blob: 35c0d0d9d948df68761d7196f522a6edd8e15936 [file] [log] [blame]
/*
* drivers/cpufreq/cpufreq_stats.c
*
* Copyright (C) 2003-2004 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* (C) 2004 Zou Nan hai <nanhai.zou@intel.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/atomic.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cputime.h>
#include <linux/hashtable.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/proc_fs.h>
#include <linux/profile.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/sort.h>
#define UID_HASH_BITS 10
DECLARE_HASHTABLE(uid_hash_table, UID_HASH_BITS);
static spinlock_t cpufreq_stats_lock;
static DEFINE_SPINLOCK(task_time_in_state_lock); /* task->time_in_state */
static DEFINE_RT_MUTEX(uid_lock); /* uid_hash_table */
struct uid_entry {
uid_t uid;
unsigned int dead_max_states;
unsigned int alive_max_states;
u64 *dead_time_in_state;
u64 *alive_time_in_state;
struct hlist_node hash;
};
struct cpufreq_stats {
unsigned int cpu;
unsigned int total_trans;
unsigned long long last_time;
unsigned int max_state;
unsigned int state_num;
atomic_t cpu_freq_i;
atomic_t all_freq_i;
u64 *time_in_state;
unsigned int *freq_table;
#ifdef CONFIG_CPU_FREQ_STAT_DETAILS
unsigned int *trans_table;
#endif
};
struct all_cpufreq_stats {
unsigned int state_num;
cputime64_t *time_in_state;
unsigned int *freq_table;
};
struct cpufreq_power_stats {
unsigned int state_num;
unsigned int *curr;
unsigned int *freq_table;
};
struct all_freq_table {
unsigned int *freq_table;
unsigned int table_size;
};
static struct all_freq_table *all_freq_table;
static bool cpufreq_all_freq_init;
static DEFINE_PER_CPU(struct all_cpufreq_stats *, all_cpufreq_stats);
static DEFINE_PER_CPU(struct cpufreq_stats *, cpufreq_stats_table);
static DEFINE_PER_CPU(struct cpufreq_power_stats *, cpufreq_power_stats);
struct cpufreq_stats_attribute {
struct attribute attr;
ssize_t(*show) (struct cpufreq_stats *, char *);
};
/* Caller must hold uid lock */
static struct uid_entry *find_uid_entry(uid_t uid)
{
struct uid_entry *uid_entry;
hash_for_each_possible(uid_hash_table, uid_entry, hash, uid) {
if (uid_entry->uid == uid)
return uid_entry;
}
return NULL;
}
/* Caller must hold uid lock */
static struct uid_entry *find_or_register_uid(uid_t uid)
{
struct uid_entry *uid_entry;
uid_entry = find_uid_entry(uid);
if (uid_entry)
return uid_entry;
uid_entry = kzalloc(sizeof(struct uid_entry), GFP_ATOMIC);
if (!uid_entry)
return NULL;
uid_entry->uid = uid;
hash_add(uid_hash_table, &uid_entry->hash, uid);
return uid_entry;
}
static int uid_time_in_state_show(struct seq_file *m, void *v)
{
struct uid_entry *uid_entry;
struct task_struct *task, *temp;
unsigned long bkt, flags;
int i;
if (!all_freq_table || !cpufreq_all_freq_init)
return 0;
seq_puts(m, "uid:");
for (i = 0; i < all_freq_table->table_size; ++i)
seq_printf(m, " %d", all_freq_table->freq_table[i]);
seq_putc(m, '\n');
rt_mutex_lock(&uid_lock);
rcu_read_lock();
do_each_thread(temp, task) {
uid_entry = find_or_register_uid(from_kuid_munged(
current_user_ns(), task_uid(task)));
if (!uid_entry)
continue;
if (uid_entry->alive_max_states < task->max_states) {
uid_entry->alive_time_in_state = krealloc(
uid_entry->alive_time_in_state,
task->max_states *
sizeof(uid_entry->alive_time_in_state[0]),
GFP_ATOMIC);
memset(uid_entry->alive_time_in_state +
uid_entry->alive_max_states,
0, (task->max_states -
uid_entry->alive_max_states) *
sizeof(uid_entry->alive_time_in_state[0]));
uid_entry->alive_max_states = task->max_states;
}
spin_lock_irqsave(&task_time_in_state_lock, flags);
if (task->time_in_state) {
for (i = 0; i < task->max_states; ++i) {
uid_entry->alive_time_in_state[i] +=
atomic_read(&task->time_in_state[i]);
}
}
spin_unlock_irqrestore(&task_time_in_state_lock, flags);
} while_each_thread(temp, task);
rcu_read_unlock();
hash_for_each(uid_hash_table, bkt, uid_entry, hash) {
int max_states = uid_entry->dead_max_states;
if (uid_entry->alive_max_states > max_states)
max_states = uid_entry->alive_max_states;
if (max_states)
seq_printf(m, "%d:", uid_entry->uid);
for (i = 0; i < max_states; ++i) {
u64 total_time_in_state = 0;
if (uid_entry->dead_time_in_state &&
i < uid_entry->dead_max_states) {
total_time_in_state =
uid_entry->dead_time_in_state[i];
}
if (uid_entry->alive_time_in_state &&
i < uid_entry->alive_max_states) {
total_time_in_state +=
uid_entry->alive_time_in_state[i];
}
seq_printf(m, " %lu", (unsigned long)
cputime_to_clock_t(total_time_in_state));
}
if (max_states)
seq_putc(m, '\n');
kfree(uid_entry->alive_time_in_state);
uid_entry->alive_time_in_state = NULL;
uid_entry->alive_max_states = 0;
}
rt_mutex_unlock(&uid_lock);
return 0;
}
static int cpufreq_stats_update(unsigned int cpu)
{
struct cpufreq_stats *stat;
struct all_cpufreq_stats *all_stat;
unsigned long long cur_time;
cur_time = get_jiffies_64();
spin_lock(&cpufreq_stats_lock);
stat = per_cpu(cpufreq_stats_table, cpu);
all_stat = per_cpu(all_cpufreq_stats, cpu);
if (!stat) {
spin_unlock(&cpufreq_stats_lock);
return 0;
}
if (stat->time_in_state) {
int cpu_freq_i = atomic_read(&stat->cpu_freq_i);
stat->time_in_state[cpu_freq_i] += cur_time - stat->last_time;
if (all_stat)
all_stat->time_in_state[cpu_freq_i] +=
cur_time - stat->last_time;
}
stat->last_time = cur_time;
spin_unlock(&cpufreq_stats_lock);
return 0;
}
void cpufreq_task_stats_init(struct task_struct *p)
{
size_t alloc_size;
void *temp;
unsigned long flags;
spin_lock_irqsave(&task_time_in_state_lock, flags);
p->time_in_state = NULL;
spin_unlock_irqrestore(&task_time_in_state_lock, flags);
WRITE_ONCE(p->max_states, 0);
if (!all_freq_table || !cpufreq_all_freq_init)
return;
WRITE_ONCE(p->max_states, all_freq_table->table_size);
/* Create all_freq_table for clockticks in all possible freqs in all
* cpus
*/
alloc_size = p->max_states * sizeof(p->time_in_state[0]);
temp = kzalloc(alloc_size, GFP_KERNEL);
spin_lock_irqsave(&task_time_in_state_lock, flags);
p->time_in_state = temp;
spin_unlock_irqrestore(&task_time_in_state_lock, flags);
}
void cpufreq_task_stats_exit(struct task_struct *p)
{
unsigned long flags;
void *temp;
spin_lock_irqsave(&task_time_in_state_lock, flags);
temp = p->time_in_state;
p->time_in_state = NULL;
spin_unlock_irqrestore(&task_time_in_state_lock, flags);
kfree(temp);
}
int proc_time_in_state_show(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *p)
{
int i;
cputime_t cputime;
unsigned long flags;
if (!all_freq_table || !cpufreq_all_freq_init || !p->time_in_state)
return 0;
spin_lock(&cpufreq_stats_lock);
for (i = 0; i < p->max_states; ++i) {
cputime = 0;
spin_lock_irqsave(&task_time_in_state_lock, flags);
if (p->time_in_state)
cputime = atomic_read(&p->time_in_state[i]);
spin_unlock_irqrestore(&task_time_in_state_lock, flags);
seq_printf(m, "%d %lu\n", all_freq_table->freq_table[i],
(unsigned long)cputime_to_clock_t(cputime));
}
spin_unlock(&cpufreq_stats_lock);
return 0;
}
static ssize_t show_total_trans(struct cpufreq_policy *policy, char *buf)
{
struct cpufreq_stats *stat = per_cpu(cpufreq_stats_table, policy->cpu);
if (!stat)
return 0;
return sprintf(buf, "%d\n",
per_cpu(cpufreq_stats_table, stat->cpu)->total_trans);
}
static ssize_t show_time_in_state(struct cpufreq_policy *policy, char *buf)
{
ssize_t len = 0;
int i;
struct cpufreq_stats *stat = per_cpu(cpufreq_stats_table, policy->cpu);
if (!stat)
return 0;
cpufreq_stats_update(stat->cpu);
for (i = 0; i < stat->state_num; i++) {
len += sprintf(buf + len, "%u %llu\n", stat->freq_table[i],
(unsigned long long)
jiffies_64_to_clock_t(stat->time_in_state[i]));
}
return len;
}
static int get_index_all_cpufreq_stat(struct all_cpufreq_stats *all_stat,
unsigned int freq)
{
int i;
if (!all_stat)
return -1;
for (i = 0; i < all_stat->state_num; i++) {
if (all_stat->freq_table[i] == freq)
return i;
}
return -1;
}
/* Called without cpufreq_stats_lock held */
void acct_update_power(struct task_struct *task, cputime_t cputime) {
struct cpufreq_power_stats *powerstats;
struct cpufreq_stats *stats;
unsigned int cpu_num, curr;
int cpu_freq_i;
int all_freq_i;
unsigned long flags;
if (!task)
return;
cpu_num = task_cpu(task);
stats = per_cpu(cpufreq_stats_table, cpu_num);
if (!stats)
return;
all_freq_i = atomic_read(&stats->all_freq_i);
/* This function is called from a different context
* Interruptions in between reads/assignements are ok
*/
if (all_freq_table && cpufreq_all_freq_init &&
!(task->flags & PF_EXITING) &&
all_freq_i != -1 && all_freq_i < READ_ONCE(task->max_states)) {
spin_lock_irqsave(&task_time_in_state_lock, flags);
if (task->time_in_state) {
atomic64_add(cputime,
&task->time_in_state[all_freq_i]);
}
spin_unlock_irqrestore(&task_time_in_state_lock, flags);
}
powerstats = per_cpu(cpufreq_power_stats, cpu_num);
if (!powerstats)
return;
cpu_freq_i = atomic_read(&stats->cpu_freq_i);
if (cpu_freq_i == -1)
return;
curr = powerstats->curr[cpu_freq_i];
if (task->cpu_power != ULLONG_MAX)
task->cpu_power += curr * cputime_to_usecs(cputime);
}
EXPORT_SYMBOL_GPL(acct_update_power);
static ssize_t show_current_in_state(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
ssize_t len = 0;
unsigned int i, cpu;
struct cpufreq_power_stats *powerstats;
spin_lock(&cpufreq_stats_lock);
for_each_possible_cpu(cpu) {
powerstats = per_cpu(cpufreq_power_stats, cpu);
if (!powerstats)
continue;
len += scnprintf(buf + len, PAGE_SIZE - len, "CPU%d:", cpu);
for (i = 0; i < powerstats->state_num; i++)
len += scnprintf(buf + len, PAGE_SIZE - len,
"%d=%d ", powerstats->freq_table[i],
powerstats->curr[i]);
len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
}
spin_unlock(&cpufreq_stats_lock);
return len;
}
static ssize_t show_all_time_in_state(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
ssize_t len = 0;
unsigned int i, cpu, freq, index;
struct all_cpufreq_stats *all_stat;
struct cpufreq_policy *policy;
len += scnprintf(buf + len, PAGE_SIZE - len, "freq\t\t");
for_each_possible_cpu(cpu) {
len += scnprintf(buf + len, PAGE_SIZE - len, "cpu%d\t\t", cpu);
if (cpu_online(cpu))
cpufreq_stats_update(cpu);
}
if (!all_freq_table)
goto out;
for (i = 0; i < all_freq_table->table_size; i++) {
freq = all_freq_table->freq_table[i];
len += scnprintf(buf + len, PAGE_SIZE - len, "\n%u\t\t", freq);
for_each_possible_cpu(cpu) {
policy = cpufreq_cpu_get(cpu);
if (policy == NULL)
continue;
all_stat = per_cpu(all_cpufreq_stats, policy->cpu);
index = get_index_all_cpufreq_stat(all_stat, freq);
if (index != -1) {
len += scnprintf(buf + len, PAGE_SIZE - len,
"%lu\t\t", (unsigned long)
cputime64_to_clock_t(all_stat->time_in_state[index]));
} else {
len += scnprintf(buf + len, PAGE_SIZE - len,
"N/A\t\t");
}
cpufreq_cpu_put(policy);
}
}
out:
len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
return len;
}
#ifdef CONFIG_CPU_FREQ_STAT_DETAILS
static ssize_t show_trans_table(struct cpufreq_policy *policy, char *buf)
{
ssize_t len = 0;
int i, j;
struct cpufreq_stats *stat = per_cpu(cpufreq_stats_table, policy->cpu);
if (!stat)
return 0;
cpufreq_stats_update(stat->cpu);
len += snprintf(buf + len, PAGE_SIZE - len, " From : To\n");
len += snprintf(buf + len, PAGE_SIZE - len, " : ");
for (i = 0; i < stat->state_num; i++) {
if (len >= PAGE_SIZE)
break;
len += snprintf(buf + len, PAGE_SIZE - len, "%9u ",
stat->freq_table[i]);
}
if (len >= PAGE_SIZE)
return PAGE_SIZE;
len += snprintf(buf + len, PAGE_SIZE - len, "\n");
for (i = 0; i < stat->state_num; i++) {
if (len >= PAGE_SIZE)
break;
len += snprintf(buf + len, PAGE_SIZE - len, "%9u: ",
stat->freq_table[i]);
for (j = 0; j < stat->state_num; j++) {
if (len >= PAGE_SIZE)
break;
len += snprintf(buf + len, PAGE_SIZE - len, "%9u ",
stat->trans_table[i*stat->max_state+j]);
}
if (len >= PAGE_SIZE)
break;
len += snprintf(buf + len, PAGE_SIZE - len, "\n");
}
if (len >= PAGE_SIZE)
return PAGE_SIZE;
return len;
}
cpufreq_freq_attr_ro(trans_table);
#endif
cpufreq_freq_attr_ro(total_trans);
cpufreq_freq_attr_ro(time_in_state);
static struct attribute *default_attrs[] = {
&total_trans.attr,
&time_in_state.attr,
#ifdef CONFIG_CPU_FREQ_STAT_DETAILS
&trans_table.attr,
#endif
NULL
};
static struct attribute_group stats_attr_group = {
.attrs = default_attrs,
.name = "stats"
};
static struct kobj_attribute _attr_all_time_in_state = __ATTR(all_time_in_state,
0444, show_all_time_in_state, NULL);
static struct kobj_attribute _attr_current_in_state = __ATTR(current_in_state,
0444, show_current_in_state, NULL);
static int freq_table_get_index(struct cpufreq_stats *stat, unsigned int freq)
{
int index;
for (index = 0; index < stat->max_state; index++)
if (stat->freq_table[index] == freq)
return index;
return -1;
}
static void __cpufreq_stats_free_table(struct cpufreq_policy *policy)
{
struct cpufreq_stats *stat = per_cpu(cpufreq_stats_table, policy->cpu);
if (!stat)
return;
pr_debug("%s: Free stat table\n", __func__);
sysfs_remove_group(&policy->kobj, &stats_attr_group);
kfree(stat->time_in_state);
kfree(stat);
per_cpu(cpufreq_stats_table, policy->cpu) = NULL;
}
static void cpufreq_stats_free_table(unsigned int cpu)
{
struct cpufreq_policy *policy;
policy = cpufreq_cpu_get(cpu);
if (!policy)
return;
if (cpufreq_frequency_get_table(policy->cpu))
__cpufreq_stats_free_table(policy);
cpufreq_cpu_put(policy);
}
static void cpufreq_allstats_free(void)
{
int cpu;
struct all_cpufreq_stats *all_stat;
sysfs_remove_file(cpufreq_global_kobject,
&_attr_all_time_in_state.attr);
for_each_possible_cpu(cpu) {
all_stat = per_cpu(all_cpufreq_stats, cpu);
if (!all_stat)
continue;
kfree(all_stat->time_in_state);
kfree(all_stat);
per_cpu(all_cpufreq_stats, cpu) = NULL;
}
if (all_freq_table) {
kfree(all_freq_table->freq_table);
kfree(all_freq_table);
all_freq_table = NULL;
}
}
static void cpufreq_powerstats_free(void)
{
int cpu;
struct cpufreq_power_stats *powerstats;
sysfs_remove_file(cpufreq_global_kobject, &_attr_current_in_state.attr);
for_each_possible_cpu(cpu) {
powerstats = per_cpu(cpufreq_power_stats, cpu);
if (!powerstats)
continue;
kfree(powerstats->curr);
kfree(powerstats);
per_cpu(cpufreq_power_stats, cpu) = NULL;
}
}
static int __cpufreq_stats_create_table(struct cpufreq_policy *policy,
int cpu, struct cpufreq_frequency_table *table, int count)
{
unsigned int i, ret = 0;
struct cpufreq_stats *stat;
unsigned int alloc_size;
struct cpufreq_frequency_table *pos;
if (per_cpu(cpufreq_stats_table, cpu))
return -EBUSY;
stat = kzalloc(sizeof(*stat), GFP_KERNEL);
if ((stat) == NULL)
return -ENOMEM;
ret = sysfs_create_group(&policy->kobj, &stats_attr_group);
stat->cpu = cpu;
per_cpu(cpufreq_stats_table, cpu) = stat;
alloc_size = count * sizeof(int) + count * sizeof(u64);
#ifdef CONFIG_CPU_FREQ_STAT_DETAILS
alloc_size += count * count * sizeof(int);
#endif
stat->max_state = count;
stat->time_in_state = kzalloc(alloc_size, GFP_KERNEL);
if (!stat->time_in_state) {
ret = -ENOMEM;
goto error_alloc;
}
stat->freq_table = (unsigned int *)(stat->time_in_state + count);
#ifdef CONFIG_CPU_FREQ_STAT_DETAILS
stat->trans_table = stat->freq_table + count;
#endif
i = 0;
cpufreq_for_each_valid_entry(pos, table)
if (freq_table_get_index(stat, pos->frequency) == -1)
stat->freq_table[i++] = pos->frequency;
stat->state_num = i;
spin_lock(&cpufreq_stats_lock);
stat->last_time = get_jiffies_64();
atomic_set(&stat->cpu_freq_i, freq_table_get_index(stat, policy->cur));
spin_unlock(&cpufreq_stats_lock);
return 0;
error_alloc:
sysfs_remove_group(&policy->kobj, &stats_attr_group);
kfree(stat);
per_cpu(cpufreq_stats_table, cpu) = NULL;
return ret;
}
static void cpufreq_stats_update_policy_cpu(struct cpufreq_policy *policy)
{
struct cpufreq_stats *stat = per_cpu(cpufreq_stats_table,
policy->last_cpu);
pr_debug("Updating stats_table for new_cpu %u from last_cpu %u\n",
policy->cpu, policy->last_cpu);
per_cpu(cpufreq_stats_table, policy->cpu) = per_cpu(cpufreq_stats_table,
policy->last_cpu);
per_cpu(cpufreq_stats_table, policy->last_cpu) = NULL;
stat->cpu = policy->cpu;
}
static void cpufreq_powerstats_create(unsigned int cpu,
struct cpufreq_frequency_table *table, int count) {
unsigned int alloc_size, i = 0, ret = 0;
struct cpufreq_power_stats *powerstats;
struct cpufreq_frequency_table *pos;
struct device_node *cpu_node;
char device_path[16];
powerstats = kzalloc(sizeof(struct cpufreq_power_stats),
GFP_KERNEL);
if (!powerstats)
return;
/* Allocate memory for freq table per cpu as well as clockticks per
* freq*/
alloc_size = count * sizeof(unsigned int) +
count * sizeof(unsigned int);
powerstats->curr = kzalloc(alloc_size, GFP_KERNEL);
if (!powerstats->curr) {
kfree(powerstats);
return;
}
powerstats->freq_table = powerstats->curr + count;
spin_lock(&cpufreq_stats_lock);
i = 0;
cpufreq_for_each_valid_entry(pos, table)
powerstats->freq_table[i++] = pos->frequency;
powerstats->state_num = i;
snprintf(device_path, sizeof(device_path), "/cpus/cpu@%d", cpu);
cpu_node = of_find_node_by_path(device_path);
if (cpu_node) {
ret = of_property_read_u32_array(cpu_node, "current",
powerstats->curr, count);
if (ret) {
kfree(powerstats->curr);
kfree(powerstats);
powerstats = NULL;
}
}
per_cpu(cpufreq_power_stats, cpu) = powerstats;
spin_unlock(&cpufreq_stats_lock);
}
static int compare_for_sort(const void *lhs_ptr, const void *rhs_ptr)
{
unsigned int lhs = *(const unsigned int *)(lhs_ptr);
unsigned int rhs = *(const unsigned int *)(rhs_ptr);
if (lhs < rhs)
return -1;
if (lhs > rhs)
return 1;
return 0;
}
static bool check_all_freq_table(unsigned int freq)
{
int i;
for (i = 0; i < all_freq_table->table_size; i++) {
if (freq == all_freq_table->freq_table[i])
return true;
}
return false;
}
static void create_all_freq_table(void)
{
all_freq_table = kzalloc(sizeof(struct all_freq_table),
GFP_KERNEL);
if (!all_freq_table)
pr_warn("could not allocate memory for all_freq_table\n");
return;
}
static void add_all_freq_table(unsigned int freq)
{
unsigned int size;
size = sizeof(all_freq_table->freq_table[0]) *
(all_freq_table->table_size + 1);
all_freq_table->freq_table = krealloc(all_freq_table->freq_table,
size, GFP_ATOMIC);
if (IS_ERR(all_freq_table->freq_table)) {
pr_warn("Could not reallocate memory for freq_table\n");
all_freq_table->freq_table = NULL;
return;
}
all_freq_table->freq_table[all_freq_table->table_size++] = freq;
}
static void cpufreq_allstats_create(unsigned int cpu,
struct cpufreq_frequency_table *table, int count)
{
int i , j = 0;
unsigned int alloc_size;
struct all_cpufreq_stats *all_stat;
bool sort_needed = false;
all_stat = kzalloc(sizeof(struct all_cpufreq_stats),
GFP_KERNEL);
if (!all_stat) {
pr_warn("Cannot allocate memory for cpufreq stats\n");
return;
}
/*Allocate memory for freq table per cpu as well as clockticks per freq*/
alloc_size = count * sizeof(int) + count * sizeof(cputime64_t);
all_stat->time_in_state = kzalloc(alloc_size, GFP_KERNEL);
if (!all_stat->time_in_state) {
pr_warn("Cannot allocate memory for cpufreq time_in_state\n");
kfree(all_stat);
all_stat = NULL;
return;
}
all_stat->freq_table = (unsigned int *)
(all_stat->time_in_state + count);
spin_lock(&cpufreq_stats_lock);
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
unsigned int freq = table[i].frequency;
if (freq == CPUFREQ_ENTRY_INVALID)
continue;
all_stat->freq_table[j++] = freq;
if (all_freq_table && !check_all_freq_table(freq)) {
add_all_freq_table(freq);
sort_needed = true;
}
}
if (sort_needed)
sort(all_freq_table->freq_table, all_freq_table->table_size,
sizeof(unsigned int), &compare_for_sort, NULL);
all_stat->state_num = j;
per_cpu(all_cpufreq_stats, cpu) = all_stat;
spin_unlock(&cpufreq_stats_lock);
}
static void cpufreq_stats_create_table(unsigned int cpu)
{
struct cpufreq_policy *policy;
struct cpufreq_frequency_table *table, *pos;
int count = 0;
/*
* "likely(!policy)" because normally cpufreq_stats will be registered
* before cpufreq driver
*/
policy = cpufreq_cpu_get(cpu);
if (likely(!policy))
return;
table = cpufreq_frequency_get_table(policy->cpu);
if (likely(table)) {
cpufreq_for_each_valid_entry(pos, table)
count++;
if (!per_cpu(all_cpufreq_stats, cpu))
cpufreq_allstats_create(cpu, table, count);
if (!per_cpu(cpufreq_power_stats, cpu))
cpufreq_powerstats_create(cpu, table, count);
__cpufreq_stats_create_table(policy, cpu, table, count);
}
cpufreq_cpu_put(policy);
}
void cpufreq_task_stats_remove_uids(uid_t uid_start, uid_t uid_end)
{
struct uid_entry *uid_entry;
struct hlist_node *tmp;
rt_mutex_lock(&uid_lock);
for (; uid_start <= uid_end; uid_start++) {
hash_for_each_possible_safe(uid_hash_table, uid_entry, tmp,
hash, uid_start) {
if (uid_start == uid_entry->uid) {
hash_del(&uid_entry->hash);
kfree(uid_entry->dead_time_in_state);
kfree(uid_entry);
}
}
}
rt_mutex_unlock(&uid_lock);
}
static int cpufreq_stat_notifier_policy(struct notifier_block *nb,
unsigned long val, void *data)
{
int ret = 0, count = 0;
struct cpufreq_policy *policy = data;
struct cpufreq_frequency_table *table, *pos;
unsigned int cpu_num, cpu = policy->cpu;
if (val == CPUFREQ_UPDATE_POLICY_CPU) {
cpufreq_stats_update_policy_cpu(policy);
return 0;
}
table = cpufreq_frequency_get_table(cpu);
if (!table)
return 0;
cpufreq_for_each_valid_entry(pos, table)
count++;
if (!per_cpu(all_cpufreq_stats, cpu))
cpufreq_allstats_create(cpu, table, count);
for_each_possible_cpu(cpu_num) {
if (!per_cpu(cpufreq_power_stats, cpu_num))
cpufreq_powerstats_create(cpu_num, table, count);
}
if (val == CPUFREQ_CREATE_POLICY)
ret = __cpufreq_stats_create_table(policy, cpu, table, count);
else if (val == CPUFREQ_REMOVE_POLICY)
__cpufreq_stats_free_table(policy);
return ret;
}
static int cpufreq_stat_notifier_trans(struct notifier_block *nb,
unsigned long val, void *data)
{
int i;
struct cpufreq_freqs *freq = data;
struct cpufreq_stats *stat;
int cpu_freq_old_i, cpu_freq_new_i;
int all_freq_old_i, all_freq_new_i;
if (val != CPUFREQ_POSTCHANGE)
return 0;
stat = per_cpu(cpufreq_stats_table, freq->cpu);
if (!stat)
return 0;
cpu_freq_old_i = atomic_read(&stat->cpu_freq_i);
cpu_freq_new_i = freq_table_get_index(stat, freq->new);
all_freq_old_i = atomic_read(&stat->all_freq_i);
for (i = 0; i < all_freq_table->table_size; ++i) {
if (all_freq_table->freq_table[i] == freq->new)
break;
}
if (i != all_freq_table->table_size)
all_freq_new_i = i;
else
all_freq_new_i = -1;
/* We can't do stat->time_in_state[-1]= .. */
if (cpu_freq_old_i == -1 || cpu_freq_new_i == -1)
return 0;
if (all_freq_old_i == -1 || all_freq_new_i == -1)
return 0;
cpufreq_stats_update(freq->cpu);
if (cpu_freq_old_i == cpu_freq_new_i)
return 0;
if (all_freq_old_i == all_freq_new_i)
return 0;
spin_lock(&cpufreq_stats_lock);
atomic_set(&stat->cpu_freq_i, cpu_freq_new_i);
atomic_set(&stat->all_freq_i, all_freq_new_i);
#ifdef CONFIG_CPU_FREQ_STAT_DETAILS
stat->trans_table[cpu_freq_old_i * stat->max_state + cpu_freq_new_i]++;
#endif
stat->total_trans++;
spin_unlock(&cpufreq_stats_lock);
return 0;
}
static int process_notifier(struct notifier_block *self,
unsigned long cmd, void *v)
{
struct task_struct *task = v;
struct uid_entry *uid_entry;
unsigned long flags;
uid_t uid;
int i;
if (!task)
return NOTIFY_OK;
rt_mutex_lock(&uid_lock);
uid = from_kuid_munged(current_user_ns(), task_uid(task));
uid_entry = find_or_register_uid(uid);
if (!uid_entry) {
rt_mutex_unlock(&uid_lock);
pr_err("%s: failed to find uid %d\n", __func__, uid);
return NOTIFY_OK;
}
if (uid_entry->dead_max_states < task->max_states) {
uid_entry->dead_time_in_state = krealloc(
uid_entry->dead_time_in_state,
task->max_states *
sizeof(uid_entry->dead_time_in_state[0]),
GFP_ATOMIC);
memset(uid_entry->dead_time_in_state +
uid_entry->dead_max_states,
0, (task->max_states - uid_entry->dead_max_states) *
sizeof(uid_entry->dead_time_in_state[0]));
uid_entry->dead_max_states = task->max_states;
}
spin_lock_irqsave(&task_time_in_state_lock, flags);
if (task->time_in_state) {
for (i = 0; i < task->max_states; ++i) {
uid_entry->dead_time_in_state[i] +=
atomic_read(&task->time_in_state[i]);
}
}
spin_unlock_irqrestore(&task_time_in_state_lock, flags);
rt_mutex_unlock(&uid_lock);
return NOTIFY_OK;
}
static int uid_time_in_state_open(struct inode *inode, struct file *file)
{
return single_open(file, uid_time_in_state_show, PDE_DATA(inode));
}
static const struct file_operations uid_time_in_state_fops = {
.open = uid_time_in_state_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static struct notifier_block notifier_policy_block = {
.notifier_call = cpufreq_stat_notifier_policy
};
static struct notifier_block notifier_trans_block = {
.notifier_call = cpufreq_stat_notifier_trans
};
static struct notifier_block process_notifier_block = {
.notifier_call = process_notifier,
};
static int __init cpufreq_stats_init(void)
{
int ret;
unsigned int cpu;
spin_lock_init(&cpufreq_stats_lock);
ret = cpufreq_register_notifier(&notifier_policy_block,
CPUFREQ_POLICY_NOTIFIER);
if (ret)
return ret;
create_all_freq_table();
get_online_cpus();
for_each_online_cpu(cpu)
cpufreq_stats_create_table(cpu);
put_online_cpus();
/* XXX TODO task support for time_in_state doesn't update freq
* info for tasks already initialized, so tasks initialized early
* (before cpufreq_stat_init is done) do not get time_in_state data
* and CPUFREQ_TRANSITION_NOTIFIER does not update freq info for
* tasks already created
*/
ret = cpufreq_register_notifier(&notifier_trans_block,
CPUFREQ_TRANSITION_NOTIFIER);
if (ret) {
cpufreq_unregister_notifier(&notifier_policy_block,
CPUFREQ_POLICY_NOTIFIER);
get_online_cpus();
for_each_online_cpu(cpu)
cpufreq_stats_free_table(cpu);
put_online_cpus();
return ret;
}
WARN_ON(cpufreq_get_global_kobject());
ret = sysfs_create_file(cpufreq_global_kobject,
&_attr_all_time_in_state.attr);
if (ret)
pr_warn("Cannot create sysfs file for cpufreq stats\n");
ret = sysfs_create_file(cpufreq_global_kobject,
&_attr_current_in_state.attr);
if (ret)
pr_warn("Cannot create sysfs file for cpufreq current stats\n");
proc_create_data("uid_time_in_state", 0444, NULL,
&uid_time_in_state_fops, NULL);
profile_event_register(PROFILE_TASK_EXIT, &process_notifier_block);
cpufreq_all_freq_init = true;
return 0;
}
static void __exit cpufreq_stats_exit(void)
{
unsigned int cpu;
cpufreq_unregister_notifier(&notifier_policy_block,
CPUFREQ_POLICY_NOTIFIER);
cpufreq_unregister_notifier(&notifier_trans_block,
CPUFREQ_TRANSITION_NOTIFIER);
for_each_online_cpu(cpu)
cpufreq_stats_free_table(cpu);
cpufreq_allstats_free();
cpufreq_powerstats_free();
cpufreq_put_global_kobject();
}
MODULE_AUTHOR("Zou Nan hai <nanhai.zou@intel.com>");
MODULE_DESCRIPTION("'cpufreq_stats' - A driver to export cpufreq stats "
"through sysfs filesystem");
MODULE_LICENSE("GPL");
module_init(cpufreq_stats_init);
module_exit(cpufreq_stats_exit);