blob: 54755f31b22922c7dcdb79b789c4e3e6e80443b2 [file] [log] [blame]
/*
* Copyright (c) 2013-2018 The Linux Foundation. All rights reserved.
*
* Previously licensed under the ISC license by Qualcomm Atheros, Inc.
*
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*
* This file was originally distributed by Qualcomm Atheros, Inc.
* under proprietary terms before Copyright ownership was assigned
* to the Linux Foundation.
*/
/**
* DOC: wma_utis.c
* This file contains utilities and stats related functions.
*/
/* Header files */
#include "wma.h"
#include "wma_api.h"
#include "cds_api.h"
#include "wmi_unified_api.h"
#include "wlan_qct_sys.h"
#include "wni_api.h"
#include "ani_global.h"
#include "wmi_unified.h"
#include "wni_cfg.h"
#include "cfg_api.h"
#include "qdf_nbuf.h"
#include "qdf_types.h"
#include "qdf_mem.h"
#include "ol_txrx_peer_find.h"
#include "wma_types.h"
#include "lim_api.h"
#include "lim_session_utils.h"
#include "cds_utils.h"
#if !defined(REMOVE_PKT_LOG)
#include "pktlog_ac.h"
#endif /* REMOVE_PKT_LOG */
#include "dbglog_host.h"
#include "csr_api.h"
#include "ol_fw.h"
#include "dfs.h"
#include "wma_internal.h"
#include "cds_concurrency.h"
#include "wmi_unified_param.h"
#include "linux/ieee80211.h"
#include "cds_reg_service.h"
/* MCS Based rate table */
/* HT MCS parameters with Nss = 1 */
static struct index_data_rate_type mcs_nss1[] = {
/* MCS L20 S20 L40 S40 */
{0, {65, 72}, {135, 150 } },
{1, {130, 144}, {270, 300 } },
{2, {195, 217}, {405, 450 } },
{3, {260, 289}, {540, 600 } },
{4, {390, 433}, {815, 900 } },
{5, {520, 578}, {1080, 1200} },
{6, {585, 650}, {1215, 1350} },
{7, {650, 722}, {1350, 1500} }
};
/* HT MCS parameters with Nss = 2 */
static struct index_data_rate_type mcs_nss2[] = {
/* MCS L20 S20 L40 S40 */
{0, {130, 144}, {270, 300 } },
{1, {260, 289}, {540, 600 } },
{2, {390, 433}, {810, 900 } },
{3, {520, 578}, {1080, 1200} },
{4, {780, 867}, {1620, 1800} },
{5, {1040, 1156}, {2160, 2400} },
{6, {1170, 1300}, {2430, 2700} },
{7, {1300, 1440}, {2700, 3000} }
};
/* MCS Based VHT rate table */
/* MCS parameters with Nss = 1*/
static struct index_vht_data_rate_type vht_mcs_nss1[] = {
/* MCS L20 S20 L40 S40 L80 S80 */
{0, {65, 72 }, {135, 150}, {293, 325} },
{1, {130, 144}, {270, 300}, {585, 650} },
{2, {195, 217}, {405, 450}, {878, 975} },
{3, {260, 289}, {540, 600}, {1170, 1300} },
{4, {390, 433}, {810, 900}, {1755, 1950} },
{5, {520, 578}, {1080, 1200}, {2340, 2600} },
{6, {585, 650}, {1215, 1350}, {2633, 2925} },
{7, {650, 722}, {1350, 1500}, {2925, 3250} },
{8, {780, 867}, {1620, 1800}, {3510, 3900} },
{9, {865, 960}, {1800, 2000}, {3900, 4333} }
};
/*MCS parameters with Nss = 2*/
static struct index_vht_data_rate_type vht_mcs_nss2[] = {
/* MCS L20 S20 L40 S40 L80 S80 */
{0, {130, 144}, {270, 300}, { 585, 650} },
{1, {260, 289}, {540, 600}, {1170, 1300} },
{2, {390, 433}, {810, 900}, {1755, 1950} },
{3, {520, 578}, {1080, 1200}, {2340, 2600} },
{4, {780, 867}, {1620, 1800}, {3510, 3900} },
{5, {1040, 1156}, {2160, 2400}, {4680, 5200} },
{6, {1170, 1300}, {2430, 2700}, {5265, 5850} },
{7, {1300, 1444}, {2700, 3000}, {5850, 6500} },
{8, {1560, 1733}, {3240, 3600}, {7020, 7800} },
{9, {1730, 1920}, {3600, 4000}, {7800, 8667} }
};
#ifdef BIG_ENDIAN_HOST
/* ############# function definitions ############ */
/**
* wma_swap_bytes() - swap bytes
* @pv: buffer
* @n: swap bytes
*
* Return: none
*/
void wma_swap_bytes(void *pv, uint32_t n)
{
int32_t no_words;
int32_t i;
uint32_t *word_ptr;
no_words = n / sizeof(uint32_t);
word_ptr = (uint32_t *) pv;
for (i = 0; i < no_words; i++)
*(word_ptr + i) = __cpu_to_le32(*(word_ptr + i));
}
#define SWAPME(x, len) wma_swap_bytes(&x, len)
#endif /* BIG_ENDIAN_HOST */
/**
* wma_mcs_rate_match() - find the match mcs rate
* @match_rate: the rate to look up
* @is_sgi: return if the SGI rate is found
* @nss: the nss in use
* @nss1_rate: the nss1 rate
* @nss1_srate: the nss1 SGI rate
* @nss2_rate: the nss2 rate
* @nss2_srate: the nss2 SGI rate
*
* This is a helper function to find the match of the tx_rate
* in terms of the nss1/nss2 rate with non-SGI/SGI.
*
* Return: the found rate or 0 otherwise
*/
static inline uint16_t wma_mcs_rate_match(uint16_t match_rate, bool *is_sgi,
uint8_t nss, uint16_t nss1_rate,
uint16_t nss1_srate,
uint16_t nss2_rate,
uint16_t nss2_srate)
{
WMA_LOGD("%s match_rate: %d, %d %d %d %d",
__func__, match_rate, nss1_rate, nss1_srate, nss2_rate,
nss2_srate);
if (match_rate == nss1_rate) {
return nss1_rate;
} else if (match_rate == nss1_srate) {
*is_sgi = true;
return nss1_srate;
} else if (nss == 2 && match_rate == nss2_rate)
return nss2_rate;
else if (nss == 2 && match_rate == nss2_srate) {
*is_sgi = true;
return nss2_srate;
} else
return 0;
}
/**
* wma_get_mcs_idx() - get mcs index
* @maxRate: max rate
* @rate_flags: rate flags
* @nss: number of nss
* @mcsRateFlag: mcs rate flag
*
* Return: return mcs index
*/
static uint8_t wma_get_mcs_idx(uint16_t maxRate, uint8_t rate_flags,
uint8_t nss, uint8_t *mcsRateFlag)
{
uint8_t index = 0;
uint16_t match_rate = 0;
bool is_sgi = false;
WMA_LOGD("%s rate:%d rate_flgs: 0x%x, nss: %d",
__func__, maxRate, rate_flags, nss);
*mcsRateFlag = rate_flags;
*mcsRateFlag &= ~eHAL_TX_RATE_SGI;
for (index = 0; index < MAX_VHT_MCS_IDX; index++) {
if (rate_flags & eHAL_TX_RATE_VHT80) {
/* check for vht80 nss1/2 rate set */
match_rate = wma_mcs_rate_match(maxRate, &is_sgi, nss,
vht_mcs_nss1[index].ht80_rate[0],
vht_mcs_nss1[index].ht80_rate[1],
vht_mcs_nss2[index].ht80_rate[0],
vht_mcs_nss2[index].ht80_rate[1]);
if (match_rate)
goto rate_found;
}
if ((rate_flags & eHAL_TX_RATE_VHT40) |
(rate_flags & eHAL_TX_RATE_VHT80)) {
/* check for vht40 nss1/2 rate set */
match_rate = wma_mcs_rate_match(maxRate, &is_sgi, nss,
vht_mcs_nss1[index].ht40_rate[0],
vht_mcs_nss1[index].ht40_rate[1],
vht_mcs_nss2[index].ht40_rate[0],
vht_mcs_nss2[index].ht40_rate[1]);
if (match_rate) {
*mcsRateFlag &= ~eHAL_TX_RATE_VHT80;
goto rate_found;
}
}
if ((rate_flags & eHAL_TX_RATE_VHT20) |
(rate_flags & eHAL_TX_RATE_VHT40) |
(rate_flags & eHAL_TX_RATE_VHT80)) {
/* check for vht20 nss1/2 rate set */
match_rate = wma_mcs_rate_match(maxRate, &is_sgi, nss,
vht_mcs_nss1[index].ht20_rate[0],
vht_mcs_nss1[index].ht20_rate[1],
vht_mcs_nss2[index].ht20_rate[0],
vht_mcs_nss2[index].ht20_rate[1]);
if (match_rate) {
*mcsRateFlag &= ~(eHAL_TX_RATE_VHT80 |
eHAL_TX_RATE_VHT40);
goto rate_found;
}
}
}
for (index = 0; index < MAX_HT_MCS_IDX; index++) {
if (rate_flags & eHAL_TX_RATE_HT40) {
/* check for ht40 nss1/2 rate set */
match_rate = wma_mcs_rate_match(maxRate, &is_sgi, nss,
mcs_nss1[index].ht40_rate[0],
mcs_nss1[index].ht40_rate[1],
mcs_nss2[index].ht40_rate[0],
mcs_nss2[index].ht40_rate[1]);
if (match_rate) {
*mcsRateFlag = eHAL_TX_RATE_HT40;
if (nss == 2)
index += MAX_HT_MCS_IDX;
goto rate_found;
}
}
if ((rate_flags & eHAL_TX_RATE_HT20) ||
(rate_flags & eHAL_TX_RATE_HT40)) {
/* check for ht20 nss1/2 rate set */
match_rate = wma_mcs_rate_match(maxRate, &is_sgi, nss,
mcs_nss1[index].ht20_rate[0],
mcs_nss1[index].ht20_rate[1],
mcs_nss2[index].ht20_rate[0],
mcs_nss2[index].ht20_rate[1]);
if (match_rate) {
*mcsRateFlag = eHAL_TX_RATE_HT20;
if (nss == 2)
index += MAX_HT_MCS_IDX;
goto rate_found;
}
}
}
rate_found:
/* set SGI flag only if this is SGI rate */
if (match_rate && is_sgi == true)
*mcsRateFlag |= eHAL_TX_RATE_SGI;
WMA_LOGD("%s - match_rate: %d index: %d rate_flag: 0x%x is_sgi: %d",
__func__, match_rate, index, *mcsRateFlag, is_sgi);
return match_rate ? index : INVALID_MCS_IDX;
}
/**
* wma_peek_vdev_req() - peek what request message is queued for response.
* the function does not delete the node after found
* @wma: WMA handle
* @vdev_id: vdev ID
* @type: request message type
*
* Return: the request message found
*/
static struct wma_target_req *wma_peek_vdev_req(tp_wma_handle wma,
uint8_t vdev_id, uint8_t type)
{
struct wma_target_req *req_msg = NULL;
bool found = false;
qdf_list_node_t *node1 = NULL, *node2 = NULL;
qdf_spin_lock_bh(&wma->vdev_respq_lock);
if (QDF_STATUS_SUCCESS != qdf_list_peek_front(&wma->vdev_resp_queue,
&node2)) {
qdf_spin_unlock_bh(&wma->vdev_respq_lock);
return NULL;
}
do {
node1 = node2;
req_msg = qdf_container_of(node1, struct wma_target_req, node);
if (req_msg->vdev_id != vdev_id)
continue;
if (req_msg->type != type)
continue;
found = true;
break;
} while (QDF_STATUS_SUCCESS == qdf_list_peek_next(&wma->vdev_resp_queue,
node1, &node2));
qdf_spin_unlock_bh(&wma->vdev_respq_lock);
if (!found) {
WMA_LOGE(FL("target request not found for vdev_id %d type %d"),
vdev_id, type);
return NULL;
}
WMA_LOGD(FL("target request found for vdev id: %d type %d msg %d"),
vdev_id, type, req_msg->msg_type);
return req_msg;
}
void wma_lost_link_info_handler(tp_wma_handle wma, uint32_t vdev_id,
int32_t rssi)
{
struct sir_lost_link_info *lost_link_info;
QDF_STATUS qdf_status;
cds_msg_t sme_msg = {0};
if (vdev_id >= wma->max_bssid) {
WMA_LOGE("%s: received invalid vdev_id %d",
__func__, vdev_id);
return;
}
/* report lost link information only for STA mode */
if (wma->interfaces[vdev_id].vdev_up &&
(WMI_VDEV_TYPE_STA == wma->interfaces[vdev_id].type) &&
(0 == wma->interfaces[vdev_id].sub_type)) {
lost_link_info = qdf_mem_malloc(sizeof(*lost_link_info));
if (NULL == lost_link_info) {
WMA_LOGE("%s: failed to allocate memory", __func__);
return;
}
lost_link_info->vdev_id = vdev_id;
lost_link_info->rssi = rssi;
sme_msg.type = eWNI_SME_LOST_LINK_INFO_IND;
sme_msg.bodyptr = lost_link_info;
sme_msg.bodyval = 0;
WMA_LOGD("%s: post msg to SME, bss_idx %d, rssi %d", __func__,
lost_link_info->vdev_id, lost_link_info->rssi);
qdf_status = cds_mq_post_message(QDF_MODULE_ID_SME, &sme_msg);
if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
WMA_LOGE("%s: fail to post msg to SME", __func__);
qdf_mem_free(lost_link_info);
}
}
}
/**
* host_map_smps_mode() - map fw smps mode to enum eSmpsModeValue
* @fw_smps_mode: fw smps mode
*
* Return: return enum eSmpsModeValue
*/
enum eSmpsModeValue host_map_smps_mode(A_UINT32 fw_smps_mode)
{
enum eSmpsModeValue smps_mode = SMPS_MODE_DISABLED;
switch (fw_smps_mode) {
case WMI_SMPS_FORCED_MODE_STATIC:
smps_mode = STATIC_SMPS_MODE;
break;
case WMI_SMPS_FORCED_MODE_DYNAMIC:
smps_mode = DYNAMIC_SMPS_MODE;
break;
default:
smps_mode = SMPS_MODE_DISABLED;
}
return smps_mode;
}
/**
* wma_smps_mode_to_force_mode_param() - Map smps mode to force
* mode commmand param
* @smps_mode: SMPS mode according to the protocol
*
* Return: int > 0 for success else failure
*/
int wma_smps_mode_to_force_mode_param(uint8_t smps_mode)
{
int param = -EINVAL;
switch (smps_mode) {
case STATIC_SMPS_MODE:
param = WMI_SMPS_FORCED_MODE_STATIC;
break;
case DYNAMIC_SMPS_MODE:
param = WMI_SMPS_FORCED_MODE_DYNAMIC;
break;
case SMPS_MODE_DISABLED:
param = WMI_SMPS_FORCED_MODE_DISABLED;
break;
default:
WMA_LOGE(FL("smps mode cannot be mapped :%d "),
smps_mode);
}
return param;
}
#ifdef WLAN_FEATURE_STATS_EXT
/**
* wma_stats_ext_event_handler() - extended stats event handler
* @handle: wma handle
* @event_buf: event buffer received from fw
* @len: length of data
*
* Return: 0 for success or error code
*/
int wma_stats_ext_event_handler(void *handle, uint8_t *event_buf,
uint32_t len)
{
WMI_STATS_EXT_EVENTID_param_tlvs *param_buf;
tSirStatsExtEvent *stats_ext_event;
wmi_stats_ext_event_fixed_param *stats_ext_info;
QDF_STATUS status;
cds_msg_t cds_msg;
uint8_t *buf_ptr;
uint32_t alloc_len;
WMA_LOGD("%s: Posting stats ext event to SME", __func__);
param_buf = (WMI_STATS_EXT_EVENTID_param_tlvs *) event_buf;
if (!param_buf) {
WMA_LOGE("%s: Invalid stats ext event buf", __func__);
return -EINVAL;
}
stats_ext_info = param_buf->fixed_param;
buf_ptr = (uint8_t *) stats_ext_info;
alloc_len = sizeof(tSirStatsExtEvent);
alloc_len += stats_ext_info->data_len;
if (stats_ext_info->data_len > (WMI_SVC_MSG_MAX_SIZE -
WMI_TLV_HDR_SIZE - sizeof(*stats_ext_info)) ||
stats_ext_info->data_len > param_buf->num_data) {
WMA_LOGE("Excess data_len:%d, num_data:%d",
stats_ext_info->data_len, param_buf->num_data);
return -EINVAL;
}
stats_ext_event = (tSirStatsExtEvent *) qdf_mem_malloc(alloc_len);
if (NULL == stats_ext_event) {
WMA_LOGE("%s: Memory allocation failure", __func__);
return -ENOMEM;
}
buf_ptr += sizeof(wmi_stats_ext_event_fixed_param) + WMI_TLV_HDR_SIZE;
stats_ext_event->vdev_id = stats_ext_info->vdev_id;
stats_ext_event->event_data_len = stats_ext_info->data_len;
qdf_mem_copy(stats_ext_event->event_data,
buf_ptr, stats_ext_event->event_data_len);
cds_msg.type = eWNI_SME_STATS_EXT_EVENT;
cds_msg.bodyptr = (void *)stats_ext_event;
cds_msg.bodyval = 0;
status = cds_mq_post_message(QDF_MODULE_ID_SME, &cds_msg);
if (status != QDF_STATUS_SUCCESS) {
WMA_LOGE("%s: Failed to post stats ext event to SME", __func__);
qdf_mem_free(stats_ext_event);
return -EFAULT;
}
WMA_LOGD("%s: stats ext event Posted to SME", __func__);
return 0;
}
#endif /* WLAN_FEATURE_STATS_EXT */
/**
* wma_profile_data_report_event_handler() - fw profiling handler
* @handle: wma handle
* @event_buf: event buffer received from fw
* @len: length of data
*
* Return: 0 for success or error code
*/
int wma_profile_data_report_event_handler(void *handle, uint8_t *event_buf,
uint32_t len)
{
WMI_WLAN_PROFILE_DATA_EVENTID_param_tlvs *param_buf;
wmi_wlan_profile_ctx_t *profile_ctx;
wmi_wlan_profile_t *profile_data;
uint32_t i = 0;
uint32_t entries;
uint8_t *buf_ptr;
char temp_str[150];
param_buf = (WMI_WLAN_PROFILE_DATA_EVENTID_param_tlvs *) event_buf;
if (!param_buf) {
WMA_LOGE("%s: Invalid profile data event buf", __func__);
return -EINVAL;
}
profile_ctx = param_buf->profile_ctx;
buf_ptr = (uint8_t *)profile_ctx;
buf_ptr = buf_ptr + sizeof(wmi_wlan_profile_ctx_t) + WMI_TLV_HDR_SIZE;
profile_data = (wmi_wlan_profile_t *) buf_ptr;
entries = profile_ctx->bin_count;
if (entries > param_buf->num_profile_data) {
WMA_LOGE("FW bin count %d more than data %d in TLV hdr",
entries,
param_buf->num_profile_data);
return -EINVAL;
}
QDF_TRACE(QDF_MODULE_ID_WMA, QDF_TRACE_LEVEL_ERROR,
"Profile data stats\n");
QDF_TRACE(QDF_MODULE_ID_WMA, QDF_TRACE_LEVEL_ERROR,
"TOT: %d\n"
"tx_msdu_cnt: %d\n"
"tx_mpdu_cnt: %d\n"
"tx_ppdu_cnt: %d\n"
"rx_msdu_cnt: %d\n"
"rx_mpdu_cnt: %d\n"
"bin_count: %d\n",
profile_ctx->tot,
profile_ctx->tx_msdu_cnt,
profile_ctx->tx_mpdu_cnt,
profile_ctx->tx_ppdu_cnt,
profile_ctx->rx_msdu_cnt,
profile_ctx->rx_mpdu_cnt,
profile_ctx->bin_count);
QDF_TRACE(QDF_MODULE_ID_WMA, QDF_TRACE_LEVEL_ERROR,
"Profile ID: Count: TOT: Min: Max: hist_intvl: hist[0]: hist[1]:hist[2]");
for (i = 0; i < entries; i++) {
if (i == WMI_WLAN_PROFILE_MAX_BIN_CNT)
break;
snprintf(temp_str, sizeof(temp_str),
" %d : %d : %d : %d : %d : %d : %d : %d : %d",
profile_data[i].id,
profile_data[i].cnt,
profile_data[i].tot,
profile_data[i].min,
profile_data[i].max,
profile_data[i].hist_intvl,
profile_data[i].hist[0],
profile_data[i].hist[1],
profile_data[i].hist[2]);
QDF_TRACE(QDF_MODULE_ID_WMA, QDF_TRACE_LEVEL_ERROR,
"%s", temp_str);
}
return 0;
}
#ifdef WLAN_FEATURE_LINK_LAYER_STATS
#define WMA_FILL_TX_STATS(eve, msg) do {\
(msg)->msdus = (eve)->tx_msdu_cnt;\
(msg)->mpdus = (eve)->tx_mpdu_cnt;\
(msg)->ppdus = (eve)->tx_ppdu_cnt;\
(msg)->bytes = (eve)->tx_bytes;\
(msg)->drops = (eve)->tx_msdu_drop_cnt;\
(msg)->drop_bytes = (eve)->tx_drop_bytes;\
(msg)->retries = (eve)->tx_mpdu_retry_cnt;\
(msg)->failed = (eve)->tx_mpdu_fail_cnt;\
} while (0)
#define WMA_FILL_RX_STATS(eve, msg) do {\
(msg)->mpdus = (eve)->mac_rx_mpdu_cnt;\
(msg)->bytes = (eve)->mac_rx_bytes;\
(msg)->ppdus = (eve)->phy_rx_ppdu_cnt;\
(msg)->ppdu_bytes = (eve)->phy_rx_bytes;\
(msg)->mpdu_retry = (eve)->rx_mpdu_retry_cnt;\
(msg)->mpdu_dup = (eve)->rx_mpdu_dup_cnt;\
(msg)->mpdu_discard = (eve)->rx_mpdu_discard_cnt;\
} while (0)
/**
* wma_get_ll_stats_ext_buf() - alloc result buffer for MAC counters
* @len: buffer length output
* @peer_num: peer number
* @fixed_param: fixed parameters in WMI event
*
* Structure of the stats message
* LL_EXT_STATS
* |
* |--Channel stats[1~n]
* |--Peer[1~n]
* |
* +---Signal
* +---TX
* | +---BE
* | +---BK
* | +---VI
* | +---VO
* |
* +---RX
* +---BE
* +---BK
* +---VI
* +---VO
* For each Access Category, the arregation and mcs
* stats are as this:
* TX
* +-BE/BK/VI/VO
* +----tx_mpdu_aggr_array
* +----tx_succ_mcs_array
* +----tx_fail_mcs_array
* +----tx_delay_array
* RX
* +-BE/BK/VI/VO
* +----rx_mpdu_aggr_array
* +----rx_mcs_array
*
* return: Address for result buffer.
*/
static tSirLLStatsResults *wma_get_ll_stats_ext_buf(uint32_t *len,
uint32_t peer_num,
wmi_report_stats_event_fixed_param *fixed_param)
{
tSirLLStatsResults *buf;
uint32_t buf_len;
uint32_t total_array_len, total_peer_len;
bool excess_data = false;
if (!len || !fixed_param) {
WMA_LOGE(FL("Invalid input parameters."));
return NULL;
}
/*
* Result buffer has a structure like this:
* ---------------------------------
* | trigger_cond_i |
* +-------------------------------+
* | cca_chgd_bitmap |
* +-------------------------------+
* | sig_chgd_bitmap |
* +-------------------------------+
* | tx_chgd_bitmap |
* +-------------------------------+
* | rx_chgd_bitmap |
* +-------------------------------+
* | peer_num |
* +-------------------------------+
* | channel_num |
* +-------------------------------+
* | tx_mpdu_aggr_array_len |
* +-------------------------------+
* | tx_succ_mcs_array_len |
* +-------------------------------+
* | tx_fail_mcs_array_len |
* +-------------------------------+
* | tx_delay_array_len |
* +-------------------------------+
* | rx_mpdu_aggr_array_len |
* +-------------------------------+
* | rx_mcs_array_len |
* +-------------------------------+
* | pointer to CCA stats |
* +-------------------------------+
* | CCA stats |
* +-------------------------------+
* | peer_stats |----+
* +-------------------------------+ |
* | TX aggr/mcs parameters array | |
* | Length of this buffer is | |
* | not fixed. |<-+ |
* +-------------------------------+ | |
* | per peer tx stats |--+ |
* | BE | <--+
* | BK | |
* | VI | |
* | VO | |
* +-------------------------------+ |
* | TX aggr/mcs parameters array | |
* | Length of this buffer is | |
* | not fixed. |<-+ |
* +-------------------------------+ | |
* | peer peer rx stats |--+ |
* | BE | <--+
* | BK |
* | VI |
* | VO |
* ---------------------------------
*/
buf_len = sizeof(tSirLLStatsResults) +
sizeof(struct sir_wifi_ll_ext_stats);
do {
if (fixed_param->num_chan_cca_stats > (WMI_SVC_MSG_MAX_SIZE /
sizeof(struct sir_wifi_chan_cca_stats))) {
excess_data = true;
break;
}
buf_len += (fixed_param->num_chan_cca_stats *
sizeof(struct sir_wifi_chan_cca_stats));
if (fixed_param->tx_mpdu_aggr_array_len >
WMI_SVC_MSG_MAX_SIZE) {
excess_data = true;
break;
} else {
total_array_len = fixed_param->tx_mpdu_aggr_array_len;
}
if (fixed_param->tx_succ_mcs_array_len >
(WMI_SVC_MSG_MAX_SIZE - total_array_len)) {
excess_data = true;
break;
} else {
total_array_len += fixed_param->tx_succ_mcs_array_len;
}
if (fixed_param->tx_fail_mcs_array_len >
(WMI_SVC_MSG_MAX_SIZE - total_array_len)) {
excess_data = true;
break;
} else {
total_array_len += fixed_param->tx_fail_mcs_array_len;
}
if (fixed_param->tx_ppdu_delay_array_len >
(WMI_SVC_MSG_MAX_SIZE - total_array_len)) {
excess_data = true;
break;
} else {
total_array_len += fixed_param->tx_ppdu_delay_array_len;
}
if (fixed_param->rx_mpdu_aggr_array_len >
(WMI_SVC_MSG_MAX_SIZE - total_array_len)) {
excess_data = true;
break;
} else {
total_array_len += fixed_param->rx_mpdu_aggr_array_len;
}
if (fixed_param->rx_mcs_array_len >
(WMI_SVC_MSG_MAX_SIZE - total_array_len)) {
excess_data = true;
break;
} else {
total_array_len += fixed_param->rx_mcs_array_len;
}
if (total_array_len > (WMI_SVC_MSG_MAX_SIZE /
(sizeof(uint32_t) * WLAN_MAX_AC))) {
excess_data = true;
break;
} else {
total_peer_len = (sizeof(uint32_t) * WLAN_MAX_AC *
total_array_len) +
(WLAN_MAX_AC *
(sizeof(struct sir_wifi_tx) +
sizeof(struct sir_wifi_rx)));
}
if (total_peer_len > WMI_SVC_MSG_MAX_SIZE) {
excess_data = true;
break;
}
if (peer_num > WMI_SVC_MSG_MAX_SIZE / (total_peer_len +
sizeof(struct sir_wifi_ll_ext_peer_stats))) {
excess_data = true;
break;
} else {
buf_len += peer_num *
(sizeof(struct sir_wifi_ll_ext_peer_stats) +
total_peer_len);
}
} while (0);
if (excess_data || (buf_len > WMI_SVC_MSG_MAX_SIZE)) {
WMA_LOGE("%s: excess wmi buffer: peer %d cca %d tx_mpdu %d tx_succ%d tx_fail %d tx_ppdu %d rx_mpdu %d rx_mcs %d",
__func__, peer_num, fixed_param->num_chan_cca_stats,
fixed_param->tx_mpdu_aggr_array_len,
fixed_param->tx_succ_mcs_array_len,
fixed_param->tx_fail_mcs_array_len,
fixed_param->tx_ppdu_delay_array_len,
fixed_param->rx_mpdu_aggr_array_len,
fixed_param->rx_mcs_array_len);
return NULL;
}
buf = (tSirLLStatsResults *)qdf_mem_malloc(buf_len);
if (buf == NULL) {
WMA_LOGE("%s: Cannot allocate link layer stats.", __func__);
buf_len = 0;
return NULL;
}
*len = buf_len;
return buf;
}
/**
* wma_fill_tx_stats() - Fix TX stats into result buffer
* @ll_stats: LL stats buffer
* @fix_param: parameters with fixed length in WMI event
* @param_buf: parameters without fixed length in WMI event
* @buf: buffer for TLV parameters
*
* Return: QDF_STATUS
*/
static QDF_STATUS
wma_fill_tx_stats(struct sir_wifi_ll_ext_stats *ll_stats,
wmi_report_stats_event_fixed_param *fix_param,
WMI_REPORT_STATS_EVENTID_param_tlvs *param_buf,
uint8_t **buf, uint32_t *buf_length)
{
uint8_t *result;
uint32_t i, j, k;
wmi_peer_ac_tx_stats *wmi_peer_tx;
wmi_tx_stats *wmi_tx;
struct sir_wifi_tx *tx_stats;
struct sir_wifi_ll_ext_peer_stats *peer_stats;
uint32_t *tx_mpdu_aggr, *tx_succ_mcs, *tx_fail_mcs, *tx_delay;
uint32_t len, dst_len, param_len, tx_mpdu_aggr_array_len,
tx_succ_mcs_array_len, tx_fail_mcs_array_len,
tx_delay_array_len;
result = *buf;
dst_len = *buf_length;
tx_mpdu_aggr_array_len = fix_param->tx_mpdu_aggr_array_len;
ll_stats->tx_mpdu_aggr_array_len = tx_mpdu_aggr_array_len;
tx_succ_mcs_array_len = fix_param->tx_succ_mcs_array_len;
ll_stats->tx_succ_mcs_array_len = tx_succ_mcs_array_len;
tx_fail_mcs_array_len = fix_param->tx_fail_mcs_array_len;
ll_stats->tx_fail_mcs_array_len = tx_fail_mcs_array_len;
tx_delay_array_len = fix_param->tx_ppdu_delay_array_len;
ll_stats->tx_delay_array_len = tx_delay_array_len;
wmi_peer_tx = param_buf->peer_ac_tx_stats;
wmi_tx = param_buf->tx_stats;
len = fix_param->num_peer_ac_tx_stats *
WLAN_MAX_AC * tx_mpdu_aggr_array_len * sizeof(uint32_t);
param_len = param_buf->num_tx_mpdu_aggr * sizeof(uint32_t);
if (len <= dst_len && len <= param_len && param_buf->tx_mpdu_aggr) {
tx_mpdu_aggr = (uint32_t *)result;
qdf_mem_copy(tx_mpdu_aggr, param_buf->tx_mpdu_aggr, len);
result += len;
dst_len -= len;
} else {
WMA_LOGE(FL("TX_MPDU_AGGR invalid arg, %d, %d, %d"),
len, dst_len, param_len);
return QDF_STATUS_E_FAILURE;
}
len = fix_param->num_peer_ac_tx_stats * WLAN_MAX_AC *
tx_succ_mcs_array_len * sizeof(uint32_t);
param_len = param_buf->num_tx_succ_mcs * sizeof(uint32_t);
if (len <= dst_len && len <= param_len && param_buf->tx_succ_mcs) {
tx_succ_mcs = (uint32_t *)result;
qdf_mem_copy(tx_succ_mcs, param_buf->tx_succ_mcs, len);
result += len;
dst_len -= len;
} else {
WMA_LOGE(FL("TX_SUCC_MCS invalid arg, %d, %d, %d"),
len, dst_len, param_len);
return QDF_STATUS_E_FAILURE;
}
len = fix_param->num_peer_ac_tx_stats * WLAN_MAX_AC *
tx_fail_mcs_array_len * sizeof(uint32_t);
param_len = param_buf->num_tx_fail_mcs * sizeof(uint32_t);
if (len <= dst_len && len <= param_len && param_buf->tx_fail_mcs) {
tx_fail_mcs = (uint32_t *)result;
qdf_mem_copy(tx_fail_mcs, param_buf->tx_fail_mcs, len);
result += len;
dst_len -= len;
} else {
WMA_LOGE(FL("TX_FAIL_MCS invalid arg, %d, %d %d"),
len, dst_len, param_len);
return QDF_STATUS_E_FAILURE;
}
len = fix_param->num_peer_ac_tx_stats *
WLAN_MAX_AC * tx_delay_array_len * sizeof(uint32_t);
param_len = param_buf->num_tx_ppdu_delay * sizeof(uint32_t);
if (len <= dst_len && len <= param_len && param_buf->tx_ppdu_delay) {
tx_delay = (uint32_t *)result;
qdf_mem_copy(tx_delay, param_buf->tx_ppdu_delay, len);
result += len;
dst_len -= len;
} else {
WMA_LOGE(FL("TX_DELAY invalid arg, %d, %d, %d"),
len, dst_len, param_len);
return QDF_STATUS_E_FAILURE;
}
/* per peer tx stats */
peer_stats = ll_stats->peer_stats;
if (!wmi_peer_tx || !wmi_tx || !peer_stats) {
WMA_LOGE(FL("Invalid arg, peer_tx %pK, wmi_tx %pK stats %pK"),
wmi_peer_tx, wmi_tx, peer_stats);
return QDF_STATUS_E_FAILURE;
}
for (i = 0; i < fix_param->num_peer_ac_tx_stats; i++) {
uint32_t peer_id = wmi_peer_tx[i].peer_id;
struct sir_wifi_tx *ac;
wmi_tx_stats *wmi_tx_stats;
for (j = 0; j < ll_stats->peer_num; j++) {
peer_stats += j;
if (peer_stats->peer_id == WIFI_INVALID_PEER_ID ||
peer_stats->peer_id == peer_id)
break;
}
if (j < ll_stats->peer_num) {
peer_stats->peer_id = wmi_peer_tx[i].peer_id;
peer_stats->vdev_id = wmi_peer_tx[i].vdev_id;
tx_stats = (struct sir_wifi_tx *)result;
for (k = 0; k < WLAN_MAX_AC; k++) {
wmi_tx_stats = &wmi_tx[i * WLAN_MAX_AC + k];
ac = &tx_stats[k];
WMA_FILL_TX_STATS(wmi_tx_stats, ac);
ac->mpdu_aggr_size = tx_mpdu_aggr;
ac->aggr_len = tx_mpdu_aggr_array_len *
sizeof(uint32_t);
ac->success_mcs_len = tx_succ_mcs_array_len *
sizeof(uint32_t);
ac->success_mcs = tx_succ_mcs;
ac->fail_mcs = tx_fail_mcs;
ac->fail_mcs_len = tx_fail_mcs_array_len *
sizeof(uint32_t);
ac->delay = tx_delay;
ac->delay_len = tx_delay_array_len *
sizeof(uint32_t);
peer_stats->ac_stats[k].tx_stats = ac;
peer_stats->ac_stats[k].type = k;
tx_mpdu_aggr += tx_mpdu_aggr_array_len;
tx_succ_mcs += tx_succ_mcs_array_len;
tx_fail_mcs += tx_fail_mcs_array_len;
tx_delay += tx_delay_array_len;
}
result += WLAN_MAX_AC * sizeof(struct sir_wifi_tx);
} else {
/*
* Buffer for Peer TX counter overflow.
* There is peer ID mismatch between TX, RX,
* signal counters.
*/
WMA_LOGE(FL("One peer TX info is dropped."));
tx_mpdu_aggr += tx_mpdu_aggr_array_len * WLAN_MAX_AC;
tx_succ_mcs += tx_succ_mcs_array_len * WLAN_MAX_AC;
tx_fail_mcs += tx_fail_mcs_array_len * WLAN_MAX_AC;
tx_delay += tx_delay_array_len * WLAN_MAX_AC;
}
}
*buf = result;
*buf_length = dst_len;
return QDF_STATUS_SUCCESS;
}
/**
* wma_fill_rx_stats() - Fix RX stats into result buffer
* @ll_stats: LL stats buffer
* @fix_param: parameters with fixed length in WMI event
* @param_buf: parameters without fixed length in WMI event
* @buf: buffer for TLV parameters
*
* Return: QDF_STATUS
*/
static QDF_STATUS
wma_fill_rx_stats(struct sir_wifi_ll_ext_stats *ll_stats,
wmi_report_stats_event_fixed_param *fix_param,
WMI_REPORT_STATS_EVENTID_param_tlvs *param_buf,
uint8_t **buf, uint32_t *buf_length)
{
uint8_t *result;
uint32_t i, j, k;
uint32_t *rx_mpdu_aggr, *rx_mcs;
wmi_rx_stats *wmi_rx;
wmi_peer_ac_rx_stats *wmi_peer_rx;
struct sir_wifi_rx *rx_stats;
struct sir_wifi_ll_ext_peer_stats *peer_stats;
uint32_t len, dst_len, param_len,
rx_mpdu_aggr_array_len, rx_mcs_array_len;
rx_mpdu_aggr_array_len = fix_param->rx_mpdu_aggr_array_len;
ll_stats->rx_mpdu_aggr_array_len = rx_mpdu_aggr_array_len;
rx_mcs_array_len = fix_param->rx_mcs_array_len;
ll_stats->rx_mcs_array_len = rx_mcs_array_len;
wmi_peer_rx = param_buf->peer_ac_rx_stats;
wmi_rx = param_buf->rx_stats;
result = *buf;
dst_len = *buf_length;
len = sizeof(uint32_t) * (fix_param->num_peer_ac_rx_stats *
WLAN_MAX_AC * rx_mpdu_aggr_array_len);
param_len = param_buf->num_rx_mpdu_aggr * sizeof(uint32_t);
if (len <= dst_len && len <= param_len && param_buf->rx_mpdu_aggr) {
rx_mpdu_aggr = (uint32_t *)result;
qdf_mem_copy(rx_mpdu_aggr, param_buf->rx_mpdu_aggr, len);
result += len;
dst_len -= len;
} else {
WMA_LOGE(FL("RX_MPDU_AGGR invalid arg %d, %d, %d"),
len, dst_len, param_len);
return QDF_STATUS_E_FAILURE;
}
len = sizeof(uint32_t) * (fix_param->num_peer_ac_rx_stats *
WLAN_MAX_AC * rx_mcs_array_len);
param_len = param_buf->num_rx_mcs * sizeof(uint32_t);
if (len <= dst_len && len <= param_len && param_buf->rx_mcs) {
rx_mcs = (uint32_t *)result;
qdf_mem_copy(rx_mcs, param_buf->rx_mcs, len);
result += len;
dst_len -= len;
} else {
WMA_LOGE(FL("RX_MCS invalid arg %d, %d, %d"),
len, dst_len, param_len);
return QDF_STATUS_E_FAILURE;
}
/* per peer rx stats */
peer_stats = ll_stats->peer_stats;
if (!wmi_peer_rx || !wmi_rx || !peer_stats) {
WMA_LOGE(FL("Invalid arg, peer_rx %pK, wmi_rx %pK stats %pK"),
wmi_peer_rx, wmi_rx, peer_stats);
return QDF_STATUS_E_FAILURE;
}
for (i = 0; i < fix_param->num_peer_ac_rx_stats; i++) {
uint32_t peer_id = wmi_peer_rx[i].peer_id;
struct sir_wifi_rx *ac;
wmi_rx_stats *wmi_rx_stats;
for (j = 0; j < ll_stats->peer_num; j++) {
peer_stats += j;
if ((peer_stats->peer_id == WIFI_INVALID_PEER_ID) ||
(peer_stats->peer_id == peer_id))
break;
}
if (j < ll_stats->peer_num) {
peer_stats->peer_id = wmi_peer_rx[i].peer_id;
peer_stats->vdev_id = wmi_peer_rx[i].vdev_id;
peer_stats->sta_ps_inds = wmi_peer_rx[i].sta_ps_inds;
peer_stats->sta_ps_durs = wmi_peer_rx[i].sta_ps_durs;
peer_stats->rx_probe_reqs =
wmi_peer_rx[i].rx_probe_reqs;
peer_stats->rx_oth_mgmts = wmi_peer_rx[i].rx_oth_mgmts;
rx_stats = (struct sir_wifi_rx *)result;
for (k = 0; k < WLAN_MAX_AC; k++) {
wmi_rx_stats = &wmi_rx[i * WLAN_MAX_AC + k];
ac = &rx_stats[k];
WMA_FILL_RX_STATS(wmi_rx_stats, ac);
ac->mpdu_aggr = rx_mpdu_aggr;
ac->aggr_len = rx_mpdu_aggr_array_len *
sizeof(uint32_t);
ac->mcs = rx_mcs;
ac->mcs_len = rx_mcs_array_len *
sizeof(uint32_t);
peer_stats->ac_stats[k].rx_stats = ac;
peer_stats->ac_stats[k].type = k;
rx_mpdu_aggr += rx_mpdu_aggr_array_len;
rx_mcs += rx_mcs_array_len;
}
result += WLAN_MAX_AC * sizeof(struct sir_wifi_rx);
} else {
/*
* Buffer for Peer RX counter overflow.
* There is peer ID mismatch between TX, RX,
* signal counters.
*/
WMA_LOGE(FL("One peer RX info is dropped."));
rx_mpdu_aggr += rx_mpdu_aggr_array_len * WLAN_MAX_AC;
rx_mcs += rx_mcs_array_len * WLAN_MAX_AC;
}
}
*buf = result;
*buf_length = dst_len;
return QDF_STATUS_SUCCESS;
}
/**
* wma_ll_stats_evt_handler() - handler for MAC layer counters.
* @handle - wma handle
* @event - FW event
* @len - length of FW event
*
* return: 0 success.
*/
static int wma_ll_stats_evt_handler(void *handle, u_int8_t *event,
u_int32_t len)
{
WMI_REPORT_STATS_EVENTID_param_tlvs *param_buf;
wmi_report_stats_event_fixed_param *fixed_param;
tSirLLStatsResults *link_stats_results;
wmi_chan_cca_stats *wmi_cca_stats;
wmi_peer_signal_stats *wmi_peer_signal;
wmi_peer_ac_rx_stats *wmi_peer_rx;
struct sir_wifi_ll_ext_stats *ll_stats;
struct sir_wifi_ll_ext_peer_stats *peer_stats;
struct sir_wifi_chan_cca_stats *cca_stats;
struct sir_wifi_peer_signal_stats *peer_signal;
uint8_t *result;
uint32_t i, peer_num, result_size, dst_len;
tpAniSirGlobal mac;
cds_msg_t sme_msg = { 0 };
struct ol_txrx_peer_t *peer;
ol_txrx_pdev_handle pdev;
QDF_STATUS qdf_status;
mac = (tpAniSirGlobal)cds_get_context(QDF_MODULE_ID_PE);
if (!mac) {
WMA_LOGD("%s: NULL mac ptr. Exiting", __func__);
return -EINVAL;
}
if (!mac->sme.link_layer_stats_ext_cb) {
WMA_LOGD("%s: HDD callback is null", __func__);
return -EINVAL;
}
pdev = cds_get_context(QDF_MODULE_ID_TXRX);
if (!pdev) {
WMA_LOGD("%s: NULL ol_txrx pdev ptr. Exiting", __func__);
return -EINVAL;
}
WMA_LOGD("%s: Posting MAC counters event to HDD", __func__);
param_buf = (WMI_REPORT_STATS_EVENTID_param_tlvs *)event;
if (!param_buf) {
WMA_LOGD("%s: param_buf is null", __func__);
return -EINVAL;
}
fixed_param = param_buf->fixed_param;
if (!fixed_param) {
WMA_LOGD("%s: fixed_param is null", __func__);
return -EINVAL;
}
wmi_cca_stats = param_buf->chan_cca_stats;
wmi_peer_signal = param_buf->peer_signal_stats;
wmi_peer_rx = param_buf->peer_ac_rx_stats;
if (fixed_param->num_peer_signal_stats >
param_buf->num_peer_signal_stats ||
fixed_param->num_peer_ac_tx_stats >
param_buf->num_peer_ac_tx_stats ||
fixed_param->num_peer_ac_rx_stats >
param_buf->num_peer_ac_rx_stats) {
WMA_LOGE("%s: excess num_peer_signal_stats:%d, num_peer_ac_tx_stats:%d, num_peer_ac_rx_stats:%d",
__func__, fixed_param->num_peer_signal_stats,
fixed_param->num_peer_ac_tx_stats,
fixed_param->num_peer_ac_rx_stats);
return -EINVAL;
}
/* Get the MAX of three peer numbers */
peer_num = fixed_param->num_peer_signal_stats >
fixed_param->num_peer_ac_tx_stats ?
fixed_param->num_peer_signal_stats :
fixed_param->num_peer_ac_tx_stats;
peer_num = peer_num > fixed_param->num_peer_ac_rx_stats ?
peer_num : fixed_param->num_peer_ac_rx_stats;
if (peer_num == 0)
return -EINVAL;
link_stats_results = wma_get_ll_stats_ext_buf(&result_size,
peer_num,
fixed_param);
if (!link_stats_results) {
WMA_LOGE("%s: Fail to allocate stats buffer", __func__);
return -EINVAL;
}
link_stats_results->paramId = WMI_LL_STATS_EXT_MAC_COUNTER;
link_stats_results->num_peers = peer_num;
link_stats_results->peer_event_number = 1;
link_stats_results->moreResultToFollow = 0;
ll_stats = (struct sir_wifi_ll_ext_stats *)link_stats_results->results;
ll_stats->trigger_cond_id = fixed_param->trigger_cond_id;
ll_stats->cca_chgd_bitmap = fixed_param->cca_chgd_bitmap;
ll_stats->sig_chgd_bitmap = fixed_param->sig_chgd_bitmap;
ll_stats->tx_chgd_bitmap = fixed_param->tx_chgd_bitmap;
ll_stats->rx_chgd_bitmap = fixed_param->rx_chgd_bitmap;
ll_stats->channel_num = fixed_param->num_chan_cca_stats;
ll_stats->peer_num = peer_num;
result = (uint8_t *)ll_stats->stats;
if (!result) {
WMA_LOGE("%s: result is null", __func__);
qdf_mem_free(link_stats_results);
return -EINVAL;
}
peer_stats = (struct sir_wifi_ll_ext_peer_stats *)result;
ll_stats->peer_stats = peer_stats;
for (i = 0; i < peer_num; i++) {
peer_stats[i].peer_id = WIFI_INVALID_PEER_ID;
peer_stats[i].vdev_id = WIFI_INVALID_VDEV_ID;
}
/* Per peer signal */
result_size -= sizeof(struct sir_wifi_ll_ext_stats);
dst_len = sizeof(struct sir_wifi_peer_signal_stats);
for (i = 0; i < fixed_param->num_peer_signal_stats; i++) {
peer_stats[i].peer_id = wmi_peer_signal->peer_id;
peer_stats[i].vdev_id = wmi_peer_signal->vdev_id;
peer_signal = &peer_stats[i].peer_signal_stats;
WMA_LOGD("%d antennas for peer %d",
wmi_peer_signal->num_chains_valid,
wmi_peer_signal->peer_id);
if (dst_len <= result_size) {
peer_signal->vdev_id = wmi_peer_signal->vdev_id;
peer_signal->peer_id = wmi_peer_signal->peer_id;
peer_signal->num_chain =
wmi_peer_signal->num_chains_valid;
qdf_mem_copy(peer_signal->per_ant_snr,
wmi_peer_signal->per_chain_snr,
sizeof(peer_signal->per_ant_snr));
qdf_mem_copy(peer_signal->nf,
wmi_peer_signal->per_chain_nf,
sizeof(peer_signal->nf));
qdf_mem_copy(peer_signal->per_ant_rx_mpdus,
wmi_peer_signal->per_antenna_rx_mpdus,
sizeof(peer_signal->per_ant_rx_mpdus));
qdf_mem_copy(peer_signal->per_ant_tx_mpdus,
wmi_peer_signal->per_antenna_tx_mpdus,
sizeof(peer_signal->per_ant_tx_mpdus));
result_size -= dst_len;
} else {
WMA_LOGE(FL("Invalid length of PEER signal."));
}
peer = ol_txrx_peer_find_by_id(pdev,
wmi_peer_signal->peer_id);
if (!peer) {
WMA_LOGE(FL("Invalid Peer ID %d in FW message."),
wmi_peer_signal->peer_id);
} else {
qdf_mem_copy(&peer_stats[i].mac_address,
&peer->mac_addr,
sizeof(peer_stats[i].mac_address));
WMA_LOGD("Peer %d mac address is: " MAC_ADDRESS_STR,
wmi_peer_signal->peer_id,
MAC_ADDR_ARRAY(peer->mac_addr.raw));
}
wmi_peer_signal++;
}
result += peer_num * sizeof(struct sir_wifi_ll_ext_peer_stats);
cca_stats = (struct sir_wifi_chan_cca_stats *)result;
ll_stats->cca = cca_stats;
dst_len = sizeof(struct sir_wifi_chan_cca_stats);
for (i = 0; i < ll_stats->channel_num; i++) {
if (dst_len <= result_size) {
qdf_mem_copy(&cca_stats[i], &wmi_cca_stats->vdev_id,
dst_len);
result_size -= dst_len;
} else {
WMA_LOGE(FL("Invalid length of CCA."));
}
}
result += i * sizeof(struct sir_wifi_chan_cca_stats);
qdf_status = wma_fill_tx_stats(ll_stats, fixed_param, param_buf,
&result, &result_size);
if (QDF_IS_STATUS_SUCCESS(qdf_status))
qdf_status = wma_fill_rx_stats(ll_stats, fixed_param, param_buf,
&result, &result_size);
if (QDF_IS_STATUS_SUCCESS(qdf_status)) {
sme_msg.type = eWMI_SME_LL_STATS_IND;
sme_msg.bodyptr = (void *)link_stats_results;
sme_msg.bodyval = 0;
qdf_status = cds_mq_post_message(QDF_MODULE_ID_SME, &sme_msg);
}
if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
WMA_LOGP(FL("Failed to post peer stat change msg!"));
qdf_mem_free(link_stats_results);
return -EINVAL;
}
return 0;
}
/**
* wma_unified_link_peer_stats_event_handler() - peer stats event handler
* @handle: wma handle
* @cmd_param_info: data received with event from fw
* @len: length of data
*
* Return: 0 for success or error code
*/
static int wma_unified_link_peer_stats_event_handler(void *handle,
uint8_t *cmd_param_info,
uint32_t len)
{
WMI_PEER_LINK_STATS_EVENTID_param_tlvs *param_tlvs;
wmi_peer_stats_event_fixed_param *fixed_param;
wmi_peer_link_stats *peer_stats, *temp_peer_stats;
wmi_rate_stats *rate_stats;
tSirLLStatsResults *link_stats_results;
uint8_t *results, *t_peer_stats, *t_rate_stats;
uint32_t count, rate_cnt;
uint32_t total_num_rates = 0;
uint32_t next_res_offset, next_peer_offset, next_rate_offset;
size_t peer_info_size, peer_stats_size, rate_stats_size;
size_t link_stats_results_size;
bool excess_data = false;
uint32_t buf_len = 0;
tpAniSirGlobal pMac = cds_get_context(QDF_MODULE_ID_PE);
if (!pMac) {
WMA_LOGD("%s: NULL pMac ptr. Exiting", __func__);
return -EINVAL;
}
if (!pMac->sme.pLinkLayerStatsIndCallback) {
WMA_LOGD("%s: HDD callback is null", __func__);
return -EINVAL;
}
param_tlvs = (WMI_PEER_LINK_STATS_EVENTID_param_tlvs *) cmd_param_info;
if (!param_tlvs) {
WMA_LOGA("%s: Invalid stats event", __func__);
return -EINVAL;
}
/*
* cmd_param_info contains
* wmi_peer_stats_event_fixed_param fixed_param;
* num_peers * size of(struct wmi_peer_link_stats)
* total_num_rates * size of(struct wmi_rate_stats)
* total_num_rates is the sum of the rates of all the peers.
*/
fixed_param = param_tlvs->fixed_param;
peer_stats = param_tlvs->peer_stats;
rate_stats = param_tlvs->peer_rate_stats;
if (!fixed_param || !peer_stats ||
(peer_stats->num_rates && !rate_stats)) {
WMA_LOGA("%s: Invalid param_tlvs for Peer Stats", __func__);
return -EINVAL;
}
do {
if (fixed_param->num_peers >
WMI_SVC_MSG_MAX_SIZE/sizeof(wmi_peer_link_stats) ||
fixed_param->num_peers > param_tlvs->num_peer_stats) {
excess_data = true;
break;
} else {
buf_len = fixed_param->num_peers *
sizeof(wmi_peer_link_stats);
}
temp_peer_stats = (wmi_peer_link_stats *) peer_stats;
for (count = 0; count < fixed_param->num_peers; count++) {
if (temp_peer_stats->num_rates >
WMI_SVC_MSG_MAX_SIZE / sizeof(wmi_rate_stats)) {
excess_data = true;
break;
} else {
total_num_rates += temp_peer_stats->num_rates;
if (total_num_rates >
WMI_SVC_MSG_MAX_SIZE /
sizeof(wmi_rate_stats) || total_num_rates >
param_tlvs->num_peer_rate_stats) {
excess_data = true;
break;
}
buf_len += temp_peer_stats->num_rates *
sizeof(wmi_rate_stats);
}
temp_peer_stats++;
}
} while (0);
if (excess_data ||
(buf_len > WMI_SVC_MSG_MAX_SIZE - sizeof(*fixed_param))) {
WMA_LOGE("excess wmi buffer: rates:%d, peers:%d",
peer_stats->num_rates, fixed_param->num_peers);
return -EINVAL;
}
peer_stats_size = sizeof(tSirWifiPeerStat);
peer_info_size = sizeof(tSirWifiPeerInfo);
rate_stats_size = sizeof(tSirWifiRateStat);
link_stats_results_size =
sizeof(*link_stats_results) + peer_stats_size +
(fixed_param->num_peers * peer_info_size) +
(total_num_rates * rate_stats_size);
link_stats_results = qdf_mem_malloc(link_stats_results_size);
if (NULL == link_stats_results) {
WMA_LOGD("%s: could not allocate mem for stats results-len %zu",
__func__, link_stats_results_size);
return -ENOMEM;
}
qdf_mem_zero(link_stats_results, link_stats_results_size);
link_stats_results->paramId = WMI_LINK_STATS_ALL_PEER;
link_stats_results->rspId = fixed_param->request_id;
link_stats_results->ifaceId = 0;
link_stats_results->num_peers = fixed_param->num_peers;
link_stats_results->peer_event_number = fixed_param->peer_event_number;
link_stats_results->moreResultToFollow = fixed_param->more_data;
qdf_mem_copy(link_stats_results->results,
&fixed_param->num_peers, peer_stats_size);
results = (uint8_t *) link_stats_results->results;
t_peer_stats = (uint8_t *) peer_stats;
t_rate_stats = (uint8_t *) rate_stats;
next_res_offset = peer_stats_size;
next_peer_offset = WMI_TLV_HDR_SIZE;
next_rate_offset = WMI_TLV_HDR_SIZE;
for (rate_cnt = 0; rate_cnt < fixed_param->num_peers; rate_cnt++) {
qdf_mem_copy(results + next_res_offset,
t_peer_stats + next_peer_offset, peer_info_size);
next_res_offset += peer_info_size;
/* Copy rate stats associated with this peer */
for (count = 0; count < peer_stats->num_rates; count++) {
rate_stats++;
qdf_mem_copy(results + next_res_offset,
t_rate_stats + next_rate_offset,
rate_stats_size);
next_res_offset += rate_stats_size;
next_rate_offset += sizeof(*rate_stats);
}
next_peer_offset += sizeof(*peer_stats);
peer_stats++;
}
/* call hdd callback with Link Layer Statistics
* vdev_id/ifacId in link_stats_results will be
* used to retrieve the correct HDD context
*/
pMac->sme.pLinkLayerStatsIndCallback(pMac->hHdd,
WMA_LINK_LAYER_STATS_RESULTS_RSP,
link_stats_results,
pMac->sme.ll_stats_context);
qdf_mem_free(link_stats_results);
return 0;
}
/**
* wma_unified_radio_tx_mem_free() - Free radio tx power stats memory
* @handle: WMI handle
*
* Return: 0 on success, error number otherwise.
*/
int wma_unified_radio_tx_mem_free(void *handle)
{
tp_wma_handle wma_handle = (tp_wma_handle) handle;
tSirWifiRadioStat *rs_results;
uint32_t i = 0;
if (!wma_handle->link_stats_results)
return 0;
rs_results = (tSirWifiRadioStat *)
&wma_handle->link_stats_results->results[0];
for (i = 0; i < wma_handle->link_stats_results->num_radio; i++) {
if (rs_results->tx_time_per_power_level) {
qdf_mem_free(rs_results->tx_time_per_power_level);
rs_results->tx_time_per_power_level = NULL;
}
if (rs_results->channels) {
qdf_mem_free(rs_results->channels);
rs_results->channels = NULL;
}
rs_results++;
}
qdf_mem_free(wma_handle->link_stats_results);
wma_handle->link_stats_results = NULL;
return 0;
}
/**
* wma_unified_radio_tx_power_level_stats_event_handler() - tx power level stats
* @handle: WMI handle
* @cmd_param_info: command param info
* @len: Length of @cmd_param_info
*
* This is the WMI event handler function to receive radio stats tx
* power level stats.
*
* Return: 0 on success, error number otherwise.
*/
static int wma_unified_radio_tx_power_level_stats_event_handler(void *handle,
u_int8_t *cmd_param_info, u_int32_t len)
{
tp_wma_handle wma_handle = (tp_wma_handle) handle;
WMI_RADIO_TX_POWER_LEVEL_STATS_EVENTID_param_tlvs *param_tlvs;
wmi_tx_power_level_stats_evt_fixed_param *fixed_param;
uint8_t *tx_power_level_values;
tSirLLStatsResults *link_stats_results;
tSirWifiRadioStat *rs_results;
uint32_t max_total_num_tx_power_levels = MAX_TPC_LEVELS * NUM_OF_BANDS *
MAX_SPATIAL_STREAM_ANY_V3;
tpAniSirGlobal mac = cds_get_context(QDF_MODULE_ID_PE);
if (!mac) {
WMA_LOGD("%s: NULL pMac ptr. Exiting", __func__);
return -EINVAL;
}
if (!mac->sme.pLinkLayerStatsIndCallback) {
WMA_LOGD("%s: HDD callback is null", __func__);
return -EINVAL;
}
param_tlvs = (WMI_RADIO_TX_POWER_LEVEL_STATS_EVENTID_param_tlvs *)
cmd_param_info;
if (!param_tlvs) {
WMA_LOGA("%s: Invalid tx power level stats event", __func__);
return -EINVAL;
}
fixed_param = param_tlvs->fixed_param;
if (!fixed_param) {
WMA_LOGA("%s:Invalid param_tlvs for Radio tx_power level Stats",
__func__);
return -EINVAL;
}
link_stats_results = wma_handle->link_stats_results;
if (!link_stats_results) {
WMA_LOGA("%s: link_stats_results is NULL", __func__);
return -EINVAL;
}
WMA_LOGD("%s: tot_num_tx_pwr_lvls: %u num_tx_pwr_lvls: %u pwr_lvl_offset: %u radio_id: %u",
__func__, fixed_param->total_num_tx_power_levels,
fixed_param->num_tx_power_levels,
fixed_param->power_level_offset,
fixed_param->radio_id);
if (fixed_param->num_tx_power_levels > ((WMI_SVC_MSG_MAX_SIZE -
sizeof(*fixed_param)) / sizeof(uint32_t)) ||
fixed_param->num_tx_power_levels >
param_tlvs->num_tx_time_per_power_level) {
WMA_LOGE("%s: excess tx_power buffers:%d, num_tx_time_per_power_level:%d",
__func__, fixed_param->num_tx_power_levels,
param_tlvs->num_tx_time_per_power_level);
return -EINVAL;
}
if (fixed_param->radio_id >= link_stats_results->num_radio) {
WMA_LOGE("%s: Invalid radio_id %d num_radio %d",
__func__, fixed_param->radio_id,
link_stats_results->num_radio);
return -EINVAL;
}
if (fixed_param->total_num_tx_power_levels >
max_total_num_tx_power_levels) {
WMA_LOGD("Invalid total_num_tx_power_levels %d",
fixed_param->total_num_tx_power_levels);
return -EINVAL;
}
rs_results = (tSirWifiRadioStat *) &link_stats_results->results[0] +
fixed_param->radio_id;
tx_power_level_values = (uint8_t *) param_tlvs->tx_time_per_power_level;
if (rs_results->total_num_tx_power_levels &&
fixed_param->total_num_tx_power_levels >
rs_results->total_num_tx_power_levels) {
WMA_LOGE("%s: excess tx_power buffers:%d, total_num_tx_power_levels:%d",
__func__, fixed_param->total_num_tx_power_levels,
rs_results->total_num_tx_power_levels);
return -EINVAL;
}
rs_results->total_num_tx_power_levels =
fixed_param->total_num_tx_power_levels;
if (!rs_results->total_num_tx_power_levels) {
link_stats_results->nr_received++;
goto post_stats;
}
if ((fixed_param->power_level_offset >
rs_results->total_num_tx_power_levels) ||
(fixed_param->num_tx_power_levels >
rs_results->total_num_tx_power_levels -
fixed_param->power_level_offset)) {
WMA_LOGE("%s: Invalid offset %d total_num %d num %d",
__func__, fixed_param->power_level_offset,
rs_results->total_num_tx_power_levels,
fixed_param->num_tx_power_levels);
return -EINVAL;
}
if (!rs_results->tx_time_per_power_level) {
rs_results->tx_time_per_power_level = qdf_mem_malloc(
sizeof(uint32_t) *
rs_results->total_num_tx_power_levels);
if (!rs_results->tx_time_per_power_level) {
WMA_LOGA("%s: Mem alloc fail for tx power level stats",
__func__);
/* In error case, atleast send the radio stats without
* tx_power_level stats */
rs_results->total_num_tx_power_levels = 0;
link_stats_results->nr_received++;
goto post_stats;
}
}
qdf_mem_copy(&rs_results->tx_time_per_power_level[
fixed_param->power_level_offset],
tx_power_level_values,
sizeof(uint32_t) * fixed_param->num_tx_power_levels);
if (rs_results->total_num_tx_power_levels ==
(fixed_param->num_tx_power_levels +
fixed_param->power_level_offset)) {
link_stats_results->moreResultToFollow = 0;
link_stats_results->nr_received++;
}
WMA_LOGD("%s: moreResultToFollow: %u nr: %u nr_received: %u",
__func__, link_stats_results->moreResultToFollow,
link_stats_results->num_radio,
link_stats_results->nr_received);
/* If still data to receive, return from here */
if (link_stats_results->moreResultToFollow)
return 0;
post_stats:
if (link_stats_results->num_radio != link_stats_results->nr_received) {
/* Not received all radio stats yet, don't post yet */
return 0;
}
/* call hdd callback with Link Layer Statistics
* vdev_id/ifacId in link_stats_results will be
* used to retrieve the correct HDD context
*/
mac->sme.pLinkLayerStatsIndCallback(mac->hHdd,
WMA_LINK_LAYER_STATS_RESULTS_RSP,
link_stats_results,
mac->sme.ll_stats_context);
wma_unified_radio_tx_mem_free(handle);
return 0;
}
/**
* wma_unified_link_radio_stats_event_handler() - radio link stats event handler
* @handle: wma handle
* @cmd_param_info: data received with event from fw
* @len: length of data
*
* Return: 0 for success or error code
*/
static int wma_unified_link_radio_stats_event_handler(void *handle,
uint8_t *cmd_param_info,
uint32_t len)
{
tp_wma_handle wma_handle = (tp_wma_handle) handle;
WMI_RADIO_LINK_STATS_EVENTID_param_tlvs *param_tlvs;
wmi_radio_link_stats_event_fixed_param *fixed_param;
wmi_radio_link_stats *radio_stats;
wmi_channel_stats *channel_stats;
tSirLLStatsResults *link_stats_results;
uint8_t *results, *t_radio_stats, *t_channel_stats;
uint32_t next_chan_offset, count;
size_t radio_stats_size, chan_stats_size;
size_t link_stats_results_size;
tSirWifiRadioStat *rs_results;
tSirWifiChannelStats *chn_results;
tpAniSirGlobal pMac = cds_get_context(QDF_MODULE_ID_PE);
if (!pMac) {
WMA_LOGD("%s: NULL pMac ptr. Exiting", __func__);
return -EINVAL;
}
if (!pMac->sme.pLinkLayerStatsIndCallback) {
WMA_LOGD("%s: HDD callback is null", __func__);
return -EINVAL;
}
param_tlvs = (WMI_RADIO_LINK_STATS_EVENTID_param_tlvs *) cmd_param_info;
if (!param_tlvs) {
WMA_LOGA("%s: Invalid stats event", __func__);
return -EINVAL;
}
/*
* cmd_param_info contains
* wmi_radio_link_stats_event_fixed_param fixed_param;
* size of(struct wmi_radio_link_stats);
* num_channels * size of(struct wmi_channel_stats)
*/
fixed_param = param_tlvs->fixed_param;
radio_stats = param_tlvs->radio_stats;
channel_stats = param_tlvs->channel_stats;
if (!fixed_param || !radio_stats ||
(radio_stats->num_channels && !channel_stats)) {
WMA_LOGA("%s: Invalid param_tlvs for Radio Stats", __func__);
return -EINVAL;
}
if (radio_stats->num_channels >
(NUM_24GHZ_CHANNELS + NUM_5GHZ_CHANNELS) ||
radio_stats->num_channels > param_tlvs->num_channel_stats) {
WMA_LOGE("%s: Too many channels %d",
__func__, radio_stats->num_channels);
return -EINVAL;
}
radio_stats_size = sizeof(tSirWifiRadioStat);
chan_stats_size = sizeof(tSirWifiChannelStats);
if (fixed_param->num_radio >
(UINT_MAX - sizeof(*link_stats_results))/radio_stats_size) {
WMA_LOGE("excess num_radio %d is leading to int overflow",
fixed_param->num_radio);
return -EINVAL;
}
link_stats_results_size = sizeof(*link_stats_results) +
fixed_param->num_radio * radio_stats_size;
if (radio_stats->radio_id >= fixed_param->num_radio) {
WMA_LOGE("%s: Invalid radio_id %d num_radio %d",
__func__, radio_stats->radio_id,
fixed_param->num_radio);
return -EINVAL;
}
if (!wma_handle->link_stats_results) {
wma_handle->link_stats_results = qdf_mem_malloc(
link_stats_results_size);
if (NULL == wma_handle->link_stats_results) {
WMA_LOGD("%s: could not allocate mem for stats results-len %zu",
__func__, link_stats_results_size);
return -ENOMEM;
}
}
link_stats_results = wma_handle->link_stats_results;
if (link_stats_results->num_radio == 0) {
link_stats_results->num_radio = fixed_param->num_radio;
} else if (link_stats_results->num_radio < fixed_param->num_radio) {
/*
* The link stats results size allocated based on num_radio of
* first event must be same as following events. Otherwise these
* events may be spoofed. Drop all of them and report error.
*/
WMA_LOGE("Invalid following WMI_RADIO_LINK_STATS_EVENTID. Discarding this set");
wma_unified_radio_tx_mem_free(handle);
return -EINVAL;
}
WMA_LOGD("Radio stats Fixed Param:");
WMA_LOGD("req_id: %u num_radio: %u more_radio_events: %u",
fixed_param->request_id, fixed_param->num_radio,
fixed_param->more_radio_events);
WMA_LOGD("Radio Info: radio_id: %u on_time: %u tx_time: %u rx_time: %u on_time_scan: %u",
radio_stats->radio_id, radio_stats->on_time,
radio_stats->tx_time, radio_stats->rx_time,
radio_stats->on_time_scan);
WMA_LOGD("on_time_nbd: %u on_time_gscan: %u on_time_roam_scan: %u",
radio_stats->on_time_nbd,
radio_stats->on_time_gscan, radio_stats->on_time_roam_scan);
WMA_LOGD("on_time_pno_scan: %u on_time_hs20: %u num_channels: %u",
radio_stats->on_time_pno_scan, radio_stats->on_time_hs20,
radio_stats->num_channels);
WMA_LOGD("on_time_host_scan: %u, on_time_lpi_scan: %u",
radio_stats->on_time_host_scan,
radio_stats->on_time_lpi_scan);
link_stats_results->paramId = WMI_LINK_STATS_RADIO;
link_stats_results->rspId = fixed_param->request_id;
link_stats_results->ifaceId = 0;
link_stats_results->num_radio = fixed_param->num_radio;
link_stats_results->peer_event_number = 0;
/*
* Backward compatibility:
* There are firmware(s) which will send Radio stats only with
* more_radio_events set to 0 and firmware which sends Radio stats
* followed by tx_power level stats with more_radio_events set to 1.
* if more_radio_events is set to 1, buffer the radio stats and
* wait for tx_power_level stats.
*/
link_stats_results->moreResultToFollow = fixed_param->more_radio_events;
results = (uint8_t *) link_stats_results->results;
t_radio_stats = (uint8_t *) radio_stats;
t_channel_stats = (uint8_t *) channel_stats;
rs_results = (tSirWifiRadioStat *) &results[0] + radio_stats->radio_id;
rs_results->radio = radio_stats->radio_id;
rs_results->onTime = radio_stats->on_time;
rs_results->txTime = radio_stats->tx_time;
rs_results->rxTime = radio_stats->rx_time;
rs_results->onTimeScan = radio_stats->on_time_scan;
rs_results->onTimeNbd = radio_stats->on_time_nbd;
rs_results->onTimeGscan = radio_stats->on_time_gscan;
rs_results->onTimeRoamScan = radio_stats->on_time_roam_scan;
rs_results->onTimePnoScan = radio_stats->on_time_pno_scan;
rs_results->onTimeHs20 = radio_stats->on_time_hs20;
rs_results->total_num_tx_power_levels = 0;
rs_results->tx_time_per_power_level = NULL;
rs_results->numChannels = radio_stats->num_channels;
rs_results->on_time_host_scan = radio_stats->on_time_host_scan;
rs_results->on_time_lpi_scan = radio_stats->on_time_lpi_scan;
rs_results->channels = NULL;
if (rs_results->numChannels) {
rs_results->channels = (tSirWifiChannelStats *) qdf_mem_malloc(
radio_stats->num_channels *
chan_stats_size);
if (rs_results->channels == NULL) {
WMA_LOGD("%s: could not allocate mem for channel stats (size=%zu)",
__func__, radio_stats->num_channels * chan_stats_size);
wma_unified_radio_tx_mem_free(handle);
return -ENOMEM;
}
chn_results = (tSirWifiChannelStats *) &rs_results->channels[0];
next_chan_offset = WMI_TLV_HDR_SIZE;
WMA_LOGD("Channel Stats Info");
for (count = 0; count < radio_stats->num_channels; count++) {
WMA_LOGD("channel_width %u center_freq %u center_freq0 %u",
channel_stats->channel_width,
channel_stats->center_freq,
channel_stats->center_freq0);
WMA_LOGD("center_freq1 %u radio_awake_time %u cca_busy_time %u",
channel_stats->center_freq1,
channel_stats->radio_awake_time,
channel_stats->cca_busy_time);
channel_stats++;
qdf_mem_copy(chn_results,
t_channel_stats + next_chan_offset,
chan_stats_size);
chn_results++;
next_chan_offset += sizeof(*channel_stats);
}
}
if (link_stats_results->moreResultToFollow) {
/* More results coming, don't post yet */
return 0;
}
link_stats_results->nr_received++;
if (link_stats_results->num_radio != link_stats_results->nr_received) {
/* Not received all radio stats yet, don't post yet */
return 0;
}
pMac->sme.pLinkLayerStatsIndCallback(pMac->hHdd,
WMA_LINK_LAYER_STATS_RESULTS_RSP,
link_stats_results,
pMac->sme.ll_stats_context);
wma_unified_radio_tx_mem_free(handle);
return 0;
}
#ifdef WLAN_PEER_PS_NOTIFICATION
/**
* wma_peer_ps_evt_handler() - handler for PEER power state change.
* @handle: wma handle
* @event: FW event
* @len: length of FW event
*
* Once peer STA power state changes, an event will be indicated by
* FW. This function send a link layer state change msg to HDD. HDD
* link layer callback will converts the event to NL msg.
*
* Return: 0 Success. Others fail.
*/
static int wma_peer_ps_evt_handler(void *handle, u_int8_t *event,
u_int32_t len)
{
WMI_PEER_STA_PS_STATECHG_EVENTID_param_tlvs *param_buf;
wmi_peer_sta_ps_statechange_event_fixed_param *fixed_param;
tSirWifiPeerStat *peer_stat;
tSirWifiPeerInfo *peer_info;
tSirLLStatsResults *link_stats_results;
tSirMacAddr mac_address;
uint32_t result_len;
cds_msg_t sme_msg = { 0 };
QDF_STATUS qdf_status = QDF_STATUS_SUCCESS;
tpAniSirGlobal mac = cds_get_context(QDF_MODULE_ID_PE);
if (!mac) {
WMA_LOGD("%s: NULL mac ptr. Exiting", __func__);
return -EINVAL;
}
if (!mac->sme.link_layer_stats_ext_cb) {
WMA_LOGD("%s: HDD callback is null", __func__);
return -EINVAL;
}
WMA_LOGD("%s: Posting Peer Stats PS event to HDD", __func__);
param_buf = (WMI_PEER_STA_PS_STATECHG_EVENTID_param_tlvs *)event;
fixed_param = param_buf->fixed_param;
result_len = sizeof(tSirLLStatsResults) +
sizeof(tSirWifiPeerStat) +
sizeof(tSirWifiPeerInfo);
link_stats_results = qdf_mem_malloc(result_len);
if (link_stats_results == NULL) {
WMA_LOGE("%s: Cannot allocate link layer stats.", __func__);
return -EINVAL;
}
WMI_MAC_ADDR_TO_CHAR_ARRAY(&fixed_param->peer_macaddr, &mac_address[0]);
WMA_LOGD("Peer power state change event from FW");
WMA_LOGD("Fixed Param:");
WMA_LOGD("MAC address: %2x:%2x:%2x:%2x:%2x:%2x, Power state: %d",
mac_address[0], mac_address[1], mac_address[2],
mac_address[3], mac_address[4], mac_address[5],
fixed_param->peer_ps_state);
link_stats_results->paramId = WMI_LL_STATS_EXT_PS_CHG;
link_stats_results->num_peers = 1;
link_stats_results->peer_event_number = 1;
link_stats_results->moreResultToFollow = 0;
peer_stat = (tSirWifiPeerStat *)link_stats_results->results;
peer_stat->numPeers = 1;
peer_info = (tSirWifiPeerInfo *)peer_stat->peerInfo;
qdf_mem_copy(&peer_info->peerMacAddress,
&mac_address,
sizeof(tSirMacAddr));
peer_info->power_saving = fixed_param->peer_ps_state;
sme_msg.type = eWMI_SME_LL_STATS_IND;
sme_msg.bodyptr = link_stats_results;
sme_msg.bodyval = 0;
qdf_status = cds_mq_post_message(QDF_MODULE_ID_SME, &sme_msg);
if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
WMA_LOGE("%s: Fail to post ps change ind msg", __func__);
qdf_mem_free(link_stats_results);
}
return 0;
}
#else
/**
* wma_peer_ps_evt_handler() - handler for PEER power state change.
* @handle: wma handle
* @event: FW event
* @len: length of FW event
*
* Once peer STA power state changes, an event will be indicated by
* FW. This function send a link layer state change msg to HDD. HDD
* link layer callback will converts the event to NL msg.
*
* Return: 0 Success. Others fail.
*/
static inline int wma_peer_ps_evt_handler(void *handle, u_int8_t *event,
u_int32_t len)
{
return 0;
}
#endif
/**
* wma_tx_failure_cb() - TX failure callback
* @ctx: txrx context
* @num_msdu: number of msdu with the same status
* @tid: TID number
* @status: failure status
*/
void wma_tx_failure_cb(void *ctx, uint32_t num_msdu,
uint8_t tid, enum htt_tx_status status)
{
tSirLLStatsResults *results;
struct sir_wifi_iface_tx_fail *tx_fail;
cds_msg_t sme_msg = { 0 };
QDF_STATUS qdf_status = QDF_STATUS_SUCCESS;
tpAniSirGlobal mac = cds_get_context(QDF_MODULE_ID_PE);
if (!mac) {
WMA_LOGD("%s: NULL mac ptr. Exiting", __func__);
return;
}
if (!mac->sme.link_layer_stats_ext_cb) {
WMA_LOGD("%s: HDD callback is null", __func__);
return;
}
results = qdf_mem_malloc(sizeof(tSirLLStatsResults) +
sizeof(struct sir_wifi_iface_tx_fail));
if (results == NULL) {
WMA_LOGE("%s: Cannot allocate link layer stats.", __func__);
return;
}
results->paramId = WMI_LL_STATS_EXT_TX_FAIL;
results->num_peers = 1;
results->peer_event_number = 1;
results->moreResultToFollow = 0;
tx_fail = (struct sir_wifi_iface_tx_fail *)results->results;
tx_fail->tid = tid;
tx_fail->msdu_num = num_msdu;
tx_fail->status = status;
sme_msg.type = eWMI_SME_LL_STATS_IND;
sme_msg.bodyptr = results;
sme_msg.bodyval = 0;
qdf_status = cds_mq_post_message(QDF_MODULE_ID_SME, &sme_msg);
if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
WMA_LOGE("%s: Fail to post TX failure ind msg", __func__);
qdf_mem_free(results);
}
}
/**
* wma_register_ll_stats_event_handler() - register link layer stats related
* event handler
* @wma_handle: wma handle
*
* Return: none
*/
void wma_register_ll_stats_event_handler(tp_wma_handle wma_handle)
{
if (NULL == wma_handle) {
WMA_LOGE("%s: wma_handle is NULL", __func__);
return;
}
wmi_unified_register_event_handler(wma_handle->wmi_handle,
WMI_IFACE_LINK_STATS_EVENTID,
wma_unified_link_iface_stats_event_handler,
WMA_RX_SERIALIZER_CTX);
wmi_unified_register_event_handler(wma_handle->wmi_handle,
WMI_PEER_LINK_STATS_EVENTID,
wma_unified_link_peer_stats_event_handler,
WMA_RX_SERIALIZER_CTX);
wmi_unified_register_event_handler(wma_handle->wmi_handle,
WMI_RADIO_LINK_STATS_EVENTID,
wma_unified_link_radio_stats_event_handler,
WMA_RX_SERIALIZER_CTX);
wmi_unified_register_event_handler(wma_handle->wmi_handle,
WMI_RADIO_TX_POWER_LEVEL_STATS_EVENTID,
wma_unified_radio_tx_power_level_stats_event_handler,
WMA_RX_SERIALIZER_CTX);
wmi_unified_register_event_handler(wma_handle->wmi_handle,
WMI_PEER_STA_PS_STATECHG_EVENTID,
wma_peer_ps_evt_handler,
WMA_RX_SERIALIZER_CTX);
wmi_unified_register_event_handler(wma_handle->wmi_handle,
WMI_REPORT_STATS_EVENTID,
wma_ll_stats_evt_handler,
WMA_RX_SERIALIZER_CTX);
}
/**
* wma_process_ll_stats_clear_req() - clear link layer stats
* @wma: wma handle
* @clearReq: ll stats clear request command params
*
* Return: QDF_STATUS_SUCCESS for success or error code
*/
QDF_STATUS wma_process_ll_stats_clear_req(tp_wma_handle wma,
const tpSirLLStatsClearReq clearReq)
{
struct ll_stats_clear_params cmd = {0};
int ret;
if (!clearReq || !wma) {
WMA_LOGE("%s: input pointer is NULL", __func__);
return QDF_STATUS_E_FAILURE;
}
if (!wma->interfaces[clearReq->staId].handle) {
WMA_LOGE("%s: vdev_id %d handle is NULL",
__func__, clearReq->staId);
return QDF_STATUS_E_FAILURE;
}
cmd.stop_req = clearReq->stopReq;
cmd.sta_id = clearReq->staId;
cmd.stats_clear_mask = clearReq->statsClearReqMask;
ret = wmi_unified_process_ll_stats_clear_cmd(wma->wmi_handle, &cmd,
wma->interfaces[clearReq->staId].addr);
if (ret) {
WMA_LOGE("%s: Failed to send clear link stats req", __func__);
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/**
* wma_process_ll_stats_set_req() - link layer stats set request
* @wma: wma handle
* @setReq: ll stats set request command params
*
* Return: QDF_STATUS_SUCCESS for success or error code
*/
QDF_STATUS wma_process_ll_stats_set_req(tp_wma_handle wma,
const tpSirLLStatsSetReq setReq)
{
struct ll_stats_set_params cmd = {0};
int ret;
if (!setReq || !wma) {
WMA_LOGE("%s: input pointer is NULL", __func__);
return QDF_STATUS_E_FAILURE;
}
cmd.mpdu_size_threshold = setReq->mpduSizeThreshold;
cmd.aggressive_statistics_gathering =
setReq->aggressiveStatisticsGathering;
ret = wmi_unified_process_ll_stats_set_cmd(wma->wmi_handle,
&cmd);
if (ret) {
WMA_LOGE("%s: Failed to send set link stats request", __func__);
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/**
* wma_process_ll_stats_get_req() - link layer stats get request
* @wma:wma handle
* @getReq:ll stats get request command params
*
* Return: QDF_STATUS_SUCCESS for success or error code
*/
QDF_STATUS wma_process_ll_stats_get_req(tp_wma_handle wma,
const tpSirLLStatsGetReq getReq)
{
struct ll_stats_get_params cmd = {0};
int ret;
if (!getReq || !wma) {
WMA_LOGE("%s: input pointer is NULL", __func__);
return QDF_STATUS_E_FAILURE;
}
if (!wma->interfaces[getReq->staId].vdev_active) {
WMA_LOGE("%s: vdev not created yet", __func__);
return QDF_STATUS_E_FAILURE;
}
cmd.req_id = getReq->reqId;
cmd.param_id_mask = getReq->paramIdMask;
cmd.sta_id = getReq->staId;
ret = wmi_unified_process_ll_stats_get_cmd(wma->wmi_handle, &cmd,
wma->interfaces[getReq->staId].addr);
if (ret) {
WMA_LOGE("%s: Failed to send get link stats request", __func__);
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/**
* wma_unified_link_iface_stats_event_handler() - link iface stats event handler
* @wma:wma handle
* @cmd_param_info: data from event
* @len: length
*
* Return: 0 for success or error code
*/
int wma_unified_link_iface_stats_event_handler(void *handle,
uint8_t *cmd_param_info,
uint32_t len)
{
WMI_IFACE_LINK_STATS_EVENTID_param_tlvs *param_tlvs;
wmi_iface_link_stats_event_fixed_param *fixed_param;
wmi_iface_link_stats *link_stats;
wmi_wmm_ac_stats *ac_stats;
wmi_iface_offload_stats *offload_stats;
tSirLLStatsResults *link_stats_results;
uint8_t *results, *t_link_stats, *t_ac_stats, *t_offload_stats;
uint32_t next_res_offset, next_ac_offset, next_offload_offset, count;
uint32_t roaming_offset, size;
size_t link_stats_size, ac_stats_size, iface_info_size;
size_t link_stats_results_size, offload_stats_size;
size_t total_ac_size, total_offload_size;
tpAniSirGlobal pMac = cds_get_context(QDF_MODULE_ID_PE);
if (!pMac) {
WMA_LOGD("%s: NULL pMac ptr. Exiting", __func__);
return -EINVAL;
}
if (!pMac->sme.pLinkLayerStatsIndCallback) {
WMA_LOGD("%s: HDD callback is null", __func__);
return -EINVAL;
}
param_tlvs = (WMI_IFACE_LINK_STATS_EVENTID_param_tlvs *) cmd_param_info;
if (!param_tlvs) {
WMA_LOGA("%s: Invalid stats event", __func__);
return -EINVAL;
}
/*
* cmd_param_info contains
* wmi_iface_link_stats_event_fixed_param fixed_param;
* wmi_iface_link_stats iface_link_stats;
* iface_link_stats->num_ac * size of(struct wmi_wmm_ac_stats)
* fixed_param->num_offload_stats * size of(wmi_iface_offload_stats);
*/
fixed_param = param_tlvs->fixed_param;
link_stats = param_tlvs->iface_link_stats;
ac_stats = param_tlvs->ac;
offload_stats = param_tlvs->iface_offload_stats;
if (!fixed_param || !link_stats || (link_stats->num_ac && !ac_stats) ||
(fixed_param->num_offload_stats && !offload_stats)) {
WMA_LOGA("%s: Invalid param_tlvs for Iface Stats", __func__);
return -EINVAL;
}
if (link_stats->num_ac > WIFI_AC_MAX || link_stats->num_ac >
param_tlvs->num_ac) {
WMA_LOGE("%s: Excess data received from firmware num_ac %d, param_tlvs->num_ac %d",
__func__, link_stats->num_ac, param_tlvs->num_ac);
return -EINVAL;
}
if (fixed_param->num_offload_stats > WMI_OFFLOAD_STATS_TYPE_MAX ||
fixed_param->num_offload_stats >
param_tlvs->num_iface_offload_stats) {
WMA_LOGE("%s: Excess num offload stats recvd from fw: %d, um_iface_offload_stats: %d",
__func__, fixed_param->num_offload_stats,
param_tlvs->num_iface_offload_stats);
return -EINVAL;
}
link_stats_size = sizeof(tSirWifiIfaceStat);
iface_info_size = sizeof(tSirWifiInterfaceInfo);
ac_stats_size = sizeof(tSirWifiWmmAcStat);
offload_stats_size = sizeof(struct wifi_iface_offload_stat);
total_ac_size = ac_stats_size * WIFI_AC_MAX;
total_offload_size = offload_stats_size * WMI_OFFLOAD_STATS_TYPE_MAX +
member_size(tSirWifiIfaceStat, num_offload_stats);
link_stats_results_size = sizeof(*link_stats_results) + link_stats_size;
link_stats_results = qdf_mem_malloc(link_stats_results_size);
if (!link_stats_results) {
WMA_LOGD("%s: could not allocate mem for stats results-len %zu",
__func__, link_stats_results_size);
return -ENOMEM;
}
qdf_mem_zero(link_stats_results, link_stats_results_size);
link_stats_results->paramId = WMI_LINK_STATS_IFACE;
link_stats_results->rspId = fixed_param->request_id;
link_stats_results->ifaceId = fixed_param->vdev_id;
link_stats_results->num_peers = link_stats->num_peers;
link_stats_results->peer_event_number = 0;
link_stats_results->moreResultToFollow = 0;
/* results is copied to tSirWifiIfaceStat in upper layer
* tSirWifiIfaceStat
* - tSirWifiInterfaceInfo (all fields except roaming is
* filled by host in the upper layer)
* - various members of tSirWifiIfaceStat (from wmi_iface_link_stats)
* - ACs information (from wmi_wmm_ac_stats)
* - num_offload_stats (from fixed param)
* - offload stats (from wmi_iface_offload_stats)
*/
results = (uint8_t *) link_stats_results->results;
t_link_stats = (uint8_t *) link_stats;
t_ac_stats = (uint8_t *) ac_stats;
t_offload_stats = (uint8_t *) offload_stats;
/* Copy roaming state */
roaming_offset = offsetof(tSirWifiInterfaceInfo, roaming);
size = member_size(tSirWifiInterfaceInfo, roaming);
qdf_mem_copy(results + roaming_offset, &link_stats->roam_state, size);
next_res_offset = iface_info_size;
qdf_mem_copy(results + next_res_offset,
t_link_stats + WMI_TLV_HDR_SIZE,
link_stats_size - iface_info_size -
total_ac_size - total_offload_size);
next_res_offset = link_stats_size - total_ac_size - total_offload_size;
next_ac_offset = WMI_TLV_HDR_SIZE;
for (count = 0; count < link_stats->num_ac; count++) {
ac_stats++;
qdf_mem_copy(results + next_res_offset,
t_ac_stats + next_ac_offset, ac_stats_size);
next_res_offset += ac_stats_size;
next_ac_offset += sizeof(*ac_stats);
}
next_res_offset = link_stats_size - total_offload_size;
/* copy num_offload_stats into result */
size = member_size(tSirWifiIfaceStat, num_offload_stats);
qdf_mem_copy(results + next_res_offset, &fixed_param->num_offload_stats,
size);
next_res_offset += size;
next_offload_offset = WMI_TLV_HDR_SIZE;
for (count = 0; count < fixed_param->num_offload_stats; count++) {
qdf_mem_copy(results + next_res_offset,
t_offload_stats + next_offload_offset,
offload_stats_size);
next_res_offset += offload_stats_size;
next_offload_offset += sizeof(*offload_stats);
}
/* call hdd callback with Link Layer Statistics
* vdev_id/ifacId in link_stats_results will be
* used to retrieve the correct HDD context
*/
pMac->sme.pLinkLayerStatsIndCallback(pMac->hHdd,
WMA_LINK_LAYER_STATS_RESULTS_RSP,
link_stats_results,
pMac->sme.ll_stats_context);
qdf_mem_free(link_stats_results);
return 0;
}
/**
* wma_config_stats_ext_threshold - set threthold for MAC counters
* @wma: wma handler
* @threshold: threhold for MAC counters
*
* For each MAC layer counter, FW holds two copies. One is the current value.
* The other is the last report. Once a current counter's increment is larger
* than the threshold, FW will indicate that counter to host even if the
* monitoring timer does not expire.
*
* Return: None
*/
void wma_config_stats_ext_threshold(tp_wma_handle wma,
struct sir_ll_ext_stats_threshold *thresh)
{
uint32_t len, tag, hdr_len;
uint8_t *buf_ptr;
wmi_buf_t buf;
wmi_pdev_set_stats_threshold_cmd_fixed_param *cmd;
wmi_chan_cca_stats_thresh *cca;
wmi_peer_signal_stats_thresh *signal;
wmi_tx_stats_thresh *tx;
wmi_rx_stats_thresh *rx;
if (!thresh) {
WMA_LOGE(FL("Invalid threshold input."));
return;
}
len = sizeof(wmi_pdev_set_stats_threshold_cmd_fixed_param) +
sizeof(wmi_chan_cca_stats_thresh) +
sizeof(wmi_peer_signal_stats_thresh) +
sizeof(wmi_tx_stats_thresh) +
sizeof(wmi_rx_stats_thresh) +
5 * WMI_TLV_HDR_SIZE;
buf = wmi_buf_alloc(wma->wmi_handle, len);
if (!buf) {
WMA_LOGP("%s: wmi_buf_alloc failed", __func__);
return;
}
buf_ptr = (u_int8_t *)wmi_buf_data(buf);
tag = WMITLV_TAG_STRUC_wmi_pdev_set_stats_threshold_cmd_fixed_param;
hdr_len = WMITLV_GET_STRUCT_TLVLEN(
wmi_pdev_set_stats_threshold_cmd_fixed_param);
WMA_LOGD(FL("Setting fixed parameters. tag=%d, len=%d"), tag, hdr_len);
cmd = (wmi_pdev_set_stats_threshold_cmd_fixed_param *)buf_ptr;
WMITLV_SET_HDR(&cmd->tlv_header, tag, hdr_len);
cmd->enable_thresh = thresh->enable;
cmd->use_thresh_bitmap = thresh->enable_bitmap;
cmd->gbl_thresh = thresh->global_threshold;
cmd->cca_thresh_enable_bitmap = thresh->cca_bitmap;
cmd->signal_thresh_enable_bitmap = thresh->signal_bitmap;
cmd->tx_thresh_enable_bitmap = thresh->tx_bitmap;
cmd->rx_thresh_enable_bitmap = thresh->rx_bitmap;
len = sizeof(wmi_pdev_set_stats_threshold_cmd_fixed_param);
tag = WMITLV_TAG_STRUC_wmi_chan_cca_stats_thresh,
hdr_len = WMITLV_GET_STRUCT_TLVLEN(wmi_chan_cca_stats_thresh);
cca = (wmi_chan_cca_stats_thresh *)(buf_ptr + len);
WMITLV_SET_HDR(&cca->tlv_header, tag, hdr_len);
WMA_LOGD(FL("Setting cca parameters. tag=%d, len=%d"), tag, hdr_len);
cca->idle_time = thresh->cca.idle_time;
cca->tx_time = thresh->cca.tx_time;
cca->rx_in_bss_time = thresh->cca.rx_in_bss_time;
cca->rx_out_bss_time = thresh->cca.rx_out_bss_time;
cca->rx_busy_time = thresh->cca.rx_busy_time;
cca->rx_in_bad_cond_time = thresh->cca.rx_in_bad_cond_time;
cca->tx_in_bad_cond_time = thresh->cca.tx_in_bad_cond_time;
cca->wlan_not_avail_time = thresh->cca.wlan_not_avail_time;
WMA_LOGD(FL("idle time=%d, tx_time=%d, in_bss=%d, out_bss=%d"),
cca->idle_time, cca->tx_time,
cca->rx_in_bss_time, cca->rx_out_bss_time);
WMA_LOGD(FL("rx_busy=%d, rx_bad=%d, tx_bad=%d, not_avail=%d"),
cca->rx_busy_time, cca->rx_in_bad_cond_time,
cca->tx_in_bad_cond_time, cca->wlan_not_avail_time);
len += sizeof(wmi_chan_cca_stats_thresh);
signal = (wmi_peer_signal_stats_thresh *)(buf_ptr + len);
tag = WMITLV_TAG_STRUC_wmi_peer_signal_stats_thresh;
hdr_len = WMITLV_GET_STRUCT_TLVLEN(wmi_peer_signal_stats_thresh);
WMA_LOGD(FL("Setting signal parameters. tag=%d, len=%d"), tag, hdr_len);
WMITLV_SET_HDR(&signal->tlv_header, tag, hdr_len);
signal->per_chain_snr = thresh->signal.snr;
signal->per_chain_nf = thresh->signal.nf;
WMA_LOGD(FL("snr=%d, nf=%d"), signal->per_chain_snr,
signal->per_chain_nf);
len += sizeof(wmi_peer_signal_stats_thresh);
tx = (wmi_tx_stats_thresh *)(buf_ptr + len);
tag = WMITLV_TAG_STRUC_wmi_tx_stats_thresh;
hdr_len = WMITLV_GET_STRUCT_TLVLEN(wmi_tx_stats_thresh);
WMA_LOGD(FL("Setting TX parameters. tag=%d, len=%d"), tag, len);
WMITLV_SET_HDR(&tx->tlv_header, tag, hdr_len);
tx->tx_msdu_cnt = thresh->tx.msdu;
tx->tx_mpdu_cnt = thresh->tx.mpdu;
tx->tx_ppdu_cnt = thresh->tx.ppdu;
tx->tx_bytes = thresh->tx.bytes;
tx->tx_msdu_drop_cnt = thresh->tx.msdu_drop;
tx->tx_drop_bytes = thresh->tx.byte_drop;
tx->tx_mpdu_retry_cnt = thresh->tx.mpdu_retry;
tx->tx_mpdu_fail_cnt = thresh->tx.mpdu_fail;
tx->tx_ppdu_fail_cnt = thresh->tx.ppdu_fail;
tx->tx_mpdu_aggr = thresh->tx.aggregation;
tx->tx_succ_mcs = thresh->tx.succ_mcs;
tx->tx_fail_mcs = thresh->tx.fail_mcs;
tx->tx_ppdu_delay = thresh->tx.delay;
WMA_LOGD(FL("msdu=%d, mpdu=%d, ppdu=%d, bytes=%d, msdu_drop=%d"),
tx->tx_msdu_cnt, tx->tx_mpdu_cnt, tx->tx_ppdu_cnt,
tx->tx_bytes, tx->tx_msdu_drop_cnt);
WMA_LOGD(FL("byte_drop=%d, mpdu_retry=%d, mpdu_fail=%d, ppdu_fail=%d"),
tx->tx_drop_bytes, tx->tx_mpdu_retry_cnt,
tx->tx_mpdu_fail_cnt, tx->tx_ppdu_fail_cnt);
WMA_LOGD(FL("aggr=%d, succ_mcs=%d, fail_mcs=%d, delay=%d"),
tx->tx_mpdu_aggr, tx->tx_succ_mcs, tx->tx_fail_mcs,
tx->tx_ppdu_delay);
len += sizeof(wmi_tx_stats_thresh);
rx = (wmi_rx_stats_thresh *)(buf_ptr + len);
tag = WMITLV_TAG_STRUC_wmi_rx_stats_thresh,
hdr_len = WMITLV_GET_STRUCT_TLVLEN(wmi_rx_stats_thresh);
WMITLV_SET_HDR(&rx->tlv_header, tag, hdr_len);
WMA_LOGD(FL("Setting RX parameters. tag=%d, len=%d"), tag, hdr_len);
rx->mac_rx_mpdu_cnt = thresh->rx.mpdu;
rx->mac_rx_bytes = thresh->rx.bytes;
rx->phy_rx_ppdu_cnt = thresh->rx.ppdu;
rx->phy_rx_bytes = thresh->rx.ppdu_bytes;
rx->rx_disorder_cnt = thresh->rx.disorder;
rx->rx_mpdu_retry_cnt = thresh->rx.mpdu_retry;
rx->rx_mpdu_dup_cnt = thresh->rx.mpdu_dup;
rx->rx_mpdu_discard_cnt = thresh->rx.mpdu_discard;
rx->rx_mpdu_aggr = thresh->rx.aggregation;
rx->rx_mcs = thresh->rx.mcs;
rx->sta_ps_inds = thresh->rx.ps_inds;
rx->sta_ps_durs = thresh->rx.ps_durs;
rx->rx_probe_reqs = thresh->rx.probe_reqs;
rx->rx_oth_mgmts = thresh->rx.other_mgmt;
WMA_LOGD(FL("rx_mpdu=%d, rx_bytes=%d, rx_ppdu=%d, rx_pbytes=%d"),
rx->mac_rx_mpdu_cnt, rx->mac_rx_bytes,
rx->phy_rx_ppdu_cnt, rx->phy_rx_bytes);
WMA_LOGD(FL("disorder=%d, rx_dup=%d, rx_aggr=%d, rx_mcs=%d"),
rx->rx_disorder_cnt, rx->rx_mpdu_dup_cnt,
rx->rx_mpdu_aggr, rx->rx_mcs);
WMA_LOGD(FL("rx_ind=%d, rx_dur=%d, rx_probe=%d, rx_mgmt=%d"),
rx->sta_ps_inds, rx->sta_ps_durs,
rx->rx_probe_reqs, rx->rx_oth_mgmts);
len += sizeof(wmi_rx_stats_thresh);
WMA_LOGA("WMA --> WMI_PDEV_SET_STATS_THRESHOLD_CMDID(0x%x), length=%d",
WMI_PDEV_SET_STATS_THRESHOLD_CMDID, len);
if (EOK != wmi_unified_cmd_send(wma->wmi_handle,
buf, len,
WMI_PDEV_SET_STATS_THRESHOLD_CMDID)) {
WMA_LOGE("Failed to send WMI_PDEV_SET_STATS_THRESHOLD_CMDID");
wmi_buf_free(buf);
}
}
#endif /* WLAN_FEATURE_LINK_LAYER_STATS */
/**
* wma_update_pdev_stats() - update pdev stats
* @wma: wma handle
* @pdev_stats: pdev stats
*
* Return: none
*/
static void wma_update_pdev_stats(tp_wma_handle wma,
wmi_pdev_stats *pdev_stats)
{
tAniGetPEStatsRsp *stats_rsp_params;
uint32_t temp_mask;
uint8_t *stats_buf;
tCsrGlobalClassAStatsInfo *classa_stats = NULL;
struct wma_txrx_node *node;
uint8_t i;
for (i = 0; i < wma->max_bssid; i++) {
node = &wma->interfaces[i];
stats_rsp_params = node->stats_rsp;
if (stats_rsp_params) {
node->fw_stats_set |= FW_PDEV_STATS_SET;
WMA_LOGD("<---FW PDEV STATS received for vdevId:%d", i);
stats_buf = (uint8_t *) (stats_rsp_params + 1);
temp_mask = stats_rsp_params->statsMask;
if (temp_mask & (1 << eCsrSummaryStats))
stats_buf += sizeof(tCsrSummaryStatsInfo);
if (temp_mask & (1 << eCsrGlobalClassAStats)) {
classa_stats =
(tCsrGlobalClassAStatsInfo *) stats_buf;
classa_stats->max_pwr = pdev_stats->chan_tx_pwr;
}
}
}
}
/**
* wma_vdev_stats_lost_link_helper() - helper function to extract
* lost link information from vdev statistics event while deleting BSS.
* @wma: WMA handle
* @vdev_stats: statistics information from firmware
*
* This is for informing HDD to collect lost link information while
* disconnection. Following conditions to check
* 1. vdev is up
* 2. bssid is zero. When handling DELETE_BSS request message, it sets bssid to
* zero, hence add the check here to indicate the event comes during deleting
* BSS
* 3. DELETE_BSS is the request message queued. Put this condition check on the
* last one as it consumes more resource searching entries in the list
*
* Return: none
*/
static void wma_vdev_stats_lost_link_helper(tp_wma_handle wma,
wmi_vdev_stats *vdev_stats)
{
struct wma_txrx_node *node;
int32_t rssi;
struct wma_target_req *req_msg;
static const uint8_t zero_mac[QDF_MAC_ADDR_SIZE] = {0};
int32_t bcn_snr, dat_snr;
if (vdev_stats->vdev_id >= wma->max_bssid) {
WMA_LOGE("%s: Invalid vdev_id %hu",
__func__, vdev_stats->vdev_id);
return;
}
node = &wma->interfaces[vdev_stats->vdev_id];
if (node->vdev_up &&
!qdf_mem_cmp(node->bssid, zero_mac, QDF_MAC_ADDR_SIZE)) {
req_msg = wma_peek_vdev_req(wma, vdev_stats->vdev_id,
WMA_TARGET_REQ_TYPE_VDEV_STOP);
if ((NULL == req_msg) ||
(WMA_DELETE_BSS_REQ != req_msg->msg_type)) {
WMA_LOGD(FL("cannot find DELETE_BSS request message"));
return;
}
bcn_snr = vdev_stats->vdev_snr.bcn_snr;
dat_snr = vdev_stats->vdev_snr.dat_snr;
WMA_LOGD(FL("get vdev id %d, beancon snr %d, data snr %d"),
vdev_stats->vdev_id, bcn_snr, dat_snr);
if (WMA_TGT_IS_VALID_SNR(bcn_snr))
rssi = bcn_snr;
else if (WMA_TGT_IS_VALID_SNR(dat_snr))
rssi = dat_snr;
else
rssi = WMA_TGT_INVALID_SNR;
/* Get the absolute rssi value from the current rssi value */
rssi = rssi + WMA_TGT_NOISE_FLOOR_DBM;
wma_lost_link_info_handler(wma, vdev_stats->vdev_id, rssi);
}
}
/**
* wma_update_vdev_stats() - update vdev stats
* @wma: wma handle
* @vdev_stats: vdev stats
*
* Return: none
*/
static void wma_update_vdev_stats(tp_wma_handle wma,
wmi_vdev_stats *vdev_stats)
{
tAniGetPEStatsRsp *stats_rsp_params;
tCsrSummaryStatsInfo *summary_stats = NULL;
uint8_t *stats_buf;
struct wma_txrx_node *node;
uint8_t i;
int32_t rssi = 0;
QDF_STATUS qdf_status;
tAniGetRssiReq *pGetRssiReq = (tAniGetRssiReq *) wma->pGetRssiReq;
cds_msg_t sme_msg = { 0 };
int32_t bcn_snr, dat_snr;
if (vdev_stats->vdev_id >= wma->max_bssid) {
WMA_LOGE("%s: Invalid vdev_id %hu",
__func__, vdev_stats->vdev_id);
return;
}
bcn_snr = vdev_stats->vdev_snr.bcn_snr;
dat_snr = vdev_stats->vdev_snr.dat_snr;
WMA_LOGD("vdev id %d beancon snr %d data snr %d",
vdev_stats->vdev_id, bcn_snr, dat_snr);
node = &wma->interfaces[vdev_stats->vdev_id];
stats_rsp_params = node->stats_rsp;
if (stats_rsp_params) {
stats_buf = (uint8_t *) (stats_rsp_params + 1);
node->fw_stats_set |= FW_VDEV_STATS_SET;
WMA_LOGD("<---FW VDEV STATS received for vdevId:%d",
vdev_stats->vdev_id);
if (stats_rsp_params->statsMask & (1 << eCsrSummaryStats)) {
summary_stats = (tCsrSummaryStatsInfo *) stats_buf;
for (i = 0; i < 4; i++) {
summary_stats->tx_frm_cnt[i] =
vdev_stats->tx_frm_cnt[i];
summary_stats->fail_cnt[i] =
vdev_stats->fail_cnt[i];
summary_stats->multiple_retry_cnt[i] =
vdev_stats->multiple_retry_cnt[i];
}
summary_stats->rx_frm_cnt = vdev_stats->rx_frm_cnt;
summary_stats->rx_error_cnt = vdev_stats->rx_err_cnt;
summary_stats->rx_discard_cnt =
vdev_stats->rx_discard_cnt;
summary_stats->ack_fail_cnt = vdev_stats->ack_fail_cnt;
summary_stats->rts_succ_cnt = vdev_stats->rts_succ_cnt;
summary_stats->rts_fail_cnt = vdev_stats->rts_fail_cnt;
/* Update SNR and RSSI in SummaryStats */
if (WMA_TGT_IS_VALID_SNR(bcn_snr)) {
summary_stats->snr = bcn_snr;
summary_stats->rssi =
bcn_snr + WMA_TGT_NOISE_FLOOR_DBM;
} else if (WMA_TGT_IS_VALID_SNR(dat_snr)) {
summary_stats->snr = dat_snr;
summary_stats->rssi =
dat_snr + WMA_TGT_NOISE_FLOOR_DBM;
} else {
summary_stats->snr = WMA_TGT_INVALID_SNR;
summary_stats->rssi = 0;
}
}
}
if (pGetRssiReq && pGetRssiReq->sessionId == vdev_stats->vdev_id) {
if (WMA_TGT_IS_VALID_SNR(bcn_snr)) {
rssi = bcn_snr;
rssi = rssi + WMA_TGT_NOISE_FLOOR_DBM;
} else if (WMA_TGT_IS_VALID_SNR(dat_snr)) {
rssi = dat_snr;
rssi = rssi + WMA_TGT_NOISE_FLOOR_DBM;
} else {
/*
* Firmware sends invalid snr till it sees
* Beacon/Data after connection since after
* vdev up fw resets the snr to invalid.
* In this duartion Host will return the last know
* rssi during connection.
*/
WMA_LOGE("Invalid SNR from firmware");
}
WMA_LOGD("Average Rssi = %d, vdev id= %d", rssi,
pGetRssiReq->sessionId);
/* update the average rssi value to UMAC layer */
if (NULL != pGetRssiReq->rssiCallback) {
((tCsrRssiCallback) (pGetRssiReq->rssiCallback))(rssi,
pGetRssiReq->staId,
pGetRssiReq->pDevContext);
}
qdf_mem_free(pGetRssiReq);
wma->pGetRssiReq = NULL;
}
if (node->psnr_req) {
tAniGetSnrReq *p_snr_req = node->psnr_req;
if (WMA_TGT_IS_VALID_SNR(bcn_snr))
p_snr_req->snr = bcn_snr;
else if (WMA_TGT_IS_VALID_SNR(dat_snr))
p_snr_req->snr = dat_snr;
else
p_snr_req->snr = WMA_TGT_INVALID_SNR;
sme_msg.type = eWNI_SME_SNR_IND;
sme_msg.bodyptr = p_snr_req;
sme_msg.bodyval = 0;
qdf_status = cds_mq_post_message(QDF_MODULE_ID_SME, &sme_msg);
if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
WMA_LOGE("%s: Fail to post snr ind msg", __func__);
qdf_mem_free(p_snr_req);
}
node->psnr_req = NULL;
}
wma_vdev_stats_lost_link_helper(wma, vdev_stats);
}
/**
* wma_post_stats() - update stats to PE
* @wma: wma handle
* @node: txrx node
*
* Return: none
*/
static void wma_post_stats(tp_wma_handle wma, struct wma_txrx_node *node)
{
/* send response to UMAC */
wma_send_msg(wma, WMA_GET_STATISTICS_RSP, node->stats_rsp, 0);
node->stats_rsp = NULL;
node->fw_stats_set = 0;
}
/**
* wma_update_peer_stats() - update peer stats
* @wma: wma handle
* @peer_stats: peer stats
*
* Return: none
*/
static void wma_update_peer_stats(tp_wma_handle wma,
wmi_peer_stats *peer_stats)
{
tAniGetPEStatsRsp *stats_rsp_params;
tCsrGlobalClassAStatsInfo *classa_stats = NULL;
struct wma_txrx_node *node;
uint8_t *stats_buf, vdev_id, macaddr[IEEE80211_ADDR_LEN], mcsRateFlags;
uint32_t temp_mask;
WMI_MAC_ADDR_TO_CHAR_ARRAY(&peer_stats->peer_macaddr, &macaddr[0]);
if (!wma_find_vdev_by_bssid(wma, macaddr, &vdev_id))
return;
node = &wma->interfaces[vdev_id];
stats_rsp_params = (tAniGetPEStatsRsp *) node->stats_rsp;
if (stats_rsp_params) {
node->fw_stats_set |= FW_PEER_STATS_SET;
WMA_LOGD("<-- FW PEER STATS received for vdevId:%d", vdev_id);
stats_buf = (uint8_t *) (stats_rsp_params + 1);
temp_mask = stats_rsp_params->statsMask;
if (temp_mask & (1 << eCsrSummaryStats))
stats_buf += sizeof(tCsrSummaryStatsInfo);
if (temp_mask & (1 << eCsrGlobalClassAStats)) {
classa_stats = (tCsrGlobalClassAStatsInfo *) stats_buf;
WMA_LOGD("peer tx rate:%d", peer_stats->peer_tx_rate);
/* The linkspeed returned by fw is in kbps so convert
* it in to units of 500kbps which is expected by UMAC
*/
if (peer_stats->peer_tx_rate) {
classa_stats->tx_rate =
peer_stats->peer_tx_rate / 500;
}
classa_stats->tx_rate_flags = node->rate_flags;
if (!(node->rate_flags & eHAL_TX_RATE_LEGACY)) {
classa_stats->mcs_index =
wma_get_mcs_idx(
(peer_stats->peer_tx_rate /
100), node->rate_flags,
node->nss, &mcsRateFlags);
classa_stats->nss = node->nss;
classa_stats->mcs_rate_flags = mcsRateFlags;
}
/* FW returns tx power in intervals of 0.5 dBm
* Convert it back to intervals of 1 dBm
*/
classa_stats->max_pwr =
roundup(classa_stats->max_pwr, 2) >> 1;
}
}
}
/**
* wma_post_link_status() - post link status to SME
* @pGetLinkStatus: SME Link status
* @link_status: Link status
*
* Return: none
*/
void wma_post_link_status(tAniGetLinkStatus *pGetLinkStatus,
uint8_t link_status)
{
QDF_STATUS qdf_status = QDF_STATUS_SUCCESS;
cds_msg_t sme_msg = { 0 };
pGetLinkStatus->linkStatus = link_status;
sme_msg.type = eWNI_SME_LINK_STATUS_IND;
sme_msg.bodyptr = pGetLinkStatus;
sme_msg.bodyval = 0;
qdf_status = cds_mq_post_message(QDF_MODULE_ID_SME, &sme_msg);
if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
WMA_LOGE("%s: Fail to post link status ind msg", __func__);
qdf_mem_free(pGetLinkStatus);
}
}
/**
* wma_update_per_chain_rssi_stats() - to store per chain rssi stats
* @wma: wma handle
* @rssi_stats: rssi stats
* @rssi_per_chain_stats: buffer where rssi stats to be stored
*
* This function stores per chain rssi stats received from fw for all vdevs for
* which the stats were requested into a csr stats structure.
*
* Return: void
*/
static void wma_update_per_chain_rssi_stats(tp_wma_handle wma,
wmi_rssi_stats *rssi_stats,
struct csr_per_chain_rssi_stats_info *rssi_per_chain_stats)
{
int i;
int32_t bcn_snr, dat_snr;
for (i = 0; i < NUM_CHAINS_MAX; i++) {
bcn_snr = rssi_stats->rssi_avg_beacon[i];
dat_snr = rssi_stats->rssi_avg_data[i];
WMA_LOGD("chain %d beacon snr %d data snr %d",
i, bcn_snr, dat_snr);
if (WMA_TGT_IS_VALID_SNR(bcn_snr))
rssi_per_chain_stats->rssi[i] = bcn_snr;
else if (WMA_TGT_IS_VALID_SNR(dat_snr))
rssi_per_chain_stats->rssi[i] = dat_snr;
else
/*
* Firmware sends invalid snr till it sees
* Beacon/Data after connection since after
* vdev up fw resets the snr to invalid.
* In this duartion Host will return an invalid rssi
* value.
*/
rssi_per_chain_stats->rssi[i] = WMA_TGT_INVALID_SNR;
/*
* Get the absolute rssi value from the current rssi value the
* sinr value is hardcoded into 0 in the qcacld-new/CORE stack
*/
rssi_per_chain_stats->rssi[i] += WMA_TGT_NOISE_FLOOR_DBM;
WMI_MAC_ADDR_TO_CHAR_ARRAY(&(rssi_stats->peer_macaddr),
rssi_per_chain_stats->peer_mac_addr);
}
}
/**
* wma_update_rssi_stats() - to update rssi stats for all vdevs
* for which the stats were requested.
* @wma: wma handle
* @rssi_stats: rssi stats
*
* This function updates the rssi stats for all vdevs for which
* the stats were requested.
*
* Return: void
*/
static void wma_update_rssi_stats(tp_wma_handle wma,
wmi_rssi_stats *rssi_stats)
{
tAniGetPEStatsRsp *stats_rsp_params;
struct csr_per_chain_rssi_stats_info *rssi_per_chain_stats = NULL;
struct wma_txrx_node *node;
uint8_t *stats_buf;
uint32_t temp_mask;
uint8_t vdev_id;
if (rssi_stats->vdev_id >= wma->max_bssid) {
WMA_LOGE("%s: Invalid vdev_id %hu",
__func__, rssi_stats->vdev_id);
return;
}
vdev_id = rssi_stats->vdev_id;
node = &wma->interfaces[vdev_id];
stats_rsp_params = (tAniGetPEStatsRsp *) node->stats_rsp;
if (stats_rsp_params) {
node->fw_stats_set |= FW_RSSI_PER_CHAIN_STATS_SET;
WMA_LOGD("<-- FW RSSI PER CHAIN STATS received for vdevId:%d",
vdev_id);
stats_buf = (uint8_t *) (stats_rsp_params + 1);
temp_mask = stats_rsp_params->statsMask;
if (temp_mask & (1 << eCsrSummaryStats))
stats_buf += sizeof(tCsrSummaryStatsInfo);
if (temp_mask & (1 << eCsrGlobalClassAStats))
stats_buf += sizeof(tCsrGlobalClassAStatsInfo);
if (temp_mask & (1 << eCsrGlobalClassDStats))
stats_buf += sizeof(tCsrGlobalClassDStatsInfo);
if (temp_mask & (1 << csr_per_chain_rssi_stats)) {
rssi_per_chain_stats =
(struct csr_per_chain_rssi_stats_info *)stats_buf;
wma_update_per_chain_rssi_stats(wma, rssi_stats,
rssi_per_chain_stats);
}
}
}
/**
* wma_link_status_event_handler() - link status event handler
* @handle: wma handle
* @cmd_param_info: data from event
* @len: length
*
* Return: 0 for success or error code
*/
int wma_link_status_event_handler(void *handle, uint8_t *cmd_param_info,
uint32_t len)
{
tp_wma_handle wma = (tp_wma_handle) handle;
WMI_UPDATE_VDEV_RATE_STATS_EVENTID_param_tlvs *param_buf;
wmi_vdev_rate_stats_event_fixed_param *event;
wmi_vdev_rate_ht_info *ht_info;
struct wma_txrx_node *intr = wma->interfaces;
uint8_t link_status = LINK_STATUS_LEGACY;
uint32_t i;
param_buf =
(WMI_UPDATE_VDEV_RATE_STATS_EVENTID_param_tlvs *) cmd_param_info;
if (!param_buf) {
WMA_LOGA("%s: Invalid stats event", __func__);
return -EINVAL;
}
event = (wmi_vdev_rate_stats_event_fixed_param *)
param_buf->fixed_param;
ht_info = (wmi_vdev_rate_ht_info *) param_buf->ht_info;
WMA_LOGD("num_vdev_stats: %d", event->num_vdev_stats);
if (event->num_vdev_stats > ((WMI_SVC_MSG_MAX_SIZE -
sizeof(*event)) / sizeof(*ht_info)) ||
event->num_vdev_stats > param_buf->num_ht_info) {
WMA_LOGE("%s: excess vdev_stats buffers:%d, num_ht_info:%d",
__func__, event->num_vdev_stats,
param_buf->num_ht_info);
return -EINVAL;
}
for (i = 0; (i < event->num_vdev_stats) && ht_info; i++) {
WMA_LOGD("%s vdevId:%d tx_nss:%d rx_nss:%d tx_preamble:%d rx_preamble:%d",
__func__, ht_info->vdevid, ht_info->tx_nss,
ht_info->rx_nss, ht_info->tx_preamble,
ht_info->rx_preamble);
if (ht_info->vdevid < wma->max_bssid
&& intr[ht_info->vdevid].plink_status_req) {
if (ht_info->tx_nss || ht_info->rx_nss)
link_status = LINK_STATUS_MIMO;
if ((ht_info->tx_preamble == LINK_RATE_VHT) ||
(ht_info->rx_preamble == LINK_RATE_VHT))
link_status |= LINK_STATUS_VHT;
if (intr[ht_info->vdevid].nss == 2)
link_status |= LINK_SUPPORT_MIMO;
if (intr[ht_info->vdevid].rate_flags &
(eHAL_TX_RATE_VHT20 | eHAL_TX_RATE_VHT40 |
eHAL_TX_RATE_VHT80))
link_status |= LINK_SUPPORT_VHT;
wma_post_link_status(
intr[ht_info->vdevid].plink_status_req,
link_status);
intr[ht_info->vdevid].plink_status_req = NULL;
link_status = LINK_STATUS_LEGACY;
}
ht_info++;
}
return 0;
}
int wma_rso_cmd_status_event_handler(wmi_roam_event_fixed_param *wmi_event)
{
struct rso_cmd_status *rso_status;
cds_msg_t sme_msg;
QDF_STATUS qdf_status;
rso_status = qdf_mem_malloc(sizeof(*rso_status));
if (!rso_status) {
WMA_LOGE("%s: malloc fails for rso cmd status", __func__);
return -ENOMEM;
}
rso_status->vdev_id = wmi_event->vdev_id;
if (WMI_ROAM_NOTIF_SCAN_MODE_SUCCESS == wmi_event->notif)
rso_status->status = true;
else if (WMI_ROAM_NOTIF_SCAN_MODE_FAIL == wmi_event->notif)
rso_status->status = false;
sme_msg.type = eWNI_SME_RSO_CMD_STATUS_IND;
sme_msg.bodyptr = rso_status;
sme_msg.bodyval = 0;
WMA_LOGD("%s: Post RSO cmd status to SME", __func__);
qdf_status = cds_mq_post_message(QDF_MODULE_ID_SME, &sme_msg);
if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
WMA_LOGE("%s: fail to post RSO cmd status to SME", __func__);
qdf_mem_free(rso_status);
}
return 0;
}
/**
* wma_handle_sta_peer_info() - handle peer information in
* peer stats
* @num_peer_stats: peer number
* @peer_stats: peer stats received from firmware
* @peer_macaddr: the specified mac address
* @sapaddr: sap mac address
*
* This function will send eWNI_SME_GET_PEER_INFO_IND
* to sme with stations' information
*
*/
static void wma_handle_sta_peer_info(uint32_t num_peer_stats,
wmi_peer_stats *peer_stats,
wmi_peer_extd_stats *peer_extd_stats,
struct qdf_mac_addr peer_macaddr,
uint8_t *sapaddr)
{
QDF_STATUS qdf_status;
wmi_mac_addr temp_addr;
struct sir_peer_info_resp *peer_info;
cds_msg_t sme_msg = {0};
uint32_t i;
uint32_t j = 0;
if (!qdf_is_macaddr_broadcast(&peer_macaddr)) {
WMI_CHAR_ARRAY_TO_MAC_ADDR(peer_macaddr.bytes, &temp_addr);
for (i = 0; i < num_peer_stats; i++) {
if ((((temp_addr.mac_addr47to32) & 0x0000ffff) ==
((peer_stats->peer_macaddr.mac_addr47to32) &
0x0000ffff))
&& (temp_addr.mac_addr31to0 ==
peer_stats->peer_macaddr.mac_addr31to0)) {
break;
}
peer_stats = peer_stats + 1;
if (peer_extd_stats)
peer_extd_stats = peer_extd_stats + 1;
}
peer_info = qdf_mem_malloc(sizeof(*peer_info) +
sizeof(peer_info->info[0]));
if (NULL == peer_info) {
WMA_LOGE("%s: Memory allocation failed.", __func__);
return;
}
if (i < num_peer_stats) {
peer_info->count = 1;
WMI_MAC_ADDR_TO_CHAR_ARRAY(&(peer_stats->peer_macaddr),
peer_info->info[0].peer_macaddr.bytes);
peer_info->info[0].rssi = peer_stats->peer_rssi;
peer_info->info[0].tx_rate = peer_stats->peer_tx_rate;
peer_info->info[0].rx_rate = peer_stats->peer_rx_rate;
WMA_LOGD("%s peer %pM rssi %d tx_rate %d rx_rate %d",
__func__,
peer_info->info[0].peer_macaddr.bytes,
peer_stats->peer_rssi,
peer_stats->peer_tx_rate,
peer_stats->peer_rx_rate);
if (peer_extd_stats) {
peer_info->info[0].rx_mc_bc_cnt =
peer_extd_stats->rx_mc_bc_cnt;
WMA_LOGD("rx_mc_bc_cnt %u",
peer_info->info[0].rx_mc_bc_cnt);
}
} else {
WMA_LOGE("%s: no match mac address", __func__);
peer_info->count = 0;
}
} else {
peer_info = qdf_mem_malloc(sizeof(*peer_info) +
num_peer_stats * sizeof(peer_info->info[0]));
if (NULL == peer_info) {
WMA_LOGE("%s: Memory allocation failed.", __func__);
return;
}
peer_info->count = num_peer_stats;
for (i = 0; i < num_peer_stats; i++) {
WMI_MAC_ADDR_TO_CHAR_ARRAY(&(peer_stats->peer_macaddr),
peer_info->info[j].peer_macaddr.bytes);
peer_info->info[j].rssi = peer_stats->peer_rssi;
peer_info->info[j].tx_rate = peer_stats->peer_tx_rate;
peer_info->info[j].rx_rate = peer_stats->peer_rx_rate;
WMA_LOGD("%s peer %pM rssi %d tx_rate %d rx_rate %d",
__func__,
peer_info->info[j].peer_macaddr.bytes,
peer_stats->peer_rssi,
peer_stats->peer_tx_rate,
peer_stats->peer_rx_rate);
if (peer_extd_stats) {
peer_info->info[j].rx_mc_bc_cnt =
peer_extd_stats->rx_mc_bc_cnt;
WMA_LOGD("rx_mc_bc_cnt %u",
peer_info->info[j].rx_mc_bc_cnt);
}
if (!qdf_mem_cmp(peer_info->info[j].peer_macaddr.bytes,
sapaddr, QDF_MAC_ADDR_SIZE)) {
peer_info->count = peer_info->count - 1;
} else {
j++;
}
peer_stats = peer_stats + 1;
if (peer_extd_stats)
peer_extd_stats = peer_extd_stats + 1;
}
WMA_LOGD("WDA send peer num %d", peer_info->count);
}
sme_msg.type = eWNI_SME_GET_PEER_INFO_IND;
sme_msg.bodyptr = peer_info;
sme_msg.bodyval = 0;
qdf_status = cds_mq_post_message(QDF_MODULE_ID_SME, &sme_msg);
if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
WMA_LOGE("%s: Fail to post get rssi msg", __func__);
qdf_mem_free(peer_info);
}
return;
}
/**
* wma_get_peer_extd_stats_loc() - Gets the extended peer info
* location in stats response buffer
* @event: WMI stats event
* @temp: Pointer to the buffer pointing at peer stats
*
* This function will calculate the extended peer stats location
* in the stats response buffer.
*
* Return: pointer to extended peer info in the response buffer
*/
static wmi_peer_extd_stats *wma_get_peer_extd_stats_loc(
wmi_stats_event_fixed_param *event, uint8_t *temp)
{
uint8_t *peer_extd_stats = temp;
peer_extd_stats += event->num_peer_stats * sizeof(wmi_peer_stats) +
event->num_bcnflt_stats * sizeof(wmi_bcnfilter_stats_t) +
event->num_chan_stats * sizeof(wmi_chan_stats) +
event->num_mib_stats * sizeof(wmi_mib_stats) +
event->num_bcn_stats * sizeof(wmi_bcn_stats);
return (wmi_peer_extd_stats *)peer_extd_stats;
}
/**
* wma_stats_event_handler() - stats event handler
* @handle: wma handle
* @cmd_param_info: data from event
* @len: length
*
* Return: 0 for success or error code
*/
int wma_stats_event_handler(void *handle, uint8_t *cmd_param_info,
uint32_t len)
{
tp_wma_handle wma = (tp_wma_handle) handle;
WMI_UPDATE_STATS_EVENTID_param_tlvs *param_buf;
wmi_stats_event_fixed_param *event;
wmi_pdev_stats *pdev_stats;
wmi_vdev_stats *vdev_stats;
wmi_peer_stats *peer_stats;
wmi_rssi_stats *rssi_stats;
wmi_per_chain_rssi_stats *rssi_event;
struct wma_txrx_node *node;
uint8_t *temp;
uint32_t i;
uint32_t buf_len = 0;
bool excess_data = false;
wmi_congestion_stats *congestion_stats;
tpAniSirGlobal mac;
param_buf = (WMI_UPDATE_STATS_EVENTID_param_tlvs *) cmd_param_info;
if (!param_buf) {
WMA_LOGA("%s: Invalid stats event", __func__);
return -EINVAL;
}
event = param_buf->fixed_param;
temp = (uint8_t *) param_buf->data;
buf_len = event->num_pdev_stats * sizeof(wmi_pdev_stats) +
event->num_vdev_stats * sizeof(wmi_vdev_stats) +
event->num_peer_stats * sizeof(wmi_peer_stats) +
event->num_bcnflt_stats * sizeof(wmi_bcnfilter_stats_t) +
event->num_chan_stats * sizeof(wmi_chan_stats) +
event->num_mib_stats * sizeof(wmi_mib_stats) +
event->num_bcn_stats * sizeof(wmi_bcn_stats) +
event->num_peer_extd_stats * sizeof(wmi_peer_extd_stats);
if (buf_len != param_buf->num_data) {
WMA_LOGE("Invalid Buffer len %d received, Expected %d",
buf_len, param_buf->num_data);
return -EINVAL;
}
do {
if (event->num_pdev_stats > ((WMI_SVC_MSG_MAX_SIZE -
sizeof(*event)) / sizeof(*pdev_stats))) {
excess_data = true;
break;
} else {
buf_len += event->num_pdev_stats * sizeof(*pdev_stats);
}
if (event->num_vdev_stats > ((WMI_SVC_MSG_MAX_SIZE -
sizeof(*event)) / sizeof(*vdev_stats))) {
excess_data = true;
break;
} else {
buf_len += event->num_vdev_stats * sizeof(*vdev_stats);
}
if (event->num_peer_stats > ((WMI_SVC_MSG_MAX_SIZE -
sizeof(*event)) / sizeof(*peer_stats))) {
excess_data = true;
break;
} else {
buf_len += event->num_peer_stats * sizeof(*peer_stats);
}
if (buf_len > param_buf->num_data) {
WMA_LOGE("%s: num_data: %d Invalid num_pdev_stats:%d or num_vdev_stats:%d or num_peer_stats:%d",
__func__, param_buf->num_data,
event->num_pdev_stats,
event->num_vdev_stats, event->num_peer_stats);
return -EINVAL;
}
rssi_event =
(wmi_per_chain_rssi_stats *) param_buf->chain_stats;
if (rssi_event) {
if (rssi_event->num_per_chain_rssi_stats >
((WMI_SVC_MSG_MAX_SIZE - sizeof(*event)) /
sizeof(*rssi_event))) {
excess_data = true;
break;
} else {
buf_len += rssi_event->num_per_chain_rssi_stats *
sizeof(*rssi_event);
}
}
} while (0);
if (excess_data ||
(buf_len > WMI_SVC_MSG_MAX_SIZE - sizeof(*event))) {
WMA_LOGE("excess wmi buffer: stats pdev %d vdev %d peer %d",
event->num_pdev_stats, event->num_vdev_stats,
event->num_peer_stats);
return -EINVAL;
}
if (event->num_pdev_stats > 0) {
for (i = 0; i < event->num_pdev_stats; i++) {
pdev_stats = (wmi_pdev_stats *) temp;
wma_update_pdev_stats(wma, pdev_stats);
temp += sizeof(wmi_pdev_stats);
}
}
if (event->num_vdev_stats > 0) {
for (i = 0; i < event->num_vdev_stats; i++) {
vdev_stats = (wmi_vdev_stats *) temp;
wma_update_vdev_stats(wma, vdev_stats);
temp += sizeof(wmi_vdev_stats);
}
}
if (event->num_peer_stats > 0) {
wmi_peer_extd_stats *peer_extd_stats = NULL;
if (event->num_peer_extd_stats == event->num_peer_stats) {
peer_extd_stats = wma_get_peer_extd_stats_loc(event,
temp);
}
if (wma->get_sta_peer_info == true) {
wma_handle_sta_peer_info(event->num_peer_stats,
(wmi_peer_stats *)temp,
peer_extd_stats,
wma->peer_macaddr,
wma->myaddr);
} else {
for (i = 0; i < event->num_peer_stats; i++) {
peer_stats = (wmi_peer_stats *) temp;
wma_update_peer_stats(wma, peer_stats);
temp += sizeof(wmi_peer_stats);
}
}
}
rssi_event = (wmi_per_chain_rssi_stats *) param_buf->chain_stats;
if (rssi_event) {
if (rssi_event->num_per_chain_rssi_stats >
param_buf->num_rssi_stats) {
WMA_LOGE("%s: Invalid num_per_chain_rssi_stats:%d",
__func__, rssi_event->num_per_chain_rssi_stats);
return -EINVAL;
}
if (((rssi_event->tlv_header & 0xFFFF0000) >> 16 ==
WMITLV_TAG_STRUC_wmi_per_chain_rssi_stats) &&
((rssi_event->tlv_header & 0x0000FFFF) ==
WMITLV_GET_STRUCT_TLVLEN(wmi_per_chain_rssi_stats))) {
if (rssi_event->num_per_chain_rssi_stats > 0) {
temp = (uint8_t *) rssi_event;
temp += sizeof(*rssi_event);
/* skip past struct array tlv header */
temp += WMI_TLV_HDR_SIZE;
for (i = 0;
i < rssi_event->num_per_chain_rssi_stats;
i++) {
rssi_stats = (wmi_rssi_stats *)temp;
wma_update_rssi_stats(wma, rssi_stats);
temp += sizeof(wmi_rssi_stats);
}
}
}
}
congestion_stats = (wmi_congestion_stats *) param_buf->congestion_stats;
if (congestion_stats) {
if (((congestion_stats->tlv_header & 0xFFFF0000) >> 16 ==
WMITLV_TAG_STRUC_wmi_congestion_stats) &&
((congestion_stats->tlv_header & 0x0000FFFF) ==
WMITLV_GET_STRUCT_TLVLEN(wmi_congestion_stats))) {
mac = cds_get_context(QDF_MODULE_ID_PE);
if (!mac) {
WMA_LOGE("%s: Invalid mac", __func__);
return -EINVAL;
}
if (!mac->sme.congestion_cb) {
WMA_LOGE("%s: Callback not registered",
__func__);
return -EINVAL;
}
WMA_LOGD("%s: congestion %d", __func__,
congestion_stats->congestion);
mac->sme.congestion_cb(mac->hHdd,
congestion_stats->congestion,
congestion_stats->vdev_id);
}
}
for (i = 0; i < wma->max_bssid; i++) {
node = &wma->interfaces[i];
if (node->fw_stats_set & FW_PEER_STATS_SET)
wma_post_stats(wma, node);
}
return 0;
}
/**
* wma_fill_peer_info() - fill SIR peer info from WMI peer info struct
* @wma: wma interface
* @stats_info: WMI peer info pointer
* @peer_info: SIR peer info pointer
*
* This function will fill SIR peer info from WMI peer info struct
*
* Return: None
*/
static void wma_fill_peer_info(tp_wma_handle wma,
wmi_peer_stats_info *stats_info,
struct sir_peer_info_ext *peer_info)
{
peer_info->tx_packets = stats_info->tx_packets.low_32;
peer_info->tx_bytes = stats_info->tx_bytes.high_32;
peer_info->tx_bytes <<= 32;
peer_info->tx_bytes += stats_info->tx_bytes.low_32;
peer_info->rx_packets = stats_info->rx_packets.low_32;
peer_info->rx_bytes = stats_info->rx_bytes.high_32;
peer_info->rx_bytes <<= 32;
peer_info->rx_bytes += stats_info->rx_bytes.low_32;
peer_info->tx_retries = stats_info->tx_retries;
peer_info->tx_failed = stats_info->tx_failed;
peer_info->rssi = stats_info->peer_rssi;
peer_info->tx_rate = stats_info->last_tx_bitrate_kbps;
peer_info->tx_rate_code = stats_info->last_tx_rate_code;
peer_info->rx_rate = stats_info->last_rx_bitrate_kbps;
peer_info->rx_rate_code = stats_info->last_rx_rate_code;
}
/**
* wma_peer_info_ext_rsp() - process peer ext info ext
* @handle: wma interface
* @buf: wmi event buf pointer
*
* This function will send eWNI_SME_GET_PEER_INFO_EXT_IND to SME
*
* Return: 0 on success, error code otherwise
*/
static QDF_STATUS wma_peer_info_ext_rsp(tp_wma_handle wma, u_int8_t *buf)
{
wmi_peer_stats_info_event_fixed_param *event;
wmi_peer_stats_info *stats_info;
struct sir_peer_info_ext_resp *resp;
struct sir_peer_info_ext *peer_info;
cds_msg_t sme_msg = {0};
int i, j = 0;
QDF_STATUS qdf_status;
event = (wmi_peer_stats_info_event_fixed_param *)buf;
stats_info = (wmi_peer_stats_info *)(buf +
sizeof(wmi_peer_stats_info_event_fixed_param));
if (wma->get_one_peer_info) {
resp = qdf_mem_malloc(sizeof(struct sir_peer_info_ext_resp) +
sizeof(resp->info[0]));
if (!resp) {
WMA_LOGE(FL("resp allocation failed."));
return QDF_STATUS_E_NOMEM;
}
resp->count = 0;
peer_info = &resp->info[0];
for (i = 0; i < event->num_peers; i++) {
WMI_MAC_ADDR_TO_CHAR_ARRAY(&stats_info->peer_macaddr,
peer_info->peer_macaddr.bytes);
if (!qdf_mem_cmp(peer_info->peer_macaddr.bytes,
wma->peer_macaddr.bytes,
QDF_MAC_ADDR_SIZE)) {
wma_fill_peer_info(wma, stats_info, peer_info);
resp->count++;
break;
}
stats_info = stats_info + 1;
}
} else {
resp = qdf_mem_malloc(sizeof(struct sir_peer_info_ext_resp) +
event->num_peers * sizeof(resp->info[0]));
if (!resp) {
WMA_LOGE(FL("resp allocation failed."));
return QDF_STATUS_E_NOMEM;
}
resp->count = event->num_peers;
for (i = 0; i < event->num_peers; i++) {
peer_info = &resp->info[j];
WMI_MAC_ADDR_TO_CHAR_ARRAY(&stats_info->peer_macaddr,
peer_info->peer_macaddr.bytes);
if (!qdf_mem_cmp(peer_info->peer_macaddr.bytes,
wma->myaddr, QDF_MAC_ADDR_SIZE)) {
resp->count = resp->count - 1;
} else {
wma_fill_peer_info(wma, stats_info, peer_info);
j++;
}
stats_info = stats_info + 1;
}
}
sme_msg.type = eWNI_SME_GET_PEER_INFO_EXT_IND;
sme_msg.bodyptr = resp;
sme_msg.bodyval = 0;
qdf_status = cds_mq_post_message(QDF_MODULE_ID_SME, &sme_msg);
if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
WMA_LOGE("%s: Fail to post get peer info msg", __func__);
qdf_mem_free(resp);
}
return qdf_status;
}
/**
* dump_peer_stats_info() - dump wmi peer info struct
* @event: wmi peer info fixed param pointer
* @peer_stats: wmi peer stats info pointer
*
* This function will dump wmi peer info struct
*
* Return: None
*/
static void dump_peer_stats_info(wmi_peer_stats_info_event_fixed_param *event,
wmi_peer_stats_info *peer_stats)
{
int i;
wmi_peer_stats_info *stats = peer_stats;
u_int8_t mac[6];
WMA_LOGI("%s vdev_id %d, num_peers %d more_data %d",
__func__, event->vdev_id,
event->num_peers, event->more_data);
for (i = 0; i < event->num_peers; i++) {
WMI_MAC_ADDR_TO_CHAR_ARRAY(&stats->peer_macaddr, mac);
WMA_LOGI("%s mac %pM", __func__, mac);
WMA_LOGI("%s tx_bytes %d %d tx_packets %d %d",
__func__,
stats->tx_bytes.low_32,
stats->tx_bytes.high_32,
stats->tx_packets.low_32,
stats->tx_packets.high_32);
WMA_LOGI("%s rx_bytes %d %d rx_packets %d %d",
__func__,
stats->rx_bytes.low_32,
stats->rx_bytes.high_32,
stats->rx_packets.low_32,
stats->rx_packets.high_32);
WMA_LOGI("%s tx_retries %d tx_failed %d",
__func__, stats->tx_retries, stats->tx_failed);
WMA_LOGI("%s tx_rate_code %x rx_rate_code %x",
__func__,
stats->last_tx_rate_code,
stats->last_rx_rate_code);
WMA_LOGI("%s tx_rate %x rx_rate %x",
__func__,
stats->last_tx_bitrate_kbps,
stats->last_rx_bitrate_kbps);
WMA_LOGI("%s peer_rssi %d", __func__, stats->peer_rssi);
stats++;
}
}
int wma_peer_info_event_handler(void *handle, u_int8_t *cmd_param_info,
u_int32_t len)
{
tp_wma_handle wma = (tp_wma_handle) handle;
WMI_PEER_STATS_INFO_EVENTID_param_tlvs *param_buf;
wmi_peer_stats_info_event_fixed_param *event;
u_int32_t buf_size;
u_int8_t *buf;
param_buf =
(WMI_PEER_STATS_INFO_EVENTID_param_tlvs *)cmd_param_info;
if (!param_buf) {
WMA_LOGA("%s: Invalid stats event", __func__);
return -EINVAL;
}
WMA_LOGI("%s Recv WMI_PEER_STATS_INFO_EVENTID", __func__);
event = param_buf->fixed_param;
if (event->num_peers >
((WMI_SVC_MSG_MAX_SIZE -
sizeof(wmi_peer_stats_info_event_fixed_param))/
sizeof(wmi_peer_stats_info)) || event->num_peers >
param_buf->num_peer_stats_info) {
WMA_LOGE("Excess num of peers from fw: %d, num_peer_stats_info:%d",
event->num_peers, param_buf->num_peer_stats_info);
return -EINVAL;
}
buf_size = sizeof(wmi_peer_stats_info_event_fixed_param) +
sizeof(wmi_peer_stats_info) * event->num_peers;
buf = qdf_mem_malloc(buf_size);
if (!buf) {
WMA_LOGE("%s: Failed alloc memory for buf", __func__);
return -ENOMEM;
}
qdf_mem_copy(buf, param_buf->fixed_param,
sizeof(wmi_peer_stats_info_event_fixed_param));
qdf_mem_copy((buf + sizeof(wmi_peer_stats_info_event_fixed_param)),
param_buf->peer_stats_info,
sizeof(wmi_peer_stats_info) * event->num_peers);
WMA_LOGI("%s dump peer stats info", __func__);
dump_peer_stats_info(event, param_buf->peer_stats_info);
wma_peer_info_ext_rsp(wma, buf);
qdf_mem_free(buf);
return 0;
}
/**
* wma_send_link_speed() - send link speed to SME
* @link_speed: link speed
*
* Return: QDF_STATUS_SUCCESS for success or error code
*/
QDF_STATUS wma_send_link_speed(uint32_t link_speed)
{
QDF_STATUS qdf_status = QDF_STATUS_SUCCESS;
tpAniSirGlobal mac_ctx;
tSirLinkSpeedInfo *ls_ind =
(tSirLinkSpeedInfo *) qdf_mem_malloc(sizeof(tSirLinkSpeedInfo));
mac_ctx = cds_get_context(QDF_MODULE_ID_PE);
if (!mac_ctx) {
WMA_LOGD("%s: NULL mac_ctx ptr. Exiting", __func__);
return QDF_STATUS_E_INVAL;
}
if (!ls_ind) {
WMA_LOGE("%s: Memory allocation failed.", __func__);
qdf_status = QDF_STATUS_E_NOMEM;
} else {
ls_ind->estLinkSpeed = link_speed;
if (mac_ctx->sme.pLinkSpeedIndCb)
mac_ctx->sme.pLinkSpeedIndCb(ls_ind,
mac_ctx->sme.pLinkSpeedCbContext);
else
WMA_LOGD("%s: pLinkSpeedIndCb is null", __func__);
qdf_mem_free(ls_ind);
}
return qdf_status;
}
/**
* wma_link_speed_event_handler() - link speed event handler
* @handle: wma handle
* @cmd_param_info: event data
* @len: length
*
* Return: 0 for success or error code
*/
int wma_link_speed_event_handler(void *handle, uint8_t *cmd_param_info,
uint32_t len)
{
WMI_PEER_ESTIMATED_LINKSPEED_EVENTID_param_tlvs *param_buf;
wmi_peer_estimated_linkspeed_event_fixed_param *event;
QDF_STATUS qdf_status;
param_buf = (WMI_PEER_ESTIMATED_LINKSPEED_EVENTID_param_tlvs *)
cmd_param_info;
if (!param_buf) {
WMA_LOGE("%s: Invalid linkspeed event", __func__);
return -EINVAL;
}
event = param_buf->fixed_param;
qdf_status = wma_send_link_speed(event->est_linkspeed_kbps);
if (!QDF_IS_STATUS_SUCCESS(qdf_status))
return -EINVAL;
return 0;
}
/**
* wma_wni_cfg_dnld() - cfg download request
* @handle: wma handle
*
* Return: QDF_STATUS_SUCCESS for success or error code
*/
QDF_STATUS wma_wni_cfg_dnld(tp_wma_handle wma_handle)
{
QDF_STATUS qdf_status = QDF_STATUS_SUCCESS;
void *mac = cds_get_context(QDF_MODULE_ID_PE);
WMA_LOGD("%s: Enter", __func__);
if (NULL == mac) {
WMA_LOGE("%s: Invalid context", __func__);
QDF_ASSERT(0);
return QDF_STATUS_E_FAILURE;
}
process_cfg_download_req(mac);
WMA_LOGD("%s: Exit", __func__);
return qdf_status;
}
#define BIG_ENDIAN_MAX_DEBUG_BUF 500
/**
* wma_unified_debug_print_event_handler() - debug print event handler
* @handle: wma handle
* @datap: data pointer
* @len: length
*
* Return: 0 for success or error code
*/
int wma_unified_debug_print_event_handler(void *handle, uint8_t *datap,
uint32_t len)
{
WMI_DEBUG_PRINT_EVENTID_param_tlvs *param_buf;
uint8_t *data;
uint32_t datalen;
param_buf = (WMI_DEBUG_PRINT_EVENTID_param_tlvs *) datap;
if (!param_buf || !param_buf->data) {
WMA_LOGE("Get NULL point message from FW");
return -ENOMEM;
}
data = param_buf->data;
datalen = param_buf->num_data;
if (datalen > WMI_SVC_MSG_MAX_SIZE) {
WMA_LOGE("Received data len %d exceeds max value %d",
datalen, WMI_SVC_MSG_MAX_SIZE);
return QDF_STATUS_E_FAILURE;
}
data[datalen - 1] = '\0';
#ifdef BIG_ENDIAN_HOST
{
if (datalen >= BIG_ENDIAN_MAX_DEBUG_BUF) {
WMA_LOGE("%s Invalid data len %d, limiting to max",
__func__, datalen);
datalen = BIG_ENDIAN_MAX_DEBUG_BUF - 1;
}
char dbgbuf[BIG_ENDIAN_MAX_DEBUG_BUF] = { 0 };
memcpy(dbgbuf, data, datalen);
SWAPME(dbgbuf, datalen);
WMA_LOGD("FIRMWARE:%s", dbgbuf);
return 0;
}
#else
WMA_LOGD("FIRMWARE:%s", data);
return 0;
#endif /* BIG_ENDIAN_HOST */
}
/**
* wma_is_sap_active() - check sap is active or not
* @handle: wma handle
*
* Return: true/false
*/
bool wma_is_sap_active(tp_wma_handle wma_handle)
{
int i;
for (i = 0; i < wma_handle->max_bssid; i++) {
if (!wma_handle->interfaces[i].vdev_up)
continue;
if (wma_handle->interfaces[i].type == WMI_VDEV_TYPE_AP &&
wma_handle->interfaces[i].sub_type == 0)
return true;
}
return false;
}
/**
* wma_is_p2p_go_active() - check p2p go is active or not
* @handle: wma handle
*
* Return: true/false
*/
bool wma_is_p2p_go_active(tp_wma_handle wma_handle)
{
int i;
for (i = 0; i < wma_handle->max_bssid; i++) {
if (!wma_handle->interfaces[i].vdev_up)
continue;
if (wma_handle->interfaces[i].type == WMI_VDEV_TYPE_AP &&
wma_handle->interfaces[i].sub_type ==
WMI_UNIFIED_VDEV_SUBTYPE_P2P_GO)
return true;
}
return false;
}
/**
* wma_is_p2p_cli_active() - check p2p cli is active or not
* @handle: wma handle
*
* Return: true/false
*/
bool wma_is_p2p_cli_active(tp_wma_handle wma_handle)
{
int i;
for (i = 0; i < wma_handle->max_bssid; i++) {
if (!wma_handle->interfaces[i].vdev_up)
continue;
if (wma_handle->interfaces[i].type == WMI_VDEV_TYPE_STA &&
wma_handle->interfaces[i].sub_type ==
WMI_UNIFIED_VDEV_SUBTYPE_P2P_CLIENT)
return true;
}
return false;
}
/**
* wma_is_sta_active() - check sta is active or not
* @handle: wma handle
*
* Return: true/false
*/
bool wma_is_sta_active(tp_wma_handle wma_handle)
{
int i;
for (i = 0; i < wma_handle->max_bssid; i++) {
if (!wma_handle->interfaces[i].vdev_up)
continue;
if (wma_handle->interfaces[i].type == WMI_VDEV_TYPE_STA &&
wma_handle->interfaces[i].sub_type == 0)
return true;
if (wma_handle->interfaces[i].type == WMI_VDEV_TYPE_IBSS)
return true;
}
return false;
}
/**
* wma_peer_phymode() - get phymode
* @nw_type: nw type
* @sta_type: sta type
* @is_ht: is ht supported
* @is_cw40: is channel width 40 supported
* @is_vht: is vht supported
* @is_cw_vht: is channel width 80 supported
*
* Return: WLAN_PHY_MODE
*/
WLAN_PHY_MODE wma_peer_phymode(tSirNwType nw_type, uint8_t sta_type,
uint8_t is_ht, uint8_t ch_width,
uint8_t is_vht)
{
WLAN_PHY_MODE phymode = MODE_UNKNOWN;
switch (nw_type) {
case eSIR_11B_NW_TYPE:
#ifdef FEATURE_WLAN_TDLS
if (STA_ENTRY_TDLS_PEER == sta_type) {
if (is_vht) {
if (CH_WIDTH_80MHZ == ch_width)
phymode = MODE_11AC_VHT80;
else
phymode = (CH_WIDTH_40MHZ == ch_width) ?
MODE_11AC_VHT40 :
MODE_11AC_VHT20;
} else if (is_ht) {
phymode = (CH_WIDTH_40MHZ == ch_width) ?
MODE_11NG_HT40 : MODE_11NG_HT20;
} else
phymode = MODE_11B;
} else
#endif /* FEATURE_WLAN_TDLS */
{
phymode = MODE_11B;
if (is_ht || is_vht)
WMA_LOGE("HT/VHT is enabled with 11B NW type");
}
break;
case eSIR_11G_NW_TYPE:
if (!(is_ht || is_vht)) {
phymode = MODE_11G;
break;
}
if (CH_WIDTH_40MHZ < ch_width)
WMA_LOGE("80/160 MHz BW sent in 11G, configured 40MHz");
if (ch_width)
phymode = (is_vht) ?
MODE_11AC_VHT40_2G : MODE_11NG_HT40;
else
phymode = (is_vht) ?
MODE_11AC_VHT20_2G : MODE_11NG_HT20;
break;
case eSIR_11A_NW_TYPE:
if (!(is_ht || is_vht)) {
phymode = MODE_11A;
break;
}
if (is_vht) {
if (ch_width == CH_WIDTH_160MHZ)
phymode = MODE_11AC_VHT160;
else if (ch_width == CH_WIDTH_80P80MHZ)
phymode = MODE_11AC_VHT80_80;
else if (ch_width == CH_WIDTH_80MHZ)
phymode = MODE_11AC_VHT80;
else
phymode = (ch_width) ?
MODE_11AC_VHT40 : MODE_11AC_VHT20;
} else
phymode = (ch_width) ? MODE_11NA_HT40 : MODE_11NA_HT20;
break;
default:
WMA_LOGE("%s: Invalid nw type %d", __func__, nw_type);
break;
}
WMA_LOGD("%s: nw_type %d is_ht %d ch_width %d is_vht %d phymode %d",
__func__, nw_type, is_ht, ch_width, is_vht, phymode);
return phymode;
}
/**
* wma_txrx_fw_stats_reset() - reset txrx fw statistics
* @wma_handle: wma handle
* @vdev_id: vdev id
* @value: value
*
* Return: 0 for success or return error
*/
int32_t wma_txrx_fw_stats_reset(tp_wma_handle wma_handle,
uint8_t vdev_id, uint32_t value)
{
struct ol_txrx_stats_req req;
ol_txrx_vdev_handle vdev;
vdev = wma_find_vdev_by_id(wma_handle, vdev_id);
if (!vdev) {
WMA_LOGE("%s:Invalid vdev handle", __func__);
return -EINVAL;
}
qdf_mem_zero(&req, sizeof(req));
req.stats_type_reset_mask = value;
ol_txrx_fw_stats_get(vdev, &req, false, false);
return 0;
}
#ifdef HELIUMPLUS
#define SET_UPLOAD_MASK(_mask, _rate_info) \
((_mask) = 1 << (_rate_info ## _V2))
#else /* !HELIUMPLUS */
#define SET_UPLOAD_MASK(_mask, _rate_info) \
((_mask) = 1 << (_rate_info))
#endif
#ifdef HELIUMPLUS
static bool wma_is_valid_fw_stats_cmd(uint32_t value)
{
if (value > (HTT_DBG_NUM_STATS + 1) ||
value == (HTT_DBG_STATS_RX_RATE_INFO + 1) ||
value == (HTT_DBG_STATS_TX_RATE_INFO + 1) ||
value == (HTT_DBG_STATS_TXBF_MUSU_NDPA_PKT + 1)) {
WMA_LOGE("%s: Not supported", __func__);
return false;
}
return true;
}
#else
static bool wma_is_valid_fw_stats_cmd(uint32_t value)
{
if (value > (HTT_DBG_NUM_STATS + 1) ||
value == (HTT_DBG_STATS_RX_RATE_INFO_V2 + 1) ||
value == (HTT_DBG_STATS_TX_RATE_INFO_V2 + 1) ||
value == (HTT_DBG_STATS_TXBF_MUSU_NDPA_PKT + 1)) {
WMA_LOGE("%s: Not supported", __func__);
return false;
}
return true;
}
#endif
/**
* wma_set_txrx_fw_stats_level() - set txrx fw stats level
* @wma_handle: wma handle
* @vdev_id: vdev id
* @value: value
*
* Return: 0 for success or return error
*/
int32_t wma_set_txrx_fw_stats_level(tp_wma_handle wma_handle,
uint8_t vdev_id, uint32_t value)
{
struct ol_txrx_stats_req req;
ol_txrx_vdev_handle vdev;
uint32_t l_up_mask;
vdev = wma_find_vdev_by_id(wma_handle, vdev_id);
if (!vdev) {
WMA_LOGE("%s:Invalid vdev handle", __func__);
return -EINVAL;
}
if (wma_is_valid_fw_stats_cmd(value) == false)
return -EINVAL;
qdf_mem_zero(&req, sizeof(req));
req.print.verbose = 1;
/* TODO: Need to check how to avoid mem leak*/
l_up_mask = 1 << (value - 1);
req.stats_type_upload_mask = l_up_mask;
ol_txrx_fw_stats_get(vdev, &req, false, true);
return 0;
}
/**
* wma_get_stats_rsp_buf() - fill get stats response buffer
* @get_stats_param: get stats parameters
*
* Return: stats response buffer
*/
static tAniGetPEStatsRsp *wma_get_stats_rsp_buf
(tAniGetPEStatsReq *get_stats_param)
{
tAniGetPEStatsRsp *stats_rsp_params;
uint32_t len, temp_mask;
len = sizeof(tAniGetPEStatsRsp);
temp_mask = get_stats_param->statsMask;
if (temp_mask & (1 << eCsrSummaryStats))
len += sizeof(tCsrSummaryStatsInfo);
if (temp_mask & (1 << eCsrGlobalClassAStats))
len += sizeof(tCsrGlobalClassAStatsInfo);
if (temp_mask & (1 << eCsrGlobalClassDStats))
len += sizeof(tCsrGlobalClassDStatsInfo);
if (temp_mask & (1 << csr_per_chain_rssi_stats))
len += sizeof(struct csr_per_chain_rssi_stats_info);
stats_rsp_params = qdf_mem_malloc(len);
if (!stats_rsp_params) {
WMA_LOGE("memory allocation failed for tAniGetPEStatsRsp");
QDF_ASSERT(0);
return NULL;
}
stats_rsp_params->staId = get_stats_param->staId;
stats_rsp_params->statsMask = get_stats_param->statsMask;
stats_rsp_params->msgType = WMA_GET_STATISTICS_RSP;
stats_rsp_params->msgLen = len - sizeof(tAniGetPEStatsRsp);
stats_rsp_params->rc = QDF_STATUS_SUCCESS;
return stats_rsp_params;
}
/**
* wma_get_stats_req() - get stats request
* @handle: wma handle
* @get_stats_param: stats params
*
* Return: none
*/
void wma_get_stats_req(WMA_HANDLE handle,
tAniGetPEStatsReq *get_stats_param)
{
tp_wma_handle wma_handle = (tp_wma_handle) handle;
struct wma_txrx_node *node;
struct pe_stats_req cmd = {0};
tAniGetPEStatsRsp *pGetPEStatsRspParams;
WMA_LOGD("%s: Enter", __func__);
node = &wma_handle->interfaces[get_stats_param->sessionId];
if (node->stats_rsp) {
pGetPEStatsRspParams = node->stats_rsp;
if (pGetPEStatsRspParams->staId == get_stats_param->staId &&
pGetPEStatsRspParams->statsMask ==
get_stats_param->statsMask) {
WMA_LOGD("Stats for staId %d with stats mask %d is pending.. ignore new request",
get_stats_param->staId,
get_stats_param->statsMask);
pGetPEStatsRspParams =
wma_get_stats_rsp_buf(get_stats_param);
if (!pGetPEStatsRspParams) {
WMA_LOGE("failed to allocate memory for stats response");
goto end;
}
goto req_pending;
} else {
qdf_mem_free(node->stats_rsp);
node->stats_rsp = NULL;
node->fw_stats_set = 0;
}
}
pGetPEStatsRspParams = wma_get_stats_rsp_buf(get_stats_param);
if (!pGetPEStatsRspParams)
goto end;
node->fw_stats_set = 0;
if (node->stats_rsp) {
WMA_LOGD(FL("stats_rsp is not null, prev_value: %pK"),
node->stats_rsp);
qdf_mem_free(node->stats_rsp);
node->stats_rsp = NULL;
}
node->stats_rsp = pGetPEStatsRspParams;
wma_handle->get_sta_peer_info = false;
WMA_LOGD("stats_rsp allocated: %pK, sta_id: %d, mask: %d, vdev_id: %d",
node->stats_rsp, node->stats_rsp->staId,
node->stats_rsp->statsMask, get_stats_param->sessionId);
cmd.session_id = get_stats_param->sessionId;
cmd.stats_mask = get_stats_param->statsMask;
if (wmi_unified_get_stats_cmd(wma_handle->wmi_handle, &cmd,
node->bssid)) {
WMA_LOGE("%s: Failed to send WMI_REQUEST_STATS_CMDID",
__func__);
goto failed;
}
goto end;
failed:
node->stats_rsp = NULL;
req_pending:
pGetPEStatsRspParams->rc = QDF_STATUS_E_FAILURE;
/* send response to UMAC */
wma_send_msg(wma_handle, WMA_GET_STATISTICS_RSP, pGetPEStatsRspParams,
0);
end:
qdf_mem_free(get_stats_param);
WMA_LOGD("%s: Exit", __func__);
}
/**
* wma_get_cca_stats() - send request to fw to get CCA
* @wma_handle: wma handle
* @vdev_id: vdev id
*
* Return: QDF status
*/
QDF_STATUS wma_get_cca_stats(tp_wma_handle wma_handle,
uint8_t vdev_id)
{
if (wmi_unified_congestion_request_cmd(wma_handle->wmi_handle,
vdev_id)) {
WMA_LOGE("Failed to congestion request to fw");
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/**
* wma_get_beacon_buffer_by_vdev_id() - get the beacon buffer from vdev ID
* @vdev_id: vdev id
* @buffer_size: size of buffer
*
* Return: none
*/
void *wma_get_beacon_buffer_by_vdev_id(uint8_t vdev_id, uint32_t *buffer_size)
{
tp_wma_handle wma;
struct beacon_info *beacon;
uint8_t *buf;
uint32_t buf_size;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return NULL;
}
if (vdev_id >= wma->max_bssid) {
WMA_LOGE("%s: Invalid vdev_id %u", __func__, vdev_id);
return NULL;
}
if (!wma_is_vdev_in_ap_mode(wma, vdev_id)) {
WMA_LOGE("%s: vdevid %d is not in AP mode", __func__, vdev_id);
return NULL;
}
beacon = wma->interfaces[vdev_id].beacon;
if (!beacon) {
WMA_LOGE("%s: beacon invalid", __func__);
return NULL;
}
qdf_spin_lock_bh(&beacon->lock);
buf_size = qdf_nbuf_len(beacon->buf);
buf = qdf_mem_malloc(buf_size);
if (!buf) {
qdf_spin_unlock_bh(&beacon->lock);
WMA_LOGE("%s: alloc failed for beacon buf", __func__);
return NULL;
}
qdf_mem_copy(buf, qdf_nbuf_data(beacon->buf), buf_size);
qdf_spin_unlock_bh(&beacon->lock);
if (buffer_size)
*buffer_size = buf_size;
return buf;
}
/**
* wma_get_vdev_address_by_vdev_id() - lookup MAC address from vdev ID
* @vdev_id: vdev id
*
* Return: mac address
*/
uint8_t *wma_get_vdev_address_by_vdev_id(uint8_t vdev_id)
{
tp_wma_handle wma;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return NULL;
}
if (vdev_id >= wma->max_bssid) {
WMA_LOGE("%s: Invalid vdev_id %u", __func__, vdev_id);
return NULL;
}
return wma->interfaces[vdev_id].addr;
}
/**
* wma_get_interface_by_vdev_id() - lookup interface entry using vdev ID
* @vdev_id: vdev id
*
* Return: entry from vdev table
*/
struct wma_txrx_node *wma_get_interface_by_vdev_id(uint8_t vdev_id)
{
tp_wma_handle wma;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return NULL;
}
if (vdev_id >= wma->max_bssid) {
WMA_LOGE("%s: Invalid vdev_id %u", __func__, vdev_id);
return NULL;
}
return &wma->interfaces[vdev_id];
}
/**
* wma_is_vdev_up() - return whether a vdev is up
* @vdev_id: vdev id
*
* Return: true if the vdev is up, false otherwise
*/
bool wma_is_vdev_up(uint8_t vdev_id)
{
struct wma_txrx_node *vdev = wma_get_interface_by_vdev_id(vdev_id);
if (vdev)
return vdev->vdev_up;
else
return false;
}
#if defined(QCA_WIFI_FTM)
/**
* wma_utf_rsp() - utf response
* @wma_handle: wma handle
* @payload: payload
* @len: length of payload
*
* Return: 0 for success or error code
*/
static int wma_utf_rsp(tp_wma_handle wma_handle, uint8_t **payload,
uint32_t *len)
{
int ret = -1;
uint32_t payload_len;
payload_len = wma_handle->utf_event_info.length;
if (payload_len) {
ret = 0;
/*
* The first 4 bytes holds the payload size
* and the actual payload sits next to it
*/
*payload = (uint8_t *) qdf_mem_malloc((uint32_t) payload_len
+ sizeof(A_UINT32));
*(A_UINT32 *) &(*payload[0]) =
wma_handle->utf_event_info.length;
memcpy(*payload + sizeof(A_UINT32),
wma_handle->utf_event_info.data, payload_len);
wma_handle->utf_event_info.length = 0;
*len = payload_len;
}
return ret;
}
/**
* wma_post_ftm_response() - post ftm response to upper layer
* @wma_handle: wma handle
*
* Return: none
*/
static void wma_post_ftm_response(tp_wma_handle wma_handle)
{
int ret;
uint8_t *payload;
uint32_t data_len;
cds_msg_t msg = { 0 };
QDF_STATUS status;
ret = wma_utf_rsp(wma_handle, &payload, &data_len);
if (ret)
return;
sys_build_message_header(SYS_MSG_ID_FTM_RSP, &msg);
msg.bodyptr = payload;
msg.bodyval = 0;
status = cds_mq_post_message(QDF_MODULE_ID_SYS, &msg);
if (status != QDF_STATUS_SUCCESS) {
WMA_LOGE("failed to post ftm response to SYS");
qdf_mem_free(payload);
}
}
/**
* wma_process_utf_event() - process utf event
* @handle: wma handle
* @datap: data buffer
* @dataplen: data length
*
* Return: 0 for success or error code
*/
static int
wma_process_utf_event(WMA_HANDLE handle, uint8_t *datap, uint32_t dataplen)
{
tp_wma_handle wma_handle = (tp_wma_handle) handle;
struct seg_hdr_info segHdrInfo;
uint8_t totalNumOfSegments, currentSeq;
WMI_PDEV_UTF_EVENTID_param_tlvs *param_buf;
uint8_t *data;
uint32_t datalen;
param_buf = (WMI_PDEV_UTF_EVENTID_param_tlvs *) datap;
if (!param_buf) {
WMA_LOGE("Get NULL point message from FW");
return -EINVAL;
}
data = param_buf->data;
datalen = param_buf->num_data;
if (datalen < sizeof(segHdrInfo)) {
WMA_LOGE("message size %d is smaller than struct seg_hdr_info",
datalen);
return -EINVAL;
}
segHdrInfo = *(struct seg_hdr_info *) &(data[0]);
wma_handle->utf_event_info.currentSeq = (segHdrInfo.segmentInfo & 0xF);
currentSeq = (segHdrInfo.segmentInfo & 0xF);
totalNumOfSegments = (segHdrInfo.segmentInfo >> 4) & 0xF;
datalen = datalen - sizeof(segHdrInfo);
if (currentSeq == 0) {
wma_handle->utf_event_info.expectedSeq = 0;
wma_handle->utf_event_info.offset = 0;
} else {
if (wma_handle->utf_event_info.expectedSeq != currentSeq)
WMA_LOGE("Mismatch in expecting seq expected Seq %d got seq %d",
wma_handle->utf_event_info.expectedSeq,
currentSeq);
}
if ((datalen > MAX_UTF_EVENT_LENGTH) ||
(wma_handle->utf_event_info.offset >
(MAX_UTF_EVENT_LENGTH - datalen))) {
WMA_LOGE("Excess data from firmware, offset:%zu, len:%d",
wma_handle->utf_event_info.offset, datalen);
return -EINVAL;
}
memcpy(&wma_handle->utf_event_info.
data[wma_handle->utf_event_info.offset],
&data[sizeof(segHdrInfo)], datalen);
wma_handle->utf_event_info.offset =
wma_handle->utf_event_info.offset + datalen;
wma_handle->utf_event_info.expectedSeq++;
if (wma_handle->utf_event_info.expectedSeq == totalNumOfSegments) {
if (wma_handle->utf_event_info.offset != segHdrInfo.len)
WMA_LOGE("All segs received total len mismatch.. len %zu total len %d",
wma_handle->utf_event_info.offset,
segHdrInfo.len);
wma_handle->utf_event_info.length =
wma_handle->utf_event_info.offset;
}
wma_post_ftm_response(wma_handle);
return 0;
}
/**
* wma_utf_detach() - utf detach
* @wma_handle: wma handle
*
* Return: none
*/
void wma_utf_detach(tp_wma_handle wma_handle)
{
if (wma_handle->utf_event_info.data) {
qdf_mem_free(wma_handle->utf_event_info.data);
wma_handle->utf_event_info.data = NULL;
wma_handle->utf_event_info.length = 0;
wmi_unified_unregister_event_handler(wma_handle->wmi_handle,
WMI_PDEV_UTF_EVENTID);
}
}
/**
* wma_utf_attach() - utf attach
* @wma_handle: wma handle
*
* Return: none
*/
void wma_utf_attach(tp_wma_handle wma_handle)
{
int ret;
wma_handle->utf_event_info.data = (unsigned char *)
qdf_mem_malloc(MAX_UTF_EVENT_LENGTH);
wma_handle->utf_event_info.length = 0;
ret = wmi_unified_register_event_handler(wma_handle->wmi_handle,
WMI_PDEV_UTF_EVENTID,
wma_process_utf_event,
WMA_RX_SERIALIZER_CTX);
if (ret)
WMA_LOGE("%s: Failed to register UTF event callback", __func__);
}
/**
* wma_utf_cmd() - utf command
* @wma_handle: wma handle
* @data: data
* @len: length
*
* Return: QDF_STATUS_SUCCESS for success or error code
*/
static QDF_STATUS wma_utf_cmd(tp_wma_handle wma_handle, uint8_t *data,
uint16_t len)
{
struct pdev_utf_params param = {0};
wma_handle->utf_event_info.length = 0;
param.utf_payload = data;
param.len = len;
return wmi_unified_pdev_utf_cmd_send(wma_handle->wmi_handle, &param,
WMA_WILDCARD_PDEV_ID);
}
/**
* wma_process_ftm_command() - process ftm command
* @wma_handle: wma handle
* @msg_buffer: message buffer
*
* Return: QDF_STATUS_SUCCESS for success or error code
*/
QDF_STATUS
wma_process_ftm_command(tp_wma_handle wma_handle,
struct ar6k_testmode_cmd_data *msg_buffer)
{
uint8_t *data = NULL;
uint16_t len = 0;
int ret;
if (!msg_buffer)
return QDF_STATUS_E_INVAL;
if (cds_get_conparam() != QDF_GLOBAL_FTM_MODE) {
WMA_LOGE("FTM command issued in non-FTM mode");
qdf_mem_free(msg_buffer->data);
qdf_mem_free(msg_buffer);
return QDF_STATUS_E_NOSUPPORT;
}
data = msg_buffer->data;
len = msg_buffer->len;
ret = wma_utf_cmd(wma_handle, data, len);
qdf_mem_free(msg_buffer->data);
qdf_mem_free(msg_buffer);
if (ret)
return QDF_STATUS_E_FAILURE;
return QDF_STATUS_SUCCESS;
}
#endif /* QCA_WIFI_FTM */
/**
* wma_get_wcnss_software_version() - get wcnss software version
* @p_cds_gctx: cds context
* @pVersion: version pointer
* @versionBufferSize: buffer size
*
* Return: QDF_STATUS_SUCCESS for success or error code
*/
QDF_STATUS wma_get_wcnss_software_version(void *p_cds_gctx,
uint8_t *pVersion,
uint32_t versionBufferSize)
{
tp_wma_handle wma_handle = cds_get_context(QDF_MODULE_ID_WMA);
if (NULL == wma_handle) {
WMA_LOGE("%s: Failed to get wma", __func__);
return QDF_STATUS_E_FAULT;
}
snprintf(pVersion, versionBufferSize, "%x",
(unsigned int)wma_handle->target_fw_version);
return QDF_STATUS_SUCCESS;
}
/**
* wma_get_tx_rx_ss_from_config() - Get Tx/Rx spatial stream from HW mode config
* @mac_ss: Config which indicates the HW mode as per 'hw_mode_ss_config'
* @tx_ss: Contains the Tx spatial stream
* @rx_ss: Contains the Rx spatial stream
*
* Returns the number of spatial streams of Tx and Rx
*
* Return: None
*/
static void wma_get_tx_rx_ss_from_config(enum hw_mode_ss_config mac_ss,
uint32_t *tx_ss, uint32_t *rx_ss)
{
switch (mac_ss) {
case HW_MODE_SS_0x0:
*tx_ss = 0;
*rx_ss = 0;
break;
case HW_MODE_SS_1x1:
*tx_ss = 1;
*rx_ss = 1;
break;
case HW_MODE_SS_2x2:
*tx_ss = 2;
*rx_ss = 2;
break;
case HW_MODE_SS_3x3:
*tx_ss = 3;
*rx_ss = 3;
break;
case HW_MODE_SS_4x4:
*tx_ss = 4;
*rx_ss = 4;
break;
default:
*tx_ss = 0;
*rx_ss = 0;
}
}
/**
* wma_get_matching_hw_mode_index() - Get matching HW mode index
* @wma: WMA handle
* @mac0_tx_ss: Number of tx spatial streams of MAC0
* @mac0_rx_ss: Number of rx spatial streams of MAC0
* @mac0_bw: Bandwidth of MAC0 of type 'hw_mode_bandwidth'
* @mac1_tx_ss: Number of tx spatial streams of MAC1
* @mac1_rx_ss: Number of rx spatial streams of MAC1
* @mac1_bw: Bandwidth of MAC1 of type 'hw_mode_bandwidth'
* @dbs: DBS capability of type 'hw_mode_dbs_capab'
* @dfs: Agile DFS capability of type 'hw_mode_agile_dfs_capab'
* @sbs: SBS capability of type 'hw_mode_sbs_capab'
*
* Fetches the HW mode index corresponding to the HW mode provided
*
* Return: Positive hw mode index in case a match is found or a negative
* value, otherwise
*/
static int8_t wma_get_matching_hw_mode_index(tp_wma_handle wma,
uint32_t mac0_tx_ss, uint32_t mac0_rx_ss,
enum hw_mode_bandwidth mac0_bw,
uint32_t mac1_tx_ss, uint32_t mac1_rx_ss,
enum hw_mode_bandwidth mac1_bw,
enum hw_mode_dbs_capab dbs,
enum hw_mode_agile_dfs_capab dfs,
enum hw_mode_sbs_capab sbs)
{
uint32_t i;
uint32_t t_mac0_tx_ss, t_mac0_rx_ss, t_mac0_bw;
uint32_t t_mac1_tx_ss, t_mac1_rx_ss, t_mac1_bw;
uint32_t dbs_mode, agile_dfs_mode, sbs_mode;
int8_t found = -EINVAL;
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return found;
}
for (i = 0; i < wma->num_dbs_hw_modes; i++) {
t_mac0_tx_ss = WMA_HW_MODE_MAC0_TX_STREAMS_GET(
wma->hw_mode.hw_mode_list[i]);
if (t_mac0_tx_ss != mac0_tx_ss)
continue;
t_mac0_rx_ss = WMA_HW_MODE_MAC0_RX_STREAMS_GET(
wma->hw_mode.hw_mode_list[i]);
if (t_mac0_rx_ss != mac0_rx_ss)
continue;
t_mac0_bw = WMA_HW_MODE_MAC0_BANDWIDTH_GET(
wma->hw_mode.hw_mode_list[i]);
/*
* Firmware advertises max bw capability as CBW 80+80
* for single MAC. Thus CBW 20/40/80 should also be
* supported, if CBW 80+80 is supported.
*/
if (t_mac0_bw < mac0_bw)
continue;
t_mac1_tx_ss = WMA_HW_MODE_MAC1_TX_STREAMS_GET(
wma->hw_mode.hw_mode_list[i]);
if (t_mac1_tx_ss != mac1_tx_ss)
continue;
t_mac1_rx_ss = WMA_HW_MODE_MAC1_RX_STREAMS_GET(
wma->hw_mode.hw_mode_list[i]);
if (t_mac1_rx_ss != mac1_rx_ss)
continue;
t_mac1_bw = WMA_HW_MODE_MAC1_BANDWIDTH_GET(
wma->hw_mode.hw_mode_list[i]);
if (t_mac1_bw < mac1_bw)
continue;
dbs_mode = WMA_HW_MODE_DBS_MODE_GET(
wma->hw_mode.hw_mode_list[i]);
if (dbs_mode != dbs)
continue;
agile_dfs_mode = WMA_HW_MODE_AGILE_DFS_GET(
wma->hw_mode.hw_mode_list[i]);
if (agile_dfs_mode != dfs)
continue;
sbs_mode = WMA_HW_MODE_SBS_MODE_GET(
wma->hw_mode.hw_mode_list[i]);
if (sbs_mode != sbs)
continue;
found = i;
WMA_LOGD("%s: hw_mode index %d found",
__func__, i);
break;
}
return found;
}
/**
* wma_get_hw_mode_from_dbs_hw_list() - Get hw_mode index
* @mac0_ss: MAC0 spatial stream configuration
* @mac0_bw: MAC0 bandwidth configuration
* @mac1_ss: MAC1 spatial stream configuration
* @mac1_bw: MAC1 bandwidth configuration
* @dbs: HW DBS capability
* @dfs: HW Agile DFS capability
* @sbs: HW SBS capability
*
* Get the HW mode index corresponding to the HW modes spatial stream,
* bandwidth, DBS, Agile DFS and SBS capability
*
* Return: Index number if a match is found or -negative value if not found
*/
int8_t wma_get_hw_mode_idx_from_dbs_hw_list(enum hw_mode_ss_config mac0_ss,
enum hw_mode_bandwidth mac0_bw,
enum hw_mode_ss_config mac1_ss,
enum hw_mode_bandwidth mac1_bw,
enum hw_mode_dbs_capab dbs,
enum hw_mode_agile_dfs_capab dfs,
enum hw_mode_sbs_capab sbs)
{
tp_wma_handle wma;
uint32_t mac0_tx_ss, mac0_rx_ss;
uint32_t mac1_tx_ss, mac1_rx_ss;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return -EINVAL;
}
wma_get_tx_rx_ss_from_config(mac0_ss, &mac0_tx_ss, &mac0_rx_ss);
wma_get_tx_rx_ss_from_config(mac1_ss, &mac1_tx_ss, &mac1_rx_ss);
WMA_LOGD("%s: MAC0: TxSS=%d, RxSS=%d, BW=%d",
__func__, mac0_tx_ss, mac0_rx_ss, mac0_bw);
WMA_LOGD("%s: MAC1: TxSS=%d, RxSS=%d, BW=%d",
__func__, mac1_tx_ss, mac1_rx_ss, mac1_bw);
WMA_LOGD("%s: DBS=%d, Agile DFS=%d, SBS=%d",
__func__, dbs, dfs, sbs);
return wma_get_matching_hw_mode_index(wma, mac0_tx_ss, mac0_rx_ss,
mac0_bw,
mac1_tx_ss, mac1_rx_ss,
mac1_bw,
dbs, dfs, sbs);
}
/**
* wma_get_hw_mode_from_idx() - Get HW mode based on index
* @idx: HW mode index
* @hw_mode: HW mode params
*
* Fetches the HW mode parameters
*
* Return: Success if hw mode is obtained and the hw mode params
*/
QDF_STATUS wma_get_hw_mode_from_idx(uint32_t idx,
struct sir_hw_mode_params *hw_mode)
{
tp_wma_handle wma;
uint32_t param;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return QDF_STATUS_E_FAILURE;
}
if (idx > wma->num_dbs_hw_modes) {
WMA_LOGE("%s: Invalid index", __func__);
return QDF_STATUS_E_FAILURE;
}
if (!wma->num_dbs_hw_modes) {
WMA_LOGE("%s: No dbs hw modes available", __func__);
return QDF_STATUS_E_FAILURE;
}
param = wma->hw_mode.hw_mode_list[idx];
hw_mode->mac0_tx_ss = WMA_HW_MODE_MAC0_TX_STREAMS_GET(param);
hw_mode->mac0_rx_ss = WMA_HW_MODE_MAC0_RX_STREAMS_GET(param);
hw_mode->mac0_bw = WMA_HW_MODE_MAC0_BANDWIDTH_GET(param);
hw_mode->mac1_tx_ss = WMA_HW_MODE_MAC1_TX_STREAMS_GET(param);
hw_mode->mac1_rx_ss = WMA_HW_MODE_MAC1_RX_STREAMS_GET(param);
hw_mode->mac1_bw = WMA_HW_MODE_MAC1_BANDWIDTH_GET(param);
hw_mode->dbs_cap = WMA_HW_MODE_DBS_MODE_GET(param);
hw_mode->agile_dfs_cap = WMA_HW_MODE_AGILE_DFS_GET(param);
hw_mode->sbs_cap = WMA_HW_MODE_SBS_MODE_GET(param);
return QDF_STATUS_SUCCESS;
}
/**
* wma_get_num_dbs_hw_modes() - Get number of HW mode
*
* Fetches the number of DBS HW modes returned by the FW
*
* Return: Negative value on error or returns the number of DBS HW modes
*/
int8_t wma_get_num_dbs_hw_modes(void)
{
tp_wma_handle wma;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return -EINVAL;
}
return wma->num_dbs_hw_modes;
}
/**
* wma_is_hw_dbs_capable() - Check if HW is DBS capable
*
* Checks if the HW is DBS capable
*
* Return: true if the HW is DBS capable
*/
bool wma_is_hw_dbs_capable(void)
{
tp_wma_handle wma;
uint32_t param, i, found = 0;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return false;
}
if (!wma_is_dbs_enable()) {
WMA_LOGD("%s: DBS is disabled", __func__);
return false;
}
WMA_LOGD("%s: DBS service bit map: %d", __func__,
WMI_SERVICE_IS_ENABLED(wma->wmi_service_bitmap,
WMI_SERVICE_DUAL_BAND_SIMULTANEOUS_SUPPORT));
/* The agreement with FW is that: To know if the target is DBS
* capable, DBS needs to be supported both in the HW mode list
* and in the service ready event
*/
if (!(WMI_SERVICE_IS_ENABLED(wma->wmi_service_bitmap,
WMI_SERVICE_DUAL_BAND_SIMULTANEOUS_SUPPORT)))
return false;
for (i = 0; i < wma->num_dbs_hw_modes; i++) {
param = wma->hw_mode.hw_mode_list[i];
WMA_LOGD("%s: HW param: %x", __func__, param);
if (WMA_HW_MODE_DBS_MODE_GET(param)) {
WMA_LOGD("%s: HW (%d) is DBS capable", __func__, i);
found = 1;
break;
}
}
if (found)
return true;
return false;
}
/**
* wma_get_cds_hw_mode_change_from_hw_mode_index - Returns value in terms of
* cds_hw_mode_change enums derived from hw_mode_index.
*
* Returns cds_hw_mode_change value derived from hw_mode_index.
*
* Return: value in terms of cds_hw_mode_change enums.
*/
enum cds_hw_mode_change
wma_get_cds_hw_mode_change_from_hw_mode_index(uint32_t hw_mode_index)
{
tp_wma_handle wma;
uint32_t param = 0;
enum cds_hw_mode_change value = CDS_HW_MODE_NOT_IN_PROGRESS;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
goto ret_value;
}
WMA_LOGD("%s: HW param: %x", __func__, param);
param = wma->hw_mode.hw_mode_list[hw_mode_index];
if (WMA_HW_MODE_DBS_MODE_GET(param)) {
WMA_LOGD("%s: DBS is requested with HW (%d)", __func__,
hw_mode_index);
value = CDS_DBS_IN_PROGRESS;
goto ret_value;
}
if (WMA_HW_MODE_SBS_MODE_GET(param)) {
WMA_LOGD("%s: SBS is requested with HW (%d)", __func__,
hw_mode_index);
value = CDS_SBS_IN_PROGRESS;
goto ret_value;
}
value = CDS_SMM_IN_PROGRESS;
WMA_LOGD("%s: SMM is requested with HW (%d)", __func__,
hw_mode_index);
ret_value:
return value;
}
/**
* wma_get_mac_id_of_vdev() - Get MAC id corresponding to a vdev
* @vdev_id: VDEV whose MAC ID is required
*
* Get MAC id corresponding to a vdev id from the WMA structure
*
* Return: Negative value on failure and MAC id on success
*/
int8_t wma_get_mac_id_of_vdev(uint32_t vdev_id)
{
tp_wma_handle wma;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return -EINVAL;
}
if (wma->interfaces)
return wma->interfaces[vdev_id].mac_id;
return -EINVAL;
}
/**
* wma_get_old_and_new_hw_index() - Get the old and new HW index
* @old_hw_mode_index: Value at this pointer contains the old HW mode index
* Default value when not configured is WMA_DEFAULT_HW_MODE_INDEX
* @new_hw_mode_index: Value at this pointer contains the new HW mode index
* Default value when not configured is WMA_DEFAULT_HW_MODE_INDEX
*
* Get the old and new HW index configured in the driver
*
* Return: Failure in case the HW mode indices cannot be fetched and Success
* otherwise. When no HW mode transition has happened the values of
* old_hw_mode_index and new_hw_mode_index will be the same.
*/
QDF_STATUS wma_get_old_and_new_hw_index(uint32_t *old_hw_mode_index,
uint32_t *new_hw_mode_index)
{
tp_wma_handle wma;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return QDF_STATUS_E_INVAL;
}
*old_hw_mode_index = wma->old_hw_mode_index;
*new_hw_mode_index = wma->new_hw_mode_index;
return QDF_STATUS_SUCCESS;
}
/**
* wma_update_intf_hw_mode_params() - Update WMA params
* @vdev_id: VDEV id whose params needs to be updated
* @mac_id: MAC id to be updated
* @cfgd_hw_mode_index: HW mode index from which Tx and Rx SS will be updated
*
* Updates the MAC id, tx spatial stream, rx spatial stream in WMA
*
* Return: None
*/
void wma_update_intf_hw_mode_params(uint32_t vdev_id, uint32_t mac_id,
uint32_t cfgd_hw_mode_index)
{
tp_wma_handle wma;
uint32_t param;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return;
}
if (!wma->interfaces) {
WMA_LOGE("%s: Interface is NULL", __func__);
return;
}
if (cfgd_hw_mode_index > wma->num_dbs_hw_modes) {
WMA_LOGE("%s: Invalid index", __func__);
return;
}
param = wma->hw_mode.hw_mode_list[cfgd_hw_mode_index];
wma->interfaces[vdev_id].mac_id = mac_id;
if (mac_id == 0) {
wma->interfaces[vdev_id].tx_streams =
WMA_HW_MODE_MAC0_TX_STREAMS_GET(param);
wma->interfaces[vdev_id].rx_streams =
WMA_HW_MODE_MAC0_RX_STREAMS_GET(param);
} else {
wma->interfaces[vdev_id].tx_streams =
WMA_HW_MODE_MAC1_TX_STREAMS_GET(param);
wma->interfaces[vdev_id].rx_streams =
WMA_HW_MODE_MAC1_RX_STREAMS_GET(param);
}
}
/**
* wma_get_dbs_hw_modes() - Get the DBS HW modes for userspace
* @one_by_one_dbs: 1x1 DBS capability of HW
* @two_by_two_dbs: 2x2 DBS capability of HW
*
* Provides the DBS HW mode capability such as whether
* 1x1 DBS, 2x2 DBS is supported by the HW or not.
*
* Return: Failure in case of error and 0 on success
* one_by_one_dbs/two_by_two_dbs will be false,
* if they are not supported.
* one_by_one_dbs/two_by_two_dbs will be true,
* if they are supported.
* false values of one_by_one_dbs/two_by_two_dbs,
* indicate DBS is disabled
*/
QDF_STATUS wma_get_dbs_hw_modes(bool *one_by_one_dbs, bool *two_by_two_dbs)
{
tp_wma_handle wma;
uint32_t i;
int8_t found_one_by_one = -EINVAL, found_two_by_two = -EINVAL;
uint32_t conf1_tx_ss, conf1_rx_ss;
uint32_t conf2_tx_ss, conf2_rx_ss;
*one_by_one_dbs = false;
*two_by_two_dbs = false;
if (wma_is_hw_dbs_capable() == false) {
WMA_LOGE("%s: HW is not DBS capable", __func__);
/* Caller will understand that DBS is disabled */
return QDF_STATUS_SUCCESS;
}
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return QDF_STATUS_E_FAILURE;
}
/* To check 1x1 capability */
wma_get_tx_rx_ss_from_config(HW_MODE_SS_1x1,
&conf1_tx_ss, &conf1_rx_ss);
/* To check 2x2 capability */
wma_get_tx_rx_ss_from_config(HW_MODE_SS_2x2,
&conf2_tx_ss, &conf2_rx_ss);
for (i = 0; i < wma->num_dbs_hw_modes; i++) {
uint32_t t_conf0_tx_ss, t_conf0_rx_ss;
uint32_t t_conf1_tx_ss, t_conf1_rx_ss;
uint32_t dbs_mode;
t_conf0_tx_ss = WMA_HW_MODE_MAC0_TX_STREAMS_GET(
wma->hw_mode.hw_mode_list[i]);
t_conf0_rx_ss = WMA_HW_MODE_MAC0_RX_STREAMS_GET(
wma->hw_mode.hw_mode_list[i]);
t_conf1_tx_ss = WMA_HW_MODE_MAC1_TX_STREAMS_GET(
wma->hw_mode.hw_mode_list[i]);
t_conf1_rx_ss = WMA_HW_MODE_MAC1_RX_STREAMS_GET(
wma->hw_mode.hw_mode_list[i]);
dbs_mode = WMA_HW_MODE_DBS_MODE_GET(
wma->hw_mode.hw_mode_list[i]);
if (((((t_conf0_tx_ss == conf1_tx_ss) &&
(t_conf0_rx_ss == conf1_rx_ss)) ||
((t_conf1_tx_ss == conf1_tx_ss) &&
(t_conf1_rx_ss == conf1_rx_ss))) &&
(dbs_mode == HW_MODE_DBS)) &&
(found_one_by_one < 0)) {
found_one_by_one = i;
WMA_LOGD("%s: 1x1 hw_mode index %d found",
__func__, i);
/* Once an entry is found, need not check for 1x1
* again
*/
continue;
}
if (((((t_conf0_tx_ss == conf2_tx_ss) &&
(t_conf0_rx_ss == conf2_rx_ss)) ||
((t_conf1_tx_ss == conf2_tx_ss) &&
(t_conf1_rx_ss == conf2_rx_ss))) &&
(dbs_mode == HW_MODE_DBS)) &&
(found_two_by_two < 0)) {
found_two_by_two = i;
WMA_LOGD("%s: 2x2 hw_mode index %d found",
__func__, i);
/* Once an entry is found, need not check for 2x2
* again
*/
continue;
}
}
if (found_one_by_one >= 0)
*one_by_one_dbs = true;
if (found_two_by_two >= 0)
*two_by_two_dbs = true;
return QDF_STATUS_SUCCESS;
}
/**
* wma_get_current_hw_mode() - Get current HW mode params
* @hw_mode: HW mode parameters
*
* Provides the current HW mode parameters if the HW mode is initialized
* in the driver
*
* Return: Success if the current HW mode params are successfully populated
*/
QDF_STATUS wma_get_current_hw_mode(struct sir_hw_mode_params *hw_mode)
{
QDF_STATUS status;
uint32_t old_hw_index = 0, new_hw_index = 0;
WMA_LOGD("%s: Get the current hw mode", __func__);
status = wma_get_old_and_new_hw_index(&old_hw_index,
&new_hw_index);
if (QDF_STATUS_SUCCESS != status) {
WMA_LOGE("%s: Failed to get HW mode index", __func__);
return QDF_STATUS_E_FAILURE;
}
if (new_hw_index == WMA_DEFAULT_HW_MODE_INDEX) {
WMA_LOGE("%s: HW mode is not yet initialized", __func__);
return QDF_STATUS_E_FAILURE;
}
status = wma_get_hw_mode_from_idx(new_hw_index, hw_mode);
if (QDF_STATUS_SUCCESS != status) {
WMA_LOGE("%s: Failed to get HW mode index", __func__);
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/**
* wma_is_current_hwmode_dbs() - Check if current hw mode is DBS
*
* Checks if current hardware mode of the system is DBS or no
*
* Return: true or false
*/
bool wma_is_current_hwmode_dbs(void)
{
struct sir_hw_mode_params hw_mode;
if (!wma_is_hw_dbs_capable())
return false;
if (QDF_STATUS_SUCCESS != wma_get_current_hw_mode(&hw_mode))
return false;
if (hw_mode.dbs_cap)
return true;
return false;
}
/**
* wma_is_dbs_enable() - Check if master DBS control is enabled
*
* Checks if the master DBS control is enabled. This will be used
* to override any other DBS capability
*
* Return: True if master DBS control is enabled
*/
bool wma_is_dbs_enable(void)
{
tp_wma_handle wma;
if (wma_is_dual_mac_disabled_in_ini())
return false;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return false;
}
WMA_LOGD("%s: DBS=%d", __func__,
WMI_DBS_FW_MODE_CFG_DBS_GET(wma->dual_mac_cfg.cur_fw_mode_config));
if (WMI_DBS_FW_MODE_CFG_DBS_GET(wma->dual_mac_cfg.cur_fw_mode_config))
return true;
return false;
}
/**
* wma_get_updated_scan_config() - Get the updated scan configuration
* @scan_config: Pointer containing the updated scan config
* @dbs_scan: 0 or 1 indicating if DBS scan needs to be enabled/disabled
* @dbs_plus_agile_scan: 0 or 1 indicating if DBS plus agile scan needs to be
* enabled/disabled
* @single_mac_scan_with_dfs: 0 or 1 indicating if single MAC scan with DFS
* needs to be enabled/disabled
*
* Takes the current scan configuration and set the necessary scan config
* bits to either 0/1 and provides the updated value to the caller who
* can use this to pass it on to the FW
*
* Return: 0 on success
*/
QDF_STATUS wma_get_updated_scan_config(uint32_t *scan_config,
bool dbs_scan,
bool dbs_plus_agile_scan,
bool single_mac_scan_with_dfs)
{
tp_wma_handle wma;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return QDF_STATUS_E_FAILURE;
}
*scan_config = wma->dual_mac_cfg.cur_scan_config;
WMI_DBS_CONC_SCAN_CFG_DBS_SCAN_SET(*scan_config, dbs_scan);
WMI_DBS_CONC_SCAN_CFG_AGILE_SCAN_SET(*scan_config,
dbs_plus_agile_scan);
WMI_DBS_CONC_SCAN_CFG_AGILE_DFS_SCAN_SET(*scan_config,
single_mac_scan_with_dfs);
WMA_LOGD("%s: *scan_config:%x ", __func__, *scan_config);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS wma_get_updated_scan_and_fw_mode_config(uint32_t *scan_config,
uint32_t *fw_mode_config, uint32_t dual_mac_disable_ini)
{
tp_wma_handle wma;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return QDF_STATUS_E_FAILURE;
}
if (!scan_config) {
WMA_LOGE("%s: scan_config NULL", __func__);
return QDF_STATUS_E_FAILURE;
}
if (!fw_mode_config) {
WMA_LOGE("%s: fw_mode_config NULL", __func__);
return QDF_STATUS_E_FAILURE;
}
*scan_config = wma->dual_mac_cfg.cur_scan_config;
*fw_mode_config = wma->dual_mac_cfg.cur_fw_mode_config;
switch (dual_mac_disable_ini) {
case DISABLE_DBS_CXN_AND_ENABLE_DBS_SCAN_WITH_ASYNC_SCAN_OFF:
WMA_LOGD("%s: dual_mac_disable_ini:%d async/dbs off", __func__,
dual_mac_disable_ini);
WMI_DBS_CONC_SCAN_CFG_ASYNC_DBS_SCAN_SET(*scan_config, 0);
WMI_DBS_FW_MODE_CFG_DBS_FOR_CXN_SET(*fw_mode_config, 0);
break;
case DISABLE_DBS_CXN_AND_ENABLE_DBS_SCAN:
WMA_LOGD("%s: dual_mac_disable_ini:%d dbs_cxn off", __func__,
dual_mac_disable_ini);
WMI_DBS_FW_MODE_CFG_DBS_FOR_CXN_SET(*fw_mode_config, 0);
break;
case ENABLE_DBS_CXN_AND_ENABLE_SCAN_WITH_ASYNC_SCAN_OFF:
WMA_LOGD("%s: dual_mac_disable_ini:%d async off", __func__,
dual_mac_disable_ini);
WMI_DBS_CONC_SCAN_CFG_ASYNC_DBS_SCAN_SET(*scan_config, 0);
break;
case ENABLE_DBS_CXN_AND_DISABLE_DBS_SCAN:
WMA_LOGD("%s: dual_mac_disable_ini:%d ", __func__,
dual_mac_disable_ini);
WMI_DBS_CONC_SCAN_CFG_DBS_SCAN_SET(*scan_config, 0);
break;
default:
break;
}
WMA_LOGD("%s: *scan_config:%x ", __func__, *scan_config);
WMA_LOGD("%s: *fw_mode_config:%x ", __func__, *fw_mode_config);
return QDF_STATUS_SUCCESS;
}
/**
* wma_get_updated_fw_mode_config() - Get the updated fw mode configuration
* @fw_mode_config: Pointer containing the updated fw mode config
* @dbs: 0 or 1 indicating if DBS needs to be enabled/disabled
* @agile_dfs: 0 or 1 indicating if agile DFS needs to be enabled/disabled
*
* Takes the current fw mode configuration and set the necessary fw mode config
* bits to either 0/1 and provides the updated value to the caller who
* can use this to pass it on to the FW
*
* Return: 0 on success
*/
QDF_STATUS wma_get_updated_fw_mode_config(uint32_t *fw_mode_config,
bool dbs,
bool agile_dfs)
{
tp_wma_handle wma;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return QDF_STATUS_E_FAILURE;
}
*fw_mode_config = wma->dual_mac_cfg.cur_fw_mode_config;
WMI_DBS_FW_MODE_CFG_DBS_SET(*fw_mode_config, dbs);
WMI_DBS_FW_MODE_CFG_AGILE_DFS_SET(*fw_mode_config, agile_dfs);
WMA_LOGD("%s: *fw_mode_config:%x ", __func__, *fw_mode_config);
return QDF_STATUS_SUCCESS;
}
/**
* wma_get_dbs_config() - Get DBS bit
*
* Gets the DBS bit of fw_mode_config_bits
*
* Return: 0 or 1 to indicate the DBS bit
*/
bool wma_get_dbs_config(void)
{
tp_wma_handle wma;
uint32_t fw_mode_config;
if (wma_is_dual_mac_disabled_in_ini())
return false;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
/* We take that it is disabled and proceed */
return false;
}
fw_mode_config = wma->dual_mac_cfg.cur_fw_mode_config;
return WMI_DBS_FW_MODE_CFG_DBS_GET(fw_mode_config);
}
/**
* wma_get_agile_dfs_config() - Get Agile DFS bit
*
* Gets the Agile DFS bit of fw_mode_config_bits
*
* Return: 0 or 1 to indicate the Agile DFS bit
*/
bool wma_get_agile_dfs_config(void)
{
tp_wma_handle wma;
uint32_t fw_mode_config;
if (wma_is_dual_mac_disabled_in_ini())
return false;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
/* We take that it is disabled and proceed */
return false;
}
fw_mode_config = wma->dual_mac_cfg.cur_fw_mode_config;
return WMI_DBS_FW_MODE_CFG_AGILE_DFS_GET(fw_mode_config);
}
/**
* wma_get_dbs_scan_config() - Get DBS scan bit
*
* Gets the DBS scan bit of concurrent_scan_config_bits
*
* Return: 0 or 1 to indicate the DBS scan bit
*/
bool wma_get_dbs_scan_config(void)
{
tp_wma_handle wma;
uint32_t scan_config;
if (wma_is_dual_mac_disabled_in_ini())
return false;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
/* We take that it is disabled and proceed */
return false;
}
scan_config = wma->dual_mac_cfg.cur_scan_config;
return WMI_DBS_CONC_SCAN_CFG_DBS_SCAN_GET(scan_config);
}
/**
* wma_get_dbs_plus_agile_scan_config() - Get DBS plus agile scan bit
*
* Gets the DBS plus agile scan bit of concurrent_scan_config_bits
*
* Return: 0 or 1 to indicate the DBS plus agile scan bit
*/
bool wma_get_dbs_plus_agile_scan_config(void)
{
tp_wma_handle wma;
uint32_t scan_config;
if (wma_is_dual_mac_disabled_in_ini())
return false;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
/* We take that it is disabled and proceed */
return false;
}
scan_config = wma->dual_mac_cfg.cur_scan_config;
return WMI_DBS_CONC_SCAN_CFG_AGILE_SCAN_GET(scan_config);
}
/**
* wma_get_single_mac_scan_with_dfs_config() - Get Single MAC scan with DFS bit
*
* Gets the Single MAC scan with DFS bit of concurrent_scan_config_bits
*
* Return: 0 or 1 to indicate the Single MAC scan with DFS bit
*/
bool wma_get_single_mac_scan_with_dfs_config(void)
{
tp_wma_handle wma;
uint32_t scan_config;
if (wma_is_dual_mac_disabled_in_ini())
return false;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
/* We take that it is disabled and proceed */
return false;
}
scan_config = wma->dual_mac_cfg.cur_scan_config;
return WMI_DBS_CONC_SCAN_CFG_AGILE_DFS_SCAN_GET(scan_config);
}
/**
* wma_is_dual_mac_disabled_in_ini() - Check if dual mac is disabled in INI
*
* Checks if the dual mac feature is disabled in INI
*
* Return: true if the dual mac feature is disabled from INI
*/
bool wma_is_dual_mac_disabled_in_ini(void)
{
tpAniSirGlobal mac = cds_get_context(QDF_MODULE_ID_PE);
if (!mac) {
WMA_LOGE("%s: Invalid mac pointer", __func__);
return true;
}
/*
* If DBS support for connection is disabled through INI then assume
* that DBS is not supported, so that policy manager takes
* the decision considering non-dbs cases only.
*
* For DBS scan check the INI value explicitly
*/
switch (mac->dual_mac_feature_disable) {
case DISABLE_DBS_CXN_AND_SCAN:
case DISABLE_DBS_CXN_AND_ENABLE_DBS_SCAN:
case DISABLE_DBS_CXN_AND_ENABLE_DBS_SCAN_WITH_ASYNC_SCAN_OFF:
return true;
}
return false;
}
/**
* wma_get_prev_dbs_config() - Get prev DBS bit
*
* Gets the previous DBS bit of fw_mode_config_bits
*
* Return: 0 or 1 to indicate the DBS bit
*/
bool wma_get_prev_dbs_config(void)
{
tp_wma_handle wma;
uint32_t fw_mode_config;
if (wma_is_dual_mac_disabled_in_ini())
return false;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
/* We take that it is disabled and proceed */
return false;
}
fw_mode_config = wma->dual_mac_cfg.prev_fw_mode_config;
return WMI_DBS_FW_MODE_CFG_DBS_GET(fw_mode_config);
}
/**
* wma_get_prev_agile_dfs_config() - Get prev Agile DFS bit
*
* Gets the previous Agile DFS bit of fw_mode_config_bits
*
* Return: 0 or 1 to indicate the Agile DFS bit
*/
bool wma_get_prev_agile_dfs_config(void)
{
tp_wma_handle wma;
uint32_t fw_mode_config;
if (wma_is_dual_mac_disabled_in_ini())
return false;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
/* We take that it is disabled and proceed */
return false;
}
fw_mode_config = wma->dual_mac_cfg.prev_fw_mode_config;
return WMI_DBS_FW_MODE_CFG_AGILE_DFS_GET(fw_mode_config);
}
/**
* wma_get_prev_dbs_scan_config() - Get prev DBS scan bit
*
* Gets the previous DBS scan bit of concurrent_scan_config_bits
*
* Return: 0 or 1 to indicate the DBS scan bit
*/
bool wma_get_prev_dbs_scan_config(void)
{
tp_wma_handle wma;
uint32_t scan_config;
if (wma_is_dual_mac_disabled_in_ini())
return false;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
/* We take that it is disabled and proceed */
return false;
}
scan_config = wma->dual_mac_cfg.prev_scan_config;
return WMI_DBS_CONC_SCAN_CFG_DBS_SCAN_GET(scan_config);
}
/**
* wma_get_prev_dbs_plus_agile_scan_config() - Get prev DBS plus agile scan bit
*
* Gets the previous DBS plus agile scan bit of concurrent_scan_config_bits
*
* Return: 0 or 1 to indicate the DBS plus agile scan bit
*/
bool wma_get_prev_dbs_plus_agile_scan_config(void)
{
tp_wma_handle wma;
uint32_t scan_config;
if (wma_is_dual_mac_disabled_in_ini())
return false;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
/* We take that it is disabled and proceed */
return false;
}
scan_config = wma->dual_mac_cfg.prev_scan_config;
return WMI_DBS_CONC_SCAN_CFG_AGILE_SCAN_GET(scan_config);
}
/**
* wma_get_prev_single_mac_scan_with_dfs_config() - Get prev Single MAC scan
* with DFS bit
*
* Gets the previous Single MAC scan with DFS bit of concurrent_scan_config_bits
*
* Return: 0 or 1 to indicate the Single MAC scan with DFS bit
*/
bool wma_get_prev_single_mac_scan_with_dfs_config(void)
{
tp_wma_handle wma;
uint32_t scan_config;
if (wma_is_dual_mac_disabled_in_ini())
return false;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
/* We take that it is disabled and proceed */
return false;
}
scan_config = wma->dual_mac_cfg.prev_scan_config;
return WMI_DBS_CONC_SCAN_CFG_AGILE_DFS_SCAN_GET(scan_config);
}
/**
* wma_is_scan_simultaneous_capable() - Check if scan parallelization is
* supported or not
*
* currently scan parallelization feature support is dependent on DBS but
* it can be independent in future.
*
* Return: True if master DBS control is enabled
*/
bool wma_is_scan_simultaneous_capable(void)
{
tpAniSirGlobal mac = cds_get_context(QDF_MODULE_ID_PE);
if (!mac) {
WMA_LOGE("%s: Invalid mac pointer", __func__);
return true;
}
if ((mac->dual_mac_feature_disable == DISABLE_DBS_CXN_AND_SCAN) ||
(mac->dual_mac_feature_disable ==
ENABLE_DBS_CXN_AND_DISABLE_DBS_SCAN))
return false;
return true;
}
/**
* wma_get_vht_ch_width - return vht channel width
*
* Return: return vht channel width
*/
uint32_t wma_get_vht_ch_width(void)
{
uint32_t fw_ch_wd = WNI_CFG_VHT_CHANNEL_WIDTH_80MHZ;
tp_wma_handle wm_hdl = cds_get_context(QDF_MODULE_ID_WMA);
if (NULL == wm_hdl)
return fw_ch_wd;
if (wm_hdl->vht_cap_info & WMI_VHT_CAP_CH_WIDTH_80P80_160MHZ)
fw_ch_wd = WNI_CFG_VHT_CHANNEL_WIDTH_80_PLUS_80MHZ;
else if (wm_hdl->vht_cap_info & WMI_VHT_CAP_CH_WIDTH_160MHZ)
fw_ch_wd = WNI_CFG_VHT_CHANNEL_WIDTH_160MHZ;
return fw_ch_wd;
}
/**
* wma_get_num_of_setbits_from_bitmask() - to get num of setbits from bitmask
* @mask: given bitmask
*
* This helper function should return number of setbits from bitmask
*
* Return: number of setbits from bitmask
*/
uint32_t wma_get_num_of_setbits_from_bitmask(uint32_t mask)
{
uint32_t num_of_setbits = 0;
while (mask) {
mask &= (mask - 1);
num_of_setbits++;
}
return num_of_setbits;
}
/**
* wma_is_csa_offload_enabled - checks fw CSA offload capability
*
* Return: true or false
*/
bool wma_is_csa_offload_enabled(void)
{
tp_wma_handle wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma)
return false;
return WMI_SERVICE_IS_ENABLED(wma->wmi_service_bitmap,
WMI_SERVICE_CSA_OFFLOAD);
}
/**
* wma_config_debug_module_cmd - set debug log config
* @wmi_handle: wmi layer handle
* @param: debug log parameter
* @val: debug log value
* @module_id_bitmap: debug module id bitmap
* @bitmap_len: debug module bitmap length
*
* Return: QDF_STATUS_SUCCESS for success or error code
*/
QDF_STATUS
wma_config_debug_module_cmd(wmi_unified_t wmi_handle, A_UINT32 param,
A_UINT32 val, A_UINT32 *module_id_bitmap,
A_UINT32 bitmap_len)
{
struct dbglog_params dbg_param;
dbg_param.param = param;
dbg_param.val = val;
dbg_param.module_id_bitmap = module_id_bitmap;
dbg_param.bitmap_len = bitmap_len;
return wmi_unified_dbglog_cmd_send(wmi_handle, &dbg_param);
}
/**
* wma_is_p2p_lo_capable() - if driver is capable of p2p listen offload
*
* This function checks if driver is capable of p2p listen offload
* true: capable of p2p offload
* false: not capable
*
* Return: true - capable, false - not capable
*/
bool wma_is_p2p_lo_capable(void)
{
tp_wma_handle wma;
wma = cds_get_context(QDF_MODULE_ID_WMA);
if (!wma) {
WMA_LOGE("%s: Invalid WMA handle", __func__);
return false;
}
if (WMI_SERVICE_IS_ENABLED(wma->wmi_service_bitmap,
WMI_SERVICE_P2P_LISTEN_OFFLOAD_SUPPORT))
return true;
return false;
}
QDF_STATUS wma_get_rcpi_req(WMA_HANDLE handle,
struct sme_rcpi_req *rcpi_request)
{
tp_wma_handle wma_handle = (tp_wma_handle) handle;
struct rcpi_req cmd = {0};
struct wma_txrx_node *iface;
struct sme_rcpi_req *node_rcpi_req = NULL;
WMA_LOGD("%s: Enter", __func__);
iface = &wma_handle->interfaces[rcpi_request->session_id];
/* command is in progress */
if (iface->rcpi_req != NULL) {
WMA_LOGE("%s : previous rcpi request is pending", __func__);
return QDF_STATUS_SUCCESS;
}
node_rcpi_req = qdf_mem_malloc(sizeof(*node_rcpi_req));
if (!node_rcpi_req) {
WMA_LOGE("Failed to allocate memory for rcpi_request");
return QDF_STATUS_E_NOMEM;
}
node_rcpi_req->session_id = rcpi_request->session_id;
node_rcpi_req->measurement_type = rcpi_request->measurement_type;
node_rcpi_req->rcpi_callback = rcpi_request->rcpi_callback;
node_rcpi_req->rcpi_context = rcpi_request->rcpi_context;
node_rcpi_req->mac_addr = rcpi_request->mac_addr;
iface->rcpi_req = node_rcpi_req;
cmd.vdev_id = rcpi_request->session_id;
qdf_mem_copy(cmd.mac_addr, &rcpi_request->mac_addr, QDF_MAC_ADDR_SIZE);
switch (rcpi_request->measurement_type) {
case RCPI_MEASUREMENT_TYPE_AVG_MGMT:
cmd.measurement_type = RCPI_MEASUREMENT_TYPE_AVG_MGMT;
break;
case RCPI_MEASUREMENT_TYPE_AVG_DATA:
cmd.measurement_type = RCPI_MEASUREMENT_TYPE_AVG_DATA;
break;
case RCPI_MEASUREMENT_TYPE_LAST_MGMT:
cmd.measurement_type = RCPI_MEASUREMENT_TYPE_LAST_MGMT;
break;
case RCPI_MEASUREMENT_TYPE_LAST_DATA:
cmd.measurement_type = RCPI_MEASUREMENT_TYPE_LAST_DATA;
break;
default:
/*
* invalid rcpi measurement type, fall back to
* RCPI_MEASUREMENT_TYPE_AVG_MGMT
*/
cmd.measurement_type = RCPI_MEASUREMENT_TYPE_AVG_MGMT;
break;
}
if (wmi_unified_get_rcpi_cmd(wma_handle->wmi_handle, &cmd)) {
WMA_LOGE("%s: Failed to send WMI_REQUEST_RCPI_CMDID",
__func__);
iface->rcpi_req = NULL;
qdf_mem_free(node_rcpi_req);
return QDF_STATUS_E_FAILURE;
}
WMA_LOGD("%s: Exit", __func__);
return QDF_STATUS_SUCCESS;
}
int wma_rcpi_event_handler(void *handle, uint8_t *cmd_param_info,
uint32_t len)
{
WMI_UPDATE_RCPI_EVENTID_param_tlvs *param_buf;
wmi_update_rcpi_event_fixed_param *event;
struct sme_rcpi_req *rcpi_req;
uint8_t mac_addr[QDF_MAC_ADDR_SIZE];
struct qdf_mac_addr qdf_mac;
struct wma_txrx_node *iface;
enum rcpi_measurement_type msmt_type;
QDF_STATUS rcpi_status = QDF_STATUS_SUCCESS;
QDF_STATUS status = QDF_STATUS_SUCCESS;
tp_wma_handle wma = (tp_wma_handle)handle;
param_buf = (WMI_UPDATE_RCPI_EVENTID_param_tlvs *)cmd_param_info;
if (!param_buf) {
WMA_LOGA("%s: Invalid rcpi event", __func__);
return -EINVAL;
}
event = param_buf->fixed_param;
if (event->vdev_id >= wma->max_bssid) {
WMA_LOGE("%s: received invalid vdev_id %d",
__func__, event->vdev_id);
return -EINVAL;
}
iface = &wma->interfaces[event->vdev_id];
if (!iface->rcpi_req) {
WMI_LOGE("rcpi_req buffer not available");
return 0;
}
rcpi_req = iface->rcpi_req;
if (!rcpi_req->rcpi_callback) {
iface->rcpi_req = NULL;
qdf_mem_free(rcpi_req);
return 0;
}
WMI_MAC_ADDR_TO_CHAR_ARRAY(&event->peer_macaddr, mac_addr);
switch (event->measurement_type) {
case WMI_RCPI_MEASUREMENT_TYPE_AVG_MGMT:
msmt_type = RCPI_MEASUREMENT_TYPE_AVG_MGMT;
break;
case WMI_RCPI_MEASUREMENT_TYPE_AVG_DATA:
msmt_type = RCPI_MEASUREMENT_TYPE_AVG_DATA;
break;
case WMI_RCPI_MEASUREMENT_TYPE_LAST_MGMT:
msmt_type = RCPI_MEASUREMENT_TYPE_LAST_MGMT;
break;
case WMI_RCPI_MEASUREMENT_TYPE_LAST_DATA:
msmt_type = RCPI_MEASUREMENT_TYPE_LAST_DATA;
break;
default:
WMI_LOGE("Invalid rcpi measurement type from firmware");
rcpi_status = QDF_STATUS_E_INVAL;
break;
}
if (!QDF_IS_STATUS_SUCCESS(rcpi_status) ||
(event->vdev_id != rcpi_req->session_id) ||
(msmt_type != rcpi_req->measurement_type) ||
(qdf_mem_cmp(mac_addr, &rcpi_req->mac_addr, QDF_MAC_ADDR_SIZE))) {
WMI_LOGE("invalid rcpi_req for specified rcpi_req");
iface->rcpi_req = NULL;
qdf_mem_free(rcpi_req);
return 0;
}
qdf_mem_copy(&qdf_mac, mac_addr, QDF_MAC_ADDR_SIZE);
if (event->status)
status = QDF_STATUS_E_FAILURE;
else
status = QDF_STATUS_SUCCESS;
(rcpi_req->rcpi_callback)(rcpi_req->rcpi_context, qdf_mac, event->rcpi,
status);
iface->rcpi_req = NULL;
qdf_mem_free(rcpi_req);
return 0;
}
/**
* wma_next_peer_log_index() - atomically increment and wrap around index value
* @index: address of index to increment
* @size: wrap around this value
*
* Return: new value of index
*/
static int wma_next_peer_log_index(qdf_atomic_t *index, int size)
{
int i = qdf_atomic_inc_return(index);
if (i == WMA_PEER_DEBUG_MAX_REC)
qdf_atomic_sub(WMA_PEER_DEBUG_MAX_REC, index);
while (i >= size)
i -= WMA_PEER_DEBUG_MAX_REC;
return i;
}
/**
* wma_peer_debug_log() - Add a debug log entry into peer debug records
* @vdev_id: vdev identifier
* @op: operation identifier
* @peer_id: peer id
* @mac_addr: mac address of peer, can be NULL
* @peer_obj: peer object address, can be NULL
* @arg1: extra argument #1
* @arg2: extra argument #2
*
* Return: none
*/
void wma_peer_debug_log(uint8_t vdev_id, uint8_t op,
uint16_t peer_id, void *mac_addr,
void *peer_obj, uint32_t arg1, uint32_t arg2)
{
tp_wma_handle wma = cds_get_context(QDF_MODULE_ID_WMA);
uint32_t i;
struct peer_debug_rec *rec;
if (!wma) {
WMA_LOGD("%s: WMA handle NULL. Exiting", __func__);
return;
}
i = wma_next_peer_log_index(&wma->peer_dbg->index,
WMA_PEER_DEBUG_MAX_REC);
rec = &wma->peer_dbg->rec[i];
rec->time = qdf_get_log_timestamp();
rec->operation = op;
rec->vdev_id = vdev_id;
rec->peer_id = peer_id;
if (mac_addr)
qdf_mem_copy(rec->mac_addr.bytes, mac_addr,
IEEE80211_ADDR_LEN);
else
qdf_mem_zero(rec->mac_addr.bytes,
IEEE80211_ADDR_LEN);
rec->peer_obj = peer_obj;
rec->arg1 = arg1;
rec->arg2 = arg2;
}
/**
* wma_peer_debug_string() - convert operation value to printable string
* @op: operation identifier
*
* Return: printable string for the operation
*/
static char *wma_peer_debug_string(uint32_t op)
{
switch (op) {
case DEBUG_PEER_CREATE_SEND:
return "peer create send";
case DEBUG_PEER_CREATE_RESP:
return "peer create resp_event";
case DEBUG_PEER_DELETE_SEND:
return "peer delete send";
case DEBUG_PEER_DELETE_RESP:
return "peer delete resp_event";
case DEBUG_PEER_MAP_EVENT:
return "peer map event";
case DEBUG_PEER_UNMAP_EVENT:
return "peer unmap event";
case DEBUG_PEER_UNREF_DELETE:
return "peer unref delete";
case DEBUG_DELETING_PEER_OBJ:
return "peer obj deleted";
case DEBUG_ROAM_SYNCH_IND:
return "roam synch ind event";
case DEBUG_ROAM_SYNCH_CNF:
return "roam sync conf sent";
case DEBUG_ROAM_SYNCH_FAIL:
return "roam sync fail event";
case DEBUG_ROAM_EVENT:
return "roam event";
case DEBUG_WOW_ROAM_EVENT:
return "wow wakeup roam event";
case DEBUG_BUS_SUSPEND:
return "host suspend";
case DEBUG_BUS_RESUME:
return "host wakeup";
case DEBUG_WOW_REASON:
return "wow wakeup reason";
default:
return "unknown";
}
}
/**
* wma_peer_debug_dump() - Print the peer debug log records
* print all the valid debug records in the order of timestamp
*
* Return: none
*/
void wma_peer_debug_dump(void)
{
tp_wma_handle wma = cds_get_context(QDF_MODULE_ID_WMA);
uint32_t i;
int32_t current_index;
struct peer_debug_rec *dbg_rec;
uint64_t startt = 0;
uint32_t delta;
if (!wma) {
WMA_LOGD("%s: WMA handle NULL. Exiting", __func__);
return;
}
#define DEBUG_CLOCK_TICKS_PER_MSEC 19200
current_index = qdf_atomic_read(&wma->peer_dbg->index);
if (current_index < 0) {
WMA_LOGE("%s: No records to dump", __func__);
return;
}
WMA_LOGD("%s: Dumping all records. current index %d",
__func__, current_index);
i = current_index;
do {
/* wrap around */
i = (i + 1) % WMA_PEER_DEBUG_MAX_REC;
dbg_rec = &wma->peer_dbg->rec[i];
/* skip unused entry */
if (dbg_rec->time == 0)
continue;
if (startt == 0)
startt = dbg_rec->time;
/*
* Divide by 19200 == right shift 8 bits, then divide by 75
* 32 bit computation keeps both 32 and 64 bit compilers happy.
* The value will roll over after approx. 33554 seconds.
*/
delta = (uint32_t) (((dbg_rec->time - startt) >> 8) &
0xffffffff);
delta = delta / (DEBUG_CLOCK_TICKS_PER_MSEC >> 8);
WMA_LOGD("index = %5d timestamp = 0x%016llx delta ms = %-12u",
i, dbg_rec->time, delta);
WMA_LOGD("info = %-24s vdev_id = %-3d mac addr = %pM",
wma_peer_debug_string(dbg_rec->operation),
(int8_t) dbg_rec->vdev_id, dbg_rec->mac_addr.bytes);
WMA_LOGD("peer obj = 0x%pK peer_id = %-4d",
dbg_rec->peer_obj, (int8_t) dbg_rec->peer_id);
WMA_LOGD("arg1 = 0x%-8x arg2 = 0x%-8x",
dbg_rec->arg1, dbg_rec->arg2);
} while (i != current_index);
}
void wma_acquire_wakelock(qdf_wake_lock_t *wl, uint32_t msec)
{
t_wma_handle *wma = cds_get_context(QDF_MODULE_ID_WMA);
cds_host_diag_log_work(wl, msec, WIFI_POWER_EVENT_WAKELOCK_WMI_CMD_RSP);
qdf_wake_lock_timeout_acquire(wl, msec);
qdf_runtime_pm_prevent_suspend(&wma->wmi_cmd_rsp_runtime_lock);
}
void wma_release_wakelock(qdf_wake_lock_t *wl)
{
t_wma_handle *wma = cds_get_context(QDF_MODULE_ID_WMA);
qdf_wake_lock_release(wl, WIFI_POWER_EVENT_WAKELOCK_WMI_CMD_RSP);
qdf_runtime_pm_allow_suspend(&wma->wmi_cmd_rsp_runtime_lock);
}
QDF_STATUS
wma_send_vdev_start_to_fw(t_wma_handle *wma, struct vdev_start_params *params)
{
QDF_STATUS status;
struct wma_txrx_node *vdev = &wma->interfaces[params->vdev_id];
wma_acquire_wakelock(&vdev->vdev_start_wakelock,
WMA_VDEV_START_REQUEST_TIMEOUT);
status = wmi_unified_vdev_start_send(wma->wmi_handle, params);
if (QDF_IS_STATUS_ERROR(status))
wma_release_wakelock(&vdev->vdev_start_wakelock);
return status;
}
QDF_STATUS wma_send_vdev_stop_to_fw(t_wma_handle *wma, uint8_t vdev_id)
{
QDF_STATUS status;
struct wma_txrx_node *vdev = &wma->interfaces[vdev_id];
wma_acquire_wakelock(&vdev->vdev_stop_wakelock,
WMA_VDEV_STOP_REQUEST_TIMEOUT);
status = wmi_unified_vdev_stop_send(wma->wmi_handle, vdev_id);
if (QDF_IS_STATUS_ERROR(status))
wma_release_wakelock(&vdev->vdev_stop_wakelock);
return status;
}
QDF_STATUS wma_send_vdev_up_to_fw(t_wma_handle *wma,
struct vdev_up_params *params,
uint8_t bssid[IEEE80211_ADDR_LEN])
{
QDF_STATUS status;
struct wma_txrx_node *vdev = &wma->interfaces[params->vdev_id];
status = wmi_unified_vdev_up_send(wma->wmi_handle, bssid, params);
wma_release_wakelock(&vdev->vdev_start_wakelock);
return status;
}
QDF_STATUS wma_send_vdev_down_to_fw(t_wma_handle *wma, uint8_t vdev_id)
{
QDF_STATUS status;
struct wma_txrx_node *vdev = &wma->interfaces[vdev_id];
status = wmi_unified_vdev_down_send(wma->wmi_handle, vdev_id);
wma_release_wakelock(&vdev->vdev_start_wakelock);
return status;
}
tSirWifiPeerType wmi_to_sir_peer_type(enum wmi_peer_type type)
{
switch (type) {
case WMI_PEER_TYPE_DEFAULT:
return WIFI_PEER_STA;
case WMI_PEER_TYPE_BSS:
return WIFI_PEER_AP;
case WMI_PEER_TYPE_TDLS:
return WIFI_PEER_TDLS;
case WMI_PEER_TYPE_NAN_DATA:
return WIFI_PEER_NAN;
default:
hdd_err("Cannot map wmi_peer_type %d to HAL peer type", type);
return WIFI_PEER_INVALID;
}
}
int wma_chip_power_save_failure_detected_handler(void *handle,
uint8_t *cmd_param_info,
uint32_t len)
{
tp_wma_handle wma = (tp_wma_handle)handle;
WMI_PDEV_CHIP_POWER_SAVE_FAILURE_DETECTED_EVENTID_param_tlvs *param_buf;
wmi_chip_power_save_failure_detected_fixed_param *event;
struct chip_pwr_save_fail_detected_params pwr_save_fail_params;
tpAniSirGlobal mac = (tpAniSirGlobal)cds_get_context(
QDF_MODULE_ID_PE);
if (NULL == wma) {
WMA_LOGE("%s: wma_handle is NULL", __func__);
return -EINVAL;
}
if (!mac) {
WMA_LOGE("%s: Invalid mac context", __func__);
return -EINVAL;
}
if (!mac->sme.chip_power_save_fail_cb) {
WMA_LOGE("%s: Callback not registered", __func__);
return -EINVAL;
}
param_buf =
(WMI_PDEV_CHIP_POWER_SAVE_FAILURE_DETECTED_EVENTID_param_tlvs *)
cmd_param_info;
if (!param_buf) {
WMA_LOGE("%s: Invalid pwr_save_fail_params breached event",
__func__);
return -EINVAL;
}
event = param_buf->fixed_param;
pwr_save_fail_params.failure_reason_code =
event->power_save_failure_reason_code;
pwr_save_fail_params.wake_lock_bitmap[0] =
event->protocol_wake_lock_bitmap[0];
pwr_save_fail_params.wake_lock_bitmap[1] =
event->protocol_wake_lock_bitmap[1];
pwr_save_fail_params.wake_lock_bitmap[2] =
event->protocol_wake_lock_bitmap[2];
pwr_save_fail_params.wake_lock_bitmap[3] =
event->protocol_wake_lock_bitmap[3];
mac->sme.chip_power_save_fail_cb(mac->hHdd,
&pwr_save_fail_params);
WMA_LOGD("%s: Invoke HDD pwr_save_fail callback", __func__);
return 0;
}
/**
* wma_get_event_bitmap_idx() - get indices for extended wow bitmaps
* @event: wow event
* @wow_bitmap_size: WOW bitmap size
* @bit_idx: bit index
* @idx: byte index
*
* Return: none
*/
static inline void wma_get_event_bitmap_idx(WOW_WAKE_EVENT_TYPE event,
uint32_t wow_bitmap_size,
uint32_t *bit_idx,
uint32_t *idx)
{
if (!bit_idx || !idx || wow_bitmap_size == 0)
return;
if (event == 0)
*idx = *bit_idx = 0;
else {
*idx = event / (wow_bitmap_size * 8);
*bit_idx = event % (wow_bitmap_size * 8);
}
}
/**
* wma_set_vc_mode_config() - set voltage corner mode config to FW.
* @wma_handle: pointer to wma handle.
* @vc_bitmap: value needs to set to firmware.
*
* At the time of driver startup, set operating voltage corner mode
* for differenet phymode and bw configurations.
*
* Return: QDF_STATUS.
*/
QDF_STATUS wma_set_vc_mode_config(void *wma_handle,
uint32_t vc_bitmap)
{
int32_t ret;
tp_wma_handle wma = (tp_wma_handle)wma_handle;
struct pdev_params pdevparam;
pdevparam.param_id = WMI_PDEV_UPDATE_WDCVS_ALGO;
pdevparam.param_value = vc_bitmap;
ret = wmi_unified_pdev_param_send(wma->wmi_handle,
&pdevparam,
WMA_WILDCARD_PDEV_ID);
if (ret) {
WMA_LOGE("Fail to Set Voltage Corner config (0x%x)",
vc_bitmap);
return QDF_STATUS_E_FAILURE;
}
WMA_LOGD("Successfully Set Voltage Corner config (0x%x)",
vc_bitmap);
return QDF_STATUS_SUCCESS;
}
void wma_set_wow_event_bitmap(WOW_WAKE_EVENT_TYPE event,
uint32_t wow_bitmap_size,
uint32_t *bitmask)
{
uint32_t bit_idx = 0, idx = 0;
if (!bitmask || wow_bitmap_size < WMI_WOW_MAX_EVENT_BM_LEN) {
WMA_LOGE("%s: wow bitmask length shorter than %d",
__func__, WMI_WOW_MAX_EVENT_BM_LEN);
return;
}
wma_get_event_bitmap_idx(event, wow_bitmap_size, &bit_idx, &idx);
bitmask[idx] |= 1 << bit_idx;
WMA_LOGD("%s: bitmask updated %x%x%x%x",
__func__, bitmask[0], bitmask[1], bitmask[2], bitmask[3]);
}
inline bool wma_is_wow_bitmask_zero(uint32_t *bitmask,
uint32_t wow_bitmap_size)
{
int i = 0;
if (!bitmask || wow_bitmap_size < WMI_WOW_MAX_EVENT_BM_LEN)
WMA_LOGE("%s: wow bitmask length shorter than %d",
__func__, WMI_WOW_MAX_EVENT_BM_LEN);
else {
for (; i < WMI_WOW_MAX_EVENT_BM_LEN; i++) {
if (bitmask[i] != 0)
return false;
}
}
return true;
}
void wma_set_sta_wow_bitmask(uint32_t *bitmask, uint32_t wow_bitmap_size)
{
if (!bitmask || wow_bitmap_size < WMI_WOW_MAX_EVENT_BM_LEN) {
WMA_LOGE("%s: wow bitmask length shorter than %d",
__func__, WMI_WOW_MAX_EVENT_BM_LEN);
return;
}
wma_set_wow_event_bitmap(WOW_CSA_IE_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_CLIENT_KICKOUT_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_PATTERN_MATCH_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_MAGIC_PKT_RECVD_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_DEAUTH_RECVD_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_DISASSOC_RECVD_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_BMISS_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_GTK_ERR_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_BETTER_AP_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_HTT_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_RA_MATCH_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_NLO_DETECTED_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_EXTSCAN_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_OEM_RESPONSE_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_TDLS_CONN_TRACKER_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
/* Add further STA wakeup events above this line. */
}
void wma_set_sap_wow_bitmask(uint32_t *bitmask, uint32_t wow_bitmap_size)
{
if (!bitmask || wow_bitmap_size < WMI_WOW_MAX_EVENT_BM_LEN) {
WMA_LOGE("%s: wow bitmask length shorter than %d",
__func__, WMI_WOW_MAX_EVENT_BM_LEN);
return;
}
wma_set_wow_event_bitmap(WOW_PROBE_REQ_WPS_IE_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_PATTERN_MATCH_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_AUTH_REQ_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_ASSOC_REQ_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_DEAUTH_RECVD_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_DISASSOC_RECVD_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_HTT_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
wma_set_wow_event_bitmap(WOW_CLIENT_KICKOUT_EVENT,
WMI_WOW_MAX_EVENT_BM_LEN,
bitmask);
/* Add further SAP wakeup events above this line. */
}