blob: a854172c0b368455bb9c20704c9c5df8cc2734cf [file] [log] [blame]
/*
* Copyright (c) 2015-2017 The Linux Foundation. All rights reserved.
*
* Previously licensed under the ISC license by Qualcomm Atheros, Inc.
*
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*
* This file was originally distributed by Qualcomm Atheros, Inc.
* under proprietary terms before Copyright ownership was assigned
* to the Linux Foundation.
*/
/**
* DOC: hif_napi.c
*
* HIF NAPI interface implementation
*/
#include <linux/string.h> /* memset */
/* Linux headers */
#include <linux/cpumask.h>
#include <linux/cpufreq.h>
#include <linux/cpu.h>
#include <linux/topology.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#ifdef HELIUMPLUS
#ifdef CONFIG_SCHED_CORE_CTL
#include <linux/sched/core_ctl.h>
#endif
#include <pld_common.h>
#endif
#include <linux/pm.h>
/* Driver headers */
#include <hif_napi.h>
#include <hif_debug.h>
#include <hif_io32.h>
#include <ce_api.h>
#include <ce_internal.h>
enum napi_decision_vector {
HIF_NAPI_NOEVENT = 0,
HIF_NAPI_INITED = 1,
HIF_NAPI_CONF_UP = 2
};
#define ENABLE_NAPI_MASK (HIF_NAPI_INITED | HIF_NAPI_CONF_UP)
#ifdef HELIUMPLUS
static inline int hif_get_irq_for_ce(struct device *dev, int ce_id)
{
return pld_get_irq(dev, ce_id);
}
#else /* HELIUMPLUS */
static inline int hif_get_irq_for_ce(struct device *dev, int ce_id)
{
return -EINVAL;
}
static int hif_napi_cpu_migrate(struct qca_napi_data *napid, int cpu,
int action)
{
return 0;
}
int hif_napi_cpu_blacklist(struct qca_napi_data *napid,
enum qca_blacklist_op op)
{
return 0;
}
#endif /* HELIUMPLUS */
/**
* hif_napi_create() - creates the NAPI structures for a given CE
* @hif : pointer to hif context
* @pipe_id: the CE id on which the instance will be created
* @poll : poll function to be used for this NAPI instance
* @budget : budget to be registered with the NAPI instance
* @scale : scale factor on the weight (to scaler budget to 1000)
* @flags : feature flags
*
* Description:
* Creates NAPI instances. This function is called
* unconditionally during initialization. It creates
* napi structures through the proper HTC/HIF calls.
* The structures are disabled on creation.
* Note that for each NAPI instance a separate dummy netdev is used
*
* Return:
* < 0: error
* = 0: <should never happen>
* > 0: id of the created object (for multi-NAPI, number of objects created)
*/
int hif_napi_create(struct hif_opaque_softc *hif_ctx,
int (*poll)(struct napi_struct *, int),
int budget,
int scale,
uint8_t flags)
{
int i;
struct qca_napi_data *napid;
struct qca_napi_info *napii;
struct CE_state *ce_state;
struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx);
int rc = 0;
NAPI_DEBUG("-->(budget=%d, scale=%d)",
budget, scale);
NAPI_DEBUG("hif->napi_data.state = 0x%08x",
hif->napi_data.state);
NAPI_DEBUG("hif->napi_data.ce_map = 0x%08x",
hif->napi_data.ce_map);
napid = &(hif->napi_data);
if (0 == (napid->state & HIF_NAPI_INITED)) {
memset(napid, 0, sizeof(struct qca_napi_data));
qdf_spinlock_create(&(napid->lock));
napid->state |= HIF_NAPI_INITED;
napid->flags = flags;
rc = hif_napi_cpu_init(hif_ctx);
if (rc != 0) {
HIF_ERROR("NAPI_initialization failed,. %d", rc);
rc = napid->ce_map;
goto hnc_err;
}
HIF_DBG("%s: NAPI structures initialized, rc=%d",
__func__, rc);
}
for (i = 0; i < hif->ce_count; i++) {
ce_state = hif->ce_id_to_state[i];
NAPI_DEBUG("ce %d: htt_rx=%d htt_tx=%d",
i, ce_state->htt_rx_data,
ce_state->htt_tx_data);
if (!ce_state->htt_rx_data)
continue;
/* Now this is a CE where we need NAPI on */
NAPI_DEBUG("Creating NAPI on pipe %d", i);
napii = qdf_mem_malloc(sizeof(*napii));
napid->napis[i] = napii;
if (!napii) {
NAPI_DEBUG("NAPI alloc failure %d", i);
rc = -ENOMEM;
goto napii_alloc_failure;
}
}
for (i = 0; i < hif->ce_count; i++) {
napii = napid->napis[i];
if (!napii)
continue;
NAPI_DEBUG("initializing NAPI for pipe %d", i);
memset(napii, 0, sizeof(struct qca_napi_info));
napii->scale = scale;
napii->id = NAPI_PIPE2ID(i);
napii->hif_ctx = hif_ctx;
if (hif->qdf_dev)
napii->irq = hif_get_irq_for_ce(hif->qdf_dev->dev, i);
if (napii->irq < 0)
HIF_WARN("%s: bad IRQ value for CE %d: %d",
__func__, i, napii->irq);
init_dummy_netdev(&(napii->netdev));
NAPI_DEBUG("adding napi=%pK to netdev=%pK (poll=%pK, bdgt=%d)",
&(napii->napi), &(napii->netdev), poll, budget);
netif_napi_add(&(napii->netdev), &(napii->napi), poll, budget);
napii->offld_ctx = NULL;
NAPI_DEBUG("after napi_add");
NAPI_DEBUG("napi=0x%pK, netdev=0x%pK",
&(napii->napi), &(napii->netdev));
NAPI_DEBUG("napi.dev_list.prev=0x%pK, next=0x%pK",
napii->napi.dev_list.prev,
napii->napi.dev_list.next);
NAPI_DEBUG("dev.napi_list.prev=0x%pK, next=0x%pK",
napii->netdev.napi_list.prev,
napii->netdev.napi_list.next);
/* It is OK to change the state variable below without
* protection as there should be no-one around yet
*/
napid->ce_map |= (0x01 << i);
HIF_DBG("%s: NAPI id %d created for pipe %d", __func__,
napii->id, i);
}
NAPI_DEBUG("napi map = %x", napid->ce_map);
NAPI_DEBUG("NAPI ids created for all applicable pipes");
return napid->ce_map;
napii_alloc_failure:
for (i = 0; i < hif->ce_count; i++) {
napii = napid->napis[i];
napid->napis[i] = NULL;
if (napii)
qdf_mem_free(napii);
}
hnc_err:
NAPI_DEBUG("<--napi_instances_map=%x]", napid->ce_map);
return rc;
}
/**
*
* hif_napi_destroy() - destroys the NAPI structures for a given instance
* @hif : pointer to hif context
* @ce_id : the CE id whose napi instance will be destroyed
* @force : if set, will destroy even if entry is active (de-activates)
*
* Description:
* Destroy a given NAPI instance. This function is called
* unconditionally during cleanup.
* Refuses to destroy an entry of it is still enabled (unless force=1)
* Marks the whole napi_data invalid if all instances are destroyed.
*
* Return:
* -EINVAL: specific entry has not been created
* -EPERM : specific entry is still active
* 0 < : error
* 0 = : success
*/
int hif_napi_destroy(struct hif_opaque_softc *hif_ctx,
uint8_t id,
int force)
{
uint8_t ce = NAPI_ID2PIPE(id);
int rc = 0;
struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx);
NAPI_DEBUG("-->(id=%d, force=%d)", id, force);
if (0 == (hif->napi_data.state & HIF_NAPI_INITED)) {
HIF_ERROR("%s: NAPI not initialized or entry %d not created",
__func__, id);
rc = -EINVAL;
} else if (0 == (hif->napi_data.ce_map & (0x01 << ce))) {
HIF_ERROR("%s: NAPI instance %d (pipe %d) not created",
__func__, id, ce);
if (hif->napi_data.napis[ce])
HIF_ERROR("%s: memory allocated but ce_map not set %d (pipe %d)",
__func__, id, ce);
rc = -EINVAL;
} else {
struct qca_napi_data *napid;
struct qca_napi_info *napii;
napid = &(hif->napi_data);
napii = napid->napis[ce];
if (!napii) {
if (napid->ce_map & (0x01 << ce))
HIF_ERROR("%s: napii & ce_map out of sync(ce %d)",
__func__, ce);
return -EINVAL;
}
if (hif->napi_data.state == HIF_NAPI_CONF_UP) {
if (force) {
napi_disable(&(napii->napi));
HIF_DBG("%s: NAPI entry %d force disabled",
__func__, id);
NAPI_DEBUG("NAPI %d force disabled", id);
} else {
HIF_ERROR("%s: Cannot destroy active NAPI %d",
__func__, id);
rc = -EPERM;
}
}
if (0 == rc) {
NAPI_DEBUG("before napi_del");
NAPI_DEBUG("napi.dlist.prv=0x%pK, next=0x%pK",
napii->napi.dev_list.prev,
napii->napi.dev_list.next);
NAPI_DEBUG("dev.napi_l.prv=0x%pK, next=0x%pK",
napii->netdev.napi_list.prev,
napii->netdev.napi_list.next);
netif_napi_del(&(napii->napi));
napid->ce_map &= ~(0x01 << ce);
napid->napis[ce] = NULL;
napii->scale = 0;
qdf_mem_free(napii);
HIF_DBG("%s: NAPI %d destroyed\n", __func__, id);
/* if there are no active instances and
* if they are all destroyed,
* set the whole structure to uninitialized state
*/
if (napid->ce_map == 0) {
rc = hif_napi_cpu_deinit(hif_ctx);
/* caller is tolerant to receiving !=0 rc */
qdf_spinlock_destroy(&(napid->lock));
memset(napid,
0, sizeof(struct qca_napi_data));
HIF_DBG("%s: no NAPI instances. Zapped.",
__func__);
}
}
}
return rc;
}
/**
* hif_napi_offld_flush_cb_register() - init and register flush callback
* @hif_hdl: pointer to hif context
* @offld_flush_handler: register Rx offload flush callback
* @offld_init_handler: Callback for initializing Rx offfload
*
* Init and register flush callback for LRO or GRO Rx offload features
*
* Return: positive value on success and 0 on failure
*/
int hif_napi_offld_flush_cb_register(struct hif_opaque_softc *hif_hdl,
void (offld_flush_handler)(void *),
void *(offld_init_handler)(void))
{
int rc = 0;
int i;
struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
void *data = NULL;
struct qca_napi_data *napid;
struct qca_napi_info *napii;
QDF_ASSERT(scn != NULL);
napid = hif_napi_get_all(hif_hdl);
if (scn != NULL) {
for (i = 0; i < scn->ce_count; i++) {
napii = napid->napis[i];
if (napii) {
data = offld_init_handler();
if (data == NULL) {
HIF_ERROR("%s: Failed to init offld for CE %d",
__func__, i);
continue;
}
napii->offld_flush_cb = offld_flush_handler;
napii->offld_ctx = data;
HIF_DBG("Registering offld for ce_id %d NAPI callback for %d flush_cb %pK, offld_data %pK\n",
i, napii->id, napii->offld_flush_cb,
napii->offld_ctx);
rc++;
}
}
} else {
HIF_ERROR("%s: hif_state NULL!", __func__);
}
return rc;
}
struct qca_napi_info *hif_get_napi(int napi_id, void *napi_d)
{
struct qca_napi_data *napid = napi_d;
int id = NAPI_ID2PIPE(napi_id);
return napid->napis[id];
}
/**
* hif_napi_lro_flush_cb_deregister() - Degregister and free LRO.
* @hif: pointer to hif context
* @lro_deinit_cb: LRO deinit callback
*
* Return: NONE
*/
void hif_napi_lro_flush_cb_deregister(struct hif_opaque_softc *hif_hdl,
void (lro_deinit_cb)(void *))
{
int i;
struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
struct qca_napi_data *napid;
struct qca_napi_info *napii;
QDF_ASSERT(scn != NULL);
napid = hif_napi_get_all(hif_hdl);
if (scn != NULL) {
for (i = 0; i < scn->ce_count; i++) {
napii = napid->napis[i];
if (napii) {
HIF_DBG("deRegistering LRO for ce_id %d NAPI callback for %d flush_cb %pK, lro_data %pK\n",
i, napii->id, napii->offld_flush_cb,
napii->offld_ctx);
napii->offld_flush_cb = NULL;
lro_deinit_cb(napii->offld_ctx);
napii->offld_ctx = NULL;
}
}
} else {
HIF_ERROR("%s: hif_state NULL!", __func__);
}
}
/**
* hif_napi_get_lro_info() - returns the address LRO data for napi_id
* @hif: pointer to hif context
* @napi_id: napi instance
*
* Description:
* Returns the address of the LRO structure
*
* Return:
* <addr>: address of the LRO structure
*/
void *hif_napi_get_lro_info(struct hif_opaque_softc *hif_hdl, int napi_id)
{
struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
struct qca_napi_data *napid;
struct qca_napi_info *napii;
napid = &(scn->napi_data);
napii = napid->napis[NAPI_ID2PIPE(napi_id)];
if (napii)
return napii->offld_ctx;
return 0;
}
/**
*
* hif_napi_get_all() - returns the address of the whole HIF NAPI structure
* @hif: pointer to hif context
*
* Description:
* Returns the address of the whole structure
*
* Return:
* <addr>: address of the whole HIF NAPI structure
*/
inline struct qca_napi_data *hif_napi_get_all(struct hif_opaque_softc *hif_ctx)
{
struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx);
return &(hif->napi_data);
}
/**
*
* hif_napi_event() - reacts to events that impact NAPI
* @hif : pointer to hif context
* @evnt: event that has been detected
* @data: more data regarding the event
*
* Description:
* This function handles two types of events:
* 1- Events that change the state of NAPI (enabled/disabled):
* {NAPI_EVT_INI_FILE, NAPI_EVT_CMD_STATE}
* The state is retrievable by "hdd_napi_enabled(-1)"
* - NAPI will be on if either INI file is on and it has not been disabled
* by a subsequent vendor CMD,
* or it has been enabled by a vendor CMD.
* 2- Events that change the CPU affinity of a NAPI instance/IRQ:
* {NAPI_EVT_TPUT_STATE, NAPI_EVT_CPU_STATE}
* - NAPI will support a throughput mode (HI/LO), kept at napid->napi_mode
* - NAPI will switch throughput mode based on hdd_napi_throughput_policy()
* - In LO tput mode, NAPI will yield control if its interrupts to the system
* management functions. However in HI throughput mode, NAPI will actively
* manage its interrupts/instances (by trying to disperse them out to
* separate performance cores).
* - CPU eligibility is kept up-to-date by NAPI_EVT_CPU_STATE events.
*
* + In some cases (roaming peer management is the only case so far), a
* a client can trigger a "SERIALIZE" event. Basically, this means that the
* users is asking NAPI to go into a truly single execution context state.
* So, NAPI indicates to msm-irqbalancer that it wants to be blacklisted,
* (if called for the first time) and then moves all IRQs (for NAPI
* instances) to be collapsed to a single core. If called multiple times,
* it will just re-collapse the CPUs. This is because blacklist-on() API
* is reference-counted, and because the API has already been called.
*
* Such a user, should call "DESERIALIZE" (NORMAL) event, to set NAPI to go
* to its "normal" operation. Optionally, they can give a timeout value (in
* multiples of BusBandwidthCheckPeriod -- 100 msecs by default). In this
* case, NAPI will just set the current throughput state to uninitialized
* and set the delay period. Once policy handler is called, it would skip
* applying the policy delay period times, and otherwise apply the policy.
*
* Return:
* < 0: some error
* = 0: event handled successfully
*/
int hif_napi_event(struct hif_opaque_softc *hif_ctx, enum qca_napi_event event,
void *data)
{
int rc = 0;
uint32_t prev_state;
int i;
bool state_changed;
struct napi_struct *napi;
struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx);
struct qca_napi_data *napid = &(hif->napi_data);
enum qca_napi_tput_state tput_mode = QCA_NAPI_TPUT_UNINITIALIZED;
enum {
BLACKLIST_NOT_PENDING,
BLACKLIST_ON_PENDING,
BLACKLIST_OFF_PENDING
} blacklist_pending = BLACKLIST_NOT_PENDING;
NAPI_DEBUG("%s: -->(event=%d, aux=%pK)", __func__, event, data);
if ((napid->state & HIF_NAPI_INITED) == 0) {
NAPI_DEBUG("%s: got event when NAPI not initialized",
__func__);
return -EINVAL;
}
qdf_spin_lock_bh(&(napid->lock));
prev_state = napid->state;
switch (event) {
case NAPI_EVT_INI_FILE:
case NAPI_EVT_CMD_STATE:
case NAPI_EVT_INT_STATE: {
int on = (data != ((void *)0));
HIF_DBG("%s: recved evnt: STATE_CMD %d; v = %d (state=0x%0x)",
__func__, event,
on, prev_state);
if (on)
if (prev_state & HIF_NAPI_CONF_UP) {
HIF_DBG("%s: duplicate NAPI conf ON msg",
__func__);
} else {
HIF_DBG("%s: setting state to ON",
__func__);
napid->state |= HIF_NAPI_CONF_UP;
}
else /* off request */
if (prev_state & HIF_NAPI_CONF_UP) {
HIF_DBG("%s: setting state to OFF",
__func__);
napid->state &= ~HIF_NAPI_CONF_UP;
} else {
HIF_DBG("%s: duplicate NAPI conf OFF msg",
__func__);
}
break;
}
/* case NAPI_INIT_FILE/CMD_STATE */
case NAPI_EVT_CPU_STATE: {
int cpu = ((unsigned long int)data >> 16);
int val = ((unsigned long int)data & 0x0ff);
NAPI_DEBUG("%s: evt=CPU_STATE on CPU %d value=%d",
__func__, cpu, val);
/* state has already been set by hnc_cpu_notify_cb */
if ((val == QCA_NAPI_CPU_DOWN) &&
(napid->napi_mode == QCA_NAPI_TPUT_HI) && /* we manage */
(napid->napi_cpu[cpu].napis != 0)) {
NAPI_DEBUG("%s: Migrating NAPIs out of cpu %d",
__func__, cpu);
rc = hif_napi_cpu_migrate(napid,
cpu,
HNC_ACT_RELOCATE);
napid->napi_cpu[cpu].napis = 0;
}
/* in QCA_NAPI_TPUT_LO case, napis MUST == 0 */
break;
}
case NAPI_EVT_TPUT_STATE: {
tput_mode = (enum qca_napi_tput_state)data;
if (tput_mode == QCA_NAPI_TPUT_LO) {
/* from TPUT_HI -> TPUT_LO */
NAPI_DEBUG("%s: Moving to napi_tput_LO state",
__func__);
blacklist_pending = BLACKLIST_OFF_PENDING;
/*
* Ideally we should "collapse" interrupts here, since
* we are "dispersing" interrupts in the "else" case.
* This allows the possibility that our interrupts may
* still be on the perf cluster the next time we enter
* high tput mode. However, the irq_balancer is free
* to move our interrupts to power cluster once
* blacklisting has been turned off in the "else" case.
*/
} else {
/* from TPUT_LO -> TPUT->HI */
NAPI_DEBUG("%s: Moving to napi_tput_HI state",
__func__);
rc = hif_napi_cpu_migrate(napid,
HNC_ANY_CPU,
HNC_ACT_DISPERSE);
blacklist_pending = BLACKLIST_ON_PENDING;
}
napid->napi_mode = tput_mode;
break;
}
case NAPI_EVT_USR_SERIAL: {
unsigned long users = (unsigned long)data;
NAPI_DEBUG("%s: User forced SERIALIZATION; users=%ld",
__func__, users);
rc = hif_napi_cpu_migrate(napid,
HNC_ANY_CPU,
HNC_ACT_COLLAPSE);
if ((users == 0) && (rc == 0))
blacklist_pending = BLACKLIST_ON_PENDING;
break;
}
case NAPI_EVT_USR_NORMAL: {
NAPI_DEBUG("%s: User forced DE-SERIALIZATION", __func__);
/*
* Deserialization timeout is handled at hdd layer;
* just mark current mode to uninitialized to ensure
* it will be set when the delay is over
*/
napid->napi_mode = QCA_NAPI_TPUT_UNINITIALIZED;
break;
}
default: {
HIF_ERROR("%s: unknown event: %d (data=0x%0lx)",
__func__, event, (unsigned long) data);
break;
} /* default */
}; /* switch */
switch (blacklist_pending) {
case BLACKLIST_ON_PENDING:
/* assume the control of WLAN IRQs */
hif_napi_cpu_blacklist(napid, BLACKLIST_ON);
break;
case BLACKLIST_OFF_PENDING:
/* yield the control of WLAN IRQs */
hif_napi_cpu_blacklist(napid, BLACKLIST_OFF);
break;
default: /* nothing to do */
break;
} /* switch blacklist_pending */
/* we want to perform the comparison in lock:
* there is a possiblity of hif_napi_event get called
* from two different contexts (driver unload and cpu hotplug
* notification) and napid->state get changed
* in driver unload context and can lead to race condition
* in cpu hotplug context. Therefore, perform the napid->state
* comparison before releasing lock.
*/
state_changed = (prev_state != napid->state);
qdf_spin_unlock_bh(&(napid->lock));
if (state_changed) {
if (napid->state == ENABLE_NAPI_MASK) {
rc = 1;
for (i = 0; i < CE_COUNT_MAX; i++) {
struct qca_napi_info *napii = napid->napis[i];
if (napii) {
napi = &(napii->napi);
NAPI_DEBUG("%s: enabling NAPI %d",
__func__, i);
napi_enable(napi);
}
}
} else {
rc = 0;
for (i = 0; i < CE_COUNT_MAX; i++) {
struct qca_napi_info *napii = napid->napis[i];
if (napii) {
napi = &(napii->napi);
NAPI_DEBUG("%s: disabling NAPI %d",
__func__, i);
napi_disable(napi);
/* in case it is affined, remove it */
irq_set_affinity_hint(napii->irq, NULL);
}
}
}
} else {
HIF_DBG("%s: no change in hif napi state (still %d)",
__func__, prev_state);
}
NAPI_DEBUG("<--[rc=%d]", rc);
return rc;
}
/**
* hif_napi_enabled() - checks whether NAPI is enabled for given ce or not
* @hif: hif context
* @ce : CE instance (or -1, to check if any CEs are enabled)
*
* Return: bool
*/
int hif_napi_enabled(struct hif_opaque_softc *hif_ctx, int ce)
{
int rc;
struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx);
if (-1 == ce)
rc = ((hif->napi_data.state == ENABLE_NAPI_MASK));
else
rc = ((hif->napi_data.state == ENABLE_NAPI_MASK) &&
(hif->napi_data.ce_map & (0x01 << ce)));
return rc;
};
/**
* hif_napi_enable_irq() - enables bus interrupts after napi_complete
*
* @hif: hif context
* @id : id of NAPI instance calling this (used to determine the CE)
*
* Return: void
*/
inline void hif_napi_enable_irq(struct hif_opaque_softc *hif, int id)
{
struct hif_softc *scn = HIF_GET_SOFTC(hif);
hif_irq_enable(scn, NAPI_ID2PIPE(id));
}
/**
* hif_napi_schedule() - schedules napi, updates stats
* @scn: hif context
* @ce_id: index of napi instance
*
* Return: void
*/
int hif_napi_schedule(struct hif_opaque_softc *hif_ctx, int ce_id)
{
int cpu = smp_processor_id();
struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
struct qca_napi_info *napii;
hif_record_ce_desc_event(scn, ce_id, NAPI_SCHEDULE,
NULL, NULL, 0);
napii = scn->napi_data.napis[ce_id];
if (qdf_unlikely(!napii)) {
HIF_ERROR("%s, scheduling unallocated napi (ce:%d)",
__func__, ce_id);
qdf_atomic_dec(&scn->active_tasklet_cnt);
return false;
}
napii->stats[cpu].napi_schedules++;
NAPI_DEBUG("scheduling napi %d (ce:%d)", napii->id, ce_id);
napi_schedule(&(napii->napi));
return true;
}
/**
* hif_napi_correct_cpu() - correct the interrupt affinity for napi if needed
* @napi_info: pointer to qca_napi_info for the napi instance
*
* Return: true => interrupt already on correct cpu, no correction needed
* false => interrupt on wrong cpu, correction done for cpu affinity
* of the interrupt
*/
static inline
bool hif_napi_correct_cpu(struct qca_napi_info *napi_info)
{
bool right_cpu = true;
int rc = 0;
cpumask_t cpumask;
int cpu;
struct qca_napi_data *napid;
napid = hif_napi_get_all(GET_HIF_OPAQUE_HDL(napi_info->hif_ctx));
if (napid->flags & QCA_NAPI_FEATURE_CPU_CORRECTION) {
cpu = qdf_get_cpu();
if (unlikely((hif_napi_cpu_blacklist(napid,
BLACKLIST_QUERY) > 0) &&
(cpu != napi_info->cpu))) {
right_cpu = false;
NAPI_DEBUG("interrupt on wrong CPU, correcting");
cpumask.bits[0] = (0x01 << napi_info->cpu);
irq_modify_status(napi_info->irq, IRQ_NO_BALANCING, 0);
rc = irq_set_affinity_hint(napi_info->irq,
&cpumask);
irq_modify_status(napi_info->irq, 0, IRQ_NO_BALANCING);
if (rc)
HIF_ERROR("error setting irq affinity hint: %d",
rc);
else
napi_info->stats[cpu].cpu_corrected++;
}
}
return right_cpu;
}
/**
* hif_napi_poll() - NAPI poll routine
* @napi : pointer to NAPI struct as kernel holds it
* @budget:
*
* This is the body of the poll function.
* The poll function is called by kernel. So, there is a wrapper
* function in HDD, which in turn calls this function.
* Two main reasons why the whole thing is not implemented in HDD:
* a) references to things like ce_service that HDD is not aware of
* b) proximity to the implementation of ce_tasklet, which the body
* of this function should be very close to.
*
* NOTE TO THE MAINTAINER:
* Consider this function and ce_tasklet very tightly coupled pairs.
* Any changes to ce_tasklet or this function may likely need to be
* reflected in the counterpart.
*
* Returns:
* int: the amount of work done in this poll (<= budget)
*/
int hif_napi_poll(struct hif_opaque_softc *hif_ctx,
struct napi_struct *napi,
int budget)
{
int rc = 0; /* default: no work done, also takes care of error */
int normalized = 0;
int bucket;
int cpu = smp_processor_id();
bool poll_on_right_cpu;
struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx);
struct qca_napi_info *napi_info;
struct CE_state *ce_state = NULL;
if (unlikely(NULL == hif)) {
HIF_ERROR("%s: hif context is NULL", __func__);
QDF_ASSERT(0);
goto out;
}
napi_info = (struct qca_napi_info *)
container_of(napi, struct qca_napi_info, napi);
NAPI_DEBUG("%s -->(napi(%d, irq=%d), budget=%d)",
__func__, napi_info->id, napi_info->irq, budget);
napi_info->stats[cpu].napi_polls++;
hif_record_ce_desc_event(hif, NAPI_ID2PIPE(napi_info->id),
NAPI_POLL_ENTER, NULL, NULL, cpu);
rc = ce_per_engine_service(hif, NAPI_ID2PIPE(napi_info->id));
NAPI_DEBUG("%s: ce_per_engine_service processed %d msgs",
__func__, rc);
if (napi_info->offld_flush_cb)
napi_info->offld_flush_cb(napi_info->offld_ctx);
/* do not return 0, if there was some work done,
* even if it is below the scale
*/
if (rc) {
napi_info->stats[cpu].napi_workdone += rc;
normalized = (rc / napi_info->scale);
if (normalized == 0)
normalized++;
bucket = normalized / (QCA_NAPI_BUDGET / QCA_NAPI_NUM_BUCKETS);
if (bucket >= QCA_NAPI_NUM_BUCKETS) {
HIF_ERROR("Bad bucket#(%d) > QCA_NAPI_NUM_BUCKETS(%d)"
" (rc=%d/normalized=%d- corrected",
bucket, QCA_NAPI_NUM_BUCKETS, rc, normalized);
bucket = QCA_NAPI_NUM_BUCKETS - 1;
}
napi_info->stats[cpu].napi_budget_uses[bucket]++;
} else {
/* if ce_per engine reports 0, then poll should be terminated */
NAPI_DEBUG("%s:%d: nothing processed by CE. Completing NAPI",
__func__, __LINE__);
}
ce_state = hif->ce_id_to_state[NAPI_ID2PIPE(napi_info->id)];
/*
* Not using the API hif_napi_correct_cpu directly in the if statement
* below since the API may not get evaluated if put at the end if any
* prior condition would evaluate to be true. The CPU correction
* check should kick in every poll.
*/
poll_on_right_cpu = hif_napi_correct_cpu(napi_info);
if ((ce_state) &&
(!ce_check_rx_pending(ce_state) || (0 == rc) ||
!poll_on_right_cpu)) {
napi_info->stats[cpu].napi_completes++;
hif_record_ce_desc_event(hif, ce_state->id, NAPI_COMPLETE,
NULL, NULL, 0);
if (normalized >= budget)
normalized = budget - 1;
napi_complete(napi);
/* enable interrupts */
hif_napi_enable_irq(hif_ctx, napi_info->id);
/* support suspend/resume */
qdf_atomic_dec(&(hif->active_tasklet_cnt));
NAPI_DEBUG("%s:%d: napi_complete + enabling the interrupts",
__func__, __LINE__);
} else {
/* 4.4 kernel NAPI implementation requires drivers to
* return full work when they ask to be re-scheduled,
* or napi_complete and re-start with a fresh interrupt
*/
normalized = budget;
}
hif_record_ce_desc_event(hif, NAPI_ID2PIPE(napi_info->id),
NAPI_POLL_EXIT, NULL, NULL, normalized);
NAPI_DEBUG("%s <--[normalized=%d]", __func__, normalized);
return normalized;
out:
return rc;
}
void hif_update_napi_max_poll_time(struct CE_state *ce_state,
struct qca_napi_info *napi_info,
int cpu_id)
{
unsigned long long napi_poll_time = sched_clock() -
ce_state->ce_service_start_time;
if (napi_poll_time >
napi_info->stats[cpu_id].napi_max_poll_time)
napi_info->stats[cpu_id].napi_max_poll_time = napi_poll_time;
}
#ifdef HELIUMPLUS
/**
*
* hif_napi_update_yield_stats() - update NAPI yield related stats
* @cpu_id: CPU ID for which stats needs to be updates
* @ce_id: Copy Engine ID for which yield stats needs to be updates
* @time_limit_reached: indicates whether the time limit was reached
* @rxpkt_thresh_reached: indicates whether rx packet threshold was reached
*
* Return: None
*/
void hif_napi_update_yield_stats(struct CE_state *ce_state,
bool time_limit_reached,
bool rxpkt_thresh_reached)
{
struct hif_softc *hif;
struct qca_napi_data *napi_data = NULL;
int ce_id = 0;
int cpu_id = 0;
if (unlikely(NULL == ce_state)) {
QDF_ASSERT(NULL != ce_state);
return;
}
hif = ce_state->scn;
if (unlikely(NULL == hif)) {
QDF_ASSERT(NULL != hif);
return;
}
napi_data = &(hif->napi_data);
if (unlikely(NULL == napi_data)) {
QDF_ASSERT(NULL != napi_data);
return;
}
ce_id = ce_state->id;
cpu_id = qdf_get_cpu();
if (unlikely(!napi_data->napis[ce_id])) {
HIF_INFO("%s: NAPI info is NULL for ce id: %d",
__func__, ce_id);
return;
}
if (time_limit_reached)
napi_data->napis[ce_id]->stats[cpu_id].time_limit_reached++;
else
napi_data->napis[ce_id]->stats[cpu_id].rxpkt_thresh_reached++;
hif_update_napi_max_poll_time(ce_state, napi_data->napis[ce_id],
cpu_id);
}
/**
*
* hif_napi_stats() - display NAPI CPU statistics
* @napid: pointer to qca_napi_data
*
* Description:
* Prints the various CPU cores on which the NAPI instances /CEs interrupts
* are being executed. Can be called from outside NAPI layer.
*
* Return: None
*/
void hif_napi_stats(struct qca_napi_data *napid)
{
int i;
struct qca_napi_cpu *cpu;
if (napid == NULL) {
qdf_debug("%s: napiid struct is null", __func__);
return;
}
cpu = napid->napi_cpu;
qdf_debug("NAPI CPU TABLE");
qdf_debug("lilclhead=%d, bigclhead=%d",
napid->lilcl_head, napid->bigcl_head);
for (i = 0; i < NR_CPUS; i++) {
qdf_debug("CPU[%02d]: state:%d crid=%02d clid=%02d crmk:0x%0lx thmk:0x%0lx frq:%d napi = 0x%08x lnk:%d",
i,
cpu[i].state, cpu[i].core_id, cpu[i].cluster_id,
cpu[i].core_mask.bits[0],
cpu[i].thread_mask.bits[0],
cpu[i].max_freq, cpu[i].napis,
cpu[i].cluster_nxt);
}
}
#ifdef FEATURE_NAPI_DEBUG
/*
* Local functions
* - no argument checks, all internal/trusted callers
*/
static void hnc_dump_cpus(struct qca_napi_data *napid)
{
hif_napi_stats(napid);
}
#else
static void hnc_dump_cpus(struct qca_napi_data *napid) { /* no-op */ };
#endif /* FEATURE_NAPI_DEBUG */
/**
* hnc_link_clusters() - partitions to cpu table into clusters
* @napid: pointer to NAPI data
*
* Takes in a CPU topology table and builds two linked lists
* (big cluster cores, list-head at bigcl_head, and little cluster
* cores, list-head at lilcl_head) out of it.
*
* If there are more than two clusters:
* - bigcl_head and lilcl_head will be different,
* - the cluster with highest cpufreq will be considered the "big" cluster.
* If there are more than one with the highest frequency, the *last* of such
* clusters will be designated as the "big cluster"
* - the cluster with lowest cpufreq will be considered the "li'l" cluster.
* If there are more than one clusters with the lowest cpu freq, the *first*
* of such clusters will be designated as the "little cluster"
* - We only support up to 32 clusters
* Return: 0 : OK
* !0: error (at least one of lil/big clusters could not be found)
*/
#define HNC_MIN_CLUSTER 0
#define HNC_MAX_CLUSTER 31
static int hnc_link_clusters(struct qca_napi_data *napid)
{
int rc = 0;
int i;
int it = 0;
uint32_t cl_done = 0x0;
int cl, curcl, curclhead = 0;
int more;
unsigned int lilfrq = INT_MAX;
unsigned int bigfrq = 0;
unsigned int clfrq = 0;
int prev = 0;
struct qca_napi_cpu *cpus = napid->napi_cpu;
napid->lilcl_head = napid->bigcl_head = -1;
do {
more = 0;
it++; curcl = -1;
for (i = 0; i < NR_CPUS; i++) {
cl = cpus[i].cluster_id;
NAPI_DEBUG("Processing cpu[%d], cluster=%d\n",
i, cl);
if ((cl < HNC_MIN_CLUSTER) || (cl > HNC_MAX_CLUSTER)) {
NAPI_DEBUG("Bad cluster (%d). SKIPPED\n", cl);
QDF_ASSERT(0);
/* continue if ASSERTs are disabled */
continue;
};
if (cpumask_weight(&(cpus[i].core_mask)) == 0) {
NAPI_DEBUG("Core mask 0. SKIPPED\n");
continue;
}
if (cl_done & (0x01 << cl)) {
NAPI_DEBUG("Cluster already processed. SKIPPED\n");
continue;
} else {
if (more == 0) {
more = 1;
curcl = cl;
curclhead = i; /* row */
clfrq = cpus[i].max_freq;
prev = -1;
};
if ((curcl >= 0) && (curcl != cl)) {
NAPI_DEBUG("Entry cl(%d) != curcl(%d). SKIPPED\n",
cl, curcl);
continue;
}
if (cpus[i].max_freq != clfrq)
NAPI_DEBUG("WARN: frq(%d)!=clfrq(%d)\n",
cpus[i].max_freq, clfrq);
if (clfrq >= bigfrq) {
bigfrq = clfrq;
napid->bigcl_head = curclhead;
NAPI_DEBUG("bigcl=%d\n", curclhead);
}
if (clfrq < lilfrq) {
lilfrq = clfrq;
napid->lilcl_head = curclhead;
NAPI_DEBUG("lilcl=%d\n", curclhead);
}
if (prev != -1)
cpus[prev].cluster_nxt = i;
prev = i;
}
}
if (curcl >= 0)
cl_done |= (0x01 << curcl);
} while (more);
if (qdf_unlikely((napid->lilcl_head < 0) && (napid->bigcl_head < 0)))
rc = -EFAULT;
hnc_dump_cpus(napid); /* if NAPI_DEBUG */
return rc;
}
#undef HNC_MIN_CLUSTER
#undef HNC_MAX_CLUSTER
/*
* hotplug function group
*/
/**
* hnc_cpu_notify_cb() - handles CPU hotplug events
*
* On transitions to online, we onlu handle the ONLINE event,
* and ignore the PREP events, because we dont want to act too
* early.
* On transtion to offline, we act on PREP events, because
* we may need to move the irqs/NAPIs to another CPU before
* it is actually off-lined.
*
* Return: NOTIFY_OK (dont block action)
*/
static int hnc_cpu_notify_cb(struct notifier_block *nb,
unsigned long action,
void *hcpu)
{
int rc = NOTIFY_OK;
unsigned long cpu = (unsigned long)hcpu;
struct hif_opaque_softc *hif;
struct qca_napi_data *napid = NULL;
NAPI_DEBUG("-->%s(act=%ld, cpu=%ld)", __func__, action, cpu);
napid = qdf_container_of(nb, struct qca_napi_data, hnc_cpu_notifier);
hif = &qdf_container_of(napid, struct hif_softc, napi_data)->osc;
switch (action) {
case CPU_ONLINE:
napid->napi_cpu[cpu].state = QCA_NAPI_CPU_UP;
NAPI_DEBUG("%s: CPU %ld marked %d",
__func__, cpu, napid->napi_cpu[cpu].state);
break;
case CPU_DEAD: /* already dead; we have marked it before, but ... */
case CPU_DEAD_FROZEN:
napid->napi_cpu[cpu].state = QCA_NAPI_CPU_DOWN;
NAPI_DEBUG("%s: CPU %ld marked %d",
__func__, cpu, napid->napi_cpu[cpu].state);
break;
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
napid->napi_cpu[cpu].state = QCA_NAPI_CPU_DOWN;
NAPI_DEBUG("%s: CPU %ld marked %d; updating affinity",
__func__, cpu, napid->napi_cpu[cpu].state);
/**
* we need to move any NAPIs on this CPU out.
* if we are in LO throughput mode, then this is valid
* if the CPU is the the low designated CPU.
*/
hif_napi_event(hif,
NAPI_EVT_CPU_STATE,
(void *)
((cpu << 16) | napid->napi_cpu[cpu].state));
break;
default:
NAPI_DEBUG("%s: ignored. action: %ld", __func__, action);
break;
} /* switch */
NAPI_DEBUG("<--%s [%d]", __func__, rc);
return rc;
}
/**
* hnc_hotplug_hook() - installs a hotplug notifier
* @hif_sc: hif_sc context
* @register: !0 => register , =0 => deregister
*
* Because the callback relies on the data layout of
* struct hif_softc & its napi_data member, this callback
* registration requires that the hif_softc is passed in.
*
* Note that this is different from the cpu notifier used by
* rx_thread (cds_schedule.c).
* We may consider combining these modifiers in the future.
*
* Return: 0: success
* <0: error
*/
static int hnc_hotplug_hook(struct hif_softc *hif_sc, int install)
{
int rc = 0;
NAPI_DEBUG("-->%s(%d)", __func__, install);
if (install) {
hif_sc->napi_data.hnc_cpu_notifier.notifier_call
= hnc_cpu_notify_cb;
rc = register_hotcpu_notifier(
&hif_sc->napi_data.hnc_cpu_notifier);
} else {
unregister_hotcpu_notifier(
&hif_sc->napi_data.hnc_cpu_notifier);
}
NAPI_DEBUG("<--%s()[%d]", __func__, rc);
return rc;
}
/**
* hnc_install_tput() - installs a callback in the throughput detector
* @register: !0 => register; =0: unregister
*
* installs a callback to be called when wifi driver throughput (tx+rx)
* crosses a threshold. Currently, we are using the same criteria as
* TCP ack suppression (500 packets/100ms by default).
*
* Return: 0 : success
* <0: failure
*/
static int hnc_tput_hook(int install)
{
int rc = 0;
/*
* Nothing, until the bw_calculation accepts registration
* it is now hardcoded in the wlan_hdd_main.c::hdd_bus_bw_compute_cbk
* hdd_napi_throughput_policy(...)
*/
return rc;
}
/*
* Implementation of hif_napi_cpu API
*/
/**
* hif_napi_cpu_init() - initialization of irq affinity block
* @ctx: pointer to qca_napi_data
*
* called by hif_napi_create, after the first instance is called
* - builds napi_rss_cpus table from cpu topology
* - links cores of the same clusters together
* - installs hot-plug notifier
* - installs throughput trigger notifier (when such mechanism exists)
*
* Return: 0: OK
* <0: error code
*/
int hif_napi_cpu_init(struct hif_opaque_softc *hif)
{
int rc = 0;
int i;
struct qca_napi_data *napid = &HIF_GET_SOFTC(hif)->napi_data;
struct qca_napi_cpu *cpus = napid->napi_cpu;
NAPI_DEBUG("--> ");
if (cpus[0].state != QCA_NAPI_CPU_UNINITIALIZED) {
NAPI_DEBUG("NAPI RSS table already initialized.\n");
rc = -EALREADY;
goto lab_rss_init;
}
/* build CPU topology table */
for_each_possible_cpu(i) {
cpus[i].state = ((cpumask_test_cpu(i, cpu_online_mask)
? QCA_NAPI_CPU_UP
: QCA_NAPI_CPU_DOWN));
cpus[i].core_id = topology_core_id(i);
cpus[i].cluster_id = topology_physical_package_id(i);
cpumask_copy(&(cpus[i].core_mask),
topology_core_cpumask(i));
cpumask_copy(&(cpus[i].thread_mask),
topology_sibling_cpumask(i));
cpus[i].max_freq = cpufreq_quick_get_max(i);
cpus[i].napis = 0x0;
cpus[i].cluster_nxt = -1; /* invalid */
}
/* link clusters together */
rc = hnc_link_clusters(napid);
if (0 != rc)
goto lab_err_topology;
/* install hotplug notifier */
rc = hnc_hotplug_hook(HIF_GET_SOFTC(hif), 1);
if (0 != rc)
goto lab_err_hotplug;
/* install throughput notifier */
rc = hnc_tput_hook(1);
if (0 == rc)
goto lab_rss_init;
lab_err_hotplug:
hnc_tput_hook(0);
hnc_hotplug_hook(HIF_GET_SOFTC(hif), 0);
lab_err_topology:
memset(napid->napi_cpu, 0, sizeof(struct qca_napi_cpu) * NR_CPUS);
lab_rss_init:
NAPI_DEBUG("<-- [rc=%d]", rc);
return rc;
}
/**
* hif_napi_cpu_deinit() - clean-up of irq affinity block
*
* called by hif_napi_destroy, when the last instance is removed
* - uninstalls throughput and hotplug notifiers
* - clears cpu topology table
* Return: 0: OK
*/
int hif_napi_cpu_deinit(struct hif_opaque_softc *hif)
{
int rc = 0;
struct qca_napi_data *napid = &HIF_GET_SOFTC(hif)->napi_data;
NAPI_DEBUG("-->%s(...)", __func__);
/* uninstall tput notifier */
rc = hnc_tput_hook(0);
/* uninstall hotplug notifier */
rc = hnc_hotplug_hook(HIF_GET_SOFTC(hif), 0);
/* clear the topology table */
memset(napid->napi_cpu, 0, sizeof(struct qca_napi_cpu) * NR_CPUS);
NAPI_DEBUG("<--%s[rc=%d]", __func__, rc);
return rc;
}
/**
* hncm_migrate_to() - migrates a NAPI to a CPU
* @napid: pointer to NAPI block
* @ce_id: CE_id of the NAPI instance
* @didx : index in the CPU topology table for the CPU to migrate to
*
* Migrates NAPI (identified by the CE_id) to the destination core
* Updates the napi_map of the destination entry
*
* Return:
* =0 : success
* <0 : error
*/
static int hncm_migrate_to(struct qca_napi_data *napid,
int napi_ce,
int didx)
{
int rc = 0;
cpumask_t cpumask;
NAPI_DEBUG("-->%s(napi_cd=%d, didx=%d)", __func__, napi_ce, didx);
cpumask.bits[0] = (1 << didx);
if (!napid->napis[napi_ce])
return -EINVAL;
irq_modify_status(napid->napis[napi_ce]->irq, IRQ_NO_BALANCING, 0);
rc = irq_set_affinity_hint(napid->napis[napi_ce]->irq, &cpumask);
/* unmark the napis bitmap in the cpu table */
napid->napi_cpu[napid->napis[napi_ce]->cpu].napis &= ~(0x01 << napi_ce);
/* mark the napis bitmap for the new designated cpu */
napid->napi_cpu[didx].napis |= (0x01 << napi_ce);
napid->napis[napi_ce]->cpu = didx;
NAPI_DEBUG("<--%s[%d]", __func__, rc);
return rc;
}
/**
* hncm_dest_cpu() - finds a destination CPU for NAPI
* @napid: pointer to NAPI block
* @act : RELOCATE | COLLAPSE | DISPERSE
*
* Finds the designated destionation for the next IRQ.
* RELOCATE: translated to either COLLAPSE or DISPERSE based
* on napid->napi_mode (throughput state)
* COLLAPSE: All have the same destination: the first online CPU in lilcl
* DISPERSE: One of the CPU in bigcl, which has the smallest number of
* NAPIs on it
*
* Return: >=0 : index in the cpu topology table
* : < 0 : error
*/
static int hncm_dest_cpu(struct qca_napi_data *napid, int act)
{
int destidx = -1;
int head, i;
NAPI_DEBUG("-->%s(act=%d)", __func__, act);
if (act == HNC_ACT_RELOCATE) {
if (napid->napi_mode == QCA_NAPI_TPUT_LO)
act = HNC_ACT_COLLAPSE;
else
act = HNC_ACT_DISPERSE;
NAPI_DEBUG("%s: act changed from HNC_ACT_RELOCATE to %d",
__func__, act);
}
if (act == HNC_ACT_COLLAPSE) {
head = i = napid->lilcl_head;
retry_collapse:
while (i >= 0) {
if (napid->napi_cpu[i].state == QCA_NAPI_CPU_UP) {
destidx = i;
break;
}
i = napid->napi_cpu[i].cluster_nxt;
}
if ((destidx < 0) && (head == napid->lilcl_head)) {
NAPI_DEBUG("%s: COLLAPSE: no lilcl dest, try bigcl",
__func__);
head = i = napid->bigcl_head;
goto retry_collapse;
}
} else { /* HNC_ACT_DISPERSE */
int smallest = 99; /* all 32 bits full */
int smallidx = -1;
head = i = napid->bigcl_head;
retry_disperse:
while (i >= 0) {
if ((napid->napi_cpu[i].state == QCA_NAPI_CPU_UP) &&
(hweight32(napid->napi_cpu[i].napis) <= smallest)) {
smallest = napid->napi_cpu[i].napis;
smallidx = i;
}
i = napid->napi_cpu[i].cluster_nxt;
}
destidx = smallidx;
if ((destidx < 0) && (head == napid->bigcl_head)) {
NAPI_DEBUG("%s: DISPERSE: no bigcl dest, try lilcl",
__func__);
head = i = napid->lilcl_head;
goto retry_disperse;
}
}
NAPI_DEBUG("<--%s[dest=%d]", __func__, destidx);
return destidx;
}
/**
* hif_napi_cpu_migrate() - migrate IRQs away
* @cpu: -1: all CPUs <n> specific CPU
* @act: COLLAPSE | DISPERSE
*
* Moves IRQs/NAPIs from specific or all CPUs (specified by @cpu) to eligible
* cores. Eligible cores are:
* act=COLLAPSE -> the first online core of the little cluster
* act=DISPERSE -> separate cores of the big cluster, so that each core will
* host minimum number of NAPIs/IRQs (napid->cpus[cpu].napis)
*
* Note that this function is called with a spinlock acquired already.
*
* Return: =0: success
* <0: error
*/
int hif_napi_cpu_migrate(struct qca_napi_data *napid, int cpu, int action)
{
int rc = 0;
struct qca_napi_cpu *cpup;
int i, dind;
uint32_t napis;
NAPI_DEBUG("-->%s(.., cpu=%d, act=%d)",
__func__, cpu, action);
/* the following is really: hif_napi_enabled() with less overhead */
if (napid->ce_map == 0) {
NAPI_DEBUG("%s: NAPI disabled. Not migrating.", __func__);
goto hncm_return;
}
cpup = napid->napi_cpu;
switch (action) {
case HNC_ACT_RELOCATE:
case HNC_ACT_DISPERSE:
case HNC_ACT_COLLAPSE: {
/* first find the src napi set */
if (cpu == HNC_ANY_CPU)
napis = napid->ce_map;
else
napis = cpup[cpu].napis;
/* then clear the napi bitmap on each CPU */
for (i = 0; i < NR_CPUS; i++)
cpup[i].napis = 0;
/* then for each of the NAPIs to disperse: */
for (i = 0; i < CE_COUNT_MAX; i++)
if (napis & (1 << i)) {
/* find a destination CPU */
dind = hncm_dest_cpu(napid, action);
if (dind >= 0) {
NAPI_DEBUG("Migrating NAPI ce%d to %d",
i, dind);
rc = hncm_migrate_to(napid, i, dind);
} else {
NAPI_DEBUG("No dest for NAPI ce%d", i);
hnc_dump_cpus(napid);
rc = -1;
}
}
break;
}
default: {
NAPI_DEBUG("%s: bad action: %d\n", __func__, action);
QDF_BUG(0);
break;
}
} /* switch action */
hncm_return:
hnc_dump_cpus(napid);
return rc;
}
/**
* hif_napi_bl_irq() - calls irq_modify_status to enable/disable blacklisting
* @napid: pointer to qca_napi_data structure
* @bl_flag: blacklist flag to enable/disable blacklisting
*
* The function enables/disables blacklisting for all the copy engine
* interrupts on which NAPI is enabled.
*
* Return: None
*/
static inline void hif_napi_bl_irq(struct qca_napi_data *napid, bool bl_flag)
{
int i;
struct qca_napi_info *napii;
for (i = 0; i < CE_COUNT_MAX; i++) {
/* check if NAPI is enabled on the CE */
if (!(napid->ce_map & (0x01 << i)))
continue;
/*double check that NAPI is allocated for the CE */
napii = napid->napis[i];
if (!(napii))
continue;
if (bl_flag == true)
irq_modify_status(napii->irq,
0, IRQ_NO_BALANCING);
else
irq_modify_status(napii->irq,
IRQ_NO_BALANCING, 0);
HIF_DBG("%s: bl_flag %d CE %d", __func__, bl_flag, i);
}
}
#ifdef CONFIG_SCHED_CORE_CTL
/* Enable this API only if kernel feature - CONFIG_SCHED_CORE_CTL is defined */
static inline int hif_napi_core_ctl_set_boost(bool boost)
{
return core_ctl_set_boost(boost);
}
#else
static inline int hif_napi_core_ctl_set_boost(bool boost)
{
return 0;
}
#endif
/**
* hif_napi_cpu_blacklist() - en(dis)ables blacklisting for NAPI RX interrupts.
* @napid: pointer to qca_napi_data structure
* @op: blacklist operation to perform
*
* The function enables/disables/queries blacklisting for all CE RX
* interrupts with NAPI enabled. Besides blacklisting, it also enables/disables
* core_ctl_set_boost.
* Once blacklisting is enabled, the interrupts will not be managed by the IRQ
* balancer.
*
* Return: -EINVAL, in case IRQ_BLACKLISTING and CORE_CTL_BOOST is not enabled
* for BLACKLIST_QUERY op - blacklist refcount
* for BLACKLIST_ON op - return value from core_ctl_set_boost API
* for BLACKLIST_OFF op - return value from core_ctl_set_boost API
*/
int hif_napi_cpu_blacklist(struct qca_napi_data *napid,
enum qca_blacklist_op op)
{
int rc = 0;
static int ref_count; /* = 0 by the compiler */
uint8_t flags = napid->flags;
bool bl_en = flags & QCA_NAPI_FEATURE_IRQ_BLACKLISTING;
bool ccb_en = flags & QCA_NAPI_FEATURE_CORE_CTL_BOOST;
NAPI_DEBUG("-->%s(%d %d)", __func__, flags, op);
if (!(bl_en && ccb_en)) {
rc = -EINVAL;
goto out;
}
switch (op) {
case BLACKLIST_QUERY:
rc = ref_count;
break;
case BLACKLIST_ON:
ref_count++;
rc = 0;
if (ref_count == 1) {
rc = hif_napi_core_ctl_set_boost(true);
NAPI_DEBUG("boost_on() returns %d - refcnt=%d",
rc, ref_count);
hif_napi_bl_irq(napid, true);
}
break;
case BLACKLIST_OFF:
if (ref_count) {
ref_count--;
rc = 0;
if (ref_count == 0) {
rc = hif_napi_core_ctl_set_boost(false);
NAPI_DEBUG("boost_off() returns %d - refcnt=%d",
rc, ref_count);
hif_napi_bl_irq(napid, false);
}
}
break;
default:
NAPI_DEBUG("Invalid blacklist op: %d", op);
rc = -EINVAL;
} /* switch */
out:
NAPI_DEBUG("<--%s[%d]", __func__, rc);
return rc;
}
/**
* hif_napi_serialize() - [de-]serialize NAPI operations
* @hif: context
* @is_on: 1: serialize, 0: deserialize
*
* hif_napi_serialize(hif, 1) can be called multiple times. It will perform the
* following steps (see hif_napi_event for code):
* - put irqs of all NAPI instances on the same CPU
* - only for the first serialize call: blacklist
*
* hif_napi_serialize(hif, 0):
* - start a timer (multiple of BusBandwidthTimer -- default: 100 msec)
* - at the end of the timer, check the current throughput state and
* implement it.
*/
static unsigned long napi_serialize_reqs;
int hif_napi_serialize(struct hif_opaque_softc *hif, int is_on)
{
int rc = -EINVAL;
if (hif != NULL)
switch (is_on) {
case 0: { /* de-serialize */
rc = hif_napi_event(hif, NAPI_EVT_USR_NORMAL,
(void *) 0);
napi_serialize_reqs = 0;
break;
} /* end de-serialize */
case 1: { /* serialize */
rc = hif_napi_event(hif, NAPI_EVT_USR_SERIAL,
(void *)napi_serialize_reqs++);
break;
} /* end serialize */
default:
break; /* no-op */
} /* switch */
return rc;
}
#endif /* ifdef HELIUMPLUS */