blob: d8ae29eefa7a490be10d43a932434225aeddd3ba [file] [log] [blame]
/*
* Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "hal_hw_headers.h"
#include "hal_api.h"
#include "target_type.h"
#include "wcss_version.h"
#include "qdf_module.h"
#ifdef QCA_WIFI_QCA8074
void hal_qca6290_attach(struct hal_soc *hal);
#endif
#ifdef QCA_WIFI_QCA8074
void hal_qca8074_attach(struct hal_soc *hal);
#endif
#ifdef QCA_WIFI_QCA8074V2
void hal_qca8074v2_attach(struct hal_soc *hal);
#endif
#ifdef QCA_WIFI_QCA6390
void hal_qca6390_attach(struct hal_soc *hal);
#endif
#ifdef QCA_WIFI_QCA6018
void hal_qca6018_attach(struct hal_soc *hal);
#endif
#ifdef ENABLE_VERBOSE_DEBUG
bool is_hal_verbose_debug_enabled;
#endif
#ifdef ENABLE_HAL_REG_WR_HISTORY
struct hal_reg_write_fail_history hal_reg_wr_hist;
void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
uint32_t offset,
uint32_t wr_val, uint32_t rd_val)
{
struct hal_reg_write_fail_entry *record;
int idx;
idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
HAL_REG_WRITE_HIST_SIZE);
record = &hal_soc->reg_wr_fail_hist->record[idx];
record->timestamp = qdf_get_log_timestamp();
record->reg_offset = offset;
record->write_val = wr_val;
record->read_val = rd_val;
}
static void hal_reg_write_fail_history_init(struct hal_soc *hal)
{
hal->reg_wr_fail_hist = &hal_reg_wr_hist;
qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
}
#else
static void hal_reg_write_fail_history_init(struct hal_soc *hal)
{
}
#endif
/**
* hal_get_srng_ring_id() - get the ring id of a descriped ring
* @hal: hal_soc data structure
* @ring_type: type enum describing the ring
* @ring_num: which ring of the ring type
* @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
*
* Return: the ring id or -EINVAL if the ring does not exist.
*/
static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
int ring_num, int mac_id)
{
struct hal_hw_srng_config *ring_config =
HAL_SRNG_CONFIG(hal, ring_type);
int ring_id;
if (ring_num >= ring_config->max_rings) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
"%s: ring_num exceeded maximum no. of supported rings",
__func__);
/* TODO: This is a programming error. Assert if this happens */
return -EINVAL;
}
if (ring_config->lmac_ring) {
ring_id = ring_config->start_ring_id + ring_num +
(mac_id * HAL_MAX_RINGS_PER_LMAC);
} else {
ring_id = ring_config->start_ring_id + ring_num;
}
return ring_id;
}
static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
{
/* TODO: Should we allocate srng structures dynamically? */
return &(hal->srng_list[ring_id]);
}
#define HP_OFFSET_IN_REG_START 1
#define OFFSET_FROM_HP_TO_TP 4
static void hal_update_srng_hp_tp_address(void *hal_soc,
int shadow_config_index,
int ring_type,
int ring_num)
{
struct hal_srng *srng;
struct hal_soc *hal = (struct hal_soc *)hal_soc;
int ring_id;
struct hal_hw_srng_config *ring_config =
HAL_SRNG_CONFIG(hal, ring_type);
ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
if (ring_id < 0)
return;
srng = hal_get_srng(hal_soc, ring_id);
if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
+ hal->dev_base_addr;
hal_debug("tp_addr=%pK dev base addr %pK index %u",
srng->u.dst_ring.tp_addr, hal->dev_base_addr,
shadow_config_index);
} else {
srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
+ hal->dev_base_addr;
hal_debug("hp_addr=%pK dev base addr %pK index %u",
srng->u.src_ring.hp_addr,
hal->dev_base_addr, shadow_config_index);
}
}
QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
int ring_type,
int ring_num)
{
uint32_t target_register;
struct hal_soc *hal = (struct hal_soc *)hal_soc;
struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
int shadow_config_index = hal->num_shadow_registers_configured;
if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
QDF_ASSERT(0);
return QDF_STATUS_E_RESOURCES;
}
hal->num_shadow_registers_configured++;
target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
*ring_num);
/* if the ring is a dst ring, we need to shadow the tail pointer */
if (srng_config->ring_dir == HAL_SRNG_DST_RING)
target_register += OFFSET_FROM_HP_TO_TP;
hal->shadow_config[shadow_config_index].addr = target_register;
/* update hp/tp addr in the hal_soc structure*/
hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
ring_num);
hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
target_register,
SHADOW_REGISTER(shadow_config_index),
shadow_config_index,
ring_type, ring_num);
return QDF_STATUS_SUCCESS;
}
qdf_export_symbol(hal_set_one_shadow_config);
QDF_STATUS hal_construct_shadow_config(void *hal_soc)
{
int ring_type, ring_num;
struct hal_soc *hal = (struct hal_soc *)hal_soc;
for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
struct hal_hw_srng_config *srng_config =
&hal->hw_srng_table[ring_type];
if (ring_type == CE_SRC ||
ring_type == CE_DST ||
ring_type == CE_DST_STATUS)
continue;
if (srng_config->lmac_ring)
continue;
for (ring_num = 0; ring_num < srng_config->max_rings;
ring_num++)
hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
}
return QDF_STATUS_SUCCESS;
}
qdf_export_symbol(hal_construct_shadow_config);
void hal_get_shadow_config(void *hal_soc,
struct pld_shadow_reg_v2_cfg **shadow_config,
int *num_shadow_registers_configured)
{
struct hal_soc *hal = (struct hal_soc *)hal_soc;
*shadow_config = hal->shadow_config;
*num_shadow_registers_configured =
hal->num_shadow_registers_configured;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s", __func__);
}
qdf_export_symbol(hal_get_shadow_config);
static void hal_validate_shadow_register(struct hal_soc *hal,
uint32_t *destination,
uint32_t *shadow_address)
{
unsigned int index;
uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
int destination_ba_offset =
((char *)destination) - (char *)hal->dev_base_addr;
index = shadow_address - shadow_0_offset;
if (index >= MAX_SHADOW_REGISTERS) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: index %x out of bounds", __func__, index);
goto error;
} else if (hal->shadow_config[index].addr != destination_ba_offset) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: sanity check failure, expected %x, found %x",
__func__, destination_ba_offset,
hal->shadow_config[index].addr);
goto error;
}
return;
error:
qdf_print("%s: baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
__func__, hal->dev_base_addr, destination, shadow_address,
shadow_0_offset, index);
QDF_BUG(0);
return;
}
static void hal_target_based_configure(struct hal_soc *hal)
{
switch (hal->target_type) {
#ifdef QCA_WIFI_QCA6290
case TARGET_TYPE_QCA6290:
hal->use_register_windowing = true;
hal_qca6290_attach(hal);
break;
#endif
#ifdef QCA_WIFI_QCA6390
case TARGET_TYPE_QCA6390:
hal->use_register_windowing = true;
hal_qca6390_attach(hal);
break;
#endif
#if defined(QCA_WIFI_QCA8074) && defined(CONFIG_WIN)
case TARGET_TYPE_QCA8074:
hal_qca8074_attach(hal);
break;
#endif
#if defined(QCA_WIFI_QCA8074V2) && defined(CONFIG_WIN)
case TARGET_TYPE_QCA8074V2:
hal_qca8074v2_attach(hal);
break;
#endif
#if defined(QCA_WIFI_QCA6018) && defined(CONFIG_WIN)
case TARGET_TYPE_QCA6018:
hal_qca6018_attach(hal);
break;
#endif
default:
break;
}
}
uint32_t hal_get_target_type(struct hal_soc *hal)
{
struct hif_target_info *tgt_info =
hif_get_target_info_handle(hal->hif_handle);
return tgt_info->target_type;
}
qdf_export_symbol(hal_get_target_type);
#ifdef FEATURE_HAL_DELAYED_REG_WRITE
#ifdef MEMORY_DEBUG
/*
* Length of the queue(array) used to hold delayed register writes.
* Must be a power of 2.
*/
#define HAL_REG_WRITE_QUEUE_LEN 128
#else
#define HAL_REG_WRITE_QUEUE_LEN 32
#endif
/**
* hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
* @hal: hal_soc pointer
*
* Return: true if throughput is high, else false.
*/
static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
{
int bw_level = hif_get_bandwidth_level(hal->hif_handle);
return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
}
/**
* hal_process_reg_write_q_elem() - process a regiter write queue element
* @hal: hal_soc pointer
* @q_elem: pointer to hal regiter write queue element
*
* Return: The value which was written to the address
*/
static uint32_t
hal_process_reg_write_q_elem(struct hal_soc *hal,
struct hal_reg_write_q_elem *q_elem)
{
struct hal_srng *srng = q_elem->srng;
uint32_t write_val;
SRNG_LOCK(&srng->lock);
srng->reg_write_in_progress = false;
srng->wstats.dequeues++;
if (srng->ring_dir == HAL_SRNG_SRC_RING) {
q_elem->dequeue_val = srng->u.src_ring.hp;
hal_write_address_32_mb(hal,
srng->u.src_ring.hp_addr,
srng->u.src_ring.hp, false);
write_val = srng->u.src_ring.hp;
} else {
q_elem->dequeue_val = srng->u.dst_ring.tp;
hal_write_address_32_mb(hal,
srng->u.dst_ring.tp_addr,
srng->u.dst_ring.tp, false);
write_val = srng->u.dst_ring.tp;
}
q_elem->valid = 0;
SRNG_UNLOCK(&srng->lock);
return write_val;
}
/**
* hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
* @hal: hal_soc pointer
* @delay: delay in us
*
* Return: None
*/
static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
uint64_t delay_us)
{
uint32_t *hist;
hist = hal->stats.wstats.sched_delay;
if (delay_us < 100)
hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
else if (delay_us < 1000)
hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
else if (delay_us < 5000)
hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
else
hist[REG_WRITE_SCHED_DELAY_GE_5000us]++;
}
/**
* hal_reg_write_work() - Worker to process delayed writes
* @arg: hal_soc pointer
*
* Return: None
*/
static void hal_reg_write_work(void *arg)
{
int32_t q_depth, write_val;
struct hal_soc *hal = arg;
struct hal_reg_write_q_elem *q_elem;
uint64_t delta_us;
uint8_t ring_id;
uint32_t *addr;
q_elem = &hal->reg_write_queue[(hal->read_idx)];
if (!q_elem->valid)
return;
q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
if (q_depth > hal->stats.wstats.max_q_depth)
hal->stats.wstats.max_q_depth = q_depth;
if (hif_prevent_link_low_power_states(hal->hif_handle)) {
hal->stats.wstats.prevent_l1_fails++;
return;
}
while (q_elem->valid) {
q_elem->dequeue_time = qdf_get_log_timestamp();
ring_id = q_elem->srng->ring_id;
addr = q_elem->addr;
delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
q_elem->enqueue_time);
hal_reg_write_fill_sched_delay_hist(hal, delta_us);
hal->stats.wstats.dequeues++;
qdf_atomic_dec(&hal->stats.wstats.q_depth);
write_val = hal_process_reg_write_q_elem(hal, q_elem);
hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
hal->read_idx, ring_id, addr, write_val, delta_us);
qdf_atomic_dec(&hal->active_work_cnt);
hal->read_idx = (hal->read_idx + 1) &
(HAL_REG_WRITE_QUEUE_LEN - 1);
q_elem = &hal->reg_write_queue[(hal->read_idx)];
}
hif_allow_link_low_power_states(hal->hif_handle);
}
/**
* hal_flush_reg_write_work() - flush all writes from regiter write queue
* @arg: hal_soc pointer
*
* Return: None
*/
static inline void hal_flush_reg_write_work(struct hal_soc *hal)
{
qdf_cancel_work(&hal->reg_write_work);
qdf_flush_work(&hal->reg_write_work);
qdf_flush_workqueue(0, hal->reg_write_wq);
}
/**
* hal_reg_write_enqueue() - enqueue register writes into kworker
* @hal_soc: hal_soc pointer
* @srng: srng pointer
* @addr: iomem address of regiter
* @value: value to be written to iomem address
*
* This function executes from within the SRNG LOCK
*
* Return: None
*/
static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
struct hal_srng *srng,
void __iomem *addr,
uint32_t value)
{
struct hal_reg_write_q_elem *q_elem;
uint32_t write_idx;
if (srng->reg_write_in_progress) {
hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
srng->ring_id, addr, value);
qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
srng->wstats.coalesces++;
return;
}
write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
q_elem = &hal_soc->reg_write_queue[write_idx];
if (q_elem->valid) {
hal_err("queue full");
QDF_BUG(0);
return;
}
qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
srng->wstats.enqueues++;
qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
q_elem->srng = srng;
q_elem->addr = addr;
q_elem->enqueue_val = value;
q_elem->enqueue_time = qdf_get_log_timestamp();
/*
* Before the valid flag is set to true, all the other
* fields in the q_elem needs to be updated in memory.
* Else there is a chance that the dequeuing worker thread
* might read stale entries and process incorrect srng.
*/
qdf_wmb();
q_elem->valid = true;
srng->reg_write_in_progress = true;
qdf_atomic_inc(&hal_soc->active_work_cnt);
hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
write_idx, srng->ring_id, addr, value);
qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
&hal_soc->reg_write_work);
}
void hal_delayed_reg_write(struct hal_soc *hal_soc,
struct hal_srng *srng,
void __iomem *addr,
uint32_t value)
{
if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
hal_is_reg_write_tput_level_high(hal_soc)) {
qdf_atomic_inc(&hal_soc->stats.wstats.direct);
srng->wstats.direct++;
hal_write_address_32_mb(hal_soc, addr, value, false);
} else {
hal_reg_write_enqueue(hal_soc, srng, addr, value);
}
}
/**
* hal_delayed_reg_write_init() - Initialization function for delayed reg writes
* @hal_soc: hal_soc pointer
*
* Initialize main data structures to process register writes in a delayed
* workqueue.
*
* Return: QDF_STATUS_SUCCESS on success else a QDF error.
*/
static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
{
hal->reg_write_wq =
qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
sizeof(*hal->reg_write_queue));
if (!hal->reg_write_queue) {
hal_err("unable to allocate memory");
QDF_BUG(0);
return QDF_STATUS_E_NOMEM;
}
/* Initial value of indices */
hal->read_idx = 0;
qdf_atomic_set(&hal->write_idx, -1);
return QDF_STATUS_SUCCESS;
}
/**
* hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
* @hal_soc: hal_soc pointer
*
* De-initialize main data structures to process register writes in a delayed
* workqueue.
*
* Return: None
*/
static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
{
hal_flush_reg_write_work(hal);
qdf_destroy_workqueue(0, hal->reg_write_wq);
qdf_mem_free(hal->reg_write_queue);
}
static inline
char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
char *buf, qdf_size_t size)
{
qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
srng->wstats.enqueues, srng->wstats.dequeues,
srng->wstats.coalesces, srng->wstats.direct);
return buf;
}
/* bytes for local buffer */
#define HAL_REG_WRITE_SRNG_STATS_LEN 100
void hal_dump_reg_write_srng_stats(struct hal_soc *hal_soc_hdl)
{
struct hal_srng *srng;
char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
hal_debug("SW2TCL1: %s",
hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
hal_debug("WBM2SW0: %s",
hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
hal_debug("REO2SW1: %s",
hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
hal_debug("REO2SW2: %s",
hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
hal_debug("REO2SW3: %s",
hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
}
void hal_dump_reg_write_stats(struct hal_soc *hal_soc_hdl)
{
uint32_t *hist;
struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
hist = hal->stats.wstats.sched_delay;
hal_debug("enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
qdf_atomic_read(&hal->stats.wstats.enqueues),
hal->stats.wstats.dequeues,
qdf_atomic_read(&hal->stats.wstats.coalesces),
qdf_atomic_read(&hal->stats.wstats.direct),
qdf_atomic_read(&hal->stats.wstats.q_depth),
hal->stats.wstats.max_q_depth,
hist[REG_WRITE_SCHED_DELAY_SUB_100us],
hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
hist[REG_WRITE_SCHED_DELAY_GE_5000us]);
}
int hal_get_reg_write_pending_work(void *hal_soc)
{
struct hal_soc *hal = (struct hal_soc *)hal_soc;
return qdf_atomic_read(&hal->active_work_cnt);
}
#else
static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
{
return QDF_STATUS_SUCCESS;
}
static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
{
}
#endif
/**
* hal_attach - Initialize HAL layer
* @hif_handle: Opaque HIF handle
* @qdf_dev: QDF device
*
* Return: Opaque HAL SOC handle
* NULL on failure (if given ring is not available)
*
* This function should be called as part of HIF initialization (for accessing
* copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
*
*/
void *hal_attach(void *hif_handle, qdf_device_t qdf_dev)
{
struct hal_soc *hal;
int i;
hal = qdf_mem_malloc(sizeof(*hal));
if (!hal) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: hal_soc allocation failed", __func__);
goto fail0;
}
qdf_minidump_log((void *)hal, sizeof(*hal), "hal_soc");
hal->hif_handle = hif_handle;
hal->dev_base_addr = hif_get_dev_ba(hif_handle);
hal->qdf_dev = qdf_dev;
hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
if (!hal->shadow_rdptr_mem_paddr) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: hal->shadow_rdptr_mem_paddr allocation failed",
__func__);
goto fail1;
}
qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
hal->shadow_wrptr_mem_vaddr =
(uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
&(hal->shadow_wrptr_mem_paddr));
if (!hal->shadow_wrptr_mem_vaddr) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: hal->shadow_wrptr_mem_vaddr allocation failed",
__func__);
goto fail2;
}
qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
hal->srng_list[i].initialized = 0;
hal->srng_list[i].ring_id = i;
}
qdf_spinlock_create(&hal->register_access_lock);
hal->register_window = 0;
hal->target_type = hal_get_target_type(hal);
hal_target_based_configure(hal);
hal_reg_write_fail_history_init(hal);
qdf_atomic_init(&hal->active_work_cnt);
hal_delayed_reg_write_init(hal);
return (void *)hal;
fail2:
qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
fail1:
qdf_mem_free(hal);
fail0:
return NULL;
}
qdf_export_symbol(hal_attach);
/**
* hal_mem_info - Retrieve hal memory base address
*
* @hal_soc: Opaque HAL SOC handle
* @mem: pointer to structure to be updated with hal mem info
*/
void hal_get_meminfo(void *hal_soc, struct hal_mem_info *mem )
{
struct hal_soc *hal = (struct hal_soc *)hal_soc;
mem->dev_base_addr = (void *)hal->dev_base_addr;
mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
hif_read_phy_mem_base(hal->hif_handle, (qdf_dma_addr_t *)&mem->dev_base_paddr);
return;
}
qdf_export_symbol(hal_get_meminfo);
/**
* hal_detach - Detach HAL layer
* @hal_soc: HAL SOC handle
*
* Return: Opaque HAL SOC handle
* NULL on failure (if given ring is not available)
*
* This function should be called as part of HIF initialization (for accessing
* copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
*
*/
extern void hal_detach(void *hal_soc)
{
struct hal_soc *hal = (struct hal_soc *)hal_soc;
hal_delayed_reg_write_deinit(hal);
qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
qdf_mem_free(hal);
return;
}
qdf_export_symbol(hal_detach);
/**
* hal_ce_dst_setup - Initialize CE destination ring registers
* @hal_soc: HAL SOC handle
* @srng: SRNG ring pointer
*/
static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
int ring_num)
{
uint32_t reg_val = 0;
uint32_t reg_addr;
struct hal_hw_srng_config *ring_config =
HAL_SRNG_CONFIG(hal, CE_DST);
/* set DEST_MAX_LENGTH according to ce assignment */
reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
ring_config->reg_start[R0_INDEX] +
(ring_num * ring_config->reg_size[R0_INDEX]));
reg_val = HAL_REG_READ(hal, reg_addr);
reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
reg_val |= srng->u.dst_ring.max_buffer_length &
HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
HAL_REG_WRITE(hal, reg_addr, reg_val);
}
/**
* hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
* @hal: HAL SOC handle
* @read: boolean value to indicate if read or write
* @ix0: pointer to store IX0 reg value
* @ix1: pointer to store IX1 reg value
* @ix2: pointer to store IX2 reg value
* @ix3: pointer to store IX3 reg value
*/
void hal_reo_read_write_ctrl_ix(struct hal_soc *hal, bool read, uint32_t *ix0,
uint32_t *ix1, uint32_t *ix2, uint32_t *ix3)
{
uint32_t reg_offset;
if (read) {
if (ix0) {
reg_offset =
HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET);
*ix0 = HAL_REG_READ(hal, reg_offset);
}
if (ix1) {
reg_offset =
HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET);
*ix1 = HAL_REG_READ(hal, reg_offset);
}
if (ix2) {
reg_offset =
HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET);
*ix2 = HAL_REG_READ(hal, reg_offset);
}
if (ix3) {
reg_offset =
HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET);
*ix3 = HAL_REG_READ(hal, reg_offset);
}
} else {
if (ix0) {
reg_offset =
HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET);
HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix0);
}
if (ix1) {
reg_offset =
HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET);
HAL_REG_WRITE(hal, reg_offset, *ix1);
}
if (ix2) {
reg_offset =
HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET);
HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix2);
}
if (ix3) {
reg_offset =
HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET);
HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix3);
}
}
}
/**
* hal_srng_dst_set_hp_paddr() - Set physical address to dest ring head pointer
* @srng: sring pointer
* @paddr: physical address
*/
void hal_srng_dst_set_hp_paddr(struct hal_srng *srng,
uint64_t paddr)
{
SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB,
paddr & 0xffffffff);
SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB,
paddr >> 32);
}
/**
* hal_srng_dst_init_hp() - Initilaize destination ring head pointer
* @srng: sring pointer
* @vaddr: virtual address
*/
void hal_srng_dst_init_hp(struct hal_srng *srng,
uint32_t *vaddr)
{
if (!srng)
return;
srng->u.dst_ring.hp_addr = vaddr;
SRNG_DST_REG_WRITE_CONFIRM(srng, HP, srng->u.dst_ring.cached_hp);
if (vaddr) {
*srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"hp_addr=%pK, cached_hp=%d, hp=%d",
(void *)srng->u.dst_ring.hp_addr,
srng->u.dst_ring.cached_hp,
*srng->u.dst_ring.hp_addr);
}
}
/**
* hal_srng_hw_init - Private function to initialize SRNG HW
* @hal_soc: HAL SOC handle
* @srng: SRNG ring pointer
*/
static inline void hal_srng_hw_init(struct hal_soc *hal,
struct hal_srng *srng)
{
if (srng->ring_dir == HAL_SRNG_SRC_RING)
hal_srng_src_hw_init(hal, srng);
else
hal_srng_dst_hw_init(hal, srng);
}
#ifdef CONFIG_SHADOW_V2
#define ignore_shadow false
#define CHECK_SHADOW_REGISTERS true
#else
#define ignore_shadow true
#define CHECK_SHADOW_REGISTERS false
#endif
/**
* hal_srng_setup - Initialize HW SRNG ring.
* @hal_soc: Opaque HAL SOC handle
* @ring_type: one of the types from hal_ring_type
* @ring_num: Ring number if there are multiple rings of same type (staring
* from 0)
* @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
* @ring_params: SRNG ring params in hal_srng_params structure.
* Callers are expected to allocate contiguous ring memory of size
* 'num_entries * entry_size' bytes and pass the physical and virtual base
* addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
* hal_srng_params structure. Ring base address should be 8 byte aligned
* and size of each ring entry should be queried using the API
* hal_srng_get_entrysize
*
* Return: Opaque pointer to ring on success
* NULL on failure (if given ring is not available)
*/
void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
int mac_id, struct hal_srng_params *ring_params)
{
int ring_id;
struct hal_soc *hal = (struct hal_soc *)hal_soc;
struct hal_srng *srng;
struct hal_hw_srng_config *ring_config =
HAL_SRNG_CONFIG(hal, ring_type);
void *dev_base_addr;
int i;
ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
if (ring_id < 0)
return NULL;
hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
srng = hal_get_srng(hal_soc, ring_id);
if (srng->initialized) {
hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
return NULL;
}
dev_base_addr = hal->dev_base_addr;
srng->ring_id = ring_id;
srng->ring_dir = ring_config->ring_dir;
srng->ring_base_paddr = ring_params->ring_base_paddr;
srng->ring_base_vaddr = ring_params->ring_base_vaddr;
srng->entry_size = ring_config->entry_size;
srng->num_entries = ring_params->num_entries;
srng->ring_size = srng->num_entries * srng->entry_size;
srng->ring_size_mask = srng->ring_size - 1;
srng->msi_addr = ring_params->msi_addr;
srng->msi_data = ring_params->msi_data;
srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
srng->intr_batch_cntr_thres_entries =
ring_params->intr_batch_cntr_thres_entries;
srng->hal_soc = hal_soc;
for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
+ (ring_num * ring_config->reg_size[i]);
}
/* Zero out the entire ring memory */
qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
srng->num_entries) << 2);
srng->flags = ring_params->flags;
#ifdef BIG_ENDIAN_HOST
/* TODO: See if we should we get these flags from caller */
srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
srng->flags |= HAL_SRNG_MSI_SWAP;
srng->flags |= HAL_SRNG_RING_PTR_SWAP;
#endif
if (srng->ring_dir == HAL_SRNG_SRC_RING) {
srng->u.src_ring.hp = 0;
srng->u.src_ring.reap_hp = srng->ring_size -
srng->entry_size;
srng->u.src_ring.tp_addr =
&(hal->shadow_rdptr_mem_vaddr[ring_id]);
srng->u.src_ring.low_threshold =
ring_params->low_threshold * srng->entry_size;
if (ring_config->lmac_ring) {
/* For LMAC rings, head pointer updates will be done
* through FW by writing to a shared memory location
*/
srng->u.src_ring.hp_addr =
&(hal->shadow_wrptr_mem_vaddr[ring_id -
HAL_SRNG_LMAC1_ID_START]);
srng->flags |= HAL_SRNG_LMAC_RING;
} else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
srng->u.src_ring.hp_addr = SRNG_SRC_ADDR(srng, HP);
if (CHECK_SHADOW_REGISTERS) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
"%s: Ring (%d, %d) missing shadow config",
__func__, ring_type, ring_num);
}
} else {
hal_validate_shadow_register(hal,
SRNG_SRC_ADDR(srng, HP),
srng->u.src_ring.hp_addr);
}
} else {
/* During initialization loop count in all the descriptors
* will be set to zero, and HW will set it to 1 on completing
* descriptor update in first loop, and increments it by 1 on
* subsequent loops (loop count wraps around after reaching
* 0xffff). The 'loop_cnt' in SW ring state is the expected
* loop count in descriptors updated by HW (to be processed
* by SW).
*/
srng->u.dst_ring.loop_cnt = 1;
srng->u.dst_ring.tp = 0;
srng->u.dst_ring.hp_addr =
&(hal->shadow_rdptr_mem_vaddr[ring_id]);
if (ring_config->lmac_ring) {
/* For LMAC rings, tail pointer updates will be done
* through FW by writing to a shared memory location
*/
srng->u.dst_ring.tp_addr =
&(hal->shadow_wrptr_mem_vaddr[ring_id -
HAL_SRNG_LMAC1_ID_START]);
srng->flags |= HAL_SRNG_LMAC_RING;
} else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
srng->u.dst_ring.tp_addr = SRNG_DST_ADDR(srng, TP);
if (CHECK_SHADOW_REGISTERS) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
"%s: Ring (%d, %d) missing shadow config",
__func__, ring_type, ring_num);
}
} else {
hal_validate_shadow_register(hal,
SRNG_DST_ADDR(srng, TP),
srng->u.dst_ring.tp_addr);
}
}
if (!(ring_config->lmac_ring)) {
hal_srng_hw_init(hal, srng);
if (ring_type == CE_DST) {
srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
hal_ce_dst_setup(hal, srng, ring_num);
}
}
SRNG_LOCK_INIT(&srng->lock);
srng->srng_event = 0;
srng->initialized = true;
return (void *)srng;
}
qdf_export_symbol(hal_srng_setup);
/**
* hal_srng_cleanup - Deinitialize HW SRNG ring.
* @hal_soc: Opaque HAL SOC handle
* @hal_srng: Opaque HAL SRNG pointer
*/
void hal_srng_cleanup(void *hal_soc, void *hal_srng)
{
struct hal_srng *srng = (struct hal_srng *)hal_srng;
SRNG_LOCK_DESTROY(&srng->lock);
srng->initialized = 0;
}
qdf_export_symbol(hal_srng_cleanup);
/**
* hal_srng_get_entrysize - Returns size of ring entry in bytes
* @hal_soc: Opaque HAL SOC handle
* @ring_type: one of the types from hal_ring_type
*
*/
uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
{
struct hal_soc *hal = (struct hal_soc *)hal_soc;
struct hal_hw_srng_config *ring_config =
HAL_SRNG_CONFIG(hal, ring_type);
return ring_config->entry_size << 2;
}
qdf_export_symbol(hal_srng_get_entrysize);
/**
* hal_srng_max_entries - Returns maximum possible number of ring entries
* @hal_soc: Opaque HAL SOC handle
* @ring_type: one of the types from hal_ring_type
*
* Return: Maximum number of entries for the given ring_type
*/
uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
{
struct hal_soc *hal = (struct hal_soc *)hal_soc;
struct hal_hw_srng_config *ring_config =
HAL_SRNG_CONFIG(hal, ring_type);
return ring_config->max_size / ring_config->entry_size;
}
qdf_export_symbol(hal_srng_max_entries);
enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
{
struct hal_soc *hal = (struct hal_soc *)hal_soc;
struct hal_hw_srng_config *ring_config =
HAL_SRNG_CONFIG(hal, ring_type);
return ring_config->ring_dir;
}
/**
* hal_srng_dump - Dump ring status
* @srng: hal srng pointer
*/
void hal_srng_dump(struct hal_srng *srng)
{
if (srng->ring_dir == HAL_SRNG_SRC_RING) {
hal_debug("=== SRC RING %d ===", srng->ring_id);
hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
srng->u.src_ring.hp,
srng->u.src_ring.reap_hp,
*srng->u.src_ring.tp_addr,
srng->u.src_ring.cached_tp);
} else {
hal_debug("=== DST RING %d ===", srng->ring_id);
hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
srng->u.dst_ring.tp,
*srng->u.dst_ring.hp_addr,
srng->u.dst_ring.cached_hp,
srng->u.dst_ring.loop_cnt);
}
}
/**
* hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
*
* @hal_soc: Opaque HAL SOC handle
* @hal_ring: Ring pointer (Source or Destination ring)
* @ring_params: SRNG parameters will be returned through this structure
*/
extern void hal_get_srng_params(void *hal_soc, void *hal_ring,
struct hal_srng_params *ring_params)
{
struct hal_srng *srng = (struct hal_srng *)hal_ring;
int i =0;
ring_params->ring_id = srng->ring_id;
ring_params->ring_dir = srng->ring_dir;
ring_params->entry_size = srng->entry_size;
ring_params->ring_base_paddr = srng->ring_base_paddr;
ring_params->ring_base_vaddr = srng->ring_base_vaddr;
ring_params->num_entries = srng->num_entries;
ring_params->msi_addr = srng->msi_addr;
ring_params->msi_data = srng->msi_data;
ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
ring_params->intr_batch_cntr_thres_entries =
srng->intr_batch_cntr_thres_entries;
ring_params->low_threshold = srng->u.src_ring.low_threshold;
ring_params->flags = srng->flags;
ring_params->ring_id = srng->ring_id;
for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
ring_params->hwreg_base[i] = srng->hwreg_base[i];
}
qdf_export_symbol(hal_get_srng_params);