blob: 4eb859c31922be7c1d4976fe8982f0a1a75d6368 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2019, The Linux Foundation. All rights reserved.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/delay.h>
#include <linux/usb/usbpd.h>
#include "pll_drv.h"
#include "dp_pll.h"
#include "dp_pll_10nm.h"
#define DP_PHY_REVISION_ID0 0x0000
#define DP_PHY_REVISION_ID1 0x0004
#define DP_PHY_REVISION_ID2 0x0008
#define DP_PHY_REVISION_ID3 0x000C
#define DP_PHY_CFG 0x0010
#define DP_PHY_PD_CTL 0x0018
#define DP_PHY_MODE 0x001C
#define DP_PHY_AUX_CFG0 0x0020
#define DP_PHY_AUX_CFG1 0x0024
#define DP_PHY_AUX_CFG2 0x0028
#define DP_PHY_AUX_CFG3 0x002C
#define DP_PHY_AUX_CFG4 0x0030
#define DP_PHY_AUX_CFG5 0x0034
#define DP_PHY_AUX_CFG6 0x0038
#define DP_PHY_AUX_CFG7 0x003C
#define DP_PHY_AUX_CFG8 0x0040
#define DP_PHY_AUX_CFG9 0x0044
#define DP_PHY_AUX_INTERRUPT_MASK 0x0048
#define DP_PHY_AUX_INTERRUPT_CLEAR 0x004C
#define DP_PHY_AUX_BIST_CFG 0x0050
#define DP_PHY_VCO_DIV 0x0064
#define DP_PHY_TX0_TX1_LANE_CTL 0x006C
#define DP_PHY_TX2_TX3_LANE_CTL 0x0088
#define DP_PHY_SPARE0 0x00AC
#define DP_PHY_STATUS 0x00C0
/* Tx registers */
#define TXn_BIST_MODE_LANENO 0x0000
#define TXn_CLKBUF_ENABLE 0x0008
#define TXn_TX_EMP_POST1_LVL 0x000C
#define TXn_TX_DRV_LVL 0x001C
#define TXn_RESET_TSYNC_EN 0x0024
#define TXn_PRE_STALL_LDO_BOOST_EN 0x0028
#define TXn_TX_BAND 0x002C
#define TXn_SLEW_CNTL 0x0030
#define TXn_INTERFACE_SELECT 0x0034
#define TXn_RES_CODE_LANE_TX 0x003C
#define TXn_RES_CODE_LANE_RX 0x0040
#define TXn_RES_CODE_LANE_OFFSET_TX 0x0044
#define TXn_RES_CODE_LANE_OFFSET_RX 0x0048
#define TXn_DEBUG_BUS_SEL 0x0058
#define TXn_TRANSCEIVER_BIAS_EN 0x005C
#define TXn_HIGHZ_DRVR_EN 0x0060
#define TXn_TX_POL_INV 0x0064
#define TXn_PARRATE_REC_DETECT_IDLE_EN 0x0068
#define TXn_LANE_MODE_1 0x008C
#define TXn_TRAN_DRVR_EMP_EN 0x00C0
#define TXn_TX_INTERFACE_MODE 0x00C4
#define TXn_VMODE_CTRL1 0x00F0
/* PLL register offset */
#define QSERDES_COM_ATB_SEL1 0x0000
#define QSERDES_COM_ATB_SEL2 0x0004
#define QSERDES_COM_FREQ_UPDATE 0x0008
#define QSERDES_COM_BG_TIMER 0x000C
#define QSERDES_COM_SSC_EN_CENTER 0x0010
#define QSERDES_COM_SSC_ADJ_PER1 0x0014
#define QSERDES_COM_SSC_ADJ_PER2 0x0018
#define QSERDES_COM_SSC_PER1 0x001C
#define QSERDES_COM_SSC_PER2 0x0020
#define QSERDES_COM_SSC_STEP_SIZE1 0x0024
#define QSERDES_COM_SSC_STEP_SIZE2 0x0028
#define QSERDES_COM_POST_DIV 0x002C
#define QSERDES_COM_POST_DIV_MUX 0x0030
#define QSERDES_COM_BIAS_EN_CLKBUFLR_EN 0x0034
#define QSERDES_COM_CLK_ENABLE1 0x0038
#define QSERDES_COM_SYS_CLK_CTRL 0x003C
#define QSERDES_COM_SYSCLK_BUF_ENABLE 0x0040
#define QSERDES_COM_PLL_EN 0x0044
#define QSERDES_COM_PLL_IVCO 0x0048
#define QSERDES_COM_CMN_IETRIM 0x004C
#define QSERDES_COM_CMN_IPTRIM 0x0050
#define QSERDES_COM_CP_CTRL_MODE0 0x0060
#define QSERDES_COM_CP_CTRL_MODE1 0x0064
#define QSERDES_COM_PLL_RCTRL_MODE0 0x0068
#define QSERDES_COM_PLL_RCTRL_MODE1 0x006C
#define QSERDES_COM_PLL_CCTRL_MODE0 0x0070
#define QSERDES_COM_PLL_CCTRL_MODE1 0x0074
#define QSERDES_COM_PLL_CNTRL 0x0078
#define QSERDES_COM_BIAS_EN_CTRL_BY_PSM 0x007C
#define QSERDES_COM_SYSCLK_EN_SEL 0x0080
#define QSERDES_COM_CML_SYSCLK_SEL 0x0084
#define QSERDES_COM_RESETSM_CNTRL 0x0088
#define QSERDES_COM_RESETSM_CNTRL2 0x008C
#define QSERDES_COM_LOCK_CMP_EN 0x0090
#define QSERDES_COM_LOCK_CMP_CFG 0x0094
#define QSERDES_COM_LOCK_CMP1_MODE0 0x0098
#define QSERDES_COM_LOCK_CMP2_MODE0 0x009C
#define QSERDES_COM_LOCK_CMP3_MODE0 0x00A0
#define QSERDES_COM_DEC_START_MODE0 0x00B0
#define QSERDES_COM_DEC_START_MODE1 0x00B4
#define QSERDES_COM_DIV_FRAC_START1_MODE0 0x00B8
#define QSERDES_COM_DIV_FRAC_START2_MODE0 0x00BC
#define QSERDES_COM_DIV_FRAC_START3_MODE0 0x00C0
#define QSERDES_COM_DIV_FRAC_START1_MODE1 0x00C4
#define QSERDES_COM_DIV_FRAC_START2_MODE1 0x00C8
#define QSERDES_COM_DIV_FRAC_START3_MODE1 0x00CC
#define QSERDES_COM_INTEGLOOP_INITVAL 0x00D0
#define QSERDES_COM_INTEGLOOP_EN 0x00D4
#define QSERDES_COM_INTEGLOOP_GAIN0_MODE0 0x00D8
#define QSERDES_COM_INTEGLOOP_GAIN1_MODE0 0x00DC
#define QSERDES_COM_INTEGLOOP_GAIN0_MODE1 0x00E0
#define QSERDES_COM_INTEGLOOP_GAIN1_MODE1 0x00E4
#define QSERDES_COM_VCOCAL_DEADMAN_CTRL 0x00E8
#define QSERDES_COM_VCO_TUNE_CTRL 0x00EC
#define QSERDES_COM_VCO_TUNE_MAP 0x00F0
#define QSERDES_COM_CMN_STATUS 0x0124
#define QSERDES_COM_RESET_SM_STATUS 0x0128
#define QSERDES_COM_CLK_SEL 0x0138
#define QSERDES_COM_HSCLK_SEL 0x013C
#define QSERDES_COM_CORECLK_DIV_MODE0 0x0148
#define QSERDES_COM_SW_RESET 0x0150
#define QSERDES_COM_CORE_CLK_EN 0x0154
#define QSERDES_COM_C_READY_STATUS 0x0158
#define QSERDES_COM_CMN_CONFIG 0x015C
#define QSERDES_COM_SVS_MODE_CLK_SEL 0x0164
#define DP_PHY_PLL_POLL_SLEEP_US 500
#define DP_PHY_PLL_POLL_TIMEOUT_US 10000
#define DP_VCO_RATE_8100MHZDIV1000 8100000UL
#define DP_VCO_RATE_9720MHZDIV1000 9720000UL
#define DP_VCO_RATE_10800MHZDIV1000 10800000UL
int dp_mux_set_parent_10nm(void *context, unsigned int reg, unsigned int val)
{
struct mdss_pll_resources *dp_res = context;
int rc;
u32 auxclk_div;
rc = mdss_pll_resource_enable(dp_res, true);
if (rc) {
pr_err("Failed to enable mdss DP PLL resources\n");
return rc;
}
auxclk_div = MDSS_PLL_REG_R(dp_res->phy_base, DP_PHY_VCO_DIV);
auxclk_div &= ~0x03; /* bits 0 to 1 */
if (val == 0) /* mux parent index = 0 */
auxclk_div |= 1;
else if (val == 1) /* mux parent index = 1 */
auxclk_div |= 2;
else if (val == 2) /* mux parent index = 2 */
auxclk_div |= 0;
MDSS_PLL_REG_W(dp_res->phy_base,
DP_PHY_VCO_DIV, auxclk_div);
/* Make sure the PHY registers writes are done */
wmb();
pr_debug("%s: mux=%d auxclk_div=%x\n", __func__, val, auxclk_div);
mdss_pll_resource_enable(dp_res, false);
return 0;
}
int dp_mux_get_parent_10nm(void *context, unsigned int reg, unsigned int *val)
{
int rc;
u32 auxclk_div = 0;
struct mdss_pll_resources *dp_res = context;
rc = mdss_pll_resource_enable(dp_res, true);
if (rc) {
pr_err("Failed to enable dp_res resources\n");
return rc;
}
auxclk_div = MDSS_PLL_REG_R(dp_res->phy_base, DP_PHY_VCO_DIV);
auxclk_div &= 0x03;
if (auxclk_div == 1) /* Default divider */
*val = 0;
else if (auxclk_div == 2)
*val = 1;
else if (auxclk_div == 0)
*val = 2;
mdss_pll_resource_enable(dp_res, false);
pr_debug("%s: auxclk_div=%d, val=%d\n", __func__, auxclk_div, *val);
return 0;
}
static int dp_vco_pll_init_db_10nm(struct dp_pll_db *pdb,
unsigned long rate)
{
struct mdss_pll_resources *dp_res = pdb->pll;
u32 spare_value = 0;
spare_value = MDSS_PLL_REG_R(dp_res->phy_base, DP_PHY_SPARE0);
pdb->lane_cnt = spare_value & 0x0F;
pdb->orientation = (spare_value & 0xF0) >> 4;
pr_debug("%s: spare_value=0x%x, ln_cnt=0x%x, orientation=0x%x\n",
__func__, spare_value, pdb->lane_cnt, pdb->orientation);
switch (rate) {
case DP_VCO_HSCLK_RATE_1620MHZDIV1000:
pr_debug("%s: VCO rate: %ld\n", __func__,
DP_VCO_RATE_9720MHZDIV1000);
pdb->hsclk_sel = 0x0c;
pdb->dec_start_mode0 = 0x69;
pdb->div_frac_start1_mode0 = 0x00;
pdb->div_frac_start2_mode0 = 0x80;
pdb->div_frac_start3_mode0 = 0x07;
pdb->integloop_gain0_mode0 = 0x3f;
pdb->integloop_gain1_mode0 = 0x00;
pdb->vco_tune_map = 0x00;
pdb->lock_cmp1_mode0 = 0x6f;
pdb->lock_cmp2_mode0 = 0x08;
pdb->lock_cmp3_mode0 = 0x00;
pdb->phy_vco_div = 0x1;
pdb->lock_cmp_en = 0x00;
break;
case DP_VCO_HSCLK_RATE_2700MHZDIV1000:
pr_debug("%s: VCO rate: %ld\n", __func__,
DP_VCO_RATE_10800MHZDIV1000);
pdb->hsclk_sel = 0x04;
pdb->dec_start_mode0 = 0x69;
pdb->div_frac_start1_mode0 = 0x00;
pdb->div_frac_start2_mode0 = 0x80;
pdb->div_frac_start3_mode0 = 0x07;
pdb->integloop_gain0_mode0 = 0x3f;
pdb->integloop_gain1_mode0 = 0x00;
pdb->vco_tune_map = 0x00;
pdb->lock_cmp1_mode0 = 0x0f;
pdb->lock_cmp2_mode0 = 0x0e;
pdb->lock_cmp3_mode0 = 0x00;
pdb->phy_vco_div = 0x1;
pdb->lock_cmp_en = 0x00;
break;
case DP_VCO_HSCLK_RATE_5400MHZDIV1000:
pr_debug("%s: VCO rate: %ld\n", __func__,
DP_VCO_RATE_10800MHZDIV1000);
pdb->hsclk_sel = 0x00;
pdb->dec_start_mode0 = 0x8c;
pdb->div_frac_start1_mode0 = 0x00;
pdb->div_frac_start2_mode0 = 0x00;
pdb->div_frac_start3_mode0 = 0x0a;
pdb->integloop_gain0_mode0 = 0x3f;
pdb->integloop_gain1_mode0 = 0x00;
pdb->vco_tune_map = 0x00;
pdb->lock_cmp1_mode0 = 0x1f;
pdb->lock_cmp2_mode0 = 0x1c;
pdb->lock_cmp3_mode0 = 0x00;
pdb->phy_vco_div = 0x2;
pdb->lock_cmp_en = 0x00;
break;
case DP_VCO_HSCLK_RATE_8100MHZDIV1000:
pr_debug("%s: VCO rate: %ld\n", __func__,
DP_VCO_RATE_8100MHZDIV1000);
pdb->hsclk_sel = 0x03;
pdb->dec_start_mode0 = 0x69;
pdb->div_frac_start1_mode0 = 0x00;
pdb->div_frac_start2_mode0 = 0x80;
pdb->div_frac_start3_mode0 = 0x07;
pdb->integloop_gain0_mode0 = 0x3f;
pdb->integloop_gain1_mode0 = 0x00;
pdb->vco_tune_map = 0x00;
pdb->lock_cmp1_mode0 = 0x2f;
pdb->lock_cmp2_mode0 = 0x2a;
pdb->lock_cmp3_mode0 = 0x00;
pdb->phy_vco_div = 0x0;
pdb->lock_cmp_en = 0x08;
break;
default:
return -EINVAL;
}
return 0;
}
static int dp_config_vco_rate_10nm(struct dp_pll_vco_clk *vco,
unsigned long rate)
{
u32 res = 0;
struct mdss_pll_resources *dp_res = vco->priv;
struct dp_pll_db *pdb = (struct dp_pll_db *)dp_res->priv;
res = dp_vco_pll_init_db_10nm(pdb, rate);
if (res) {
pr_err("VCO Init DB failed\n");
return res;
}
if (pdb->lane_cnt != 4) {
if (pdb->orientation == ORIENTATION_CC2)
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_PD_CTL, 0x6d);
else
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_PD_CTL, 0x75);
} else {
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_PD_CTL, 0x7d);
}
/* Make sure the PHY register writes are done */
wmb();
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_SVS_MODE_CLK_SEL, 0x01);
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_SYSCLK_EN_SEL, 0x37);
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_SYS_CLK_CTRL, 0x02);
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_CLK_ENABLE1, 0x0e);
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_SYSCLK_BUF_ENABLE, 0x06);
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_CLK_SEL, 0x30);
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_CMN_CONFIG, 0x02);
/* Different for each clock rates */
MDSS_PLL_REG_W(dp_res->pll_base,
QSERDES_COM_HSCLK_SEL, pdb->hsclk_sel);
MDSS_PLL_REG_W(dp_res->pll_base,
QSERDES_COM_DEC_START_MODE0, pdb->dec_start_mode0);
MDSS_PLL_REG_W(dp_res->pll_base,
QSERDES_COM_DIV_FRAC_START1_MODE0, pdb->div_frac_start1_mode0);
MDSS_PLL_REG_W(dp_res->pll_base,
QSERDES_COM_DIV_FRAC_START2_MODE0, pdb->div_frac_start2_mode0);
MDSS_PLL_REG_W(dp_res->pll_base,
QSERDES_COM_DIV_FRAC_START3_MODE0, pdb->div_frac_start3_mode0);
MDSS_PLL_REG_W(dp_res->pll_base,
QSERDES_COM_INTEGLOOP_GAIN0_MODE0, pdb->integloop_gain0_mode0);
MDSS_PLL_REG_W(dp_res->pll_base,
QSERDES_COM_INTEGLOOP_GAIN1_MODE0, pdb->integloop_gain1_mode0);
MDSS_PLL_REG_W(dp_res->pll_base,
QSERDES_COM_VCO_TUNE_MAP, pdb->vco_tune_map);
MDSS_PLL_REG_W(dp_res->pll_base,
QSERDES_COM_LOCK_CMP1_MODE0, pdb->lock_cmp1_mode0);
MDSS_PLL_REG_W(dp_res->pll_base,
QSERDES_COM_LOCK_CMP2_MODE0, pdb->lock_cmp2_mode0);
MDSS_PLL_REG_W(dp_res->pll_base,
QSERDES_COM_LOCK_CMP3_MODE0, pdb->lock_cmp3_mode0);
/* Make sure the PLL register writes are done */
wmb();
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_BG_TIMER, 0x0a);
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_CORECLK_DIV_MODE0, 0x0a);
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_VCO_TUNE_CTRL, 0x00);
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x3f);
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_CORE_CLK_EN, 0x1f);
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_PLL_IVCO, 0x07);
MDSS_PLL_REG_W(dp_res->pll_base,
QSERDES_COM_LOCK_CMP_EN, pdb->lock_cmp_en);
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_PLL_CCTRL_MODE0, 0x36);
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_PLL_RCTRL_MODE0, 0x16);
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_CP_CTRL_MODE0, 0x06);
/* Make sure the PHY register writes are done */
wmb();
if (pdb->orientation == ORIENTATION_CC2)
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_MODE, 0x4c);
else
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_MODE, 0x5c);
/* Make sure the PLL register writes are done */
wmb();
/* TX Lane configuration */
MDSS_PLL_REG_W(dp_res->phy_base,
DP_PHY_TX0_TX1_LANE_CTL, 0x05);
MDSS_PLL_REG_W(dp_res->phy_base,
DP_PHY_TX2_TX3_LANE_CTL, 0x05);
/* TX-0 register configuration */
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TRANSCEIVER_BIAS_EN, 0x1a);
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_VMODE_CTRL1, 0x40);
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_PRE_STALL_LDO_BOOST_EN, 0x30);
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_INTERFACE_SELECT, 0x3d);
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_CLKBUF_ENABLE, 0x0f);
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_RESET_TSYNC_EN, 0x03);
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TRAN_DRVR_EMP_EN, 0x03);
MDSS_PLL_REG_W(dp_res->ln_tx0_base,
TXn_PARRATE_REC_DETECT_IDLE_EN, 0x00);
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TX_INTERFACE_MODE, 0x00);
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TX_BAND, 0x4);
/* TX-1 register configuration */
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TRANSCEIVER_BIAS_EN, 0x1a);
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_VMODE_CTRL1, 0x40);
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_PRE_STALL_LDO_BOOST_EN, 0x30);
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_INTERFACE_SELECT, 0x3d);
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_CLKBUF_ENABLE, 0x0f);
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_RESET_TSYNC_EN, 0x03);
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TRAN_DRVR_EMP_EN, 0x03);
MDSS_PLL_REG_W(dp_res->ln_tx1_base,
TXn_PARRATE_REC_DETECT_IDLE_EN, 0x00);
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TX_INTERFACE_MODE, 0x00);
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TX_BAND, 0x4);
/* Make sure the PHY register writes are done */
wmb();
/* dependent on the vco frequency */
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_VCO_DIV, pdb->phy_vco_div);
return res;
}
static bool dp_10nm_pll_lock_status(struct mdss_pll_resources *dp_res)
{
u32 status;
bool pll_locked;
/* poll for PLL lock status */
if (readl_poll_timeout_atomic((dp_res->pll_base +
QSERDES_COM_C_READY_STATUS),
status,
((status & BIT(0)) > 0),
DP_PHY_PLL_POLL_SLEEP_US,
DP_PHY_PLL_POLL_TIMEOUT_US)) {
pr_err("%s: C_READY status is not high. Status=%x\n",
__func__, status);
pll_locked = false;
} else {
pll_locked = true;
}
return pll_locked;
}
static bool dp_10nm_phy_rdy_status(struct mdss_pll_resources *dp_res)
{
u32 status;
bool phy_ready = true;
/* poll for PHY ready status */
if (readl_poll_timeout_atomic((dp_res->phy_base +
DP_PHY_STATUS),
status,
((status & (BIT(1))) > 0),
DP_PHY_PLL_POLL_SLEEP_US,
DP_PHY_PLL_POLL_TIMEOUT_US)) {
pr_err("%s: Phy_ready is not high. Status=%x\n",
__func__, status);
phy_ready = false;
}
return phy_ready;
}
static int dp_pll_enable_10nm(struct clk_hw *hw)
{
int rc = 0;
struct dp_pll_vco_clk *vco = to_dp_vco_hw(hw);
struct mdss_pll_resources *dp_res = vco->priv;
struct dp_pll_db *pdb = (struct dp_pll_db *)dp_res->priv;
u32 bias_en, drvr_en;
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_AUX_CFG2, 0x04);
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_CFG, 0x01);
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_CFG, 0x05);
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_CFG, 0x01);
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_CFG, 0x09);
wmb(); /* Make sure the PHY register writes are done */
MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_RESETSM_CNTRL, 0x20);
wmb(); /* Make sure the PLL register writes are done */
if (!dp_10nm_pll_lock_status(dp_res)) {
rc = -EINVAL;
goto lock_err;
}
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_CFG, 0x19);
/* Make sure the PHY register writes are done */
wmb();
/* poll for PHY ready status */
if (!dp_10nm_phy_rdy_status(dp_res)) {
rc = -EINVAL;
goto lock_err;
}
pr_debug("%s: PLL is locked\n", __func__);
if (pdb->lane_cnt == 1) {
bias_en = 0x3e;
drvr_en = 0x13;
} else {
bias_en = 0x3f;
drvr_en = 0x10;
}
if (pdb->lane_cnt != 4) {
if (pdb->orientation == ORIENTATION_CC1) {
MDSS_PLL_REG_W(dp_res->ln_tx1_base,
TXn_HIGHZ_DRVR_EN, drvr_en);
MDSS_PLL_REG_W(dp_res->ln_tx1_base,
TXn_TRANSCEIVER_BIAS_EN, bias_en);
} else {
MDSS_PLL_REG_W(dp_res->ln_tx0_base,
TXn_HIGHZ_DRVR_EN, drvr_en);
MDSS_PLL_REG_W(dp_res->ln_tx0_base,
TXn_TRANSCEIVER_BIAS_EN, bias_en);
}
} else {
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_HIGHZ_DRVR_EN, drvr_en);
MDSS_PLL_REG_W(dp_res->ln_tx0_base,
TXn_TRANSCEIVER_BIAS_EN, bias_en);
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_HIGHZ_DRVR_EN, drvr_en);
MDSS_PLL_REG_W(dp_res->ln_tx1_base,
TXn_TRANSCEIVER_BIAS_EN, bias_en);
}
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TX_POL_INV, 0x0a);
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TX_POL_INV, 0x0a);
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_CFG, 0x18);
udelay(2000);
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_CFG, 0x19);
/*
* Make sure all the register writes are completed before
* doing any other operation
*/
wmb();
/* poll for PHY ready status */
if (!dp_10nm_phy_rdy_status(dp_res)) {
rc = -EINVAL;
goto lock_err;
}
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TX_DRV_LVL, 0x38);
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TX_DRV_LVL, 0x38);
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TX_EMP_POST1_LVL, 0x20);
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TX_EMP_POST1_LVL, 0x20);
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_RES_CODE_LANE_OFFSET_TX, 0x06);
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_RES_CODE_LANE_OFFSET_TX, 0x06);
MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_RES_CODE_LANE_OFFSET_RX, 0x07);
MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_RES_CODE_LANE_OFFSET_RX, 0x07);
/* Make sure the PHY register writes are done */
wmb();
lock_err:
return rc;
}
static int dp_pll_disable_10nm(struct clk_hw *hw)
{
struct dp_pll_vco_clk *vco = to_dp_vco_hw(hw);
struct mdss_pll_resources *dp_res = vco->priv;
/* Assert DP PHY power down */
MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_PD_CTL, 0x2);
/*
* Make sure all the register writes to disable PLL are
* completed before doing any other operation
*/
wmb();
return 0;
}
int dp_vco_prepare_10nm(struct clk_hw *hw)
{
int rc = 0;
struct dp_pll_vco_clk *vco = to_dp_vco_hw(hw);
struct mdss_pll_resources *dp_res = vco->priv;
pr_debug("rate=%ld\n", vco->rate);
rc = mdss_pll_resource_enable(dp_res, true);
if (rc) {
pr_err("Failed to enable mdss DP pll resources\n");
goto error;
}
if ((dp_res->vco_cached_rate != 0)
&& (dp_res->vco_cached_rate == vco->rate)) {
rc = vco->hw.init->ops->set_rate(hw,
dp_res->vco_cached_rate, dp_res->vco_cached_rate);
if (rc) {
pr_err("index=%d vco_set_rate failed. rc=%d\n",
rc, dp_res->index);
mdss_pll_resource_enable(dp_res, false);
goto error;
}
}
rc = dp_pll_enable_10nm(hw);
if (rc) {
mdss_pll_resource_enable(dp_res, false);
pr_err("ndx=%d failed to enable dp pll\n",
dp_res->index);
goto error;
}
mdss_pll_resource_enable(dp_res, false);
error:
return rc;
}
void dp_vco_unprepare_10nm(struct clk_hw *hw)
{
struct dp_pll_vco_clk *vco = to_dp_vco_hw(hw);
struct mdss_pll_resources *dp_res = vco->priv;
if (!dp_res) {
pr_err("Invalid input parameter\n");
return;
}
if (!dp_res->pll_on &&
mdss_pll_resource_enable(dp_res, true)) {
pr_err("pll resource can't be enabled\n");
return;
}
dp_res->vco_cached_rate = vco->rate;
dp_pll_disable_10nm(hw);
dp_res->handoff_resources = false;
mdss_pll_resource_enable(dp_res, false);
dp_res->pll_on = false;
}
int dp_vco_set_rate_10nm(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct dp_pll_vco_clk *vco = to_dp_vco_hw(hw);
struct mdss_pll_resources *dp_res = vco->priv;
int rc;
rc = mdss_pll_resource_enable(dp_res, true);
if (rc) {
pr_err("pll resource can't be enabled\n");
return rc;
}
pr_debug("DP lane CLK rate=%ld\n", rate);
rc = dp_config_vco_rate_10nm(vco, rate);
if (rc)
pr_err("%s: Failed to set clk rate\n", __func__);
mdss_pll_resource_enable(dp_res, false);
vco->rate = rate;
return 0;
}
unsigned long dp_vco_recalc_rate_10nm(struct clk_hw *hw,
unsigned long parent_rate)
{
struct dp_pll_vco_clk *vco = to_dp_vco_hw(hw);
int rc;
u32 div, hsclk_div, link_clk_div = 0;
u64 vco_rate;
struct mdss_pll_resources *dp_res = vco->priv;
rc = mdss_pll_resource_enable(dp_res, true);
if (rc) {
pr_err("Failed to enable mdss DP pll=%d\n", dp_res->index);
return rc;
}
div = MDSS_PLL_REG_R(dp_res->pll_base, QSERDES_COM_HSCLK_SEL);
div &= 0x0f;
if (div == 12)
hsclk_div = 6; /* Default */
else if (div == 4)
hsclk_div = 4;
else if (div == 0)
hsclk_div = 2;
else if (div == 3)
hsclk_div = 1;
else {
pr_debug("unknown divider. forcing to default\n");
hsclk_div = 5;
}
div = MDSS_PLL_REG_R(dp_res->phy_base, DP_PHY_AUX_CFG2);
div >>= 2;
if ((div & 0x3) == 0)
link_clk_div = 5;
else if ((div & 0x3) == 1)
link_clk_div = 10;
else if ((div & 0x3) == 2)
link_clk_div = 20;
else
pr_err("%s: unsupported div. Phy_mode: %d\n", __func__, div);
if (link_clk_div == 20) {
vco_rate = DP_VCO_HSCLK_RATE_2700MHZDIV1000;
} else {
if (hsclk_div == 6)
vco_rate = DP_VCO_HSCLK_RATE_1620MHZDIV1000;
else if (hsclk_div == 4)
vco_rate = DP_VCO_HSCLK_RATE_2700MHZDIV1000;
else if (hsclk_div == 2)
vco_rate = DP_VCO_HSCLK_RATE_5400MHZDIV1000;
else
vco_rate = DP_VCO_HSCLK_RATE_8100MHZDIV1000;
}
pr_debug("returning vco rate = %lu\n", (unsigned long)vco_rate);
mdss_pll_resource_enable(dp_res, false);
dp_res->vco_cached_rate = vco->rate = vco_rate;
return (unsigned long)vco_rate;
}
long dp_vco_round_rate_10nm(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
unsigned long rrate = rate;
struct dp_pll_vco_clk *vco = to_dp_vco_hw(hw);
if (rate <= vco->min_rate)
rrate = vco->min_rate;
else if (rate <= DP_VCO_HSCLK_RATE_2700MHZDIV1000)
rrate = DP_VCO_HSCLK_RATE_2700MHZDIV1000;
else if (rate <= DP_VCO_HSCLK_RATE_5400MHZDIV1000)
rrate = DP_VCO_HSCLK_RATE_5400MHZDIV1000;
else
rrate = vco->max_rate;
pr_debug("%s: rrate=%ld\n", __func__, rrate);
*parent_rate = rrate;
return rrate;
}