blob: c33bfa07689d3d6ef0c0c8650d97b1e3aa801fce [file] [log] [blame]
/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/iommu.h>
#include <mach/iommu.h>
#include <mach/iommu_domains.h>
#include <mach/ocmem.h>
#include <mach/scm.h>
#include <mach/subsystem_restart.h>
#include <asm/memory.h>
#include "hfi_packetization.h"
#include "venus_hfi.h"
#include "vidc_hfi_io.h"
#include "msm_vidc_debug.h"
#define FIRMWARE_SIZE 0X00A00000
#define REG_ADDR_OFFSET_BITMASK 0x000FFFFF
/*Workaround for simulator */
#define HFI_SIM_FW_BIAS 0x0
#define SHARED_QSIZE 0x1000000
static struct hal_device_data hal_ctxt;
static const u32 venus_qdss_entries[][2] = {
{0xFC307000, 0x1000},
{0xFC322000, 0x1000},
{0xFC319000, 0x1000},
{0xFC31A000, 0x1000},
{0xFC31B000, 0x1000},
{0xFC321000, 0x1000},
{0xFA180000, 0x1000},
{0xFA181000, 0x1000},
};
#define TZBSP_MEM_PROTECT_VIDEO_VAR 0x8
struct tzbsp_memprot {
u32 cp_start;
u32 cp_size;
u32 cp_nonpixel_start;
u32 cp_nonpixel_size;
};
struct tzbsp_resp {
int ret;
};
static void venus_hfi_dump_packet(u8 *packet)
{
u32 c = 0, packet_size = *(u32 *)packet;
const int row_size = 32;
/* row must contain enough for 0xdeadbaad * 8 to be converted into
* "de ad ba ab " * 8 + '\0' */
char row[3 * row_size];
for (c = 0; c * row_size < packet_size; ++c) {
int bytes_to_read = ((c + 1) * row_size > packet_size) ?
packet_size % row_size : row_size;
hex_dump_to_buffer(packet + c * row_size, bytes_to_read,
row_size, 4, row, sizeof(row), false);
dprintk(VIDC_PKT, "%s\n", row);
}
}
static void venus_hfi_sim_modify_cmd_packet(u8 *packet)
{
struct hfi_cmd_sys_session_init_packet *sys_init;
struct hal_session *sess;
u8 i;
if (!packet) {
dprintk(VIDC_ERR, "Invalid Param");
return;
}
sys_init = (struct hfi_cmd_sys_session_init_packet *)packet;
sess = (struct hal_session *) sys_init->session_id;
switch (sys_init->packet_type) {
case HFI_CMD_SESSION_EMPTY_BUFFER:
if (sess->is_decoder) {
struct hfi_cmd_session_empty_buffer_compressed_packet
*pkt = (struct
hfi_cmd_session_empty_buffer_compressed_packet
*) packet;
pkt->packet_buffer -= HFI_SIM_FW_BIAS;
} else {
struct
hfi_cmd_session_empty_buffer_uncompressed_plane0_packet
*pkt = (struct
hfi_cmd_session_empty_buffer_uncompressed_plane0_packet
*) packet;
pkt->packet_buffer -= HFI_SIM_FW_BIAS;
}
break;
case HFI_CMD_SESSION_FILL_BUFFER:
{
struct hfi_cmd_session_fill_buffer_packet *pkt =
(struct hfi_cmd_session_fill_buffer_packet *)packet;
pkt->packet_buffer -= HFI_SIM_FW_BIAS;
break;
}
case HFI_CMD_SESSION_SET_BUFFERS:
{
struct hfi_cmd_session_set_buffers_packet *pkt =
(struct hfi_cmd_session_set_buffers_packet *)packet;
if ((pkt->buffer_type == HFI_BUFFER_OUTPUT) ||
(pkt->buffer_type == HFI_BUFFER_OUTPUT2)) {
struct hfi_buffer_info *buff;
buff = (struct hfi_buffer_info *) pkt->rg_buffer_info;
buff->buffer_addr -= HFI_SIM_FW_BIAS;
buff->extra_data_addr -= HFI_SIM_FW_BIAS;
} else {
for (i = 0; i < pkt->num_buffers; i++)
pkt->rg_buffer_info[i] -= HFI_SIM_FW_BIAS;
}
break;
}
case HFI_CMD_SESSION_RELEASE_BUFFERS:
{
struct hfi_cmd_session_release_buffer_packet *pkt =
(struct hfi_cmd_session_release_buffer_packet *)packet;
if ((pkt->buffer_type == HFI_BUFFER_OUTPUT) ||
(pkt->buffer_type == HFI_BUFFER_OUTPUT2)) {
struct hfi_buffer_info *buff;
buff = (struct hfi_buffer_info *) pkt->rg_buffer_info;
buff->buffer_addr -= HFI_SIM_FW_BIAS;
buff->extra_data_addr -= HFI_SIM_FW_BIAS;
} else {
for (i = 0; i < pkt->num_buffers; i++)
pkt->rg_buffer_info[i] -= HFI_SIM_FW_BIAS;
}
break;
}
case HFI_CMD_SESSION_PARSE_SEQUENCE_HEADER:
{
struct hfi_cmd_session_parse_sequence_header_packet *pkt =
(struct hfi_cmd_session_parse_sequence_header_packet *)
packet;
pkt->packet_buffer -= HFI_SIM_FW_BIAS;
break;
}
case HFI_CMD_SESSION_GET_SEQUENCE_HEADER:
{
struct hfi_cmd_session_get_sequence_header_packet *pkt =
(struct hfi_cmd_session_get_sequence_header_packet *)
packet;
pkt->packet_buffer -= HFI_SIM_FW_BIAS;
break;
}
default:
break;
}
}
static int venus_hfi_write_queue(void *info, u8 *packet, u32 *rx_req_is_set)
{
struct hfi_queue_header *queue;
u32 packet_size_in_words, new_write_idx;
struct vidc_iface_q_info *qinfo;
u32 empty_space, read_idx;
u32 *write_ptr;
if (!info || !packet || !rx_req_is_set) {
dprintk(VIDC_ERR, "Invalid Params");
return -EINVAL;
}
qinfo = (struct vidc_iface_q_info *) info;
if (!qinfo || !qinfo->q_array.align_virtual_addr) {
dprintk(VIDC_WARN, "Queues have already been freed\n");
return -EINVAL;
}
queue = (struct hfi_queue_header *) qinfo->q_hdr;
if (!queue) {
dprintk(VIDC_ERR, "queue not present");
return -ENOENT;
}
venus_hfi_sim_modify_cmd_packet(packet);
if (msm_vidc_debug & VIDC_PKT) {
dprintk(VIDC_PKT, "%s: %p\n", __func__, qinfo);
venus_hfi_dump_packet(packet);
}
packet_size_in_words = (*(u32 *)packet) >> 2;
dprintk(VIDC_DBG, "Packet_size in words: %d", packet_size_in_words);
if (packet_size_in_words == 0) {
dprintk(VIDC_ERR, "Zero packet size");
return -ENODATA;
}
read_idx = queue->qhdr_read_idx;
empty_space = (queue->qhdr_write_idx >= read_idx) ?
(queue->qhdr_q_size - (queue->qhdr_write_idx - read_idx)) :
(read_idx - queue->qhdr_write_idx);
dprintk(VIDC_DBG, "Empty_space: %d", empty_space);
if (empty_space <= packet_size_in_words) {
queue->qhdr_tx_req = 1;
dprintk(VIDC_ERR, "Insufficient size (%d) to write (%d)",
empty_space, packet_size_in_words);
return -ENOTEMPTY;
}
queue->qhdr_tx_req = 0;
new_write_idx = (queue->qhdr_write_idx + packet_size_in_words);
write_ptr = (u32 *)((qinfo->q_array.align_virtual_addr) +
(queue->qhdr_write_idx << 2));
dprintk(VIDC_DBG, "Write Ptr: %d", (u32) write_ptr);
if (new_write_idx < queue->qhdr_q_size) {
memcpy(write_ptr, packet, packet_size_in_words << 2);
} else {
new_write_idx -= queue->qhdr_q_size;
memcpy(write_ptr, packet, (packet_size_in_words -
new_write_idx) << 2);
memcpy((void *)qinfo->q_array.align_virtual_addr,
packet + ((packet_size_in_words - new_write_idx) << 2),
new_write_idx << 2);
}
/* Memory barrier to make sure packet is written before updating the
* write index */
mb();
queue->qhdr_write_idx = new_write_idx;
*rx_req_is_set = (1 == queue->qhdr_rx_req) ? 1 : 0;
/*Memory barrier to make sure write index is updated before an
* interupt is raised on venus.*/
mb();
dprintk(VIDC_DBG, "Out : ");
return 0;
}
static void venus_hfi_hal_sim_modify_msg_packet(u8 *packet)
{
struct hfi_msg_sys_session_init_done_packet *sys_idle;
struct hal_session *sess;
if (!packet) {
dprintk(VIDC_ERR, "Invalid Param: ");
return;
}
sys_idle = (struct hfi_msg_sys_session_init_done_packet *)packet;
sess = (struct hal_session *) sys_idle->session_id;
switch (sys_idle->packet_type) {
case HFI_MSG_SESSION_FILL_BUFFER_DONE:
if (sess->is_decoder) {
struct
hfi_msg_session_fbd_uncompressed_plane0_packet
*pkt_uc = (struct
hfi_msg_session_fbd_uncompressed_plane0_packet
*) packet;
pkt_uc->packet_buffer += HFI_SIM_FW_BIAS;
} else {
struct
hfi_msg_session_fill_buffer_done_compressed_packet
*pkt = (struct
hfi_msg_session_fill_buffer_done_compressed_packet
*) packet;
pkt->packet_buffer += HFI_SIM_FW_BIAS;
}
break;
case HFI_MSG_SESSION_EMPTY_BUFFER_DONE:
{
struct hfi_msg_session_empty_buffer_done_packet *pkt =
(struct hfi_msg_session_empty_buffer_done_packet *)packet;
pkt->packet_buffer += HFI_SIM_FW_BIAS;
break;
}
case HFI_MSG_SESSION_GET_SEQUENCE_HEADER_DONE:
{
struct
hfi_msg_session_get_sequence_header_done_packet
*pkt =
(struct hfi_msg_session_get_sequence_header_done_packet *)
packet;
pkt->sequence_header += HFI_SIM_FW_BIAS;
break;
}
default:
break;
}
}
static int venus_hfi_read_queue(void *info, u8 *packet, u32 *pb_tx_req_is_set)
{
struct hfi_queue_header *queue;
u32 packet_size_in_words, new_read_idx;
u32 *read_ptr;
struct vidc_iface_q_info *qinfo;
int rc = 0;
if (!info || !packet || !pb_tx_req_is_set) {
dprintk(VIDC_ERR, "Invalid Params");
return -EINVAL;
}
qinfo = (struct vidc_iface_q_info *) info;
if (!qinfo || !qinfo->q_array.align_virtual_addr) {
dprintk(VIDC_WARN, "Queues have already been freed\n");
return -EINVAL;
}
/*Memory barrier to make sure data is valid before
*reading it*/
mb();
queue = (struct hfi_queue_header *) qinfo->q_hdr;
if (!queue) {
dprintk(VIDC_ERR, "Queue memory is not allocated\n");
return -ENOMEM;
}
if (queue->qhdr_read_idx == queue->qhdr_write_idx) {
queue->qhdr_rx_req = 1;
*pb_tx_req_is_set = 0;
return -EPERM;
}
read_ptr = (u32 *)((qinfo->q_array.align_virtual_addr) +
(queue->qhdr_read_idx << 2));
packet_size_in_words = (*read_ptr) >> 2;
dprintk(VIDC_DBG, "packet_size_in_words: %d", packet_size_in_words);
if (packet_size_in_words == 0) {
dprintk(VIDC_ERR, "Zero packet size");
return -ENODATA;
}
new_read_idx = queue->qhdr_read_idx + packet_size_in_words;
dprintk(VIDC_DBG, "Read Ptr: %d", (u32) new_read_idx);
if (((packet_size_in_words << 2) <= VIDC_IFACEQ_MED_PKT_SIZE)
&& queue->qhdr_read_idx <= queue->qhdr_q_size) {
if (new_read_idx < queue->qhdr_q_size) {
memcpy(packet, read_ptr,
packet_size_in_words << 2);
} else {
new_read_idx -= queue->qhdr_q_size;
memcpy(packet, read_ptr,
(packet_size_in_words - new_read_idx) << 2);
memcpy(packet + ((packet_size_in_words -
new_read_idx) << 2),
(u8 *)qinfo->q_array.align_virtual_addr,
new_read_idx << 2);
}
} else {
dprintk(VIDC_WARN,
"BAD packet received, read_idx: 0x%x, pkt_size: %d\n",
queue->qhdr_read_idx, packet_size_in_words << 2);
dprintk(VIDC_WARN, "Dropping this packet\n");
new_read_idx = queue->qhdr_write_idx;
rc = -ENODATA;
}
queue->qhdr_read_idx = new_read_idx;
if (queue->qhdr_read_idx != queue->qhdr_write_idx)
queue->qhdr_rx_req = 0;
else
queue->qhdr_rx_req = 1;
*pb_tx_req_is_set = (1 == queue->qhdr_tx_req) ? 1 : 0;
venus_hfi_hal_sim_modify_msg_packet(packet);
if (msm_vidc_debug & VIDC_PKT) {
dprintk(VIDC_PKT, "%s: %p\n", __func__, qinfo);
venus_hfi_dump_packet(packet);
}
dprintk(VIDC_DBG, "Out : ");
return rc;
}
static int venus_hfi_alloc(void *mem, void *clnt, u32 size, u32 align,
u32 flags, u32 usage)
{
struct vidc_mem_addr *vmem;
struct msm_smem *alloc;
int rc = 0;
if (!mem || !clnt || !size) {
dprintk(VIDC_ERR, "Invalid Params");
return -EINVAL;
}
vmem = (struct vidc_mem_addr *)mem;
dprintk(VIDC_INFO, "start to alloc: size:%d, Flags: %d", size, flags);
alloc = msm_smem_alloc(clnt, size, align, flags, usage, 1);
dprintk(VIDC_DBG, "Alloc done");
if (!alloc) {
dprintk(VIDC_ERR, "Alloc failed\n");
rc = -ENOMEM;
goto fail_smem_alloc;
}
dprintk(VIDC_DBG, "venus_hfi_alloc:ptr=%p,size=%d",
alloc->kvaddr, size);
rc = msm_smem_cache_operations(clnt, alloc,
SMEM_CACHE_CLEAN);
if (rc) {
dprintk(VIDC_WARN, "Failed to clean cache\n");
dprintk(VIDC_WARN, "This may result in undefined behavior\n");
}
vmem->mem_size = alloc->size;
vmem->mem_data = alloc;
vmem->align_virtual_addr = (u8 *) alloc->kvaddr;
vmem->align_device_addr = (u8 *)alloc->device_addr;
return rc;
fail_smem_alloc:
return rc;
}
static void venus_hfi_free(struct smem_client *clnt, struct msm_smem *mem)
{
msm_smem_free(clnt, mem);
}
static void venus_hfi_write_register(struct venus_hfi_device *device, u32 reg,
u32 value, u8 *vaddr)
{
u32 hwiosymaddr = reg;
u8 *base_addr;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %p\n", device);
return;
}
base_addr = device->hal_data->register_base_addr;
if (!device->clocks_enabled) {
dprintk(VIDC_WARN,
"HFI Write register failed : Clocks are OFF\n");
return;
}
reg &= REG_ADDR_OFFSET_BITMASK;
if (reg == (u32)VIDC_CPU_CS_SCIACMDARG2) {
/* workaround to offset of FW bias */
struct hfi_queue_header *qhdr;
struct hfi_queue_table_header *qtbl_hdr =
(struct hfi_queue_table_header *)vaddr;
qhdr = VIDC_IFACEQ_GET_QHDR_START_ADDR(qtbl_hdr, 0);
qhdr->qhdr_start_addr -= HFI_SIM_FW_BIAS;
qhdr = VIDC_IFACEQ_GET_QHDR_START_ADDR(qtbl_hdr, 1);
qhdr->qhdr_start_addr -= HFI_SIM_FW_BIAS;
qhdr = VIDC_IFACEQ_GET_QHDR_START_ADDR(qtbl_hdr, 2);
qhdr->qhdr_start_addr -= HFI_SIM_FW_BIAS;
value -= HFI_SIM_FW_BIAS;
}
hwiosymaddr = ((u32)base_addr + (hwiosymaddr));
dprintk(VIDC_DBG, "Base addr: 0x%x, written to: 0x%x, Value: 0x%x...",
(u32)base_addr, hwiosymaddr, value);
writel_relaxed(value, hwiosymaddr);
wmb();
}
static int venus_hfi_read_register(struct venus_hfi_device *device, u32 reg)
{
int rc ;
u8 *base_addr;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %p\n", device);
return -EINVAL;
}
base_addr = device->hal_data->register_base_addr;
if (!device->clocks_enabled) {
dprintk(VIDC_WARN,
"HFI Read register failed : Clocks are OFF\n");
return -EINVAL;
}
rc = readl_relaxed((u32)base_addr + reg);
rmb();
return rc;
}
static inline void venus_hfi_clk_gating_on(struct venus_hfi_device *device)
{
int i;
struct venus_core_clock *cl;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %p\n", device);
return;
}
if (!device->clocks_enabled) {
dprintk(VIDC_DBG, "Clocks are already disabled");
goto already_disabled;
}
for (i = 0; i <= device->clk_gating_level; i++) {
cl = &device->resources.clock[i];
clk_disable(cl->clk);
}
already_disabled:
device->clocks_enabled = 0;
}
static inline int venus_hfi_clk_gating_off(struct venus_hfi_device *device)
{
int i;
struct venus_core_clock *cl;
int rc = 0;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %p\n", device);
return -EINVAL;
}
if (device->clocks_enabled) {
dprintk(VIDC_DBG, "Clocks are already enabled");
goto already_enabled;
}
for (i = 0; i <= device->clk_gating_level; i++) {
cl = &device->resources.clock[i];
rc = clk_enable(cl->clk);
if (rc) {
dprintk(VIDC_ERR, "Failed to enable clocks\n");
goto fail_clk_enable;
} else {
dprintk(VIDC_DBG, "Clock: %s enabled\n", cl->name);
}
}
already_enabled:
device->clocks_enabled = 1;
return rc;
fail_clk_enable:
for (; i >= 0; i--) {
cl = &device->resources.clock[i];
clk_disable(cl->clk);
}
return rc;
}
static unsigned long venus_hfi_get_clock_rate(struct venus_core_clock *clock,
int num_mbs_per_sec)
{
int num_rows = clock->count;
struct load_freq_table *table = clock->load_freq_tbl;
unsigned long ret = table[0].freq;
int i;
for (i = 0; i < num_rows; i++) {
if (num_mbs_per_sec > table[i].load)
break;
ret = table[i].freq;
}
dprintk(VIDC_PROF, "Required clock rate = %lu\n", ret);
return ret;
}
static int venus_hfi_scale_clocks(void *dev, int load)
{
int rc = 0;
struct venus_hfi_device *device = dev;
if (!device) {
dprintk(VIDC_ERR, "Invalid args: %p\n", device);
return -EINVAL;
}
device->load = load;
rc = clk_set_rate(device->resources.clock[VCODEC_CLK].clk,
venus_hfi_get_clock_rate(&device->resources.clock[VCODEC_CLK],
load));
if (rc)
dprintk(VIDC_ERR, "Failed to set clock rate: %d\n", rc);
return rc;
}
static int venus_hfi_iface_cmdq_write(struct venus_hfi_device *device,
void *pkt)
{
u32 rx_req_is_set = 0;
struct vidc_iface_q_info *q_info;
int result = -EPERM;
if (!device || !pkt) {
dprintk(VIDC_ERR, "Invalid Params");
return -EINVAL;
}
mutex_lock(&device->write_lock);
q_info = &device->iface_queues[VIDC_IFACEQ_CMDQ_IDX];
if (!q_info) {
dprintk(VIDC_ERR, "cannot write to shared Q's");
goto err_q_null;
}
mutex_lock(&device->clock_lock);
result = venus_hfi_clk_gating_off(device);
if (result) {
dprintk(VIDC_ERR, "%s : Clock enable failed\n",
__func__);
goto err_q_write;
}
result = venus_hfi_scale_clocks(device, device->load);
if (result) {
dprintk(VIDC_ERR, "Clock scaling failed\n");
goto err_q_write;
}
if (!venus_hfi_write_queue(q_info, (u8 *)pkt, &rx_req_is_set)) {
if (rx_req_is_set)
venus_hfi_write_register(
device,
VIDC_CPU_IC_SOFTINT,
1 << VIDC_CPU_IC_SOFTINT_H2A_SHFT, 0);
result = 0;
} else {
dprintk(VIDC_ERR, "venus_hfi_iface_cmdq_write:queue_full");
}
err_q_write:
mutex_unlock(&device->clock_lock);
err_q_null:
mutex_unlock(&device->write_lock);
return result;
}
static int venus_hfi_iface_msgq_read(struct venus_hfi_device *device, void *pkt)
{
u32 tx_req_is_set = 0;
int rc = 0;
struct vidc_iface_q_info *q_info;
if (!pkt) {
dprintk(VIDC_ERR, "Invalid Params");
return -EINVAL;
}
mutex_lock(&device->read_lock);
if (device->iface_queues[VIDC_IFACEQ_MSGQ_IDX].
q_array.align_virtual_addr == 0) {
dprintk(VIDC_ERR, "cannot read from shared MSG Q's");
rc = -ENODATA;
goto read_error_null;
}
q_info = &device->iface_queues[VIDC_IFACEQ_MSGQ_IDX];
mutex_lock(&device->clock_lock);
rc = venus_hfi_clk_gating_off(device);
if (rc) {
dprintk(VIDC_ERR,
"%s : Clock enable failed\n", __func__);
goto read_error;
}
if (!venus_hfi_read_queue(q_info, (u8 *)pkt, &tx_req_is_set)) {
if (tx_req_is_set)
venus_hfi_write_register(
device,
VIDC_CPU_IC_SOFTINT,
1 << VIDC_CPU_IC_SOFTINT_H2A_SHFT, 0);
rc = 0;
} else {
dprintk(VIDC_INFO, "venus_hfi_iface_msgq_read:queue_empty");
rc = -ENODATA;
}
read_error:
mutex_unlock(&device->clock_lock);
read_error_null:
mutex_unlock(&device->read_lock);
return rc;
}
static int venus_hfi_iface_dbgq_read(struct venus_hfi_device *device, void *pkt)
{
u32 tx_req_is_set = 0;
int rc = 0;
struct vidc_iface_q_info *q_info;
if (!pkt) {
dprintk(VIDC_ERR, "Invalid Params");
return -EINVAL;
}
mutex_lock(&device->read_lock);
if (device->iface_queues[VIDC_IFACEQ_DBGQ_IDX].
q_array.align_virtual_addr == 0) {
dprintk(VIDC_ERR, "cannot read from shared DBG Q's");
rc = -ENODATA;
goto dbg_error_null;
}
mutex_lock(&device->clock_lock);
rc = venus_hfi_clk_gating_off(device);
if (rc) {
dprintk(VIDC_ERR,
"%s : Clock enable failed\n", __func__);
goto dbg_error;
}
q_info = &device->iface_queues[VIDC_IFACEQ_DBGQ_IDX];
if (!venus_hfi_read_queue(q_info, (u8 *)pkt, &tx_req_is_set)) {
if (tx_req_is_set)
venus_hfi_write_register(
device,
VIDC_CPU_IC_SOFTINT,
1 << VIDC_CPU_IC_SOFTINT_H2A_SHFT, 0);
rc = 0;
} else {
dprintk(VIDC_INFO, "venus_hfi_iface_dbgq_read:queue_empty");
rc = -ENODATA;
}
dbg_error:
mutex_unlock(&device->clock_lock);
dbg_error_null:
mutex_unlock(&device->read_lock);
return rc;
}
static void venus_hfi_set_queue_hdr_defaults(struct hfi_queue_header *q_hdr)
{
q_hdr->qhdr_status = 0x1;
q_hdr->qhdr_type = VIDC_IFACEQ_DFLT_QHDR;
q_hdr->qhdr_q_size = VIDC_IFACEQ_QUEUE_SIZE / 4;
q_hdr->qhdr_pkt_size = 0;
q_hdr->qhdr_rx_wm = 0x1;
q_hdr->qhdr_tx_wm = 0x1;
q_hdr->qhdr_rx_req = 0x1;
q_hdr->qhdr_tx_req = 0x0;
q_hdr->qhdr_rx_irq_status = 0x0;
q_hdr->qhdr_tx_irq_status = 0x0;
q_hdr->qhdr_read_idx = 0x0;
q_hdr->qhdr_write_idx = 0x0;
}
static void venus_hfi_interface_queues_release(struct venus_hfi_device *device)
{
int i;
struct hfi_mem_map_table *qdss;
struct hfi_mem_map *mem_map;
int num_entries = sizeof(venus_qdss_entries)/(2 * sizeof(u32));
int domain, partition;
mutex_lock(&device->write_lock);
mutex_lock(&device->read_lock);
if (device->qdss.mem_data) {
qdss = (struct hfi_mem_map_table *)
device->qdss.align_virtual_addr;
qdss->mem_map_num_entries = num_entries;
qdss->mem_map_table_base_addr =
(u32 *)((u32)device->qdss.align_device_addr +
sizeof(struct hfi_mem_map_table));
mem_map = (struct hfi_mem_map *)(qdss + 1);
msm_smem_get_domain_partition(device->hal_client, 0,
HAL_BUFFER_INTERNAL_CMD_QUEUE, &domain, &partition);
for (i = 0; i < num_entries; i++) {
msm_iommu_unmap_contig_buffer(
(unsigned long)(mem_map[i].virtual_addr),
domain, partition, SZ_4K);
}
venus_hfi_free(device->hal_client, device->qdss.mem_data);
}
venus_hfi_free(device->hal_client, device->iface_q_table.mem_data);
venus_hfi_free(device->hal_client, device->sfr.mem_data);
for (i = 0; i < VIDC_IFACEQ_NUMQ; i++) {
device->iface_queues[i].q_hdr = NULL;
device->iface_queues[i].q_array.mem_data = NULL;
device->iface_queues[i].q_array.align_virtual_addr = NULL;
device->iface_queues[i].q_array.align_device_addr = NULL;
}
device->iface_q_table.align_virtual_addr = NULL;
device->iface_q_table.align_device_addr = NULL;
device->qdss.align_virtual_addr = NULL;
device->qdss.align_device_addr = NULL;
device->sfr.align_virtual_addr = NULL;
device->sfr.align_device_addr = NULL;
device->mem_addr.align_virtual_addr = NULL;
device->mem_addr.align_device_addr = NULL;
msm_smem_delete_client(device->hal_client);
device->hal_client = NULL;
mutex_unlock(&device->read_lock);
mutex_unlock(&device->write_lock);
}
static int venus_hfi_get_qdss_iommu_virtual_addr(struct hfi_mem_map *mem_map,
int domain, int partition)
{
int i;
int rc = 0;
unsigned long iova = 0;
int num_entries = sizeof(venus_qdss_entries)/(2 * sizeof(u32));
for (i = 0; i < num_entries; i++) {
rc = msm_iommu_map_contig_buffer(venus_qdss_entries[i][0],
domain, 1 , venus_qdss_entries[i][1],
SZ_4K, 0, &iova);
if (rc) {
dprintk(VIDC_ERR,
"IOMMU QDSS mapping failed for addr 0x%x",
venus_qdss_entries[i][0]);
rc = -ENOMEM;
break;
}
mem_map[i].virtual_addr = (u32) iova;
mem_map[i].physical_addr = venus_qdss_entries[i][0];
mem_map[i].size = venus_qdss_entries[i][1];
mem_map[i].attr = 0x0;
}
if (i < num_entries) {
dprintk(VIDC_ERR,
"IOMMU QDSS mapping failed, Freeing entries %d", i);
for (--i; i >= 0; i--) {
msm_iommu_unmap_contig_buffer(
(unsigned long)(mem_map[i].virtual_addr),
domain, partition, SZ_4K);
}
}
return rc;
}
static int venus_hfi_interface_queues_init(struct venus_hfi_device *dev)
{
struct hfi_queue_table_header *q_tbl_hdr;
struct hfi_queue_header *q_hdr;
u8 i;
int rc = 0;
struct hfi_mem_map_table *qdss;
struct hfi_mem_map *mem_map;
struct vidc_iface_q_info *iface_q;
struct hfi_sfr_struct *vsfr;
struct vidc_mem_addr *mem_addr;
int offset = 0;
int num_entries = sizeof(venus_qdss_entries)/(2 * sizeof(u32));
int domain, partition;
mem_addr = &dev->mem_addr;
rc = venus_hfi_alloc((void *) mem_addr,
dev->hal_client, QUEUE_SIZE, 1, 0,
HAL_BUFFER_INTERNAL_CMD_QUEUE);
if (rc) {
dprintk(VIDC_ERR, "iface_q_table_alloc_fail");
goto fail_alloc_queue;
}
dev->iface_q_table.align_virtual_addr = mem_addr->align_virtual_addr;
dev->iface_q_table.align_device_addr = mem_addr->align_device_addr;
dev->iface_q_table.mem_size = VIDC_IFACEQ_TABLE_SIZE;
dev->iface_q_table.mem_data = mem_addr->mem_data;
offset += dev->iface_q_table.mem_size;
for (i = 0; i < VIDC_IFACEQ_NUMQ; i++) {
iface_q = &dev->iface_queues[i];
iface_q->q_array.align_device_addr =
mem_addr->align_device_addr + offset;
iface_q->q_array.align_virtual_addr =
mem_addr->align_virtual_addr + offset;
iface_q->q_array.mem_size = VIDC_IFACEQ_QUEUE_SIZE;
iface_q->q_array.mem_data = NULL;
offset += iface_q->q_array.mem_size;
iface_q->q_hdr = VIDC_IFACEQ_GET_QHDR_START_ADDR(
dev->iface_q_table.align_virtual_addr, i);
venus_hfi_set_queue_hdr_defaults(iface_q->q_hdr);
}
rc = venus_hfi_alloc((void *) mem_addr,
dev->hal_client, QDSS_SIZE, 1, 0,
HAL_BUFFER_INTERNAL_CMD_QUEUE);
if (rc) {
dprintk(VIDC_WARN,
"qdss_alloc_fail: QDSS messages logging will not work");
dev->qdss.align_device_addr = NULL;
} else {
dev->qdss.align_device_addr = mem_addr->align_device_addr;
dev->qdss.align_virtual_addr = mem_addr->align_virtual_addr;
dev->qdss.mem_size = QDSS_SIZE;
dev->qdss.mem_data = mem_addr->mem_data;
}
rc = venus_hfi_alloc((void *) mem_addr,
dev->hal_client, SFR_SIZE, 1, 0,
HAL_BUFFER_INTERNAL_CMD_QUEUE);
if (rc) {
dprintk(VIDC_WARN, "sfr_alloc_fail: SFR not will work");
dev->sfr.align_device_addr = NULL;
} else {
dev->sfr.align_device_addr = mem_addr->align_device_addr;
dev->sfr.align_virtual_addr = mem_addr->align_virtual_addr;
dev->sfr.mem_size = SFR_SIZE;
dev->sfr.mem_data = mem_addr->mem_data;
}
q_tbl_hdr = (struct hfi_queue_table_header *)
dev->iface_q_table.align_virtual_addr;
q_tbl_hdr->qtbl_version = 0;
q_tbl_hdr->qtbl_size = VIDC_IFACEQ_TABLE_SIZE;
q_tbl_hdr->qtbl_qhdr0_offset = sizeof(
struct hfi_queue_table_header);
q_tbl_hdr->qtbl_qhdr_size = sizeof(
struct hfi_queue_header);
q_tbl_hdr->qtbl_num_q = VIDC_IFACEQ_NUMQ;
q_tbl_hdr->qtbl_num_active_q = VIDC_IFACEQ_NUMQ;
iface_q = &dev->iface_queues[VIDC_IFACEQ_CMDQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = (u32)
iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_HOST_TO_CTRL_CMD_Q;
iface_q = &dev->iface_queues[VIDC_IFACEQ_MSGQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = (u32)
iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_CTRL_TO_HOST_MSG_Q;
iface_q = &dev->iface_queues[VIDC_IFACEQ_DBGQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = (u32)
iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_CTRL_TO_HOST_DEBUG_Q;
venus_hfi_write_register(dev,
VIDC_UC_REGION_ADDR,
(u32) dev->iface_q_table.align_device_addr, 0);
venus_hfi_write_register(dev,
VIDC_UC_REGION_SIZE, SHARED_QSIZE, 0);
venus_hfi_write_register(dev,
VIDC_CPU_CS_SCIACMDARG2,
(u32) dev->iface_q_table.align_device_addr,
dev->iface_q_table.align_virtual_addr);
venus_hfi_write_register(dev,
VIDC_CPU_CS_SCIACMDARG1, 0x01,
dev->iface_q_table.align_virtual_addr);
qdss = (struct hfi_mem_map_table *) dev->qdss.align_virtual_addr;
qdss->mem_map_num_entries = num_entries;
qdss->mem_map_table_base_addr =
(u32 *) ((u32)dev->qdss.align_device_addr +
sizeof(struct hfi_mem_map_table));
mem_map = (struct hfi_mem_map *)(qdss + 1);
msm_smem_get_domain_partition(dev->hal_client, 0,
HAL_BUFFER_INTERNAL_CMD_QUEUE, &domain, &partition);
rc = venus_hfi_get_qdss_iommu_virtual_addr(mem_map, domain, partition);
if (rc) {
dprintk(VIDC_ERR,
"IOMMU mapping failed, Freeing qdss memdata");
venus_hfi_free(dev->hal_client, dev->qdss.mem_data);
dev->qdss.mem_data = NULL;
}
if (!IS_ERR_OR_NULL(dev->qdss.align_device_addr))
venus_hfi_write_register(dev,
VIDC_MMAP_ADDR,
(u32) dev->qdss.align_device_addr, 0);
vsfr = (struct hfi_sfr_struct *) dev->sfr.align_virtual_addr;
vsfr->bufSize = SFR_SIZE;
if (!IS_ERR_OR_NULL(dev->sfr.align_device_addr))
venus_hfi_write_register(dev,
VIDC_SFR_ADDR, (u32)dev->sfr.align_device_addr , 0);
return 0;
fail_alloc_queue:
return -ENOMEM;
}
static int venus_hfi_core_start_cpu(struct venus_hfi_device *device)
{
u32 ctrl_status = 0, count = 0, rc = 0;
int max_tries = 100;
venus_hfi_write_register(device,
VIDC_WRAPPER_INTR_MASK, 0x8, 0);
venus_hfi_write_register(device,
VIDC_CPU_CS_SCIACMDARG3, 1, 0);
while (!ctrl_status && count < max_tries) {
ctrl_status = venus_hfi_read_register(
device,
VIDC_CPU_CS_SCIACMDARG0);
if ((ctrl_status & 0xFE) == 0x4) {
dprintk(VIDC_ERR, "invalid setting for UC_REGION\n");
break;
}
usleep_range(500, 1000);
count++;
}
if (count >= max_tries)
rc = -ETIME;
return rc;
}
static void venus_hfi_set_registers(struct venus_hfi_device *device)
{
struct reg_set *reg_set;
int i;
if (!device->res) {
dprintk(VIDC_ERR,
"device resources null, cannot set registers\n");
return;
}
reg_set = &device->res->reg_set;
for (i = 0; i < reg_set->count; i++) {
venus_hfi_write_register(device,
reg_set->reg_tbl[i].reg,
reg_set->reg_tbl[i].value, 0);
}
}
static int venus_hfi_sys_set_debug(struct venus_hfi_device *device, int debug)
{
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
struct hfi_cmd_sys_set_property_packet *pkt =
(struct hfi_cmd_sys_set_property_packet *) &packet;
rc = create_pkt_cmd_sys_debug_config(pkt, debug);
if (rc) {
dprintk(VIDC_WARN,
"Debug mode setting to FW failed\n");
return -ENOTEMPTY;
}
if (venus_hfi_iface_cmdq_write(device, pkt))
return -ENOTEMPTY;
return 0;
}
static int venus_hfi_sys_set_idle_message(struct venus_hfi_device *device,
int enable)
{
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
struct hfi_cmd_sys_set_property_packet *pkt =
(struct hfi_cmd_sys_set_property_packet *) &packet;
create_pkt_cmd_sys_idle_indicator(pkt, enable);
if (venus_hfi_iface_cmdq_write(device, pkt))
return -ENOTEMPTY;
return 0;
}
static int venus_hfi_core_init(void *device)
{
struct hfi_cmd_sys_init_packet pkt;
struct hfi_cmd_sys_get_property_packet version_pkt;
int rc = 0;
struct venus_hfi_device *dev;
if (device) {
dev = device;
} else {
dprintk(VIDC_ERR, "Invalid device");
return -ENODEV;
}
dev->intr_status = 0;
INIT_LIST_HEAD(&dev->sess_head);
mutex_init(&dev->read_lock);
mutex_init(&dev->write_lock);
mutex_init(&dev->session_lock);
venus_hfi_set_registers(dev);
if (!dev->hal_client) {
dev->hal_client = msm_smem_new_client(SMEM_ION, dev->res);
if (dev->hal_client == NULL) {
dprintk(VIDC_ERR, "Failed to alloc ION_Client");
rc = -ENODEV;
goto err_core_init;
}
dprintk(VIDC_DBG, "Dev_Virt: 0x%x, Reg_Virt: 0x%x",
dev->hal_data->device_base_addr,
(u32) dev->hal_data->register_base_addr);
rc = venus_hfi_interface_queues_init(dev);
if (rc) {
dprintk(VIDC_ERR, "failed to init queues");
rc = -ENOMEM;
goto err_core_init;
}
} else {
dprintk(VIDC_ERR, "hal_client exists");
rc = -EEXIST;
goto err_core_init;
}
enable_irq(dev->hal_data->irq);
venus_hfi_write_register(dev,
VIDC_CTRL_INIT, 0x1, 0);
rc = venus_hfi_core_start_cpu(dev);
if (rc) {
dprintk(VIDC_ERR, "Failed to start core");
rc = -ENODEV;
goto err_core_init;
}
rc = create_pkt_cmd_sys_init(&pkt, HFI_VIDEO_ARCH_OX);
if (rc) {
dprintk(VIDC_ERR, "Failed to create sys init pkt");
goto err_core_init;
}
if (venus_hfi_iface_cmdq_write(dev, &pkt)) {
rc = -ENOTEMPTY;
goto err_core_init;
}
rc = create_pkt_cmd_sys_image_version(&version_pkt);
if (rc || venus_hfi_iface_cmdq_write(dev, &version_pkt))
dprintk(VIDC_WARN, "Failed to send image version pkt to f/w");
return rc;
err_core_init:
disable_irq_nosync(dev->hal_data->irq);
return rc;
}
static int venus_hfi_core_release(void *device)
{
struct venus_hfi_device *dev;
int rc = 0;
if (device) {
dev = device;
} else {
dprintk(VIDC_ERR, "invalid device");
return -ENODEV;
}
if (dev->hal_client) {
mutex_lock(&dev->clock_lock);
rc = venus_hfi_clk_gating_off(device);
if (rc) {
dprintk(VIDC_ERR,
"%s : Clock enable failed\n", __func__);
mutex_unlock(&dev->clock_lock);
return -EIO;
}
venus_hfi_write_register(dev,
VIDC_CPU_CS_SCIACMDARG3, 0, 0);
if (!(dev->intr_status & VIDC_WRAPPER_INTR_STATUS_A2HWD_BMSK))
disable_irq_nosync(dev->hal_data->irq);
dev->intr_status = 0;
mutex_unlock(&dev->clock_lock);
}
dprintk(VIDC_INFO, "HAL exited\n");
return 0;
}
int venus_hfi_core_pc_prep(void *device)
{
struct hfi_cmd_sys_pc_prep_packet pkt;
int rc = 0;
struct venus_hfi_device *dev;
if (device) {
dev = device;
} else {
dprintk(VIDC_ERR, "invalid device");
return -ENODEV;
}
rc = create_pkt_cmd_sys_pc_prep(&pkt);
if (rc) {
dprintk(VIDC_ERR, "Failed to create sys pc prep pkt");
goto err_create_pkt;
}
if (venus_hfi_iface_cmdq_write(dev, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static void venus_hfi_core_clear_interrupt(struct venus_hfi_device *device)
{
u32 intr_status = 0;
int rc = 0;
if (!device->callback)
return;
mutex_lock(&device->clock_lock);
rc = venus_hfi_clk_gating_off(device);
if (rc) {
dprintk(VIDC_ERR,
"%s : Clock enable failed\n", __func__);
mutex_unlock(&device->clock_lock);
return;
}
intr_status = venus_hfi_read_register(
device,
VIDC_WRAPPER_INTR_STATUS);
if ((intr_status & VIDC_WRAPPER_INTR_STATUS_A2H_BMSK) ||
(intr_status & VIDC_WRAPPER_INTR_STATUS_A2HWD_BMSK) ||
(intr_status &
VIDC_CPU_CS_SCIACMDARG0_HFI_CTRL_INIT_IDLE_MSG_BMSK)) {
device->intr_status |= intr_status;
dprintk(VIDC_DBG, "INTERRUPT for device: 0x%x: "
"times: %d interrupt_status: %d",
(u32) device, ++device->reg_count, intr_status);
} else {
dprintk(VIDC_INFO, "SPURIOUS_INTR for device: 0x%x: "
"times: %d interrupt_status: %d",
(u32) device, ++device->spur_count, intr_status);
}
venus_hfi_write_register(device,
VIDC_CPU_CS_A2HSOFTINTCLR, 1, 0);
venus_hfi_write_register(device,
VIDC_WRAPPER_INTR_CLEAR, intr_status, 0);
mutex_unlock(&device->clock_lock);
dprintk(VIDC_DBG, "Cleared WRAPPER/A2H interrupt");
}
static int venus_hfi_core_set_resource(void *device,
struct vidc_resource_hdr *resource_hdr, void *resource_value)
{
struct hfi_cmd_sys_set_resource_packet *pkt;
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
struct venus_hfi_device *dev;
if (!device || !resource_hdr || !resource_value) {
dprintk(VIDC_ERR, "set_res: Invalid Params");
return -EINVAL;
} else {
dev = device;
}
pkt = (struct hfi_cmd_sys_set_resource_packet *) packet;
rc = create_pkt_set_cmd_sys_resource(pkt, resource_hdr,
resource_value);
if (rc) {
dprintk(VIDC_ERR, "set_res: failed to create packet");
goto err_create_pkt;
}
if (venus_hfi_iface_cmdq_write(dev, pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int venus_hfi_core_release_resource(void *device,
struct vidc_resource_hdr *resource_hdr)
{
struct hfi_cmd_sys_release_resource_packet pkt;
int rc = 0;
struct venus_hfi_device *dev;
if (!device || !resource_hdr) {
dprintk(VIDC_ERR, "Inv-Params in rel_res");
return -EINVAL;
} else {
dev = device;
}
rc = create_pkt_cmd_sys_release_resource(&pkt, resource_hdr);
if (rc) {
dprintk(VIDC_ERR, "release_res: failed to create packet");
goto err_create_pkt;
}
if (venus_hfi_iface_cmdq_write(dev, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int venus_hfi_core_ping(void *device)
{
struct hfi_cmd_sys_ping_packet pkt;
int rc = 0;
struct venus_hfi_device *dev;
if (device) {
dev = device;
} else {
dprintk(VIDC_ERR, "invalid device");
return -ENODEV;
}
rc = create_pkt_cmd_sys_ping(&pkt);
if (rc) {
dprintk(VIDC_ERR, "core_ping: failed to create packet");
goto err_create_pkt;
}
if (venus_hfi_iface_cmdq_write(dev, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int venus_hfi_core_trigger_ssr(void *device,
enum hal_ssr_trigger_type type)
{
struct hfi_cmd_sys_test_ssr_packet pkt;
int rc = 0;
struct venus_hfi_device *dev;
if (device) {
dev = device;
} else {
dprintk(VIDC_ERR, "invalid device");
return -ENODEV;
}
rc = create_pkt_ssr_cmd(type, &pkt);
if (rc) {
dprintk(VIDC_ERR, "core_ping: failed to create packet");
goto err_create_pkt;
}
if (venus_hfi_iface_cmdq_write(dev, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int venus_hfi_session_set_property(void *sess,
enum hal_property ptype, void *pdata)
{
u8 packet[VIDC_IFACEQ_VAR_LARGE_PKT_SIZE];
struct hfi_cmd_session_set_property_packet *pkt =
(struct hfi_cmd_session_set_property_packet *) &packet;
struct hal_session *session;
int rc = 0;
if (!sess || !pdata) {
dprintk(VIDC_ERR, "Invalid Params");
return -EINVAL;
} else {
session = sess;
}
dprintk(VIDC_INFO, "in set_prop,with prop id: 0x%x", ptype);
if (create_pkt_cmd_session_set_property(pkt, (u32)session, ptype,
pdata)) {
dprintk(VIDC_ERR, "set property: failed to create packet");
return -EINVAL;
}
if (venus_hfi_iface_cmdq_write(session->device, pkt))
return -ENOTEMPTY;
return rc;
}
static int venus_hfi_session_get_property(void *sess,
enum hal_property ptype, void *pdata)
{
struct hal_session *session;
if (!sess || !pdata) {
dprintk(VIDC_ERR, "Invalid Params in ");
return -EINVAL;
} else {
session = sess;
}
dprintk(VIDC_INFO, "IN func: , with property id: %d", ptype);
switch (ptype) {
case HAL_CONFIG_FRAME_RATE:
break;
case HAL_PARAM_UNCOMPRESSED_FORMAT_SELECT:
break;
case HAL_PARAM_UNCOMPRESSED_PLANE_ACTUAL_CONSTRAINTS_INFO:
break;
case HAL_PARAM_UNCOMPRESSED_PLANE_ACTUAL_INFO:
break;
case HAL_PARAM_EXTRA_DATA_HEADER_CONFIG:
break;
case HAL_PARAM_FRAME_SIZE:
break;
case HAL_CONFIG_REALTIME:
break;
case HAL_PARAM_BUFFER_COUNT_ACTUAL:
break;
case HAL_PARAM_NAL_STREAM_FORMAT_SELECT:
break;
case HAL_PARAM_VDEC_OUTPUT_ORDER:
break;
case HAL_PARAM_VDEC_PICTURE_TYPE_DECODE:
break;
case HAL_PARAM_VDEC_OUTPUT2_KEEP_ASPECT_RATIO:
break;
case HAL_CONFIG_VDEC_POST_LOOP_DEBLOCKER:
break;
case HAL_PARAM_VDEC_MULTI_STREAM:
break;
case HAL_PARAM_VDEC_DISPLAY_PICTURE_BUFFER_COUNT:
break;
case HAL_PARAM_DIVX_FORMAT:
break;
case HAL_CONFIG_VDEC_MB_ERROR_MAP_REPORTING:
break;
case HAL_PARAM_VDEC_CONTINUE_DATA_TRANSFER:
break;
case HAL_CONFIG_VDEC_MB_ERROR_MAP:
break;
case HAL_CONFIG_VENC_REQUEST_IFRAME:
break;
case HAL_PARAM_VENC_MPEG4_SHORT_HEADER:
break;
case HAL_PARAM_VENC_MPEG4_AC_PREDICTION:
break;
case HAL_CONFIG_VENC_TARGET_BITRATE:
break;
case HAL_PARAM_PROFILE_LEVEL_CURRENT:
break;
case HAL_PARAM_VENC_H264_ENTROPY_CONTROL:
break;
case HAL_PARAM_VENC_RATE_CONTROL:
break;
case HAL_PARAM_VENC_MPEG4_TIME_RESOLUTION:
break;
case HAL_PARAM_VENC_MPEG4_HEADER_EXTENSION:
break;
case HAL_PARAM_VENC_H264_DEBLOCK_CONTROL:
break;
case HAL_PARAM_VENC_SESSION_QP:
break;
case HAL_CONFIG_VENC_INTRA_PERIOD:
break;
case HAL_CONFIG_VENC_IDR_PERIOD:
break;
case HAL_CONFIG_VPE_OPERATIONS:
break;
case HAL_PARAM_VENC_INTRA_REFRESH:
break;
case HAL_PARAM_VENC_MULTI_SLICE_CONTROL:
break;
case HAL_CONFIG_VPE_DEINTERLACE:
break;
case HAL_SYS_DEBUG_CONFIG:
break;
case HAL_PARAM_BUFFER_ALLOC_MODE:
break;
case HAL_PARAM_VDEC_FRAME_ASSEMBLY:
break;
/*FOLLOWING PROPERTIES ARE NOT IMPLEMENTED IN CORE YET*/
case HAL_CONFIG_BUFFER_REQUIREMENTS:
case HAL_CONFIG_PRIORITY:
case HAL_CONFIG_BATCH_INFO:
case HAL_PARAM_METADATA_PASS_THROUGH:
case HAL_SYS_IDLE_INDICATOR:
case HAL_PARAM_UNCOMPRESSED_FORMAT_SUPPORTED:
case HAL_PARAM_INTERLACE_FORMAT_SUPPORTED:
case HAL_PARAM_CHROMA_SITE:
case HAL_PARAM_PROPERTIES_SUPPORTED:
case HAL_PARAM_PROFILE_LEVEL_SUPPORTED:
case HAL_PARAM_CAPABILITY_SUPPORTED:
case HAL_PARAM_NAL_STREAM_FORMAT_SUPPORTED:
case HAL_PARAM_MULTI_VIEW_FORMAT:
case HAL_PARAM_MAX_SEQUENCE_HEADER_SIZE:
case HAL_PARAM_CODEC_SUPPORTED:
case HAL_PARAM_VDEC_MULTI_VIEW_SELECT:
case HAL_PARAM_VDEC_MB_QUANTIZATION:
case HAL_PARAM_VDEC_NUM_CONCEALED_MB:
case HAL_PARAM_VDEC_H264_ENTROPY_SWITCHING:
case HAL_PARAM_VENC_SLICE_DELIVERY_MODE:
case HAL_PARAM_VENC_MPEG4_DATA_PARTITIONING:
case HAL_CONFIG_BUFFER_COUNT_ACTUAL:
case HAL_CONFIG_VDEC_MULTI_STREAM:
case HAL_PARAM_VENC_MULTI_SLICE_INFO:
case HAL_CONFIG_VENC_TIMESTAMP_SCALE:
case HAL_PARAM_VENC_LOW_LATENCY:
default:
dprintk(VIDC_INFO, "DEFAULT: Calling 0x%x", ptype);
break;
}
return 0;
}
static void *venus_hfi_session_init(void *device, u32 session_id,
enum hal_domain session_type, enum hal_video_codec codec_type)
{
struct hfi_cmd_sys_session_init_packet pkt;
struct hal_session *new_session;
struct venus_hfi_device *dev;
if (device) {
dev = device;
} else {
dprintk(VIDC_ERR, "invalid device");
return NULL;
}
new_session = (struct hal_session *)
kzalloc(sizeof(struct hal_session), GFP_KERNEL);
new_session->session_id = (u32) session_id;
if (session_type == 1)
new_session->is_decoder = 0;
else if (session_type == 2)
new_session->is_decoder = 1;
new_session->device = dev;
mutex_lock(&dev->session_lock);
list_add_tail(&new_session->list, &dev->sess_head);
mutex_unlock(&dev->session_lock);
if (create_pkt_cmd_sys_session_init(&pkt, (u32)new_session,
session_type, codec_type)) {
dprintk(VIDC_ERR, "session_init: failed to create packet");
goto err_session_init_fail;
}
if (venus_hfi_sys_set_debug(dev, msm_fw_debug))
dprintk(VIDC_ERR, "Setting fw_debug msg ON failed");
if (venus_hfi_sys_set_idle_message(dev, msm_fw_low_power_mode))
dprintk(VIDC_ERR, "Setting idle response ON failed");
if (venus_hfi_iface_cmdq_write(dev, &pkt))
goto err_session_init_fail;
return (void *) new_session;
err_session_init_fail:
kfree(new_session);
return NULL;
}
static int venus_hfi_send_session_cmd(void *session_id,
int pkt_type)
{
struct vidc_hal_session_cmd_pkt pkt;
int rc = 0;
struct hal_session *session;
if (session_id) {
session = session_id;
} else {
dprintk(VIDC_ERR, "invalid session");
return -ENODEV;
}
rc = create_pkt_cmd_session_cmd(&pkt, pkt_type, (u32)session);
if (rc) {
dprintk(VIDC_ERR, "send session cmd: create pkt failed");
goto err_create_pkt;
}
if (venus_hfi_iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int venus_hfi_session_end(void *session)
{
return venus_hfi_send_session_cmd(session,
HFI_CMD_SYS_SESSION_END);
}
static int venus_hfi_session_abort(void *session)
{
return venus_hfi_send_session_cmd(session,
HFI_CMD_SYS_SESSION_ABORT);
}
static int venus_hfi_session_clean(void *session)
{
struct hal_session *sess_close;
if (!session) {
dprintk(VIDC_ERR, "Invalid Params %s", __func__);
return -EINVAL;
}
sess_close = session;
dprintk(VIDC_DBG, "deleted the session: 0x%p",
sess_close);
mutex_lock(&((struct venus_hfi_device *)
sess_close->device)->session_lock);
list_del(&sess_close->list);
mutex_unlock(&((struct venus_hfi_device *)
sess_close->device)->session_lock);
kfree(sess_close);
return 0;
}
static int venus_hfi_session_set_buffers(void *sess,
struct vidc_buffer_addr_info *buffer_info)
{
struct hfi_cmd_session_set_buffers_packet *pkt;
u8 packet[VIDC_IFACEQ_VAR_LARGE_PKT_SIZE];
int rc = 0;
struct hal_session *session;
if (!sess || !buffer_info) {
dprintk(VIDC_ERR, "Invalid Params");
return -EINVAL;
} else {
session = sess;
}
if (buffer_info->buffer_type == HAL_BUFFER_INPUT)
return 0;
pkt = (struct hfi_cmd_session_set_buffers_packet *)packet;
rc = create_pkt_cmd_session_set_buffers(pkt,
(u32)session, buffer_info);
if (rc) {
dprintk(VIDC_ERR, "set buffers: failed to create packet");
goto err_create_pkt;
}
dprintk(VIDC_INFO, "set buffers: 0x%x", buffer_info->buffer_type);
if (venus_hfi_iface_cmdq_write(session->device, pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int venus_hfi_session_release_buffers(void *sess,
struct vidc_buffer_addr_info *buffer_info)
{
struct hfi_cmd_session_release_buffer_packet *pkt;
u8 packet[VIDC_IFACEQ_VAR_LARGE_PKT_SIZE];
int rc = 0;
struct hal_session *session;
if (!sess || !buffer_info) {
dprintk(VIDC_ERR, "Invalid Params");
return -EINVAL;
} else {
session = sess;
}
if (buffer_info->buffer_type == HAL_BUFFER_INPUT)
return 0;
pkt = (struct hfi_cmd_session_release_buffer_packet *) packet;
rc = create_pkt_cmd_session_release_buffers(pkt,
(u32)session, buffer_info);
if (rc) {
dprintk(VIDC_ERR, "release buffers: failed to create packet");
goto err_create_pkt;
}
dprintk(VIDC_INFO, "Release buffers: 0x%x", buffer_info->buffer_type);
if (venus_hfi_iface_cmdq_write(session->device, pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int venus_hfi_session_load_res(void *sess)
{
return venus_hfi_send_session_cmd(sess,
HFI_CMD_SESSION_LOAD_RESOURCES);
}
static int venus_hfi_session_release_res(void *sess)
{
return venus_hfi_send_session_cmd(sess,
HFI_CMD_SESSION_RELEASE_RESOURCES);
}
static int venus_hfi_session_start(void *sess)
{
return venus_hfi_send_session_cmd(sess,
HFI_CMD_SESSION_START);
}
static int venus_hfi_session_stop(void *sess)
{
return venus_hfi_send_session_cmd(sess,
HFI_CMD_SESSION_STOP);
}
static int venus_hfi_session_suspend(void *sess)
{
return venus_hfi_send_session_cmd(sess,
HFI_CMD_SESSION_SUSPEND);
}
static int venus_hfi_session_resume(void *sess)
{
return venus_hfi_send_session_cmd(sess,
HFI_CMD_SESSION_RESUME);
}
static int venus_hfi_session_etb(void *sess,
struct vidc_frame_data *input_frame)
{
int rc = 0;
struct hal_session *session;
if (!sess || !input_frame) {
dprintk(VIDC_ERR, "Invalid Params");
return -EINVAL;
} else {
session = sess;
}
if (session->is_decoder) {
struct hfi_cmd_session_empty_buffer_compressed_packet pkt;
rc = create_pkt_cmd_session_etb_decoder(&pkt,
(u32)session, input_frame);
if (rc) {
dprintk(VIDC_ERR,
"Session etb decoder: failed to create pkt");
goto err_create_pkt;
}
dprintk(VIDC_DBG, "Q DECODER INPUT BUFFER");
if (venus_hfi_iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
} else {
struct hfi_cmd_session_empty_buffer_uncompressed_plane0_packet
pkt;
rc = create_pkt_cmd_session_etb_encoder(&pkt,
(u32)session, input_frame);
if (rc) {
dprintk(VIDC_ERR,
"Session etb encoder: failed to create pkt");
goto err_create_pkt;
}
dprintk(VIDC_DBG, "Q ENCODER INPUT BUFFER");
if (venus_hfi_iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
}
err_create_pkt:
return rc;
}
static int venus_hfi_session_ftb(void *sess,
struct vidc_frame_data *output_frame)
{
struct hfi_cmd_session_fill_buffer_packet pkt;
int rc = 0;
struct hal_session *session;
if (!sess || !output_frame) {
dprintk(VIDC_ERR, "Invalid Params");
return -EINVAL;
} else {
session = sess;
}
rc = create_pkt_cmd_session_ftb(&pkt, (u32)session, output_frame);
if (rc) {
dprintk(VIDC_ERR, "Session ftb: failed to create pkt");
goto err_create_pkt;
}
if (venus_hfi_iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int venus_hfi_session_parse_seq_hdr(void *sess,
struct vidc_seq_hdr *seq_hdr)
{
struct hfi_cmd_session_parse_sequence_header_packet *pkt;
int rc = 0;
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
struct hal_session *session;
if (!sess || !seq_hdr) {
dprintk(VIDC_ERR, "Invalid Params");
return -EINVAL;
} else {
session = sess;
}
pkt = (struct hfi_cmd_session_parse_sequence_header_packet *) packet;
rc = create_pkt_cmd_session_parse_seq_header(pkt, (u32)session,
seq_hdr);
if (rc) {
dprintk(VIDC_ERR,
"Session parse seq hdr: failed to create pkt");
goto err_create_pkt;
}
if (venus_hfi_iface_cmdq_write(session->device, pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int venus_hfi_session_get_seq_hdr(void *sess,
struct vidc_seq_hdr *seq_hdr)
{
struct hfi_cmd_session_get_sequence_header_packet *pkt;
int rc = 0;
u8 packet[VIDC_IFACEQ_VAR_SMALL_PKT_SIZE];
struct hal_session *session;
if (!sess || !seq_hdr) {
dprintk(VIDC_ERR, "Invalid Params");
return -EINVAL;
} else {
session = sess;
}
pkt = (struct hfi_cmd_session_get_sequence_header_packet *) packet;
rc = create_pkt_cmd_session_get_seq_hdr(pkt, (u32)session, seq_hdr);
if (rc) {
dprintk(VIDC_ERR, "Session get seq hdr: failed to create pkt");
goto err_create_pkt;
}
if (venus_hfi_iface_cmdq_write(session->device, pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int venus_hfi_session_get_buf_req(void *sess)
{
struct hfi_cmd_session_get_property_packet pkt;
int rc = 0;
struct hal_session *session;
if (sess) {
session = sess;
} else {
dprintk(VIDC_ERR, "invalid session");
return -ENODEV;
}
rc = create_pkt_cmd_session_get_buf_req(&pkt, (u32)session);
if (rc) {
dprintk(VIDC_ERR, "Session get buf req: failed to create pkt");
goto err_create_pkt;
}
if (venus_hfi_iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int venus_hfi_session_flush(void *sess, enum hal_flush flush_mode)
{
struct hfi_cmd_session_flush_packet pkt;
int rc = 0;
struct hal_session *session;
if (sess) {
session = sess;
} else {
dprintk(VIDC_ERR, "invalid session");
return -ENODEV;
}
rc = create_pkt_cmd_session_flush(&pkt, (u32)session, flush_mode);
if (rc) {
dprintk(VIDC_ERR, "Session flush: failed to create pkt");
goto err_create_pkt;
}
if (venus_hfi_iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int venus_hfi_check_core_registered(
struct hal_device_data core, u32 fw_addr,
u32 reg_addr, u32 reg_size, u32 irq)
{
struct venus_hfi_device *device;
struct list_head *curr, *next;
if (core.dev_count) {
list_for_each_safe(curr, next, &core.dev_head) {
device = list_entry(curr,
struct venus_hfi_device, list);
if (device && device->hal_data->irq == irq &&
(CONTAINS(device->hal_data->
device_base_addr,
FIRMWARE_SIZE, fw_addr) ||
CONTAINS(fw_addr, FIRMWARE_SIZE,
device->hal_data->
device_base_addr) ||
CONTAINS((u32)device->hal_data->
register_base_addr,
reg_size, reg_addr) ||
CONTAINS(reg_addr, reg_size,
(u32)device->hal_data->
register_base_addr) ||
OVERLAPS((u32)device->hal_data->
register_base_addr,
reg_size, reg_addr, reg_size) ||
OVERLAPS(reg_addr, reg_size,
(u32)device->hal_data->
register_base_addr, reg_size) ||
OVERLAPS(device->hal_data->
device_base_addr,
FIRMWARE_SIZE, fw_addr,
FIRMWARE_SIZE) ||
OVERLAPS(fw_addr, FIRMWARE_SIZE,
device->hal_data->
device_base_addr,
FIRMWARE_SIZE))) {
return 0;
} else {
dprintk(VIDC_INFO, "Device not registered");
return -EINVAL;
}
}
} else {
dprintk(VIDC_INFO, "no device Registered");
}
return -EINVAL;
}
static void venus_hfi_process_sys_watchdog_timeout(
struct venus_hfi_device *device)
{
struct msm_vidc_cb_cmd_done cmd_done;
memset(&cmd_done, 0, sizeof(struct msm_vidc_cb_cmd_done));
cmd_done.device_id = device->device_id;
device->callback(SYS_WATCHDOG_TIMEOUT, &cmd_done);
}
static int venus_hfi_is_cmd_pending(struct venus_hfi_device *dev)
{
struct hfi_queue_header *queue;
struct vidc_iface_q_info *q_info;
u32 write_ptr, read_ptr;
u32 rc = 0;
q_info = &dev->iface_queues[VIDC_IFACEQ_CMDQ_IDX];
if (!q_info)
dprintk(VIDC_ERR, "cannot read shared Q's");
queue = (struct hfi_queue_header *) q_info->q_hdr;
if (!queue) {
dprintk(VIDC_ERR, "queue not present");
return -ENOENT;
}
write_ptr = (u32)queue->qhdr_write_idx;
read_ptr = (u32)queue->qhdr_read_idx;
rc = read_ptr - write_ptr;
return rc;
}
static int venus_hfi_try_clk_gating(struct venus_hfi_device *device)
{
int rc = 0;
u32 ctrl_status = 0;
if (!device) {
dprintk(VIDC_ERR, "invalid device");
return -ENODEV;
}
mutex_lock(&device->write_lock);
mutex_lock(&device->clock_lock);
rc = venus_hfi_is_cmd_pending(device);
ctrl_status = venus_hfi_read_register(
device,
VIDC_CPU_CS_SCIACMDARG0);
if (((ctrl_status & VIDC_CPU_CS_SCIACMDARG0_HFI_CTRL_INIT_IDLE_MSG_BMSK)
!= 0) && !rc)
venus_hfi_clk_gating_on(device);
mutex_unlock(&device->clock_lock);
mutex_unlock(&device->write_lock);
return rc;
}
static void venus_hfi_process_msg_event_notify(
struct venus_hfi_device *device, void *packet)
{
struct hfi_sfr_struct *vsfr = NULL;
struct hfi_msg_event_notify_packet *event_pkt;
struct vidc_hal_msg_pkt_hdr *msg_hdr;
msg_hdr = (struct vidc_hal_msg_pkt_hdr *)packet;
event_pkt =
(struct hfi_msg_event_notify_packet *)msg_hdr;
if (event_pkt && event_pkt->event_id ==
HFI_EVENT_SYS_ERROR) {
vsfr = (struct hfi_sfr_struct *)
device->sfr.align_virtual_addr;
if (vsfr)
dprintk(VIDC_ERR, "SFR Message from FW : %s",
vsfr->rg_data);
}
}
static void venus_hfi_response_handler(struct venus_hfi_device *device)
{
u8 packet[VIDC_IFACEQ_MED_PKT_SIZE];
u32 rc = 0;
struct hfi_sfr_struct *vsfr = NULL;
dprintk(VIDC_INFO, "#####venus_hfi_response_handler#####\n");
if (device) {
if ((device->intr_status &
VIDC_WRAPPER_INTR_CLEAR_A2HWD_BMSK)) {
dprintk(VIDC_ERR, "Received: Watchdog timeout %s",
__func__);
vsfr = (struct hfi_sfr_struct *)
device->sfr.align_virtual_addr;
if (vsfr)
dprintk(VIDC_ERR,
"SFR Message from FW : %s",
vsfr->rg_data);
venus_hfi_process_sys_watchdog_timeout(device);
}
while (!venus_hfi_iface_msgq_read(device, packet)) {
rc = hfi_process_msg_packet(device->callback,
device->device_id,
(struct vidc_hal_msg_pkt_hdr *) packet,
&device->sess_head, &device->session_lock);
if (rc == HFI_MSG_EVENT_NOTIFY)
venus_hfi_process_msg_event_notify(
device, (void *)packet);
}
while (!venus_hfi_iface_dbgq_read(device, packet)) {
struct hfi_msg_sys_debug_packet *pkt =
(struct hfi_msg_sys_debug_packet *) packet;
dprintk(VIDC_FW, "FW-SAYS: %s", pkt->rg_msg_data);
}
if (rc == HFI_MSG_SYS_IDLE)
rc = venus_hfi_try_clk_gating(device);
} else {
dprintk(VIDC_ERR, "SPURIOUS_INTERRUPT");
}
}
static void venus_hfi_core_work_handler(struct work_struct *work)
{
struct venus_hfi_device *device = list_first_entry(
&hal_ctxt.dev_head, struct venus_hfi_device, list);
dprintk(VIDC_INFO, " GOT INTERRUPT () ");
if (!device->callback) {
dprintk(VIDC_ERR, "No interrupt callback function: %p\n",
device);
return;
}
venus_hfi_core_clear_interrupt(device);
venus_hfi_response_handler(device);
if (!(device->intr_status & VIDC_WRAPPER_INTR_STATUS_A2HWD_BMSK))
enable_irq(device->hal_data->irq);
}
static DECLARE_WORK(venus_hfi_work, venus_hfi_core_work_handler);
static irqreturn_t venus_hfi_isr(int irq, void *dev)
{
struct venus_hfi_device *device = dev;
dprintk(VIDC_INFO, "vidc_hal_isr() %d ", irq);
disable_irq_nosync(irq);
queue_work(device->vidc_workq, &venus_hfi_work);
dprintk(VIDC_INFO, "vidc_hal_isr() %d ", irq);
return IRQ_HANDLED;
}
static int venus_hfi_init_regs_and_interrupts(
struct venus_hfi_device *device,
struct msm_vidc_platform_resources *res)
{
struct hal_data *hal = NULL;
int rc = 0;
device->base_addr = res->fw_base_addr;
device->register_base = res->register_base;
device->register_size = res->register_size;
device->irq = res->irq;
rc = venus_hfi_check_core_registered(hal_ctxt, device->base_addr,
device->register_base, device->register_size,
device->irq);
if (!rc) {
dprintk(VIDC_ERR, "Core present/Already added");
rc = -EEXIST;
goto err_core_init;
}
dprintk(VIDC_DBG, "HAL_DATA will be assigned now");
hal = (struct hal_data *)
kzalloc(sizeof(struct hal_data), GFP_KERNEL);
if (!hal) {
dprintk(VIDC_ERR, "Failed to alloc");
rc = -ENOMEM;
goto err_core_init;
}
hal->irq = device->irq;
hal->device_base_addr = device->base_addr;
hal->register_base_addr =
ioremap_nocache(device->register_base, device->register_size);
if (!hal->register_base_addr) {
dprintk(VIDC_ERR,
"could not map reg addr %d of size %d",
device->register_base, device->register_size);
goto error_irq_fail;
}
device->hal_data = hal;
rc = request_irq(device->irq, venus_hfi_isr, IRQF_TRIGGER_HIGH,
"msm_vidc", device);
if (unlikely(rc)) {
dprintk(VIDC_ERR, "() :request_irq failed\n");
goto error_irq_fail;
}
disable_irq_nosync(device->irq);
return rc;
error_irq_fail:
kfree(hal);
err_core_init:
return rc;
}
static inline int venus_hfi_init_clocks(struct msm_vidc_platform_resources *res,
struct venus_hfi_device *device)
{
struct venus_core_clock *cl;
int i;
int rc = 0;
struct venus_core_clock *clock;
if (!res || !device) {
dprintk(VIDC_ERR, "Invalid params: %p\n", device);
return -EINVAL;
}
clock = device->resources.clock;
strlcpy(clock[VCODEC_CLK].name, "core_clk",
sizeof(clock[VCODEC_CLK].name));
strlcpy(clock[VCODEC_AHB_CLK].name, "iface_clk",
sizeof(clock[VCODEC_AHB_CLK].name));
strlcpy(clock[VCODEC_AXI_CLK].name, "bus_clk",
sizeof(clock[VCODEC_AXI_CLK].name));
if (res->has_ocmem) {
strlcpy(clock[VCODEC_OCMEM_CLK].name, "mem_clk",
sizeof(clock[VCODEC_OCMEM_CLK].name));
}
clock[VCODEC_CLK].count = res->load_freq_tbl_size;
memcpy((void *)clock[VCODEC_CLK].load_freq_tbl, res->load_freq_tbl,
clock[VCODEC_CLK].count * sizeof(*res->load_freq_tbl));
dprintk(VIDC_DBG, "count = %d\n", clock[VCODEC_CLK].count);
if (!clock[VCODEC_CLK].count) {
dprintk(VIDC_ERR, "Failed to read clock frequency\n");
goto fail_init_clocks;
}
for (i = 0; i < clock[VCODEC_CLK].count; i++) {
dprintk(VIDC_DBG,
"load = %d, freq = %d\n",
clock[VCODEC_CLK].load_freq_tbl[i].load,
clock[VCODEC_CLK].load_freq_tbl[i].freq
);
}
for (i = 0; i < VCODEC_MAX_CLKS; i++) {
if (i == VCODEC_OCMEM_CLK && !res->has_ocmem)
continue;
cl = &device->resources.clock[i];
if (!cl->clk) {
cl->clk = devm_clk_get(&res->pdev->dev, cl->name);
if (IS_ERR_OR_NULL(cl->clk)) {
dprintk(VIDC_ERR,
"Failed to get clock: %s\n", cl->name);
rc = PTR_ERR(cl->clk);
break;
}
}
}
if (i < VCODEC_MAX_CLKS) {
for (--i; i >= 0; i--) {
if (i == VCODEC_OCMEM_CLK && !res->has_ocmem)
continue;
cl = &device->resources.clock[i];
clk_put(cl->clk);
}
}
fail_init_clocks:
return rc;
}
static inline void venus_hfi_deinit_clocks(struct venus_hfi_device *device)
{
int i;
if (!device) {
dprintk(VIDC_ERR, "Invalid args\n");
return;
}
for (i = 0; i < VCODEC_MAX_CLKS; i++) {
if (i == VCODEC_OCMEM_CLK && !device->res->has_ocmem)
continue;
clk_put(device->resources.clock[i].clk);
}
}
static inline void venus_hfi_disable_clks(struct venus_hfi_device *device)
{
int i;
struct venus_core_clock *cl;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %p\n", device);
return;
}
if (device->clocks_enabled) {
for (i = VCODEC_CLK; i < VCODEC_MAX_CLKS; i++) {
cl = &device->resources.clock[i];
clk_disable(cl->clk);
}
} else {
for (i = device->clk_gating_level + 1;
i < VCODEC_MAX_CLKS; i++) {
cl = &device->resources.clock[i];
clk_disable(cl->clk);
}
}
for (i = VCODEC_CLK; i < VCODEC_MAX_CLKS; i++) {
if (i == VCODEC_OCMEM_CLK && !device->res->has_ocmem)
continue;
cl = &device->resources.clock[i];
clk_unprepare(cl->clk);
}
device->clocks_enabled = 0;
}
static inline int venus_hfi_enable_clks(struct venus_hfi_device *device)
{
int i = 0;
struct venus_core_clock *cl;
int rc = 0;
if (!device) {
dprintk(VIDC_ERR, "Invalid params: %p\n", device);
return -EINVAL;
}
for (i = VCODEC_CLK; i < VCODEC_MAX_CLKS; i++) {
if (i == VCODEC_OCMEM_CLK && !device->res->has_ocmem)
continue;
cl = &device->resources.clock[i];
rc = clk_prepare_enable(cl->clk);
if (rc) {
dprintk(VIDC_ERR, "Failed to enable clocks\n");
goto fail_clk_enable;
} else {
dprintk(VIDC_DBG, "Clock: %s enabled\n", cl->name);
}
}
device->clocks_enabled = 1;
return rc;
fail_clk_enable:
for (; i >= 0; i--) {
cl = &device->resources.clock[i];
clk_disable_unprepare(cl->clk);
}
return rc;
}
static int venus_hfi_register_iommu_domains(struct venus_hfi_device *device,
struct msm_vidc_platform_resources *res)
{
struct iommu_domain *domain;
int rc = 0, i = 0;
struct iommu_set *iommu_group_set;
struct iommu_info *iommu_map;
if (!device || !res)
return -EINVAL;
iommu_group_set = &device->res->iommu_group_set;
for (i = 0; i < iommu_group_set->count; i++) {
iommu_map = &iommu_group_set->iommu_maps[i];
iommu_map->group = iommu_group_find(iommu_map->name);
if (!iommu_map->group) {
dprintk(VIDC_ERR, "Failed to find group :%s\n",
iommu_map->name);
goto fail_group;
}
domain = iommu_group_get_iommudata(iommu_map->group);
if (!domain) {
dprintk(VIDC_ERR,
"Failed to get domain data for group %p",
iommu_map->group);
goto fail_group;
}
iommu_map->domain = msm_find_domain_no(domain);
if (iommu_map->domain < 0) {
dprintk(VIDC_ERR,
"Failed to get domain index for domain %p",
domain);
goto fail_group;
}
}
return rc;
fail_group:
for (--i; i >= 0; i--) {
iommu_map = &iommu_group_set->iommu_maps[i];
if (iommu_map->group)
iommu_group_put(iommu_map->group);
iommu_map->group = NULL;
iommu_map->domain = -1;
}
return -EINVAL;
}
static void venus_hfi_deregister_iommu_domains(struct venus_hfi_device *device)
{
struct iommu_set *iommu_group_set;
struct iommu_info *iommu_map;
int i = 0;
if (!device)
return;
iommu_group_set = &device->res->iommu_group_set;
for (i = 0; i < iommu_group_set->count; i++) {
iommu_map = &iommu_group_set->iommu_maps[i];
if (iommu_map->group)
iommu_group_put(iommu_map->group);
iommu_map->group = NULL;
iommu_map->domain = -1;
}
}
static void venus_hfi_deinit_bus(struct venus_hfi_device *device)
{
struct venus_bus_info *bus_info;
int i = 0;
if (!device)
return;
bus_info = &device->resources.bus_info;
for (i = 0; i < MSM_VIDC_MAX_DEVICES; i++) {
if (bus_info->ddr_handle[i]) {
msm_bus_scale_unregister_client(
bus_info->ddr_handle[i]);
bus_info->ddr_handle[i] = 0;
}
if (bus_info->ocmem_handle[i]) {
msm_bus_scale_unregister_client(
bus_info->ocmem_handle[i]);
bus_info->ocmem_handle[i] = 0;
}
}
}
static int venus_hfi_init_bus(struct venus_hfi_device *device)
{
struct venus_bus_info *bus_info;
int rc = 0;
if ((!device) || (!device->res->bus_pdata))
return -EINVAL;
bus_info = &device->resources.bus_info;
bus_info->ddr_handle[MSM_VIDC_ENCODER] =
msm_bus_scale_register_client(
&device->res->bus_pdata[BUS_IDX_ENC_DDR]);
if (!bus_info->ddr_handle[MSM_VIDC_ENCODER]) {
dprintk(VIDC_ERR, "Failed to register bus scale client\n");
goto err_init_bus;
}
bus_info->ddr_handle[MSM_VIDC_DECODER] =
msm_bus_scale_register_client(
&device->res->bus_pdata[BUS_IDX_DEC_DDR]);
if (!bus_info->ddr_handle[MSM_VIDC_DECODER]) {
dprintk(VIDC_ERR, "Failed to register bus scale client\n");
goto err_init_bus;
}
if (device->res->has_ocmem) {
bus_info->ocmem_handle[MSM_VIDC_ENCODER] =
msm_bus_scale_register_client(
&device->res->bus_pdata[BUS_IDX_ENC_OCMEM]);
if (!bus_info->ocmem_handle[MSM_VIDC_ENCODER]) {
dprintk(VIDC_ERR,
"Failed to register bus scale client\n");
goto err_init_bus;
}
bus_info->ocmem_handle[MSM_VIDC_DECODER] =
msm_bus_scale_register_client(
&device->res->bus_pdata[BUS_IDX_DEC_OCMEM]);
if (!bus_info->ocmem_handle[MSM_VIDC_DECODER]) {
dprintk(VIDC_ERR,
"Failed to register bus scale client\n");
goto err_init_bus;
}
}
return rc;
err_init_bus:
venus_hfi_deinit_bus(device);
return -EINVAL;
}
static const u32 venus_hfi_bus_table[] = {
36000,
110400,
244800,
489000,
783360,
979200,
};
static int venus_hfi_get_bus_vector(struct venus_hfi_device *device, int load,
enum session_type type, enum mem_type mtype)
{
int num_rows = sizeof(venus_hfi_bus_table)/(sizeof(u32));
int i, j;
int idx = 0;
if (!device || (mtype != DDR_MEM && mtype != OCMEM_MEM) ||
(type != MSM_VIDC_ENCODER && type != MSM_VIDC_DECODER)) {
dprintk(VIDC_ERR, "%s invalid params", __func__);
return -EINVAL;
}
for (i = 0; i < num_rows; i++) {
if (load <= venus_hfi_bus_table[i])
break;
}
if (type == MSM_VIDC_ENCODER)
idx = (mtype == DDR_MEM) ? BUS_IDX_ENC_DDR : BUS_IDX_ENC_OCMEM;
else
idx = (mtype == DDR_MEM) ? BUS_IDX_DEC_DDR : BUS_IDX_DEC_OCMEM;
j = clamp(i, 0, num_rows-1) + 1;
/* Ensure bus index remains within the supported range,
* as specified in the device dtsi file */
j = clamp(j, 0, device->res->bus_pdata[idx].num_usecases - 1);
dprintk(VIDC_DBG, "Required bus = %d\n", j);
return j;
}
static int venus_hfi_scale_bus(void *dev, int load,
enum session_type type, enum mem_type mtype)
{
int rc = 0;
u32 handle = 0;
struct venus_hfi_device *device = dev;
int bus_vector = 0;
if (!device) {
dprintk(VIDC_ERR, "%s invalid device handle %p",
__func__, device);
return -EINVAL;
}
if (mtype & DDR_MEM)
handle = device->resources.bus_info.ddr_handle[type];
if (mtype & OCMEM_MEM)
handle = device->resources.bus_info.ocmem_handle[type];
if (handle) {
bus_vector = venus_hfi_get_bus_vector(device, load,
type, mtype);
if (bus_vector < 0) {
dprintk(VIDC_ERR, "Failed to get bus vector\n");
return -EINVAL;
}
rc = msm_bus_scale_client_update_request(handle, bus_vector);
if (rc)
dprintk(VIDC_ERR, "Failed to scale bus: %d\n", rc);
} else {
dprintk(VIDC_ERR, "Failed to scale bus, mtype: %d\n",
mtype);
rc = -EINVAL;
}
return rc;
}
static int venus_hfi_unvote_bus(void *dev,
enum session_type type, enum mem_type mtype)
{
int rc = 0;
u32 handle = 0;
struct venus_hfi_device *device = dev;
if (!device) {
dprintk(VIDC_ERR, "%s invalid device handle %p",
__func__, device);
return -EINVAL;
}
if (mtype & DDR_MEM)
handle = device->resources.bus_info.ddr_handle[type];
if (mtype & OCMEM_MEM)
handle = device->resources.bus_info.ocmem_handle[type];
if (handle) {
rc = msm_bus_scale_client_update_request(
handle, 0);
if (rc)
dprintk(VIDC_ERR, "Failed to unvote bus: %d\n", rc);
} else {
dprintk(VIDC_ERR, "Failed to unvote bus, mtype: %d\n",
mtype);
rc = -EINVAL;
}
return rc;
}
static int venus_hfi_set_ocmem(void *dev, struct ocmem_buf *ocmem)
{
struct vidc_resource_hdr rhdr;
struct venus_hfi_device *device = dev;
int rc = 0;
if (!device || !ocmem) {
dprintk(VIDC_ERR, "Invalid params, core:%p, ocmem: %p\n",
device, ocmem);
return -EINVAL;
}
rhdr.resource_id = VIDC_RESOURCE_OCMEM;
rhdr.resource_handle = (u32) &device->resources.ocmem;
rhdr.size = ocmem->len;
rc = venus_hfi_core_set_resource(device, &rhdr, ocmem);
if (rc) {
dprintk(VIDC_ERR, "Failed to set OCMEM on driver\n");
goto ocmem_set_failed;
}
dprintk(VIDC_DBG, "OCMEM set, addr = %lx, size: %ld\n",
ocmem->addr, ocmem->len);
ocmem_set_failed:
return rc;
}
static int venus_hfi_unset_ocmem(void *dev)
{
struct vidc_resource_hdr rhdr;
struct venus_hfi_device *device = dev;
int rc = 0;
if (!device) {
dprintk(VIDC_ERR, "%s Invalid params, device:%p\n",
__func__, device);
rc = -EINVAL;
goto ocmem_unset_failed;
}
if (!device->resources.ocmem.buf) {
dprintk(VIDC_INFO, "%s Trying to free OCMEM which is not set",
__func__);
rc = -EINVAL;
goto ocmem_unset_failed;
}
rhdr.resource_id = VIDC_RESOURCE_OCMEM;
rhdr.resource_handle = (u32) &device->resources.ocmem;
rc = venus_hfi_core_release_resource(device, &rhdr);
if (rc)
dprintk(VIDC_ERR, "Failed to unset OCMEM on driver\n");
ocmem_unset_failed:
return rc;
}
static int venus_hfi_ocmem_notify_handler(struct notifier_block *this,
unsigned long event, void *data)
{
struct ocmem_buf *buff = data;
struct venus_hfi_device *device;
struct venus_resources *resources;
struct on_chip_mem *ocmem;
int rc = NOTIFY_DONE;
if (event == OCMEM_ALLOC_GROW) {
ocmem = container_of(this, struct on_chip_mem, vidc_ocmem_nb);
if (!ocmem) {
dprintk(VIDC_ERR, "Wrong handler passed\n");
rc = NOTIFY_BAD;
goto err_ocmem_notify;
}
resources = container_of(ocmem,
struct venus_resources, ocmem);
device = container_of(resources,
struct venus_hfi_device, resources);
if (venus_hfi_set_ocmem(device, buff)) {
dprintk(VIDC_ERR, "Failed to set ocmem: %d\n", rc);
goto err_ocmem_notify;
}
rc = NOTIFY_OK;
}
err_ocmem_notify:
return rc;
}
static void venus_hfi_ocmem_init(struct venus_hfi_device *device)
{
struct on_chip_mem *ocmem;
ocmem = &device->resources.ocmem;
ocmem->vidc_ocmem_nb.notifier_call = venus_hfi_ocmem_notify_handler;
ocmem->handle =
ocmem_notifier_register(OCMEM_VIDEO, &ocmem->vidc_ocmem_nb);
if (!ocmem->handle) {
dprintk(VIDC_WARN, "Failed to register OCMEM notifier.");
dprintk(VIDC_INFO, " Performance will be impacted\n");
}
}
static int venus_hfi_alloc_ocmem(void *dev, unsigned long size)
{
int rc = 0;
struct ocmem_buf *ocmem_buffer;
struct venus_hfi_device *device = dev;
if (!device || !size) {
dprintk(VIDC_ERR, "%s Invalid param, core: %p, size: %lu\n",
__func__, device, size);
return -EINVAL;
}
ocmem_buffer = device->resources.ocmem.buf;
if (!ocmem_buffer ||
ocmem_buffer->len < size) {
ocmem_buffer = ocmem_allocate(OCMEM_VIDEO, size);
if (IS_ERR_OR_NULL(ocmem_buffer)) {
dprintk(VIDC_ERR,
"ocmem_allocate_nb failed: %d\n",
(u32) ocmem_buffer);
rc = -ENOMEM;
}
device->resources.ocmem.buf = ocmem_buffer;
rc = venus_hfi_set_ocmem(device, ocmem_buffer);
if (rc) {
dprintk(VIDC_ERR, "Failed to set ocmem: %d\n", rc);
goto ocmem_set_failed;
}
} else
dprintk(VIDC_DBG,
"OCMEM is enough. reqd: %lu, available: %lu\n",
size, ocmem_buffer->len);
ocmem_set_failed:
return rc;
}
static int venus_hfi_free_ocmem(void *dev)
{
struct venus_hfi_device *device = dev;
int rc = 0;
if (!device) {
dprintk(VIDC_ERR, "%s invalid device handle %p",
__func__, device);
return -EINVAL;
}
if (device->resources.ocmem.buf) {
rc = ocmem_free(OCMEM_VIDEO, device->resources.ocmem.buf);
if (rc)
dprintk(VIDC_ERR, "Failed to free ocmem\n");
device->resources.ocmem.buf = NULL;
}
return rc;
}
static void venus_hfi_deinit_ocmem(struct venus_hfi_device *device)
{
if (device->resources.ocmem.handle)
ocmem_notifier_unregister(device->resources.ocmem.handle,
&device->resources.ocmem.vidc_ocmem_nb);
}
static int venus_hfi_init_resources(struct venus_hfi_device *device,
struct msm_vidc_platform_resources *res)
{
int rc = 0;
device->res = res;
rc = venus_hfi_init_clocks(res, device);
if (rc) {
dprintk(VIDC_ERR, "Failed to init clocks\n");
rc = -ENODEV;
goto err_init_clocks;
}
rc = venus_hfi_init_bus(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to init bus: %d\n", rc);
goto err_init_bus;
}
rc = venus_hfi_register_iommu_domains(device, res);
if (rc) {
dprintk(VIDC_ERR, "Failed to register iommu domains: %d\n", rc);
goto err_register_iommu_domain;
}
if (res->has_ocmem)
venus_hfi_ocmem_init(device);
return rc;
err_register_iommu_domain:
venus_hfi_deinit_bus(device);
err_init_bus:
venus_hfi_deinit_clocks(device);
err_init_clocks:
return rc;
}
static void venus_hfi_deinit_resources(struct venus_hfi_device *device)
{
if (device->res->has_ocmem)
venus_hfi_deinit_ocmem(device);
venus_hfi_deregister_iommu_domains(device);
venus_hfi_deinit_bus(device);
venus_hfi_deinit_clocks(device);
}
static int venus_hfi_iommu_attach(struct venus_hfi_device *device)
{
int rc = 0;
struct iommu_domain *domain;
int i;
struct iommu_set *iommu_group_set;
struct iommu_group *group;
struct iommu_info *iommu_map;
if (!device || !device->res)
return -EINVAL;
iommu_group_set = &device->res->iommu_group_set;
for (i = 0; i < iommu_group_set->count; i++) {
iommu_map = &iommu_group_set->iommu_maps[i];
group = iommu_map->group;
domain = msm_get_iommu_domain(iommu_map->domain);
if (IS_ERR_OR_NULL(domain)) {
dprintk(VIDC_ERR,
"Failed to get domain: %s\n", iommu_map->name);
rc = PTR_ERR(domain);
break;
}
rc = iommu_attach_group(domain, group);
if (rc) {
dprintk(VIDC_ERR,
"IOMMU attach failed: %s\n", iommu_map->name);
break;
}
}
if (i < iommu_group_set->count) {
i--;
for (; i >= 0; i--) {
iommu_map = &iommu_group_set->iommu_maps[i];
group = iommu_map->group;
domain = msm_get_iommu_domain(iommu_map->domain);
if (group && domain)
iommu_detach_group(domain, group);
}
}
return rc;
}
static void venus_hfi_iommu_detach(struct venus_hfi_device *device)
{
struct iommu_group *group;
struct iommu_domain *domain;
struct iommu_set *iommu_group_set;
struct iommu_info *iommu_map;
int i;
if (!device || !device->res) {
dprintk(VIDC_ERR, "Invalid paramter: %p\n", device);
return;
}
iommu_group_set = &device->res->iommu_group_set;
for (i = 0; i < iommu_group_set->count; i++) {
iommu_map = &iommu_group_set->iommu_maps[i];
group = iommu_map->group;
domain = msm_get_iommu_domain(iommu_map->domain);
if (group && domain)
iommu_detach_group(domain, group);
}
}
static int venus_hfi_iommu_get_domain_partition(void *dev, u32 flags,
u32 buffer_type, int *domain, int *partition)
{
struct venus_hfi_device *device = dev;
if (!device) {
dprintk(VIDC_ERR, "%s: Invalid param device: %p\n",
__func__, device);
return -EINVAL;
}
msm_smem_get_domain_partition(device->hal_client, flags, buffer_type,
domain, partition);
return 0;
}
static int protect_cp_mem(struct venus_hfi_device *device)
{
struct tzbsp_memprot memprot;
unsigned int resp = 0;
int rc = 0;
struct iommu_set *iommu_group_set;
struct iommu_info *iommu_map;
int i;
if (!device)
return -EINVAL;
iommu_group_set = &device->res->iommu_group_set;
if (!iommu_group_set) {
dprintk(VIDC_ERR, "invalid params: %p\n", iommu_group_set);
return -EINVAL;
}
memprot.cp_start = 0x0;
memprot.cp_size = 0x0;
memprot.cp_nonpixel_start = 0x0;
memprot.cp_nonpixel_size = 0x0;
for (i = 0; i < iommu_group_set->count; i++) {
iommu_map = &iommu_group_set->iommu_maps[i];
if (strcmp(iommu_map->name, "venus_ns") == 0)
memprot.cp_size = iommu_map->addr_range[0].start;
if (strcmp(iommu_map->name, "venus_sec_non_pixel") == 0) {
memprot.cp_nonpixel_start =
iommu_map->addr_range[0].start;
memprot.cp_nonpixel_size =
iommu_map->addr_range[0].size;
}
}
rc = scm_call(SCM_SVC_MP, TZBSP_MEM_PROTECT_VIDEO_VAR, &memprot,
sizeof(memprot), &resp, sizeof(resp));
if (rc)
dprintk(VIDC_ERR,
"Failed to protect memory , rc is :%d, response : %d\n",
rc, resp);
return rc;
}
static int venus_hfi_load_fw(void *dev)
{
int rc = 0;
struct venus_hfi_device *device = dev;
if (!device) {
dprintk(VIDC_ERR, "%s Invalid paramter: %p\n",
__func__, device);
return -EINVAL;
}
mutex_init(&device->clock_lock);
device->clk_gating_level = VCODEC_CLK;
rc = venus_hfi_iommu_attach(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to attach iommu");
goto fail_iommu_attach;
}
if (!device->resources.fw.cookie)
device->resources.fw.cookie = subsystem_get("venus");
if (IS_ERR_OR_NULL(device->resources.fw.cookie)) {
dprintk(VIDC_ERR, "Failed to download firmware\n");
rc = -ENOMEM;
goto fail_load_fw;
}
/*Clocks can be enabled only after pil_get since
* gdsc is turned-on in pil_get*/
rc = venus_hfi_enable_clks(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to enable clocks: %d\n", rc);
goto fail_enable_clks;
}
rc = protect_cp_mem(device);
if (rc) {
dprintk(VIDC_ERR, "Failed to protect memory\n");
goto fail_protect_mem;
}
return rc;
fail_protect_mem:
venus_hfi_disable_clks(device);
fail_enable_clks:
subsystem_put(device->resources.fw.cookie);
fail_load_fw:
device->resources.fw.cookie = NULL;
venus_hfi_iommu_detach(device);
fail_iommu_attach:
return rc;
}
static void venus_hfi_unload_fw(void *dev)
{
struct venus_hfi_device *device = dev;
if (!device) {
dprintk(VIDC_ERR, "%s Invalid paramter: %p\n",
__func__, device);
return;
}
if (device->resources.fw.cookie) {
flush_workqueue(device->vidc_workq);
venus_hfi_disable_clks(device);
subsystem_put(device->resources.fw.cookie);
venus_hfi_interface_queues_release(dev);
venus_hfi_iommu_detach(device);
device->resources.fw.cookie = NULL;
}
}
static int venus_hfi_get_fw_info(void *dev, enum fw_info info)
{
int rc = 0;
struct venus_hfi_device *device = dev;
if (!device) {
dprintk(VIDC_ERR, "%s Invalid paramter: %p\n",
__func__, device);
return -EINVAL;
}
switch (info) {
case FW_BASE_ADDRESS:
rc = device->base_addr;
break;
case FW_REGISTER_BASE:
rc = device->register_base;
break;
case FW_REGISTER_SIZE:
rc = device->register_size;
break;
case FW_IRQ:
rc = device->irq;
break;
default:
dprintk(VIDC_ERR, "Invalid fw info requested");
}
return rc;
}
int venus_hfi_get_stride_scanline(int color_fmt,
int width, int height, int *stride, int *scanlines) {
*stride = VENUS_Y_STRIDE(color_fmt, width);
*scanlines = VENUS_Y_SCANLINES(color_fmt, height);
return 0;
}
int venus_hfi_capability_check(u32 fourcc, u32 width,
u32 *max_width, u32 *max_height)
{
int rc = 0;
if (!max_width || !max_height) {
dprintk(VIDC_ERR, "%s - invalid parameter\n", __func__);
return -EINVAL;
}
if (width > *max_width) {
dprintk(VIDC_ERR,
"Unsupported width = %u supported max width = %u",
width, *max_width);
rc = -ENOTSUPP;
}
return rc;
}
static void *venus_hfi_add_device(u32 device_id,
struct msm_vidc_platform_resources *res,
hfi_cmd_response_callback callback)
{
struct venus_hfi_device *hdevice = NULL;
int rc = 0;
if (device_id || !res || !callback) {
dprintk(VIDC_ERR, "Invalid Paramters");
return NULL;
}
dprintk(VIDC_INFO, "entered , device_id: %d", device_id);
hdevice = (struct venus_hfi_device *)
kzalloc(sizeof(struct venus_hfi_device), GFP_KERNEL);
if (!hdevice) {
dprintk(VIDC_ERR, "failed to allocate new device");
goto err_alloc;
}
rc = venus_hfi_init_regs_and_interrupts(hdevice, res);
if (rc)
goto err_init_regs;
hdevice->device_id = device_id;
hdevice->callback = callback;
hdevice->vidc_workq = create_singlethread_workqueue(
"msm_vidc_workerq_venus");
if (!hdevice->vidc_workq) {
dprintk(VIDC_ERR, ": create workq failed\n");
goto error_createq;
}
if (hal_ctxt.dev_count == 0)
INIT_LIST_HEAD(&hal_ctxt.dev_head);
INIT_LIST_HEAD(&hdevice->list);
list_add_tail(&hdevice->list, &hal_ctxt.dev_head);
hal_ctxt.dev_count++;
return (void *) hdevice;
error_createq:
err_init_regs:
kfree(hdevice);
err_alloc:
return NULL;
}
static void *venus_hfi_get_device(u32 device_id,
struct msm_vidc_platform_resources *res,
hfi_cmd_response_callback callback)
{
struct venus_hfi_device *device;
int rc = 0;
if (!res || !callback) {
dprintk(VIDC_ERR, "Invalid params: %p %p\n", res, callback);
return NULL;
}
device = venus_hfi_add_device(device_id, res, &handle_cmd_response);
if (!device) {
dprintk(VIDC_ERR, "Failed to create HFI device\n");
return NULL;
}
rc = venus_hfi_init_resources(device, res);
if (rc) {
dprintk(VIDC_ERR, "Failed to init resources: %d\n", rc);
goto err_fail_init_res;
}
return device;
err_fail_init_res:
venus_hfi_delete_device(device);
return NULL;
}
void venus_hfi_delete_device(void *device)
{
struct venus_hfi_device *close, *tmp, *dev;
if (device) {
venus_hfi_deinit_resources(device);
dev = (struct venus_hfi_device *) device;
list_for_each_entry_safe(close, tmp, &hal_ctxt.dev_head, list) {
if (close->hal_data->irq == dev->hal_data->irq) {
hal_ctxt.dev_count--;
free_irq(dev->hal_data->irq, close);
list_del(&close->list);
destroy_workqueue(close->vidc_workq);
kfree(close->hal_data);
kfree(close);
break;
}
}
}
}
static void venus_init_hfi_callbacks(struct hfi_device *hdev)
{
hdev->core_init = venus_hfi_core_init;
hdev->core_release = venus_hfi_core_release;
hdev->core_pc_prep = venus_hfi_core_pc_prep;
hdev->core_ping = venus_hfi_core_ping;
hdev->core_trigger_ssr = venus_hfi_core_trigger_ssr;
hdev->session_init = venus_hfi_session_init;
hdev->session_end = venus_hfi_session_end;
hdev->session_abort = venus_hfi_session_abort;
hdev->session_clean = venus_hfi_session_clean;
hdev->session_set_buffers = venus_hfi_session_set_buffers;
hdev->session_release_buffers = venus_hfi_session_release_buffers;
hdev->session_load_res = venus_hfi_session_load_res;
hdev->session_release_res = venus_hfi_session_release_res;
hdev->session_start = venus_hfi_session_start;
hdev->session_stop = venus_hfi_session_stop;
hdev->session_suspend = venus_hfi_session_suspend;
hdev->session_resume = venus_hfi_session_resume;
hdev->session_etb = venus_hfi_session_etb;
hdev->session_ftb = venus_hfi_session_ftb;
hdev->session_parse_seq_hdr = venus_hfi_session_parse_seq_hdr;
hdev->session_get_seq_hdr = venus_hfi_session_get_seq_hdr;
hdev->session_get_buf_req = venus_hfi_session_get_buf_req;
hdev->session_flush = venus_hfi_session_flush;
hdev->session_set_property = venus_hfi_session_set_property;
hdev->session_get_property = venus_hfi_session_get_property;
hdev->scale_clocks = venus_hfi_scale_clocks;
hdev->scale_bus = venus_hfi_scale_bus;
hdev->unvote_bus = venus_hfi_unvote_bus;
hdev->unset_ocmem = venus_hfi_unset_ocmem;
hdev->alloc_ocmem = venus_hfi_alloc_ocmem;
hdev->free_ocmem = venus_hfi_free_ocmem;
hdev->iommu_get_domain_partition = venus_hfi_iommu_get_domain_partition;
hdev->load_fw = venus_hfi_load_fw;
hdev->unload_fw = venus_hfi_unload_fw;
hdev->get_fw_info = venus_hfi_get_fw_info;
hdev->get_stride_scanline = venus_hfi_get_stride_scanline;
hdev->capability_check = venus_hfi_capability_check;
}
int venus_hfi_initialize(struct hfi_device *hdev, u32 device_id,
struct msm_vidc_platform_resources *res,
hfi_cmd_response_callback callback)
{
int rc = 0;
if (!hdev || !res || !callback) {
dprintk(VIDC_ERR, "Invalid params: %p %p %p\n",
hdev, res, callback);
rc = -EINVAL;
goto err_venus_hfi_init;
}
hdev->hfi_device_data = venus_hfi_get_device(device_id, res, callback);
venus_init_hfi_callbacks(hdev);
err_venus_hfi_init:
return rc;
}