blob: 1b9e9942cb44333d8cf28d6b77597b0b6ad6cd8c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012-2020, The Linux Foundation. All rights reserved.
*/
#include <asm/dma-iommu.h>
#include <linux/dma-iommu.h>
#include <linux/iommu.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include "msm_vidc_debug.h"
#include "msm_vidc_resources.h"
#include "msm_vidc_res_parse.h"
#include "soc/qcom/secure_buffer.h"
enum clock_properties {
CLOCK_PROP_HAS_SCALING = 1 << 0,
CLOCK_PROP_HAS_MEM_RETENTION = 1 << 1,
};
static struct memory_limit_table memory_limit_tbl_mbytes[] = {
/* target_memory_size - max_video_cap */
{12288, 4096}, /* 12 GB - 4 Gb*/
{8192, 3584}, /* 8 GB - 3.5 Gb*/
{6144, 2560}, /* 6 GB - 2.5 Gb*/
{4096, 1536}, /* 4 GB - 1.5 Gb*/
{2048, 768}, /* 2 GB - 0.75 Gb*/
};
static inline struct device *msm_iommu_get_ctx(const char *ctx_name)
{
return NULL;
}
static int msm_vidc_populate_legacy_context_bank(
struct msm_vidc_platform_resources *res);
static size_t get_u32_array_num_elements(struct device_node *np,
char *name)
{
int len;
size_t num_elements = 0;
if (!of_get_property(np, name, &len)) {
d_vpr_e("Failed to read %s from device tree\n", name);
goto fail_read;
}
num_elements = len / sizeof(u32);
if (num_elements <= 0) {
d_vpr_e("%s not specified in device tree\n", name);
goto fail_read;
}
return num_elements;
fail_read:
return 0;
}
static inline void msm_vidc_free_allowed_clocks_table(
struct msm_vidc_platform_resources *res)
{
res->allowed_clks_tbl = NULL;
}
static inline void msm_vidc_free_cycles_per_mb_table(
struct msm_vidc_platform_resources *res)
{
res->clock_freq_tbl.clk_prof_entries = NULL;
}
static inline void msm_vidc_free_reg_table(
struct msm_vidc_platform_resources *res)
{
res->reg_set.reg_tbl = NULL;
}
static inline void msm_vidc_free_qdss_addr_table(
struct msm_vidc_platform_resources *res)
{
res->qdss_addr_set.addr_tbl = NULL;
}
static inline void msm_vidc_free_bus_vectors(
struct msm_vidc_platform_resources *res)
{
kfree(res->bus_set.bus_tbl);
res->bus_set.bus_tbl = NULL;
res->bus_set.count = 0;
}
static inline void msm_vidc_free_buffer_usage_table(
struct msm_vidc_platform_resources *res)
{
res->buffer_usage_set.buffer_usage_tbl = NULL;
}
static inline void msm_vidc_free_regulator_table(
struct msm_vidc_platform_resources *res)
{
int c = 0;
for (c = 0; c < res->regulator_set.count; ++c) {
struct regulator_info *rinfo =
&res->regulator_set.regulator_tbl[c];
rinfo->name = NULL;
}
res->regulator_set.regulator_tbl = NULL;
res->regulator_set.count = 0;
}
static inline void msm_vidc_free_clock_table(
struct msm_vidc_platform_resources *res)
{
res->clock_set.clock_tbl = NULL;
res->clock_set.count = 0;
}
static inline void msm_vidc_free_cx_ipeak_context(
struct msm_vidc_platform_resources *res)
{
cx_ipeak_unregister(res->cx_ipeak_context);
res->cx_ipeak_context = NULL;
}
void msm_vidc_free_platform_resources(
struct msm_vidc_platform_resources *res)
{
msm_vidc_free_clock_table(res);
msm_vidc_free_regulator_table(res);
msm_vidc_free_allowed_clocks_table(res);
msm_vidc_free_reg_table(res);
msm_vidc_free_qdss_addr_table(res);
msm_vidc_free_bus_vectors(res);
msm_vidc_free_buffer_usage_table(res);
msm_vidc_free_cx_ipeak_context(res);
}
static int msm_vidc_load_reg_table(struct msm_vidc_platform_resources *res)
{
struct reg_set *reg_set;
struct platform_device *pdev = res->pdev;
int i;
int rc = 0;
if (!of_find_property(pdev->dev.of_node, "qcom,reg-presets", NULL)) {
/*
* qcom,reg-presets is an optional property. It likely won't be
* present if we don't have any register settings to program
*/
d_vpr_h("reg-presets not found\n");
return 0;
}
reg_set = &res->reg_set;
reg_set->count = get_u32_array_num_elements(pdev->dev.of_node,
"qcom,reg-presets");
reg_set->count /= sizeof(*reg_set->reg_tbl) / sizeof(u32);
if (!reg_set->count) {
d_vpr_h("no elements in reg set\n");
return rc;
}
reg_set->reg_tbl = devm_kzalloc(&pdev->dev, reg_set->count *
sizeof(*(reg_set->reg_tbl)), GFP_KERNEL);
if (!reg_set->reg_tbl) {
d_vpr_e("%s: Failed to alloc register table\n", __func__);
return -ENOMEM;
}
if (of_property_read_u32_array(pdev->dev.of_node, "qcom,reg-presets",
(u32 *)reg_set->reg_tbl, reg_set->count * 2)) {
d_vpr_e("Failed to read register table\n");
msm_vidc_free_reg_table(res);
return -EINVAL;
}
for (i = 0; i < reg_set->count; i++) {
d_vpr_h("reg = %x, value = %x\n",
reg_set->reg_tbl[i].reg, reg_set->reg_tbl[i].value
);
}
return rc;
}
static int msm_vidc_load_qdss_table(struct msm_vidc_platform_resources *res)
{
struct addr_set *qdss_addr_set;
struct platform_device *pdev = res->pdev;
int i;
int rc = 0;
if (!of_find_property(pdev->dev.of_node, "qcom,qdss-presets", NULL)) {
/*
* qcom,qdss-presets is an optional property. It likely won't be
* present if we don't have any register settings to program
*/
d_vpr_h("qdss-presets not found\n");
return rc;
}
qdss_addr_set = &res->qdss_addr_set;
qdss_addr_set->count = get_u32_array_num_elements(pdev->dev.of_node,
"qcom,qdss-presets");
qdss_addr_set->count /= sizeof(*qdss_addr_set->addr_tbl) / sizeof(u32);
if (!qdss_addr_set->count) {
d_vpr_h("no elements in qdss reg set\n");
return rc;
}
qdss_addr_set->addr_tbl = devm_kzalloc(&pdev->dev,
qdss_addr_set->count * sizeof(*qdss_addr_set->addr_tbl),
GFP_KERNEL);
if (!qdss_addr_set->addr_tbl) {
d_vpr_e("%s: Failed to alloc register table\n", __func__);
rc = -ENOMEM;
goto err_qdss_addr_tbl;
}
rc = of_property_read_u32_array(pdev->dev.of_node, "qcom,qdss-presets",
(u32 *)qdss_addr_set->addr_tbl, qdss_addr_set->count * 2);
if (rc) {
d_vpr_e("Failed to read qdss address table\n");
msm_vidc_free_qdss_addr_table(res);
rc = -EINVAL;
goto err_qdss_addr_tbl;
}
for (i = 0; i < qdss_addr_set->count; i++) {
d_vpr_h("qdss addr = %x, value = %x\n",
qdss_addr_set->addr_tbl[i].start,
qdss_addr_set->addr_tbl[i].size);
}
err_qdss_addr_tbl:
return rc;
}
static int msm_vidc_load_subcache_info(struct msm_vidc_platform_resources *res)
{
int rc = 0, num_subcaches = 0, c;
struct platform_device *pdev = res->pdev;
struct subcache_set *subcaches = &res->subcache_set;
num_subcaches = of_property_count_strings(pdev->dev.of_node,
"cache-slice-names");
if (num_subcaches <= 0) {
d_vpr_h("No subcaches found\n");
goto err_load_subcache_table_fail;
}
subcaches->subcache_tbl = devm_kzalloc(&pdev->dev,
sizeof(*subcaches->subcache_tbl) * num_subcaches, GFP_KERNEL);
if (!subcaches->subcache_tbl) {
d_vpr_e("Failed to allocate memory for subcache tbl\n");
rc = -ENOMEM;
goto err_load_subcache_table_fail;
}
subcaches->count = num_subcaches;
d_vpr_h("Found %d subcaches\n", num_subcaches);
for (c = 0; c < num_subcaches; ++c) {
struct subcache_info *vsc = &res->subcache_set.subcache_tbl[c];
of_property_read_string_index(pdev->dev.of_node,
"cache-slice-names", c, &vsc->name);
}
res->sys_cache_present = true;
return 0;
err_load_subcache_table_fail:
res->sys_cache_present = false;
subcaches->count = 0;
subcaches->subcache_tbl = NULL;
return rc;
}
/**
* msm_vidc_load_u32_table() - load dtsi table entries
* @pdev: A pointer to the platform device.
* @of_node: A pointer to the device node.
* @table_name: A pointer to the dtsi table entry name.
* @struct_size: The size of the structure which is nothing but
* a single entry in the dtsi table.
* @table: A pointer to the table pointer which needs to be
* filled by the dtsi table entries.
* @num_elements: Number of elements pointer which needs to be filled
* with the number of elements in the table.
*
* This is a generic implementation to load single or multiple array
* table from dtsi. The array elements should be of size equal to u32.
*
* Return: Return '0' for success else appropriate error value.
*/
int msm_vidc_load_u32_table(struct platform_device *pdev,
struct device_node *of_node, char *table_name, int struct_size,
u32 **table, u32 *num_elements)
{
int rc = 0, num_elemts = 0;
u32 *ptbl = NULL;
if (!of_find_property(of_node, table_name, NULL)) {
d_vpr_h("%s not found\n", table_name);
return 0;
}
num_elemts = get_u32_array_num_elements(of_node, table_name);
if (!num_elemts) {
d_vpr_e("no elements in %s\n", table_name);
return 0;
}
num_elemts /= struct_size / sizeof(u32);
ptbl = devm_kzalloc(&pdev->dev, num_elemts * struct_size, GFP_KERNEL);
if (!ptbl) {
d_vpr_e("Failed to alloc table %s\n", table_name);
return -ENOMEM;
}
if (of_property_read_u32_array(of_node, table_name, ptbl,
num_elemts * struct_size / sizeof(u32))) {
d_vpr_e("Failed to read %s\n", table_name);
return -EINVAL;
}
*table = ptbl;
if (num_elements)
*num_elements = num_elemts;
return rc;
}
EXPORT_SYMBOL(msm_vidc_load_u32_table);
/* A comparator to compare loads (needed later on) */
static int cmp(const void *a, const void *b)
{
/* want to sort in reverse so flip the comparison */
return ((struct allowed_clock_rates_table *)b)->clock_rate -
((struct allowed_clock_rates_table *)a)->clock_rate;
}
static int msm_vidc_load_allowed_clocks_table(
struct msm_vidc_platform_resources *res)
{
int rc = 0;
struct platform_device *pdev = res->pdev;
if (!of_find_property(pdev->dev.of_node,
"qcom,allowed-clock-rates", NULL)) {
d_vpr_h("allowed-clock-rates not found\n");
return 0;
}
rc = msm_vidc_load_u32_table(pdev, pdev->dev.of_node,
"qcom,allowed-clock-rates",
sizeof(*res->allowed_clks_tbl),
(u32 **)&res->allowed_clks_tbl,
&res->allowed_clks_tbl_size);
if (rc) {
d_vpr_e("%s: failed to read allowed clocks table\n", __func__);
return rc;
}
sort(res->allowed_clks_tbl, res->allowed_clks_tbl_size,
sizeof(*res->allowed_clks_tbl), cmp, NULL);
return 0;
}
static int msm_vidc_populate_mem_cdsp(struct device *dev,
struct msm_vidc_platform_resources *res)
{
res->mem_cdsp.dev = dev;
return 0;
}
static int msm_vidc_populate_bus(struct device *dev,
struct msm_vidc_platform_resources *res)
{
struct bus_set *buses = &res->bus_set;
const char *temp_name = NULL;
struct bus_info *bus = NULL, *temp_table;
u32 range[2];
int rc = 0;
temp_table = krealloc(buses->bus_tbl, sizeof(*temp_table) *
(buses->count + 1), GFP_KERNEL);
if (!temp_table) {
d_vpr_e("%s: Failed to allocate memory", __func__);
rc = -ENOMEM;
goto err_bus;
}
buses->bus_tbl = temp_table;
bus = &buses->bus_tbl[buses->count];
memset(bus, 0x0, sizeof(struct bus_info));
rc = of_property_read_string(dev->of_node, "label", &temp_name);
if (rc) {
d_vpr_e("'label' not found in node\n");
goto err_bus;
}
/* need a non-const version of name, hence copying it over */
bus->name = devm_kstrdup(dev, temp_name, GFP_KERNEL);
if (!bus->name) {
rc = -ENOMEM;
goto err_bus;
}
rc = of_property_read_u32(dev->of_node, "qcom,bus-master",
&bus->master);
if (rc) {
d_vpr_e("'bus-master' not found in node\n");
goto err_bus;
}
rc = of_property_read_u32(dev->of_node, "qcom,bus-slave", &bus->slave);
if (rc) {
d_vpr_e("'bus-slave' not found in node\n");
goto err_bus;
}
rc = of_property_read_string(dev->of_node, "qcom,mode",
&bus->mode);
if (!rc && !strcmp(bus->mode, "performance"))
bus->is_prfm_mode = true;
rc = of_property_read_u32_array(dev->of_node, "qcom,bus-range-kbps",
range, ARRAY_SIZE(range));
if (rc) {
rc = 0;
d_vpr_h("'bus-range' not found defaulting to <0 INT_MAX>\n");
range[0] = 0;
range[1] = INT_MAX;
}
bus->range[0] = range[0]; /* min */
bus->range[1] = range[1]; /* max */
buses->count++;
bus->dev = dev;
d_vpr_h("Found bus %s [%d->%d] with mode %s\n",
bus->name, bus->master, bus->slave, bus->mode);
err_bus:
return rc;
}
static int msm_vidc_load_buffer_usage_table(
struct msm_vidc_platform_resources *res)
{
int rc = 0;
struct platform_device *pdev = res->pdev;
struct buffer_usage_set *buffer_usage_set = &res->buffer_usage_set;
if (!of_find_property(pdev->dev.of_node,
"qcom,buffer-type-tz-usage-table", NULL)) {
/*
* qcom,buffer-type-tz-usage-table is an optional property. It
* likely won't be present if the core doesn't support content
* protection
*/
d_vpr_h("buffer-type-tz-usage-table not found\n");
return 0;
}
buffer_usage_set->count = get_u32_array_num_elements(
pdev->dev.of_node, "qcom,buffer-type-tz-usage-table");
buffer_usage_set->count /=
sizeof(*buffer_usage_set->buffer_usage_tbl) / sizeof(u32);
if (!buffer_usage_set->count) {
d_vpr_h("no elements in buffer usage set\n");
return 0;
}
buffer_usage_set->buffer_usage_tbl = devm_kzalloc(&pdev->dev,
buffer_usage_set->count *
sizeof(*buffer_usage_set->buffer_usage_tbl),
GFP_KERNEL);
if (!buffer_usage_set->buffer_usage_tbl) {
d_vpr_e("%s: Failed to alloc buffer usage table\n",
__func__);
rc = -ENOMEM;
goto err_load_buf_usage;
}
rc = of_property_read_u32_array(pdev->dev.of_node,
"qcom,buffer-type-tz-usage-table",
(u32 *)buffer_usage_set->buffer_usage_tbl,
buffer_usage_set->count *
sizeof(*buffer_usage_set->buffer_usage_tbl) / sizeof(u32));
if (rc) {
d_vpr_e("Failed to read buffer usage table\n");
goto err_load_buf_usage;
}
return 0;
err_load_buf_usage:
msm_vidc_free_buffer_usage_table(res);
return rc;
}
static int msm_vidc_load_regulator_table(
struct msm_vidc_platform_resources *res)
{
int rc = 0;
struct platform_device *pdev = res->pdev;
struct regulator_set *regulators = &res->regulator_set;
struct device_node *domains_parent_node = NULL;
struct property *domains_property = NULL;
int reg_count = 0;
regulators->count = 0;
regulators->regulator_tbl = NULL;
domains_parent_node = pdev->dev.of_node;
for_each_property_of_node(domains_parent_node, domains_property) {
const char *search_string = "-supply";
char *supply;
bool matched = false;
/* check if current property is possibly a regulator */
supply = strnstr(domains_property->name, search_string,
strlen(domains_property->name) + 1);
matched = supply && (*(supply + strlen(search_string)) == '\0');
if (!matched)
continue;
reg_count++;
}
regulators->regulator_tbl = devm_kzalloc(&pdev->dev,
sizeof(*regulators->regulator_tbl) *
reg_count, GFP_KERNEL);
if (!regulators->regulator_tbl) {
rc = -ENOMEM;
d_vpr_e("Failed to alloc memory for regulator table\n");
goto err_reg_tbl_alloc;
}
for_each_property_of_node(domains_parent_node, domains_property) {
const char *search_string = "-supply";
char *supply;
bool matched = false;
struct device_node *regulator_node = NULL;
struct regulator_info *rinfo = NULL;
/* check if current property is possibly a regulator */
supply = strnstr(domains_property->name, search_string,
strlen(domains_property->name) + 1);
matched = supply && (supply[strlen(search_string)] == '\0');
if (!matched)
continue;
/* make sure prop isn't being misused */
regulator_node = of_parse_phandle(domains_parent_node,
domains_property->name, 0);
if (IS_ERR(regulator_node)) {
d_vpr_e("%s is not a phandle\n",
domains_property->name);
continue;
}
regulators->count++;
/* populate regulator info */
rinfo = &regulators->regulator_tbl[regulators->count - 1];
rinfo->name = devm_kzalloc(&pdev->dev,
(supply - domains_property->name) + 1, GFP_KERNEL);
if (!rinfo->name) {
rc = -ENOMEM;
d_vpr_e("Failed to alloc memory for regulator name\n");
goto err_reg_name_alloc;
}
strlcpy(rinfo->name, domains_property->name,
(supply - domains_property->name) + 1);
rinfo->has_hw_power_collapse = of_property_read_bool(
regulator_node, "qcom,support-hw-trigger");
d_vpr_h("Found regulator %s: h/w collapse = %s\n",
rinfo->name,
rinfo->has_hw_power_collapse ? "yes" : "no");
}
if (!regulators->count)
d_vpr_h("No regulators found");
return 0;
err_reg_name_alloc:
err_reg_tbl_alloc:
msm_vidc_free_regulator_table(res);
return rc;
}
static int msm_vidc_load_clock_table(
struct msm_vidc_platform_resources *res)
{
int rc = 0, num_clocks = 0, c = 0;
struct platform_device *pdev = res->pdev;
int *clock_props = NULL;
struct clock_set *clocks = &res->clock_set;
num_clocks = of_property_count_strings(pdev->dev.of_node,
"clock-names");
if (num_clocks <= 0) {
d_vpr_h("No clocks found\n");
clocks->count = 0;
rc = 0;
goto err_load_clk_table_fail;
}
clock_props = devm_kzalloc(&pdev->dev, num_clocks *
sizeof(*clock_props), GFP_KERNEL);
if (!clock_props) {
d_vpr_e("No memory to read clock properties\n");
rc = -ENOMEM;
goto err_load_clk_table_fail;
}
rc = of_property_read_u32_array(pdev->dev.of_node,
"qcom,clock-configs", clock_props,
num_clocks);
if (rc) {
d_vpr_e("Failed to read clock properties: %d\n", rc);
goto err_load_clk_prop_fail;
}
clocks->clock_tbl = devm_kzalloc(&pdev->dev, sizeof(*clocks->clock_tbl)
* num_clocks, GFP_KERNEL);
if (!clocks->clock_tbl) {
d_vpr_e("Failed to allocate memory for clock tbl\n");
rc = -ENOMEM;
goto err_load_clk_prop_fail;
}
clocks->count = num_clocks;
d_vpr_h("Found %d clocks\n", num_clocks);
for (c = 0; c < num_clocks; ++c) {
struct clock_info *vc = &res->clock_set.clock_tbl[c];
of_property_read_string_index(pdev->dev.of_node,
"clock-names", c, &vc->name);
if (clock_props[c] & CLOCK_PROP_HAS_SCALING) {
vc->has_scaling = true;
} else {
vc->has_scaling = false;
}
if (clock_props[c] & CLOCK_PROP_HAS_MEM_RETENTION)
vc->has_mem_retention = true;
else
vc->has_mem_retention = false;
d_vpr_h("Found clock %s: scale-able = %s\n", vc->name,
vc->has_scaling ? "yes" : "no");
}
return 0;
err_load_clk_prop_fail:
err_load_clk_table_fail:
return rc;
}
static int msm_vidc_load_reset_table(
struct msm_vidc_platform_resources *res)
{
struct platform_device *pdev = res->pdev;
struct reset_set *rst = &res->reset_set;
int num_clocks = 0, c = 0;
num_clocks = of_property_count_strings(pdev->dev.of_node,
"reset-names");
if (num_clocks <= 0) {
d_vpr_h("No reset clocks found\n");
rst->count = 0;
return 0;
}
rst->reset_tbl = devm_kcalloc(&pdev->dev, num_clocks,
sizeof(*rst->reset_tbl), GFP_KERNEL);
if (!rst->reset_tbl)
return -ENOMEM;
rst->count = num_clocks;
d_vpr_h("Found %d reset clocks\n", num_clocks);
for (c = 0; c < num_clocks; ++c) {
struct reset_info *rc = &res->reset_set.reset_tbl[c];
of_property_read_string_index(pdev->dev.of_node,
"reset-names", c, &rc->name);
}
return 0;
}
static int msm_decide_dt_node(
struct msm_vidc_platform_resources *res)
{
struct platform_device *pdev = res->pdev;
int rc = 0;
u32 sku_index = 0;
rc = of_property_read_u32(pdev->dev.of_node, "sku-index",
&sku_index);
if (rc) {
d_vpr_h("'sku_index' not found in node\n");
return 0;
}
if (sku_index != res->sku_version) {
d_vpr_h("Failed to parse dt: sku_index %d sku_version %d\n",
sku_index, res->sku_version);
return -EINVAL;
}
return 0;
}
static int find_key_value(struct msm_vidc_platform_data *platform_data,
const char *key)
{
int i = 0;
struct msm_vidc_common_data *common_data = platform_data->common_data;
int size = platform_data->common_data_length;
for (i = 0; i < size; i++) {
if (!strcmp(common_data[i].key, key))
return common_data[i].value;
}
return 0;
}
int read_platform_resources_from_drv_data(
struct msm_vidc_core *core)
{
struct msm_vidc_platform_data *platform_data;
struct msm_vidc_platform_resources *res;
int rc = 0;
if (!core || !core->platform_data) {
d_vpr_e("%s: Invalid data\n", __func__);
return -ENOENT;
}
platform_data = core->platform_data;
res = &core->resources;
res->codecs = platform_data->codecs;
res->codecs_count = platform_data->codecs_count;
res->codec_caps = platform_data->codec_caps;
res->codec_caps_count = platform_data->codec_caps_count;
res->codec_data_count = platform_data->codec_data_length;
res->codec_data = platform_data->codec_data;
res->sku_version = platform_data->sku_version;
res->mem_limit_tbl = memory_limit_tbl_mbytes;
res->memory_limit_table_size =
ARRAY_SIZE(memory_limit_tbl_mbytes);
res->fw_name = "venus";
d_vpr_h("Firmware filename: %s\n", res->fw_name);
res->max_load = find_key_value(platform_data,
"qcom,max-hw-load");
res->max_image_load = find_key_value(platform_data,
"qcom,max-image-load");
res->max_mbpf = find_key_value(platform_data,
"qcom,max-mbpf");
res->max_hq_mbs_per_frame = find_key_value(platform_data,
"qcom,max-hq-mbs-per-frame");
res->max_hq_mbs_per_sec = find_key_value(platform_data,
"qcom,max-hq-mbs-per-sec");
res->max_bframe_mbs_per_frame = find_key_value(platform_data,
"qcom,max-b-frame-mbs-per-frame");
res->max_bframe_mbs_per_sec = find_key_value(platform_data,
"qcom,max-b-frame-mbs-per-sec");
res->sw_power_collapsible = find_key_value(platform_data,
"qcom,sw-power-collapse");
res->never_unload_fw = find_key_value(platform_data,
"qcom,never-unload-fw");
res->debug_timeout = find_key_value(platform_data,
"qcom,debug-timeout");
res->pm_qos_latency_us = find_key_value(platform_data,
"qcom,pm-qos-latency-us");
res->max_secure_inst_count = find_key_value(platform_data,
"qcom,max-secure-instances");
res->slave_side_cp = find_key_value(platform_data,
"qcom,slave-side-cp");
res->thermal_mitigable = find_key_value(platform_data,
"qcom,enable-thermal-mitigation");
res->msm_vidc_pwr_collapse_delay = find_key_value(platform_data,
"qcom,power-collapse-delay");
res->msm_vidc_firmware_unload_delay = find_key_value(platform_data,
"qcom,fw-unload-delay");
res->msm_vidc_hw_rsp_timeout = find_key_value(platform_data,
"qcom,hw-resp-timeout");
res->cvp_internal = find_key_value(platform_data,
"qcom,cvp-internal");
res->cvp_external = find_key_value(platform_data,
"qcom,cvp-external");
res->non_fatal_pagefaults = find_key_value(platform_data,
"qcom,domain-attr-non-fatal-faults");
res->cache_pagetables = find_key_value(platform_data,
"qcom,domain-attr-cache-pagetables");
res->decode_batching = find_key_value(platform_data,
"qcom,decode-batching");
res->batch_timeout = find_key_value(platform_data,
"qcom,batch-timeout");
res->dcvs = find_key_value(platform_data,
"qcom,dcvs");
res->fw_cycles = find_key_value(platform_data,
"qcom,fw-cycles");
res->fw_vpp_cycles = find_key_value(platform_data,
"qcom,fw-vpp-cycles");
res->avsync_window_size = find_key_value(platform_data,
"qcom,avsync-window-size");
res->csc_coeff_data = &platform_data->csc_data;
res->vpu_ver = platform_data->vpu_ver;
res->ubwc_config = platform_data->ubwc_config;
return rc;
}
static int msm_vidc_populate_cx_ipeak_context(
struct msm_vidc_platform_resources *res)
{
struct platform_device *pdev = res->pdev;
int rc = 0;
if (of_find_property(pdev->dev.of_node,
"qcom,cx-ipeak-data", NULL))
res->cx_ipeak_context = cx_ipeak_register(
pdev->dev.of_node, "qcom,cx-ipeak-data");
else
return rc;
if (IS_ERR(res->cx_ipeak_context)) {
rc = PTR_ERR(res->cx_ipeak_context);
if (rc == -EPROBE_DEFER)
d_vpr_h("cx-ipeak register failed. Deferring probe!");
else
d_vpr_e("cx-ipeak register failed. rc: %d", rc);
res->cx_ipeak_context = NULL;
return rc;
}
if (res->cx_ipeak_context)
d_vpr_h("cx-ipeak register successful");
else
d_vpr_h("cx-ipeak register not implemented");
of_property_read_u32(pdev->dev.of_node,
"qcom,clock-freq-threshold",
&res->clk_freq_threshold);
d_vpr_h("cx ipeak threshold frequency = %u\n",
res->clk_freq_threshold);
return rc;
}
int read_platform_resources_from_dt(
struct msm_vidc_platform_resources *res)
{
struct platform_device *pdev = res->pdev;
struct resource *kres = NULL;
int rc = 0;
uint32_t firmware_base = 0;
if (!pdev->dev.of_node) {
d_vpr_e("DT node not found\n");
return -ENOENT;
}
rc = msm_decide_dt_node(res);
if (rc)
return rc;
INIT_LIST_HEAD(&res->context_banks);
res->firmware_base = (phys_addr_t)firmware_base;
kres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
res->register_base = kres ? kres->start : -1;
res->register_size = kres ? (kres->end + 1 - kres->start) : -1;
kres = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
res->irq = kres ? kres->start : -1;
rc = msm_vidc_load_subcache_info(res);
if (rc)
d_vpr_e("Failed to load subcache info: %d\n", rc);
rc = msm_vidc_load_qdss_table(res);
if (rc)
d_vpr_e("Failed to load qdss reg table: %d\n", rc);
rc = msm_vidc_load_reg_table(res);
if (rc) {
d_vpr_e("Failed to load reg table: %d\n", rc);
goto err_load_reg_table;
}
rc = msm_vidc_load_buffer_usage_table(res);
if (rc) {
d_vpr_e("Failed to load buffer usage table: %d\n", rc);
goto err_load_buffer_usage_table;
}
rc = msm_vidc_load_regulator_table(res);
if (rc) {
d_vpr_e("Failed to load list of regulators %d\n", rc);
goto err_load_regulator_table;
}
rc = msm_vidc_load_clock_table(res);
if (rc) {
d_vpr_e("Failed to load clock table: %d\n", rc);
goto err_load_clock_table;
}
rc = msm_vidc_load_allowed_clocks_table(res);
if (rc) {
d_vpr_e("Failed to load allowed clocks table: %d\n", rc);
goto err_load_allowed_clocks_table;
}
rc = msm_vidc_load_reset_table(res);
if (rc) {
d_vpr_e("Failed to load reset table: %d\n", rc);
goto err_load_reset_table;
}
rc = msm_vidc_populate_legacy_context_bank(res);
if (rc) {
d_vpr_e("Failed to setup context banks %d\n", rc);
goto err_setup_legacy_cb;
}
rc = msm_vidc_populate_cx_ipeak_context(res);
if (rc) {
d_vpr_e("Failed to setup cx-ipeak %d\n", rc);
goto err_register_cx_ipeak;
}
return rc;
err_register_cx_ipeak:
msm_vidc_free_cx_ipeak_context(res);
err_setup_legacy_cb:
err_load_reset_table:
msm_vidc_free_allowed_clocks_table(res);
err_load_allowed_clocks_table:
msm_vidc_free_clock_table(res);
err_load_clock_table:
msm_vidc_free_regulator_table(res);
err_load_regulator_table:
msm_vidc_free_buffer_usage_table(res);
err_load_buffer_usage_table:
msm_vidc_free_reg_table(res);
err_load_reg_table:
return rc;
}
static int msm_vidc_setup_context_bank(struct msm_vidc_platform_resources *res,
struct context_bank_info *cb, struct device *dev)
{
int rc = 0;
struct bus_type *bus;
if (!dev || !cb || !res) {
d_vpr_e("%s: Invalid Input params\n", __func__);
return -EINVAL;
}
cb->dev = dev;
bus = cb->dev->bus;
if (IS_ERR_OR_NULL(bus)) {
d_vpr_e("%s: failed to get bus type\n", __func__);
rc = PTR_ERR(bus) ? PTR_ERR(bus) : -ENODEV;
goto remove_cb;
}
cb->domain = iommu_get_domain_for_dev(cb->dev);
/*
* When memory is fragmented, below configuration increases the
* possibility to get a mapping for buffer in the configured CB.
*/
if (!strcmp(cb->name, "venus_ns"))
iommu_dma_enable_best_fit_algo(cb->dev);
/*
* configure device segment size and segment boundary to ensure
* iommu mapping returns one mapping (which is required for partial
* cache operations)
*/
if (!dev->dma_parms)
dev->dma_parms =
devm_kzalloc(dev, sizeof(*dev->dma_parms), GFP_KERNEL);
dma_set_max_seg_size(dev, DMA_BIT_MASK(32));
dma_set_seg_boundary(dev, (unsigned long)DMA_BIT_MASK(64));
d_vpr_h("Attached %s and created mapping\n", dev_name(dev));
d_vpr_h(
"Context bank: %s, buffer_type: %#x, is_secure: %d, address range start: %#x, size: %#x, dev: %pK, domain: %pK",
cb->name, cb->buffer_type, cb->is_secure, cb->addr_range.start,
cb->addr_range.size, cb->dev, cb->domain);
remove_cb:
return rc;
}
int msm_vidc_smmu_fault_handler(struct iommu_domain *domain,
struct device *dev, unsigned long iova, int flags, void *token)
{
struct msm_vidc_core *core = token;
if (!domain || !core) {
d_vpr_e("%s: invalid params %pK %pK\n",
__func__, domain, core);
return -EINVAL;
}
if (core->smmu_fault_handled) {
if (core->resources.non_fatal_pagefaults) {
dprintk_ratelimit(VIDC_ERR,
"%s: non-fatal pagefault address: %lx\n",
__func__, iova);
return 0;
}
}
d_vpr_e("%s: faulting address: %lx\n", __func__, iova);
core->smmu_fault_handled = true;
msm_comm_print_insts_info(core);
/*
* Return -EINVAL to elicit the default behaviour of smmu driver.
* If we return -EINVAL, then smmu driver assumes page fault handler
* is not installed and prints a list of useful debug information like
* FAR, SID etc. This information is not printed if we return 0.
*/
return -EINVAL;
}
static int msm_vidc_populate_context_bank(struct device *dev,
struct msm_vidc_core *core)
{
int rc = 0;
struct context_bank_info *cb = NULL;
struct device_node *np = NULL;
if (!dev || !core) {
d_vpr_e("%s: invalid inputs\n", __func__);
return -EINVAL;
}
np = dev->of_node;
cb = devm_kzalloc(dev, sizeof(*cb), GFP_KERNEL);
if (!cb) {
d_vpr_e("%s: Failed to allocate cb\n", __func__);
return -ENOMEM;
}
INIT_LIST_HEAD(&cb->list);
mutex_lock(&core->resources.cb_lock);
list_add_tail(&cb->list, &core->resources.context_banks);
mutex_unlock(&core->resources.cb_lock);
rc = of_property_read_string(np, "label", &cb->name);
if (rc) {
d_vpr_h("Failed to read cb label from device tree\n");
rc = 0;
}
d_vpr_h("%s: context bank has name %s\n", __func__, cb->name);
rc = of_property_read_u32_array(np, "virtual-addr-pool",
(u32 *)&cb->addr_range, 2);
if (rc) {
d_vpr_e("Could not read addr pool: context bank: %s %d\n",
cb->name, rc);
goto err_setup_cb;
}
cb->is_secure = of_property_read_bool(np, "qcom,secure-context-bank");
d_vpr_h("context bank %s: secure = %d\n",
cb->name, cb->is_secure);
/* setup buffer type for each sub device*/
rc = of_property_read_u32(np, "buffer-types", &cb->buffer_type);
if (rc) {
d_vpr_e("failed to load buffer_type info %d\n", rc);
rc = -ENOENT;
goto err_setup_cb;
}
d_vpr_h("context bank %s address start %x size %x buffer_type %x\n",
cb->name, cb->addr_range.start,
cb->addr_range.size, cb->buffer_type);
rc = msm_vidc_setup_context_bank(&core->resources, cb, dev);
if (rc) {
d_vpr_e("Cannot setup context bank %d\n", rc);
goto err_setup_cb;
}
iommu_set_fault_handler(cb->domain,
msm_vidc_smmu_fault_handler, (void *)core);
return 0;
err_setup_cb:
list_del(&cb->list);
return rc;
}
static int msm_vidc_populate_legacy_context_bank(
struct msm_vidc_platform_resources *res)
{
int rc = 0;
struct platform_device *pdev = NULL;
struct device_node *domains_parent_node = NULL;
struct device_node *domains_child_node = NULL;
struct device_node *ctx_node = NULL;
struct context_bank_info *cb;
if (!res || !res->pdev) {
d_vpr_e("%s: invalid inputs\n", __func__);
return -EINVAL;
}
pdev = res->pdev;
domains_parent_node = of_find_node_by_name(pdev->dev.of_node,
"qcom,vidc-iommu-domains");
if (!domains_parent_node) {
d_vpr_h("%s: legacy iommu domains not present\n", __func__);
return 0;
}
/* set up each context bank for legacy DT bindings*/
for_each_child_of_node(domains_parent_node,
domains_child_node) {
cb = devm_kzalloc(&pdev->dev, sizeof(*cb), GFP_KERNEL);
if (!cb) {
d_vpr_e("%s: Failed to allocate cb\n", __func__);
return -ENOMEM;
}
INIT_LIST_HEAD(&cb->list);
mutex_lock(&res->cb_lock);
list_add_tail(&cb->list, &res->context_banks);
mutex_unlock(&res->cb_lock);
ctx_node = of_parse_phandle(domains_child_node,
"qcom,vidc-domain-phandle", 0);
if (!ctx_node) {
d_vpr_e("%s: Unable to parse pHandle\n", __func__);
rc = -EBADHANDLE;
goto err_setup_cb;
}
rc = of_property_read_string(ctx_node, "label", &(cb->name));
if (rc) {
d_vpr_e("%s: Could not find label\n", __func__);
goto err_setup_cb;
}
rc = of_property_read_u32_array(ctx_node,
"qcom,virtual-addr-pool", (u32 *)&cb->addr_range, 2);
if (rc) {
d_vpr_e("%s: Could not read addr pool: %s (%d)\n",
__func__, cb->name, rc);
goto err_setup_cb;
}
cb->is_secure =
of_property_read_bool(ctx_node, "qcom,secure-domain");
rc = of_property_read_u32(domains_child_node,
"qcom,vidc-buffer-types", &cb->buffer_type);
if (rc) {
d_vpr_e("%s: Could not read buffer type (%d)\n",
__func__, rc);
goto err_setup_cb;
}
cb->dev = msm_iommu_get_ctx(cb->name);
if (IS_ERR_OR_NULL(cb->dev)) {
d_vpr_e("%s: could not get device for cb %s\n",
__func__, cb->name);
rc = -ENOENT;
goto err_setup_cb;
}
rc = msm_vidc_setup_context_bank(res, cb, cb->dev);
if (rc) {
d_vpr_e("Cannot setup context bank %d\n", rc);
goto err_setup_cb;
}
d_vpr_h(
"context bank %s secure %d addr start = %#x size = %#x buffer_type = %#x\n",
cb->name, cb->is_secure, cb->addr_range.start,
cb->addr_range.size, cb->buffer_type);
}
return rc;
err_setup_cb:
list_del(&cb->list);
return rc;
}
int read_context_bank_resources_from_dt(struct platform_device *pdev)
{
struct msm_vidc_core *core;
int rc = 0;
if (!pdev) {
d_vpr_e("Invalid platform device\n");
return -EINVAL;
} else if (!pdev->dev.parent) {
d_vpr_e("Failed to find a parent for %s\n",
dev_name(&pdev->dev));
return -ENODEV;
}
core = dev_get_drvdata(pdev->dev.parent);
if (!core) {
d_vpr_e("Failed to find cookie in parent device %s",
dev_name(pdev->dev.parent));
return -EINVAL;
}
rc = msm_vidc_populate_context_bank(&pdev->dev, core);
if (rc)
d_vpr_e("Failed to probe context bank\n");
else
d_vpr_h("Successfully probed context bank\n");
return rc;
}
int read_bus_resources_from_dt(struct platform_device *pdev)
{
struct msm_vidc_core *core;
if (!pdev) {
d_vpr_e("Invalid platform device\n");
return -EINVAL;
} else if (!pdev->dev.parent) {
d_vpr_e("Failed to find a parent for %s\n",
dev_name(&pdev->dev));
return -ENODEV;
}
core = dev_get_drvdata(pdev->dev.parent);
if (!core) {
d_vpr_e("Failed to find cookie in parent device %s",
dev_name(pdev->dev.parent));
return -EINVAL;
}
return msm_vidc_populate_bus(&pdev->dev, &core->resources);
}
int read_mem_cdsp_resources_from_dt(struct platform_device *pdev)
{
struct msm_vidc_core *core;
if (!pdev) {
d_vpr_e("%s: invalid platform device\n", __func__);
return -EINVAL;
} else if (!pdev->dev.parent) {
d_vpr_e("Failed to find a parent for %s\n",
dev_name(&pdev->dev));
return -ENODEV;
}
core = dev_get_drvdata(pdev->dev.parent);
if (!core) {
d_vpr_e("Failed to find cookie in parent device %s",
dev_name(pdev->dev.parent));
return -EINVAL;
}
return msm_vidc_populate_mem_cdsp(&pdev->dev, &core->resources);
}