err(&nqx_dev->client->dev,
"%s: failure to read cold reset rsp status\n",
__func__);
goto error;
}
nqx_dev->cold_reset_status = cold_reset_rsp[NCI_PAYLOAD_IDX];
error:
kfree(cold_reset_rsp);
}
static ssize_t nfc_read(struct file *filp, char __user *buf,
size_t count, loff_t *offset)
{
struct nqx_dev *nqx_dev = filp->private_data;
unsigned char *tmp = NULL;
int ret;
int irq_gpio_val = 0;
if (!nqx_dev) {
ret = -ENODEV;
goto out;
}
if (count > nqx_dev->kbuflen)
count = nqx_dev->kbuflen;
dev_dbg(&nqx_dev->client->dev, "%s : reading %zu bytes.\n",
__func__, count);
mutex_lock(&nqx_dev->read_mutex);
irq_gpio_val = gpio_get_value(nqx_dev->irq_gpio);
if (irq_gpio_val == 0) {
if (filp->f_flags & O_NONBLOCK) {
dev_err(&nqx_dev->client->dev,
":f_falg has O_NONBLOCK. EAGAIN\n");
ret = -EAGAIN;
goto err;
}
while (1) {
ret = 0;
if (!nqx_dev->irq_enabled) {
nqx_dev->irq_enabled = true;
enable_irq(nqx_dev->client->irq);
}
if (!gpio_get_value(nqx_dev->irq_gpio)) {
ret = wait_event_interruptible(nqx_dev->read_wq,
!nqx_dev->irq_enabled);
}
if (ret)
goto err;
nqx_disable_irq(nqx_dev);
if (gpio_get_value(nqx_dev->irq_gpio))
break;
dev_err_ratelimited(&nqx_dev->client->dev,
"gpio is low, no need to read data\n");
}
}
tmp = nqx_dev->kbuf;
if (!tmp) {
dev_err(&nqx_dev->client->dev,
"%s: device doesn't exist anymore\n", __func__);
ret = -ENODEV;
goto err;
}
memset(tmp, 0x00, count);
/* Read data */
ret = i2c_master_recv(nqx_dev->client, tmp, count);
if (ret < 0) {
dev_err(&nqx_dev->client->dev,
"%s: i2c_master_recv returned %d\n", __func__, ret);
goto err;
}
if (ret > count) {
dev_err(&nqx_dev->client->dev,
"%s: received too many bytes from i2c (%d)\n",
__func__, ret);
ret = -EIO;
goto err;
}
/* check if it's response of cold reset command
* NFC HAL process shouldn't receive this data as
* command was sent by eSE HAL
*/
if (nqx_dev->cold_reset_rsp_pending
&& (tmp[0] == COLD_RESET_RSP_GID)
&& (tmp[1] == COLD_RESET_OID)) {
read_cold_reset_rsp(nqx_dev, true, tmp);
nqx_dev->cold_reset_rsp_pending = false;
wake_up_interruptible(&nqx_dev->cold_reset_read_wq);
mutex_unlock(&nqx_dev->read_mutex);
/*
* NFC process doesn't know about cold reset command
* being sent as it was initiated by eSE process
* we shouldn't return any data to NFC process
*/
return 0;
}
#ifdef NFC_KERNEL_BU
dev_dbg(&nqx_dev->client->dev, "%s : NfcNciRx %x %x %x\n",
__func__, tmp[0], tmp[1], tmp[2]);
#endif
if (copy_to_user(buf, tmp, ret)) {
dev_warn(&nqx_dev->client->dev,
"%s : failed to copy to user space\n", __func__);
ret = -EFAULT;
goto err;
}
mutex_unlock(&nqx_dev->read_mutex);
return ret;
err:
mutex_unlock(&nqx_dev->read_mutex);
out:
return ret;
}
static ssize_t nfc_write(struct file *filp, const char __user *buf,
size_t count, loff_t *offset)
{
struct nqx_dev *nqx_dev = filp->private_data;
char *tmp = NULL;
int ret = 0;
if (!nqx_dev) {
ret = -ENODEV;
goto out;
}
if (count > nqx_dev->kbuflen) {
dev_err(&nqx_dev->client->dev, "%s: out of memory\n",
__func__);
ret = -ENOMEM;
goto out;
}
tmp = memdup_user(buf, count);
if (IS_ERR(tmp)) {
dev_err(&nqx_dev->client->dev, "%s: memdup_user failed\n",
__func__);
ret = PTR_ERR(tmp);
goto out;
}
ret = i2c_master_send(nqx_dev->client, tmp, count);
if (ret != count) {
dev_err(&nqx_dev->client->dev,
"%s: failed to write %d\n", __func__, ret);
ret = -EIO;
goto out_free;
}
#ifdef NFC_KERNEL_BU
dev_dbg(&nqx_dev->client->dev,
"%s : i2c-%d: NfcNciTx %x %x %x\n",
__func__, iminor(file_inode(filp)),
tmp[0], tmp[1], tmp[2]);
#endif
usleep_range(1000, 1100);
out_free:
kfree(tmp);
out:
return ret;
}
/**
* nqx_standby_write()
* @buf: pointer to data buffer
* @len: # of bytes need to transfer
*
* write data buffer over I2C and retry
* if NFCC is in stand by mode
*
* Return: # of bytes written or -ve value in case of error
*/
static int nqx_standby_write(struct nqx_dev *nqx_dev,
const unsigned char *buf, size_t len)
{
int ret = -EINVAL;
int retry_cnt;
for (retry_cnt = 1; retry_cnt <= MAX_RETRY_COUNT; retry_cnt++) {
ret = i2c_master_send(nqx_dev->client, buf, len);
if (ret < 0) {
dev_err(&nqx_dev->client->dev,
"%s: write failed, Maybe in Standby Mode - Retry(%d)\n",
__func__, retry_cnt);
usleep_range(1000, 1100);
} else if (ret == len)
break;
}
return ret;
}
/*
* Power management of the SN100 eSE
* eSE and NFCC both are powered using VEN gpio in SN100,
* VEN HIGH - eSE and NFCC both are powered on
* VEN LOW - eSE and NFCC both are power down
*/
static int sn100_ese_pwr(struct nqx_dev *nqx_dev, unsigned long arg)
{
int r = -1;
if (arg == ESE_POWER_ON) {
/**
* Let's store the NFC VEN pin state
* will check stored value in case of eSE power off request,
* to find out if NFC MW also sent request to set VEN HIGH
* VEN state will remain HIGH if NFC is enabled otherwise
* it will be set as LOW
*/
nqx_dev->nfc_ven_enabled =
gpio_get_value(nqx_dev->en_gpio);
if (!nqx_dev->nfc_ven_enabled) {
dev_dbg(&nqx_dev->client->dev, "eSE HAL service setting en_gpio HIGH\n");
gpio_set_value(nqx_dev->en_gpio, 1);
/* hardware dependent delay */
usleep_range(1000, 1100);
} else {
dev_dbg(&nqx_dev->client->dev, "en_gpio already HIGH\n");
}
nqx_dev->is_ese_session_active = true;
r = 0;
} else if (arg == ESE_POWER_OFF) {
if (!nqx_dev->nfc_ven_enabled) {
dev_dbg(&nqx_dev->client->dev, "NFC not enabled, disabling en_gpio\n");
gpio_set_value(nqx_dev->en_gpio, 0);
/* hardware dependent delay */
usleep_range(1000, 1100);
} else {
dev_dbg(&nqx_dev->client->dev, "keep en_gpio high as NFC is enabled\n");
}
nqx_dev->is_ese_session_active = false;
r = 0;
} else if (arg == ESE_COLD_RESET) {
// set default value for status as failure
nqx_dev->cold_reset_status = EIO;
r = send_cold_reset_cmd(nqx_dev);
if (r <= 0) {
dev_err(&nqx_dev->client->dev,
"failed to send cold reset command\n");
return nqx_dev->cold_reset_status;
}
nqx_dev->cold_reset_rsp_pending = true;
// check if NFC is enabled
if (nqx_dev->nfc_enabled) {
/*
* nfc_read thread will initiate cold reset response
* and it will signal for data available
*/
wait_event_interruptible(nqx_dev->cold_reset_read_wq,
!nqx_dev->cold_reset_rsp_pending);
} else {
/*
* Read data as NFC thread is not active
*/
r = is_data_available_for_read(nqx_dev);
if (r <= 0) {
nqx_disable_irq(nqx_dev);
nqx_dev->cold_reset_rsp_pending = false;
return nqx_dev->cold_reset_status;
}
read_cold_reset_rsp(nqx_dev, false, NULL);
nqx_dev->cold_reset_rsp_pending = false;
}
r = nqx_dev->cold_reset_status;
} else if (arg == ESE_POWER_STATE) {
// eSE power state
r = gpio_get_value(nqx_dev->en_gpio);
}
return r;
}
/*
* Power management of the eSE
* NFC & eSE ON : NFC_EN high and eSE_pwr_req high.
* NFC OFF & eSE ON : NFC_EN high and eSE_pwr_req high.
* NFC OFF & eSE OFF : NFC_EN low and eSE_pwr_req low.
*/
static int nqx_ese_pwr(struct nqx_dev *nqx_dev, unsigned long arg)
{
int r = -1;
const unsigned char svdd_off_cmd_warn[] = {0x2F, 0x31, 0x01, 0x01};
const unsigned char svdd_off_cmd_done[] = {0x2F, 0x31, 0x01, 0x00};
if (!gpio_is_valid(nqx_dev->ese_gpio)) {
dev_err(&nqx_dev->client->dev,
"%s: ese_gpio is not valid\n", __func__);
return -EINVAL;
}
if (arg == 0) {
/*
* We want to power on the eSE and to do so we need the
* eSE_pwr_req pin and the NFC_EN pin to be high
*/
if (gpio_get_value(nqx_dev->ese_gpio)) {
dev_dbg(&nqx_dev->client->dev, "ese_gpio is already high\n");
r = 0;
} else {
/**
* Let's store the NFC_EN pin state
* only if the eSE is not yet on
*/
nqx_dev->nfc_ven_enabled =
gpio_get_value(nqx_dev->en_gpio);
if (!nqx_dev->nfc_ven_enabled) {
gpio_set_value(nqx_dev->en_gpio, 1);
/* hardware dependent delay */
usleep_range(1000, 1100);
}
gpio_set_value(nqx_dev->ese_gpio, 1);
usleep_range(1000, 1100);
if (gpio_get_value(nqx_dev->ese_gpio)) {
dev_dbg(&nqx_dev->client->dev, "ese_gpio is enabled\n");
r = 0;
}
}
} else if (arg == 1) {
if (nqx_dev->nfc_ven_enabled &&
((nqx_dev->nqx_info.info.chip_type == NFCC_NQ_220) ||
(nqx_dev->nqx_info.info.chip_type == NFCC_PN66T))) {
/**
* Let's inform the CLF we're
* powering off the eSE
*/
r = nqx_standby_write(nqx_dev, svdd_off_cmd_warn,
sizeof(svdd_off_cmd_warn));
if (r < 0) {
dev_err(&nqx_dev->client->dev,
"%s: write failed after max retry\n",
__func__);
return -ENXIO;
}
dev_dbg(&nqx_dev->client->dev,
"%s: svdd_off_cmd_warn sent\n", __func__);
/* let's power down the eSE */
gpio_set_value(nqx_dev->ese_gpio, 0);
dev_dbg(&nqx_dev->client->dev,
"%s: nqx_dev->ese_gpio set to 0\n", __func__);
/**
* Time needed for the SVDD capacitor
* to get discharged
*/
usleep_range(8000, 8100);
/* Let's inform the CLF the eSE is now off */
r = nqx_standby_write(nqx_dev, svdd_off_cmd_done,
sizeof(svdd_off_cmd_done));
if (r < 0) {
dev_err(&nqx_dev->client->dev,
"%s: write failed after max retry\n",
__func__);
return -ENXIO;
}
dev_dbg(&nqx_dev->client->dev,
"%s: svdd_off_cmd_done sent\n", __func__);
} else {
/**
* In case the NFC is off,
* there's no need to send the i2c commands
*/
gpio_set_value(nqx_dev->ese_gpio, 0);
usleep_range(1000, 1100);
}
if (!gpio_get_value(nqx_dev->ese_gpio)) {
dev_dbg(&nqx_dev->client->dev, "ese_gpio is disabled\n");
r = 0;
}
if (!nqx_dev->nfc_ven_enabled) {
/* hardware dependent delay */
usleep_range(1000, 1100);
dev_dbg(&nqx_dev->client->dev, "disabling en_gpio\n");
gpio_set_value(nqx_dev->en_gpio, 0);
}
} else if (arg == 3) {
r = gpio_get_value(nqx_dev->ese_gpio);
}
return r;
}
/**
* nfc_ldo_vote()
* @nqx_dev: NFC device containing regulator handle
*
* LDO voting based on voltage and current entries in DT
*
* Return: 0 on success and -ve on failure
*/
static int nfc_ldo_vote(struct nqx_dev *nqx_dev)
{
struct device *dev = &nqx_dev->client->dev;
int ret;
ret = regulator_set_voltage(nqx_dev->reg,
nqx_dev->pdata->vdd_levels[0],
nqx_dev->pdata->vdd_levels[1]);
if (ret < 0) {
dev_err(dev, "%s:set voltage failed\n", __func__);
return ret;
}
/* pass expected current from NFC in uA */
ret = regulator_set_load(nqx_dev->reg, nqx_dev->pdata->max_current);
if (ret < 0) {
dev_err(dev, "%s:set load failed\n", __func__);
return ret;
}
ret = regulator_enable(nqx_dev->reg);
if (ret < 0)
dev_err(dev, "%s:regulator_enable failed\n", __func__);
else
nqx_dev->is_vreg_enabled = true;
return ret;
}
/**
* nfc_ldo_config()
* @client: I2C client instance, containing node to read DT entry
* @nqx_dev: NFC device containing regulator handle
*
* Configure LDO if entry is present in DT file otherwise
* with success as it's optional
*
* Return: 0 on success and -ve on failure
*/
static int nfc_ldo_config(struct i2c_client *client, struct nqx_dev *nqx_dev)
{
int r;
if (of_get_property(client->dev.of_node, NFC_LDO_SUPPLY_NAME, NULL)) {
// Get the regulator handle
nqx_dev->reg = regulator_get(&client->dev,
NFC_LDO_SUPPLY_DT_NAME);
if (IS_ERR(nqx_dev->reg)) {
r = PTR_ERR(nqx_dev->reg);
nqx_dev->reg = NULL;
dev_err(&client->dev,
"%s: regulator_get failed, ret = %d\n",
__func__, r);
return r;
}
} else {
nqx_dev->reg = NULL;
dev_err(&client->dev,
"%s: regulator entry not present\n", __func__);
// return success as it's optional to configure LDO
return 0;
}
// LDO config supported by platform DT
r = nfc_ldo_vote(nqx_dev);
if (r < 0) {
dev_err(&client->dev,
"%s: LDO voting failed, ret = %d\n", __func__, r);
regulator_put(nqx_dev->reg);
}
return r;
}
/**
* nfc_ldo_unvote()
* @nqx_dev: NFC device containing regulator handle
*
* set voltage and load to zero and disable regulator
*
* Return: 0 on success and -ve on failure
*/
static int nfc_ldo_unvote(struct nqx_dev *nqx_dev)
{
struct device *dev = &nqx_dev->client->dev;
int ret;
if (!nqx_dev->is_vreg_enabled) {
dev_err(dev, "%s: regulator already disabled\n", __func__);
return -EINVAL;
}
ret = regulator_disable(nqx_dev->reg);
if (ret < 0) {
dev_err(dev, "%s:regulator_disable failed\n", __func__);
return ret;
}
nqx_dev->is_vreg_enabled = false;
ret = regulator_set_voltage(nqx_dev->reg, 0, NFC_VDDIO_MAX);
if (ret < 0) {
dev_err(dev, "%s:set voltage failed\n", __func__);
return ret;
}
ret = regulator_set_load(nqx_dev->reg, 0);
if (ret < 0)
dev_err(dev, "%s:set load failed\n", __func__);
return ret;
}
static int nfc_open(struct inode *inode, struct file *filp)
{
struct nqx_dev *nqx_dev = container_of(inode->i_cdev,
struct nqx_dev, c_dev);
filp->private_data = nqx_dev;
nqx_init_stat(nqx_dev);
mutex_lock(&nqx_dev->dev_ref_mutex);
if (nqx_dev->dev_ref_count == 0) {
nqx_enable_irq(nqx_dev);
if (gpio_is_valid(nqx_dev->firm_gpio)) {
gpio_set_value(nqx_dev->firm_gpio, 0);
usleep_range(10000, 10100);
}
}
nqx_dev->dev_ref_count = nqx_dev->dev_ref_count + 1;
mutex_unlock(&nqx_dev->dev_ref_mutex);
dev_dbg(&nqx_dev->client->dev,
"%s: %d,%d\n", __func__, imajor(inode), iminor(inode));
return 0;
}
static int nfc_close(struct inode *inode, struct file *filp)
{
struct nqx_dev *nqx_dev = container_of(inode->i_cdev,
struct nqx_dev, c_dev);
mutex_lock(&nqx_dev->dev_ref_mutex);
if (nqx_dev->dev_ref_count == 1) {
nqx_disable_irq(nqx_dev);
if (gpio_is_valid(nqx_dev->firm_gpio)) {
gpio_set_value(nqx_dev->firm_gpio, 0);
usleep_range(10000, 10100);
}
}
if (nqx_dev->dev_ref_count > 0)
nqx_dev->dev_ref_count = nqx_dev->dev_ref_count - 1;
mutex_unlock(&nqx_dev->dev_ref_mutex);
filp->private_data = NULL;
return 0;
}
/*
* nfc_ioctl_power_states() - power control
* @filp: pointer to the file descriptor
* @arg: mode that we want to move to
*
* Device power control. Depending on the arg value, device moves to
* different states
* (arg = 0): NFC_ENABLE GPIO = 0, FW_DL GPIO = 0
* (arg = 1): NFC_ENABLE GPIO = 1, FW_DL GPIO = 0
* (arg = 2): FW_DL GPIO = 1
*
* Return: -ENOIOCTLCMD if arg is not supported, 0 in any other case
*/
int nfc_ioctl_power_states(struct file *filp, unsigned long arg)
{
int r = 0;
struct nqx_dev *nqx_dev = filp->private_data;
if (arg == NFC_POWER_OFF) {
/*
* We are attempting a hardware reset so let us disable
* interrupts to avoid spurious notifications to upper
* layers.
*/
nqx_disable_irq(nqx_dev);
dev_dbg(&nqx_dev->client->dev,
"gpio_set_value disable: %s: info: %p\n",
__func__, nqx_dev);
if (gpio_is_valid(nqx_dev->firm_gpio)) {
gpio_set_value(nqx_dev->firm_gpio, 0);
usleep_range(10000, 10100);
}
if (gpio_is_valid(nqx_dev->ese_gpio)) {
if (!gpio_get_value(nqx_dev->ese_gpio)) {
dev_dbg(&nqx_dev->client->dev, "disabling en_gpio\n");
gpio_set_value(nqx_dev->en_gpio, 0);
usleep_range(10000, 10100);
} else {
dev_dbg(&nqx_dev->client->dev, "keeping en_gpio high\n");
}
} else {
dev_dbg(&nqx_dev->client->dev, "ese_gpio invalid, set en_gpio to low\n");
gpio_set_value(nqx_dev->en_gpio, 0);
usleep_range(10000, 10100);
}
if (nqx_dev->pdata->clk_pin_voting) {
r = nqx_clock_deselect(nqx_dev);
if (r < 0)
dev_err(&nqx_dev->client->dev, "unable to disable clock\n");
}
nqx_dev->nfc_ven_enabled = false;
} else if (arg == NFC_POWER_ON) {
nqx_enable_irq(nqx_dev);
dev_dbg(&nqx_dev->client->dev,
"gpio_set_value enable: %s: info: %p\n",
__func__, nqx_dev);
if (gpio_is_valid(nqx_dev->firm_gpio)) {
gpio_set_value(nqx_dev->firm_gpio, 0);
usleep_range(10000, 10100);
}
gpio_set_value(nqx_dev->en_gpio, 1);
usleep_range(10000, 10100);
if (nqx_dev->pdata->clk_pin_voting) {
r = nqx_clock_select(nqx_dev);
if (r < 0)
dev_err(&nqx_dev->client->dev, "unable to enable clock\n");
}
nqx_dev->nfc_ven_enabled = true;
} else if (arg == NFC_FW_DWL_VEN_TOGGLE) {
/*
* We are switching to Dowload Mode, toggle the enable pin
* in order to set the NFCC in the new mode
*/
if (gpio_is_valid(nqx_dev->ese_gpio)) {
if (gpio_get_value(nqx_dev->ese_gpio)) {
dev_err(&nqx_dev->client->dev,
"FW download forbidden while ese is on\n");
return -EBUSY; /* Device or resource busy */
}
}
gpio_set_value(nqx_dev->en_gpio, 1);
usleep_range(10000, 10100);
if (gpio_is_valid(nqx_dev->firm_gpio)) {
gpio_set_value(nqx_dev->firm_gpio, 1);
usleep_range(10000, 10100);
}
gpio_set_value(nqx_dev->en_gpio, 0);
usleep_range(10000, 10100);
gpio_set_value(nqx_dev->en_gpio, 1);
usleep_range(10000, 10100);
} else if (arg == NFC_FW_DWL_HIGH) {
/*
* Setting firmware download gpio to HIGH for SN100U
* before FW download start
*/
dev_dbg(&nqx_dev->client->dev, "SN100 fw gpio HIGH\n");
if (gpio_is_valid(nqx_dev->firm_gpio)) {
gpio_set_value(nqx_dev->firm_gpio, 1);
usleep_range(10000, 10100);
} else
dev_err(&nqx_dev->client->dev,
"firm_gpio is invalid\n");
} else if (arg == NFC_FW_DWL_LOW) {
/*
* Setting firmware download gpio to LOW for SN100U
* FW download finished
*/
dev_dbg(&nqx_dev->client->dev, "SN100 fw gpio LOW\n");
if (gpio_is_valid(nqx_dev->firm_gpio)) {
gpio_set_value(nqx_dev->firm_gpio, 0);
usleep_range(10000, 10100);
} else {
dev_err(&nqx_dev->client->dev,
"firm_gpio is invalid\n");
}
} else if (arg == NFC_ENABLE) {
/*
* Setting flag true when NFC is enabled
*/
nqx_dev->nfc_enabled = true;
} else if (arg == NFC_DISABLE) {
/*
* Setting flag false when NFC is disabled
*/
nqx_dev->nfc_enabled = false;
} else {
r = -ENOIOCTLCMD;
}
return r;
}
#ifdef CONFIG_COMPAT
static long nfc_compat_ioctl(struct file *pfile, unsigned int cmd,
unsigned long arg)
{
long r = 0;
arg = (compat_u64)arg;
switch (cmd) {
case NFC_SET_PWR:
nfc_ioctl_power_states(pfile, arg);
break;
case ESE_SET_PWR:
nqx_ese_pwr(pfile->private_data, arg);
break;
case ESE_GET_PWR:
nqx_ese_pwr(pfile->private_data, 3);
break;
case SET_RX_BLOCK:
break;
case SET_EMULATOR_TEST_POINT:
break;
default:
r = -ENOTTY;
}
return r;
}
#endif
/*
* nfc_ioctl_core_reset_ntf()
* @filp: pointer to the file descriptor
*
* Allows callers to determine if a CORE_RESET_NTF has arrived
*
* Return: the value of variable core_reset_ntf
*/
int nfc_ioctl_core_reset_ntf(struct file *filp)
{
struct nqx_dev *nqx_dev = filp->private_data;
dev_dbg(&nqx_dev->client->dev, "%s: returning = %d\n", __func__,
nqx_dev->core_reset_ntf);
return nqx_dev->core_reset_ntf;
}
/*
* Inside nfc_ioctl_nfcc_info
*
* @brief nfc_ioctl_nfcc_info
*
* Check the NQ Chipset and firmware version details
*/
unsigned int nfc_ioctl_nfcc_info(struct file *filp, unsigned long arg)
{
unsigned int r = 0;
struct nqx_dev *nqx_dev = filp->private_data;
r = nqx_dev->nqx_info.i;
dev_dbg(&nqx_dev->client->dev,
"nqx nfc : %s r = %d\n", __func__, r);
return r;
}
static long nfc_ioctl(struct file *pfile, unsigned int cmd,
unsigned long arg)
{
int r = 0;
struct nqx_dev *nqx_dev = pfile->private_data;
if (!nqx_dev)
return -ENODEV;
switch (cmd) {
case NFC_SET_PWR:
r = nfc_ioctl_power_states(pfile, arg);
break;
case ESE_SET_PWR:
if ((nqx_dev->nqx_info.info.chip_type == NFCC_SN100_A) ||
(nqx_dev->nqx_info.info.chip_type == NFCC_SN100_B))
r = sn100_ese_pwr(nqx_dev, arg);
else
r = nqx_ese_pwr(nqx_dev, arg);
break;
case ESE_GET_PWR:
if ((nqx_dev->nqx_info.info.chip_type == NFCC_SN100_A) ||
(nqx_dev->nqx_info.info.chip_type == NFCC_SN100_B))
r = sn100_ese_pwr(nqx_dev, 3);
else
r = nqx_ese_pwr(nqx_dev, 3);
break;
case SET_RX_BLOCK:
break;
case SET_EMULATOR_TEST_POINT:
break;
case NFCC_INITIAL_CORE_RESET_NTF:
r = nfc_ioctl_core_reset_ntf(pfile);
break;
case NFCC_GET_INFO:
r = nfc_ioctl_nfcc_info(pfile, arg);
break;
default:
r = -ENOIOCTLCMD;
}
return r;
}
static const struct file_operations nfc_dev_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = nfc_read,
.write = nfc_write,
.open = nfc_open,
.release = nfc_close,
.unlocked_ioctl = nfc_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = nfc_compat_ioctl
#endif
};
/*
* function: get_nfcc_hw_info()
*
* @client: pointer to i2c_client
* @nqx_dev: pointer to nqx_dev structure
* @nci_reset_rsp_payload_len: payload length of NCI reset cmd
*
* Retrieves NFCC HW information based on the type of NFC chip
* used on the device. Depending on the nci_reset_rsp_payload_len
* value, core INIT command will be sent.
*
* NFC HW NCI version Send Core INIT cmd
* NQ3xx or old 1.0 Yes
* NQ4xx 2.0 No
* Sn1x0x 2.0 No
*
* Return: error codes in case of any failure,
* number of bytes read otherwise
*/
static int get_nfcc_hw_info(struct i2c_client *client,
struct nqx_dev *nqx_dev, char nci_reset_rsp_payload_len)
{
int ret = 0;
char *nci_init_cmd = NULL;
char *nci_init_rsp = NULL;
char *nci_reset_ntf = NULL;
char *nfcc_hw_info = NULL;
unsigned char nfcc_hw_info_len = 0;
nci_init_cmd = kzalloc(NCI_INIT_CMD_LEN + 1, GFP_DMA | GFP_KERNEL);
if (!nci_init_cmd) {
ret = -ENOMEM;
goto err_nfcc_hw_info;
}
nci_init_rsp = kzalloc(NCI_INIT_RSP_LEN + 1, GFP_DMA | GFP_KERNEL);
if (!nci_init_rsp) {
ret = -ENOMEM;
goto err_nfcc_hw_info;
}
nci_reset_ntf = kzalloc(NCI_RESET_NTF_LEN + 1, GFP_DMA | GFP_KERNEL);
if (!nci_reset_ntf) {
ret = -ENOMEM;
goto err_nfcc_hw_info;
}
if (nci_reset_rsp_payload_len == NCI_1_0_RESET_RSP_PAYLOAD_LEN) {
/*
* Chipset is NQ330 or older.
* Send core INIT command to get HW info.
*/
nci_init_cmd[0] = 0x20;
nci_init_cmd[1] = 0x01;
nci_init_cmd[2] = 0x00;
ret = nqx_standby_write(nqx_dev, nci_init_cmd,
NCI_INIT_CMD_LEN);
if (ret < 0) {
dev_dbg(&client->dev,
"%s: - i2c_master_send failed for Core INIT\n",
__func__);
goto err_nfcc_hw_info;
}
ret = is_data_available_for_read(nqx_dev);
if (ret <= 0) {
nqx_disable_irq(nqx_dev);
goto err_nfcc_hw_info;
}
/* Read Response of INIT command */
ret = i2c_master_recv(client, nci_init_rsp, NCI_INIT_RSP_LEN);
if (ret < 0) {
dev_dbg(&client->dev,
"%s: - i2c_master_recv get INIT rsp Error\n",
__func__);
goto err_nfcc_hw_info;
}
nfcc_hw_info = nci_init_rsp;
} else {
/*
* Chipset is NQ4xx or later.
* Retrieve NTF data from wait queue.
*/
ret = is_data_available_for_read(nqx_dev);
if (ret <= 0) {
nqx_disable_irq(nqx_dev);
goto err_nfcc_hw_info;
}
/* Read Notification of RESET command */
ret = i2c_master_recv(client, nci_reset_ntf, NCI_RESET_NTF_LEN);
if (ret < 0) {
dev_dbg(&client->dev,
"%s: - i2c_master_recv get RESET ntf Error\n",
__func__);
goto err_nfcc_hw_info;
}
nfcc_hw_info = nci_reset_ntf;
}
/* Save NFCC HW info */
nfcc_hw_info_len =
NCI_HEADER_LEN + nfcc_hw_info[NCI_PAYLOAD_LENGTH_INDEX];
if (nfcc_hw_info_len > PAYLOAD_HEADER_LENGTH) {
nqx_dev->nqx_info.info.chip_type =
nfcc_hw_info[nfcc_hw_info_len -
NFCC_HW_CHIP_ID_OFFSET];
nqx_dev->nqx_info.info.rom_version =
nfcc_hw_info[nfcc_hw_info_len -
NFCC_HW_ROM_VER_OFFSET];
nqx_dev->nqx_info.info.fw_major =
nfcc_hw_info[nfcc_hw_info_len -
NFCC_HW_MAJOR_NO_OFFSET];
nqx_dev->nqx_info.info.fw_minor =
nfcc_hw_info[nfcc_hw_info_len -
NFCC_HW_MINOR_NO_OFFSET];
}
err_nfcc_hw_info:
kfree(nci_reset_ntf);
kfree(nci_init_rsp);
kfree(nci_init_cmd);
return ret;
}
/* Check for availability of NQ_ NFC controller hardware */
static int nfcc_hw_check(struct i2c_client *client, struct nqx_dev *nqx_dev)
{
int ret = 0;
unsigned int enable_gpio = nqx_dev->en_gpio;
char *nci_reset_cmd = NULL;
char *nci_reset_rsp = NULL;
char *nci_get_version_cmd = NULL;
char *nci_get_version_rsp = NULL;
nci_reset_cmd = kzalloc(NCI_RESET_CMD_LEN + 1, GFP_DMA | GFP_KERNEL);
if (!nci_reset_cmd) {
ret = -ENOMEM;
goto done;
}
nci_reset_rsp = kzalloc(NCI_RESET_RSP_LEN + 1, GFP_DMA | GFP_KERNEL);
if (!nci_reset_rsp) {
ret = -ENOMEM;
goto done;
}
nci_get_version_cmd = kzalloc(NCI_GET_VERSION_CMD_LEN + 1,
GFP_DMA | GFP_KERNEL);
if (!nci_get_version_cmd) {
ret = -ENOMEM;
goto done;
}
nci_get_version_rsp = kzalloc(NCI_GET_VERSION_RSP_LEN + 1,
GFP_DMA | GFP_KERNEL);
if (!nci_get_version_rsp) {
ret = -ENOMEM;
goto done;
}
/* making sure that the NFCC starts in a clean state. */
gpio_set_value(enable_gpio, 1);/* HPD : Enable*/
/* hardware dependent delay */
usleep_range(10000, 10100);
gpio_set_value(enable_gpio, 0);/* ULPM: Disable */
/* hardware dependent delay */
usleep_range(10000, 10100);
gpio_set_value(enable_gpio, 1);/* HPD : Enable*/
/* hardware dependent delay */
usleep_range(10000, 10100);
nci_reset_cmd[0] = 0x20;
nci_reset_cmd[1] = 0x00;
nci_reset_cmd[2] = 0x01;
nci_reset_cmd[3] = 0x00;
/* send NCI CORE RESET CMD with Keep Config parameters */
ret = i2c_master_send(client, nci_reset_cmd, NCI_RESET_CMD_LEN);
if (ret < 0) {
dev_err(&client->dev,
"%s: - i2c_master_send core reset Error\n", __func__);
if (gpio_is_valid(nqx_dev->firm_gpio)) {
gpio_set_value(nqx_dev->firm_gpio, 1);
usleep_range(10000, 10100);
}
gpio_set_value(nqx_dev->en_gpio, 0);
usleep_range(10000, 10100);
gpio_set_value(nqx_dev->en_gpio, 1);
usleep_range(10000, 10100);
nci_get_version_cmd[0] = 0x00;
nci_get_version_cmd[1] = 0x04;
nci_get_version_cmd[2] = 0xF1;
nci_get_version_cmd[3] = 0x00;
nci_get_version_cmd[4] = 0x00;
nci_get_version_cmd[5] = 0x00;
nci_get_version_cmd[6] = 0x6E;
nci_get_version_cmd[7] = 0xEF;
ret = i2c_master_send(client, nci_get_version_cmd,
NCI_GET_VERSION_CMD_LEN);
if (ret < 0) {
dev_err(&client->dev,
"%s: - i2c_master_send get version cmd Error\n",
__func__);
goto err_nfcc_hw_check;
}
/* hardware dependent delay */
usleep_range(10000, 10100);
ret = i2c_master_recv(client, nci_get_version_rsp,
NCI_GET_VERSION_RSP_LEN);
if (ret < 0) {
dev_err(&client->dev,
"%s: - i2c_master_recv get version rsp Error\n",
__func__);
goto err_nfcc_hw_check;
} else {
nqx_dev->nqx_info.info.chip_type =
nci_get_version_rsp[3];
nqx_dev->nqx_info.info.rom_version =
nci_get_version_rsp[4];
nqx_dev->nqx_info.info.fw_minor =
nci_get_version_rsp[6];
nqx_dev->nqx_info.info.fw_major =
nci_get_version_rsp[7];
}
goto err_nfcc_reset_failed;
}
ret = is_data_available_for_read(nqx_dev);
if (ret <= 0) {
nqx_disable_irq(nqx_dev);
goto err_nfcc_hw_check;
}
/* Read Header of RESET command */
ret = i2c_master_recv(client, nci_reset_rsp, NCI_HEADER_LEN);
if (ret != NCI_HEADER_LEN) {
dev_dbg(&client->dev,
"%s: - i2c_master_recv get RESET rsp header Error\n", __func__);
goto err_nfcc_hw_check;
}
ret = i2c_master_recv(client, &nci_reset_rsp[NCI_PAYLOAD_START_INDEX],
nci_reset_rsp[NCI_PAYLOAD_LENGTH_INDEX]);
if (ret != nci_reset_rsp[NCI_PAYLOAD_LENGTH_INDEX]) {
dev_dbg(&client->dev,
"%s: - i2c_master_recv get RESET rsp data Error\n", __func__);
goto err_nfcc_hw_check;
}
/* Retrieve NFCC HW info */
ret = get_nfcc_hw_info(client, nqx_dev,
nci_reset_rsp[NCI_PAYLOAD_LENGTH_INDEX]);
if (ret < 0) {
dev_dbg(&client->dev,
"%s: - Error in getting NFCC HW info\n", __func__);
goto err_nfcc_hw_check;
}
dev_dbg(&client->dev,
"%s: - nq - reset cmd answer : NfcNciRx %x %x %x\n",
__func__, nci_reset_rsp[0],
nci_reset_rsp[1], nci_reset_rsp[2]);
err_nfcc_reset_failed:
dev_dbg(&nqx_dev->client->dev, "NQ NFCC chip_type = %x\n",
nqx_dev->nqx_info.info.chip_type);
dev_dbg(&nqx_dev->client->dev, "NQ fw version = %x.%x.%x\n",
nqx_dev->nqx_info.info.rom_version,
nqx_dev->nqx_info.info.fw_major,
nqx_dev->nqx_info.info.fw_minor);
switch (nqx_dev->nqx_info.info.chip_type) {
case NFCC_NQ_310:
dev_dbg(&client->dev,
"%s: ## NFCC == NQ310 ##\n", __func__);
break;
case NFCC_NQ_330:
dev_dbg(&client->dev,
"%s: ## NFCC == NQ330 ##\n", __func__);
break;
case NFCC_PN66T:
dev_dbg(&client->dev,
"%s: ## NFCC == PN66T ##\n", __func__);
break;
case NFCC_SN100_A:
case NFCC_SN100_B:
dev_dbg(&client->dev,
"%s: ## NFCC == SN100x ##\n", __func__);
break;
default:
dev_err(&client->dev,
"%s: - NFCC HW not Supported\n", __func__);
break;
}
ret = 0;
nqx_dev->nfc_ven_enabled = true;
goto done;
err_nfcc_hw_check:
ret = -ENXIO;
dev_err(&client->dev,
"%s: - NFCC HW not available\n", __func__);
done:
kfree(nci_reset_rsp);
kfree(nci_reset_cmd);
kfree(nci_get_version_cmd);
kfree(nci_get_version_rsp);
return ret;
}
/*
* Routine to enable clock.
* this routine can be extended to select from multiple
* sources based on clk_src_name.
*/
static int nqx_clock_select(struct nqx_dev *nqx_dev)
{
int r = 0;
nqx_dev->s_clk = clk_get(&nqx_dev->client->dev, "ref_clk");
if (nqx_dev->s_clk == NULL)
goto err_clk;
if (!nqx_dev->clk_run)
r = clk_prepare_enable(nqx_dev->s_clk);
if (r)
goto err_clk;
nqx_dev->clk_run = true;
return r;
err_clk:
r = -1;
return r;
}
/*
* Routine to disable clocks
*/
static int nqx_clock_deselect(struct nqx_dev *nqx_dev)
{
int r = -1;
if (nqx_dev->s_clk != NULL) {
if (nqx_dev->clk_run) {
clk_disable_unprepare(nqx_dev->s_clk);
nqx_dev->clk_run = false;
}
return 0;
}
return r;
}
static int nfc_parse_dt(struct device *dev, struct nqx_platform_data *pdata)
{
int r = 0;
struct device_node *np = dev->of_node;
pdata->en_gpio = of_get_named_gpio(np, "qcom,nq-ven", 0);
if ((!gpio_is_valid(pdata->en_gpio)))
return -EINVAL;
disable_ctrl = pdata->en_gpio;
pdata->irq_gpio = of_get_named_gpio(np, "qcom,nq-irq", 0);
if ((!gpio_is_valid(pdata->irq_gpio)))
return -EINVAL;
pdata->firm_gpio = of_get_named_gpio(np, "qcom,nq-firm", 0);
if (!gpio_is_valid(pdata->firm_gpio)) {
dev_warn(dev,
"FIRM GPIO <OPTIONAL> error getting from OF node\n");
pdata->firm_gpio = -EINVAL;
}
pdata->ese_gpio = of_get_named_gpio(np, "qcom,nq-esepwr", 0);
if (!gpio_is_valid(pdata->ese_gpio)) {
dev_warn(dev,
"ese GPIO <OPTIONAL> error getting from OF node\n");
pdata->ese_gpio = -EINVAL;
}
if (of_property_read_string(np, "qcom,clk-src", &pdata->clk_src_name))
pdata->clk_pin_voting = false;
else
pdata->clk_pin_voting = true;
// optional property
r = of_property_read_u32_array(np, NFC_LDO_VOL_DT_NAME,
(u32 *) pdata->vdd_levels,
ARRAY_SIZE(pdata->vdd_levels));
if (r) {
dev_err(dev, "error reading NFC VDDIO min and max value\n");
// set default as per datasheet
pdata->vdd_levels[0] = NFC_VDDIO_MIN;
pdata->vdd_levels[1] = NFC_VDDIO_MAX;
}
// optional property
r = of_property_read_u32(np, NFC_LDO_CUR_DT_NAME, &pdata->max_current);
if (r) {
dev_err(dev, "error reading NFC current value\n");
// set default as per datasheet
pdata->max_current = NFC_CURRENT_MAX;
}
pdata->clkreq_gpio = of_get_named_gpio(np, "qcom,nq-clkreq", 0);
// return success as above properties are optional
return 0;
}
static inline int gpio_input_init(const struct device * const dev,
const int gpio, const char * const gpio_name)
{
int r = gpio_request(gpio, gpio_name);
if (r) {
dev_err(dev, "unable to request gpio [%d]\n", gpio);
return r;
}
r = gpio_direction_input(gpio);
if (r)
dev_err(dev, "unable to set direction for gpio [%d]\n", gpio);
return r;
}
static int nqx_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int r = 0;
int irqn = 0;
struct nqx_platform_data *platform_data;
struct nqx_dev *nqx_dev;
dev_dbg(&client->dev, "%s: enter\n", __func__);
if (client->dev.of_node) {
platform_data = devm_kzalloc(&client->dev,
sizeof(struct nqx_platform_data), GFP_KERNEL);
if (!platform_data) {
r = -ENOMEM;
goto err_platform_data;
}
r = nfc_parse_dt(&client->dev, platform_data);
if (r)
goto err_free_data;
} else
platform_data = client->dev.platform_data;
dev_dbg(&client->dev,
"%s, inside nfc-nci flags = %x\n",
__func__, client->flags);
if (platform_data == NULL) {
dev_err(&client->dev, "%s: failed\n", __func__);
r = -ENODEV;
goto err_platform_data;
}
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "%s: need I2C_FUNC_I2C\n", __func__);
r = -ENODEV;
goto err_free_data;
}
nqx_dev = kzalloc(sizeof(*nqx_dev), GFP_KERNEL);
if (nqx_dev == NULL) {
r = -ENOMEM;
goto err_free_data;
}
nqx_dev->client = client;
nqx_dev->kbuflen = MAX_BUFFER_SIZE;
nqx_dev->kbuf = kzalloc(MAX_BUFFER_SIZE, GFP_KERNEL);
if (!nqx_dev->kbuf) {
dev_err(&client->dev,
"failed to allocate memory for nqx_dev->kbuf\n");
r = -ENOMEM;
goto err_free_dev;
}
if (gpio_is_valid(platform_data->en_gpio)) {
r = gpio_request(platform_data->en_gpio, "nfc_reset_gpio");
if (r) {
dev_err(&client->dev,
"%s: unable to request nfc reset gpio [%d]\n",
__func__,
platform_data->en_gpio);
goto err_mem;
}
r = gpio_direction_output(platform_data->en_gpio, 0);
if (r) {
dev_err(&client->dev,
"%s: unable to set direction for nfc reset gpio [%d]\n",
__func__,
platform_data->en_gpio);
goto err_en_gpio;
}
} else {
dev_err(&client->dev,
"%s: nfc reset gpio not provided\n", __func__);
goto err_mem;
}
if (gpio_is_valid(platform_data->irq_gpio)) {
r = gpio_request(platform_data->irq_gpio, "nfc_irq_gpio");
if (r) {
dev_err(&client->dev, "%s: unable to request nfc irq gpio [%d]\n",
__func__, platform_data->irq_gpio);
goto err_en_gpio;
}
r = gpio_direction_input(platform_data->irq_gpio);
if (r) {
dev_err(&client->dev,
"%s: unable to set direction for nfc irq gpio [%d]\n",
__func__,
platform_data->irq_gpio);
goto err_irq_gpio;
}
irqn = gpio_to_irq(platform_data->irq_gpio);
if (irqn < 0) {
r = irqn;
goto err_irq_gpio;
}
client->irq = irqn;
} else {
dev_err(&client->dev, "%s: irq gpio not provided\n", __func__);
goto err_en_gpio;
}
if (gpio_is_valid(platform_data->firm_gpio)) {
r = gpio_request(platform_data->firm_gpio,
"nfc_firm_gpio");
if (r) {
dev_err(&client->dev,
"%s: unable to request nfc firmware gpio [%d]\n",
__func__, platform_data->firm_gpio);
goto err_irq_gpio;
}
r = gpio_direction_output(platform_data->firm_gpio, 0);
if (r) {
dev_err(&client->dev,
"%s: cannot set direction for nfc firmware gpio [%d]\n",
__func__, platform_data->firm_gpio);
goto err_firm_gpio;
}
} else {
dev_err(&client->dev,
"%s: firm gpio not provided\n", __func__);
goto err_irq_gpio;
}
if (gpio_is_valid(platform_data->ese_gpio)) {
r = gpio_request(platform_data->ese_gpio,
"nfc-ese_pwr");
if (r) {
nqx_dev->ese_gpio = -EINVAL;
dev_err(&client->dev,
"%s: unable to request nfc ese gpio [%d]\n",
__func__, platform_data->ese_gpio);
/* ese gpio optional so we should continue */
} else {
nqx_dev->ese_gpio = platform_data->ese_gpio;
r = gpio_direction_output(platform_data->ese_gpio, 0);
if (r) {
/*
* free ese gpio and set invalid
* to avoid further use
*/
gpio_free(platform_data->ese_gpio);
nqx_dev->ese_gpio = -EINVAL;
dev_err(&client->dev,
"%s: cannot set direction for nfc ese gpio [%d]\n",
__func__, platform_data->ese_gpio);
/* ese gpio optional so we should continue */
}
}
} else {
nqx_dev->ese_gpio = -EINVAL;
dev_err(&client->dev,
"%s: ese gpio not provided\n", __func__);
/* ese gpio optional so we should continue */
}
if (gpio_is_valid(platform_data->clkreq_gpio)) {
r = gpio_request(platform_data->clkreq_gpio,
"nfc_clkreq_gpio");
if (r) {
dev_err(&client->dev,
"%s: unable to request nfc clkreq gpio [%d]\n",
__func__, platform_data->clkreq_gpio);
goto err_ese_gpio;
}
r = gpio_direction_input(platform_data->clkreq_gpio);
if (r) {
dev_err(&client->dev,
"%s: cannot set direction for nfc clkreq gpio [%d]\n",
__func__, platform_data->clkreq_gpio);
goto err_clkreq_gpio;
}
} else {
dev_err(&client->dev,
"%s: clkreq gpio not provided\n", __func__);
goto err_ese_gpio;
}
nqx_dev->en_gpio = platform_data->en_gpio;
nqx_dev->irq_gpio = platform_data->irq_gpio;
nqx_dev->firm_gpio = platform_data->firm_gpio;
nqx_dev->clkreq_gpio = platform_data->clkreq_gpio;
nqx_dev->pdata = platform_data;
/* init mutex and queues */
init_waitqueue_head(&nqx_dev->read_wq);
init_waitqueue_head(&nqx_dev->cold_reset_read_wq);
mutex_init(&nqx_dev->read_mutex);
mutex_init(&nqx_dev->dev_ref_mutex);
spin_lock_init(&nqx_dev->irq_enabled_lock);
r = alloc_chrdev_region(&nqx_dev->devno, 0, DEV_COUNT, DEVICE_NAME);
if (r < 0) {
dev_err(&client->dev,
"%s: failed to alloc chrdev region\n", __func__);
goto err_char_dev_register;
}
nqx_dev->nqx_class = class_create(THIS_MODULE, CLASS_NAME);
if (IS_ERR(nqx_dev->nqx_class)) {
dev_err(&client->dev,
"%s: failed to register device class\n", __func__);
goto err_class_create;
}
cdev_init(&nqx_dev->c_dev, &nfc_dev_fops);
r = cdev_add(&nqx_dev->c_dev, nqx_dev->devno, DEV_COUNT);
if (r < 0) {
dev_err(&client->dev, "%s: failed to add cdev\n", __func__);
goto err_cdev_add;
}
nqx_dev->nqx_device = device_create(nqx_dev->nqx_class, NULL,
nqx_dev->devno, nqx_dev, DEVICE_NAME);
if (IS_ERR(nqx_dev->nqx_device)) {
dev_err(&client->dev,
"%s: failed to create the device\n", __func__);
goto err_device_create;
}
/* NFC_INT IRQ */
nqx_dev->irq_enabled = true;
r = request_irq(client->irq, nqx_dev_irq_handler,
IRQF_TRIGGER_HIGH, client->name, nqx_dev);
if (r) {
dev_err(&client->dev, "%s: request_irq failed\n", __func__);
goto err_request_irq_failed;
}
nqx_disable_irq(nqx_dev);
r = nfc_ldo_config(client, nqx_dev);
if (r) {
dev_err(&client->dev, "%s: LDO config failed\n", __func__);
goto err_ldo_config_failed;
}
/*
* To be efficient we need to test whether nfcc hardware is physically
* present before attempting further hardware initialisation.
*
*/
r = nfcc_hw_check(client, nqx_dev);
if (r) {
/* make sure NFCC is not enabled */
gpio_set_value(platform_data->en_gpio, 0);
/* We don't think there is hardware switch NFC OFF */
goto err_request_hw_check_failed;
}
/* Register reboot notifier here */
r = register_reboot_notifier(&nfcc_notifier);
if (r) {
dev_err(&client->dev,
"%s: cannot register reboot notifier(err = %d)\n",
__func__, r);
/*
* nfcc_hw_check function not doing memory
* allocation so using same goto target here
*/
goto err_request_hw_check_failed;
}
#ifdef NFC_KERNEL_BU
r = nqx_clock_select(nqx_dev);
if (r < 0) {
dev_err(&client->dev,
"%s: nqx_clock_select failed\n", __func__);
goto err_clock_en_failed;
}
gpio_set_value(platform_data->en_gpio, 1);
#endif
device_init_wakeup(&client->dev, true);
device_set_wakeup_capable(&client->dev, true);
i2c_set_clientdata(client, nqx_dev);
nqx_dev->irq_wake_up = false;
nqx_dev->cold_reset_rsp_pending = false;
nqx_dev->nfc_enabled = false;
nqx_dev->is_ese_session_active = false;
dev_err(&client->dev,
"%s: probing NFCC NQxxx exited successfully\n",
__func__);
return 0;
#ifdef NFC_KERNEL_BU
err_clock_en_failed:
unregister_reboot_notifier(&nfcc_notifier);
#endif
err_request_hw_check_failed:
if (nqx_dev->reg) {
nfc_ldo_unvote(nqx_dev);
regulator_put(nqx_dev->reg);
}
err_ldo_config_failed:
free_irq(client->irq, nqx_dev);
err_request_irq_failed:
device_destroy(nqx_dev->nqx_class, nqx_dev->devno);
err_device_create:
cdev_del(&nqx_dev->c_dev);
err_cdev_add:
class_destroy(nqx_dev->nqx_class);
err_class_create:
unregister_chrdev_region(nqx_dev->devno, DEV_COUNT);
err_char_dev_register:
mutex_destroy(&nqx_dev->read_mutex);
err_clkreq_gpio:
gpio_free(platform_data->clkreq_gpio);
err_ese_gpio:
/* optional gpio, not sure was configured in probe */
if (gpio_is_valid(platform_data->ese_gpio))
gpio_free(platform_data->ese_gpio);
err_firm_gpio:
gpio_free(platform_data->firm_gpio);
err_irq_gpio:
gpio_free(platform_data->irq_gpio);
err_en_gpio:
gpio_free(platform_data->en_gpio);
err_mem:
kfree(nqx_dev->kbuf);
err_free_dev:
kfree(nqx_dev);
err_free_data:
if (client->dev.of_node)
devm_kfree(&client->dev, platform_data);
err_platform_data:
dev_err(&client->dev,
"%s: probing nqxx failed, check hardware\n",
__func__);
return r;
}
static int nqx_remove(struct i2c_client *client)
{
int ret = 0;
struct nqx_dev *nqx_dev;
nqx_dev = i2c_get_clientdata(client);
if (!nqx_dev) {
dev_err(&client->dev,
"%s: device doesn't exist anymore\n", __func__);
ret = -ENODEV;
goto err;
}
gpio_set_value(nqx_dev->en_gpio, 0);
// HW dependent delay before LDO goes into LPM mode
usleep_range(10000, 10100);
if (nqx_dev->reg) {
ret = nfc_ldo_unvote(nqx_dev);
regulator_put(nqx_dev->reg);
}
unregister_reboot_notifier(&nfcc_notifier);
free_irq(client->irq, nqx_dev);
cdev_del(&nqx_dev->c_dev);
device_destroy(nqx_dev->nqx_class, nqx_dev->devno);
class_destroy(nqx_dev->nqx_class);
unregister_chrdev_region(nqx_dev->devno, DEV_COUNT);
mutex_destroy(&nqx_dev->read_mutex);
mutex_destroy(&nqx_dev->dev_ref_mutex);
gpio_free(nqx_dev->clkreq_gpio);
/* optional gpio, not sure was configured in probe */
if (nqx_dev->ese_gpio > 0)
gpio_free(nqx_dev->ese_gpio);
gpio_free(nqx_dev->firm_gpio);
gpio_free(nqx_dev->irq_gpio);
gpio_free(nqx_dev->en_gpio);
kfree(nqx_dev->kbuf);
if (client->dev.of_node)
devm_kfree(&client->dev, nqx_dev->pdata);
kfree(nqx_dev);
err:
return ret;
}
static int nqx_suspend(struct device *device)
{
struct i2c_client *client = to_i2c_client(device);
struct nqx_dev *nqx_dev = i2c_get_clientdata(client);
if (device_may_wakeup(&client->dev) && nqx_dev->irq_enabled) {
if (!enable_irq_wake(client->irq))
nqx_dev->irq_wake_up = true;
}
return 0;
}
static int nqx_resume(struct device *device)
{
struct i2c_client *client = to_i2c_client(device);
struct nqx_dev *nqx_dev = i2c_get_clientdata(client);
if (device_may_wakeup(&client->dev) && nqx_dev->irq_wake_up) {
if (!disable_irq_wake(client->irq))
nqx_dev->irq_wake_up = false;
}
return 0;
}
static const struct i2c_device_id nqx_id[] = {
{"nqx-i2c", 0},
{}
};
static const struct dev_pm_ops nfc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(nqx_suspend, nqx_resume)
};
static struct i2c_driver nqx = {
.id_table = nqx_id,
.probe = nqx_probe,
.remove = nqx_remove,
.driver = {
.name = "nq-nci",
.of_match_table = msm_match_table,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = &nfc_pm_ops,
},
};
static int nfcc_reboot(struct notifier_block *notifier, unsigned long val,
void *v)
{
gpio_set_value(disable_ctrl, 1);
return NOTIFY_OK;
}
/*
* module load/unload record keeping
*/
static int __init nqx_dev_init(void)
{
return i2c_add_driver(&nqx);
}
module_init(nqx_dev_init);
static void __exit nqx_dev_exit(void)
{
unregister_reboot_notifier(&nfcc_notifier);
i2c_del_driver(&nqx);
}
module_exit(nqx_dev_exit);
MODULE_DESCRIPTION("NFC nqx");
MODULE_LICENSE("GPL v2");