blob: dbb56c40796b749475b9dce2e0db4b90430cb66e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2020, The Linux Foundation. All rights reserved.
*/
#define pr_fmt(fmt) "[sde-hdcp-2x] %s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/kthread.h>
#include <linux/kfifo.h>
#include "sde_hdcp_2x.h"
/* all message IDs */
#define INVALID_MESSAGE 0
#define AKE_INIT 2
#define AKE_SEND_CERT 3
#define AKE_NO_STORED_KM 4
#define AKE_STORED_KM 5
#define AKE_SEND_H_PRIME 7
#define AKE_SEND_PAIRING_INFO 8
#define LC_INIT 9
#define LC_SEND_L_PRIME 10
#define SKE_SEND_EKS 11
#define REP_SEND_RECV_ID_LIST 12
#define REP_SEND_ACK 15
#define REP_STREAM_MANAGE 16
#define REP_STREAM_READY 17
#define SKE_SEND_TYPE_ID 18
#define HDCP2P2_MAX_MESSAGES 19
#define REAUTH_REQ BIT(3)
#define LINK_INTEGRITY_FAILURE BIT(4)
/* Temporary define to override wrong TZ value */
#define AKE_SEND_CERT_MSG_DELAY 100
struct sde_hdcp_2x_ctrl {
DECLARE_KFIFO(cmd_q, enum sde_hdcp_2x_wakeup_cmd, 8);
wait_queue_head_t wait_q;
struct hdcp2_app_data app_data;
u32 timeout_left;
u32 wait_timeout_ms;
u32 total_message_length;
atomic_t enable_pending;
bool no_stored_km;
bool feature_supported;
bool force_encryption;
bool authenticated;
bool resend_lc_init;
bool resend_stream_manage;
void *client_data;
void *hdcp2_ctx;
struct hdcp_transport_ops *client_ops;
bool repeater_flag;
bool update_stream;
int last_msg;
atomic_t hdcp_off;
enum sde_hdcp_2x_device_type device_type;
u8 min_enc_level;
struct list_head stream_handles;
u8 stream_count;
struct task_struct *thread;
struct completion response_completion;
};
static void sde_hdcp_2x_clean(struct sde_hdcp_2x_ctrl *hdcp);
static const char *sde_hdcp_2x_message_name(int msg_id)
{
switch (msg_id) {
case INVALID_MESSAGE: return TO_STR(INVALID_MESSAGE);
case AKE_INIT: return TO_STR(AKE_INIT);
case AKE_SEND_CERT: return TO_STR(AKE_SEND_CERT);
case AKE_NO_STORED_KM: return TO_STR(AKE_NO_STORED_KM);
case AKE_STORED_KM: return TO_STR(AKE_STORED_KM);
case AKE_SEND_H_PRIME: return TO_STR(AKE_SEND_H_PRIME);
case AKE_SEND_PAIRING_INFO: return TO_STR(AKE_SEND_PAIRING_INFO);
case LC_INIT: return TO_STR(LC_INIT);
case LC_SEND_L_PRIME: return TO_STR(LC_SEND_L_PRIME);
case SKE_SEND_EKS: return TO_STR(SKE_SEND_EKS);
case REP_SEND_RECV_ID_LIST: return TO_STR(REP_SEND_RECV_ID_LIST);
case REP_STREAM_MANAGE: return TO_STR(REP_STREAM_MANAGE);
case REP_STREAM_READY: return TO_STR(REP_STREAM_READY);
case SKE_SEND_TYPE_ID: return TO_STR(SKE_SEND_TYPE_ID);
default:
return "UNKNOWN";
}
}
static const struct sde_hdcp_2x_msg_data
hdcp_msg_lookup[HDCP2P2_MAX_MESSAGES] = {
[AKE_INIT] = { 2,
{ {"rtx", 0x69000, 8}, {"TxCaps", 0x69008, 3} },
0, 0 },
[AKE_SEND_CERT] = { 3,
{ {"cert-rx", 0x6900B, 522}, {"rrx", 0x69215, 8},
{"RxCaps", 0x6921D, 3} },
0, 110 },
[AKE_NO_STORED_KM] = { 1,
{ {"Ekpub_km", 0x69220, 128} },
0, 0 },
[AKE_STORED_KM] = { 2,
{ {"Ekh_km", 0x692A0, 16}, {"m", 0x692B0, 16} },
0, 0 },
[AKE_SEND_H_PRIME] = { 1,
{ {"H'", 0x692C0, 32} },
(1 << 1), 7 },
[AKE_SEND_PAIRING_INFO] = { 1,
{ {"Ekh_km", 0x692E0, 16} },
(1 << 2), 5 },
[LC_INIT] = { 1,
{ {"rn", 0x692F0, 8} },
0, 0 },
[LC_SEND_L_PRIME] = { 1,
{ {"L'", 0x692F8, 32} },
0, 0 },
[SKE_SEND_EKS] = { 2,
{ {"Edkey_ks", 0x69318, 16}, {"riv", 0x69328, 8} },
0, 0 },
[SKE_SEND_TYPE_ID] = { 1,
{ {"type", 0x69494, 1} },
0, 0 },
[REP_SEND_RECV_ID_LIST] = { 4,
{ {"RxInfo", 0x69330, 2}, {"seq_num_V", 0x69332, 3},
{"V'", 0x69335, 16}, {"ridlist", 0x69345, 155} },
(1 << 0), 0 },
[REP_SEND_ACK] = { 1,
{ {"V", 0x693E0, 16} },
0, 0 },
[REP_STREAM_MANAGE] = { 3,
{ {"seq_num_M", 0x693F0, 3}, {"k", 0x693F3, 2},
{"streamID_Type", 0x693F5, 126} },
0, 0 },
[REP_STREAM_READY] = { 1,
{ {"M'", 0x69473, 32} },
0, 7 },
};
static int sde_hdcp_2x_get_next_message(struct sde_hdcp_2x_ctrl *hdcp,
struct hdcp_transport_wakeup_data *data)
{
switch (hdcp->last_msg) {
case INVALID_MESSAGE:
return AKE_INIT;
case AKE_INIT:
return AKE_SEND_CERT;
case AKE_SEND_CERT:
if (hdcp->no_stored_km)
return AKE_NO_STORED_KM;
else
return AKE_STORED_KM;
case AKE_STORED_KM:
case AKE_NO_STORED_KM:
return AKE_SEND_H_PRIME;
case AKE_SEND_H_PRIME:
if (hdcp->no_stored_km)
return AKE_SEND_PAIRING_INFO;
else
return LC_INIT;
case AKE_SEND_PAIRING_INFO:
return LC_INIT;
case LC_INIT:
return LC_SEND_L_PRIME;
case LC_SEND_L_PRIME:
if (hdcp->resend_lc_init)
return LC_INIT;
else
return SKE_SEND_EKS;
case SKE_SEND_EKS:
if (!hdcp->repeater_flag)
return SKE_SEND_TYPE_ID;
case SKE_SEND_TYPE_ID:
if (!hdcp->repeater_flag)
return SKE_SEND_TYPE_ID;
case REP_STREAM_READY:
case REP_SEND_ACK:
if (!hdcp->repeater_flag)
return INVALID_MESSAGE;
if (data->cmd == HDCP_TRANSPORT_CMD_SEND_MESSAGE)
return REP_STREAM_MANAGE;
else
return REP_SEND_RECV_ID_LIST;
case REP_SEND_RECV_ID_LIST:
return REP_SEND_ACK;
case REP_STREAM_MANAGE:
hdcp->resend_stream_manage = false;
return REP_STREAM_READY;
default:
pr_err("Unknown message ID (%d)\n", hdcp->last_msg);
return -EINVAL;
}
}
static void sde_hdcp_2x_wait_for_response(struct sde_hdcp_2x_ctrl *hdcp)
{
u32 timeout;
switch (hdcp->last_msg) {
case AKE_SEND_H_PRIME:
if (hdcp->no_stored_km)
hdcp->wait_timeout_ms = HZ;
else
hdcp->wait_timeout_ms = HZ / 4;
break;
case AKE_SEND_PAIRING_INFO:
hdcp->wait_timeout_ms = HZ / 4;
break;
case REP_SEND_RECV_ID_LIST:
if (!hdcp->authenticated)
hdcp->wait_timeout_ms = HZ * 3;
else
hdcp->wait_timeout_ms = 0;
break;
default:
hdcp->wait_timeout_ms = 0;
}
if (!hdcp->wait_timeout_ms)
return;
if (atomic_read(&hdcp->hdcp_off)) {
pr_debug("invalid state: hdcp off\n");
return;
}
reinit_completion(&hdcp->response_completion);
timeout = wait_for_completion_timeout(&hdcp->response_completion,
hdcp->wait_timeout_ms);
if (!timeout) {
pr_err("completion expired, last message = %s\n",
sde_hdcp_2x_message_name(hdcp->last_msg));
if (!atomic_read(&hdcp->hdcp_off))
sde_hdcp_2x_clean(hdcp);
}
hdcp->wait_timeout_ms = 0;
}
static void sde_hdcp_2x_adjust_transaction_params(
struct sde_hdcp_2x_ctrl *hdcp,
struct hdcp_transport_wakeup_data *data)
{
switch (hdcp->last_msg) {
case AKE_SEND_CERT:
data->transaction_delay = AKE_SEND_CERT_MSG_DELAY;
case REP_STREAM_READY:
break;
default:
data->transaction_delay = 0;
break;
}
data->transaction_timeout =
hdcp_msg_lookup[hdcp->last_msg].transaction_timeout;
pr_debug("%s: transaction delay: %ums, transaction timeout: %ums\n",
sde_hdcp_2x_message_name(hdcp->last_msg),
data->transaction_delay, data->transaction_timeout);
}
static void sde_hdcp_2x_wakeup_client(struct sde_hdcp_2x_ctrl *hdcp,
struct hdcp_transport_wakeup_data *data)
{
int rc = 0;
if (!hdcp || !hdcp->client_ops || !hdcp->client_ops->wakeup ||
!data || (data->cmd == HDCP_TRANSPORT_CMD_INVALID))
return;
data->abort_mask = REAUTH_REQ | LINK_INTEGRITY_FAILURE;
if (data->cmd == HDCP_TRANSPORT_CMD_SEND_MESSAGE ||
data->cmd == HDCP_TRANSPORT_CMD_RECV_MESSAGE ||
data->cmd == HDCP_TRANSPORT_CMD_LINK_POLL) {
hdcp->last_msg =
sde_hdcp_2x_get_next_message(hdcp, data);
if (hdcp->last_msg <= INVALID_MESSAGE) {
hdcp->last_msg = INVALID_MESSAGE;
return;
}
data->message_data = &hdcp_msg_lookup[hdcp->last_msg];
}
sde_hdcp_2x_adjust_transaction_params(hdcp, data);
rc = hdcp->client_ops->wakeup(data);
if (rc)
pr_err("error sending %s to client\n",
hdcp_transport_cmd_to_str(data->cmd));
sde_hdcp_2x_wait_for_response(hdcp);
}
static inline void sde_hdcp_2x_send_message(struct sde_hdcp_2x_ctrl *hdcp)
{
struct hdcp_transport_wakeup_data cdata = {
HDCP_TRANSPORT_CMD_SEND_MESSAGE };
cdata.context = hdcp->client_data;
cdata.transaction_delay = hdcp->app_data.timeout;
cdata.buf_len = hdcp->app_data.response.length;
/* ignore the first byte as it contains the message id */
cdata.buf = hdcp->app_data.response.data + 1;
sde_hdcp_2x_wakeup_client(hdcp, &cdata);
}
static bool sde_hdcp_2x_client_feature_supported(void *data)
{
struct sde_hdcp_2x_ctrl *hdcp = data;
while (atomic_read(&hdcp->enable_pending))
usleep_range(1000, 1500);
return hdcp2_feature_supported(hdcp->hdcp2_ctx);
}
static void sde_hdcp_2x_force_encryption(void *data, bool enable)
{
struct sde_hdcp_2x_ctrl *hdcp = data;
if (!hdcp) {
pr_err("invalid input\n");
return;
}
hdcp->force_encryption = enable;
pr_info("force_encryption=%d\n", hdcp->force_encryption);
}
static void sde_hdcp_2x_clean(struct sde_hdcp_2x_ctrl *hdcp)
{
struct list_head *element;
struct sde_hdcp_stream *stream_entry;
struct hdcp_transport_wakeup_data cdata = {HDCP_TRANSPORT_CMD_INVALID};
hdcp->authenticated = false;
cdata.context = hdcp->client_data;
cdata.cmd = HDCP_TRANSPORT_CMD_STATUS_FAILED;
while (!list_empty(&hdcp->stream_handles)) {
element = hdcp->stream_handles.next;
list_del(element);
stream_entry = list_entry(element, struct sde_hdcp_stream,
list);
hdcp2_close_stream(hdcp->hdcp2_ctx,
stream_entry->stream_handle);
kzfree(stream_entry);
hdcp->stream_count--;
}
if (!atomic_xchg(&hdcp->hdcp_off, 1))
sde_hdcp_2x_wakeup_client(hdcp, &cdata);
hdcp2_app_comm(hdcp->hdcp2_ctx, HDCP2_CMD_STOP, &hdcp->app_data);
}
static u8 sde_hdcp_2x_stream_type(u8 min_enc_level)
{
u8 stream_type = 0;
switch (min_enc_level) {
case 0:
case 1:
stream_type = 0;
break;
case 2:
stream_type = 1;
break;
default:
stream_type = 0;
break;
}
pr_debug("min_enc_level = %u, type = %u\n", min_enc_level, stream_type);
return stream_type;
}
static void sde_hdcp_2x_send_type(struct sde_hdcp_2x_ctrl *hdcp)
{
if (atomic_read(&hdcp->hdcp_off)) {
pr_debug("invalid state, hdcp off\n");
return;
}
if (hdcp->repeater_flag) {
pr_debug("invalid state, not receiver\n");
return;
}
hdcp->app_data.response.data[0] = SKE_SEND_TYPE_ID;
hdcp->app_data.response.data[1] =
sde_hdcp_2x_stream_type(hdcp->min_enc_level);
hdcp->app_data.response.length = 1;
hdcp->app_data.timeout = 100;
if (!atomic_read(&hdcp->hdcp_off))
sde_hdcp_2x_send_message(hdcp);
}
static void sde_hdcp_2x_query_stream(struct sde_hdcp_2x_ctrl *hdcp)
{
int rc = 0;
if (atomic_read(&hdcp->hdcp_off)) {
pr_debug("invalid state, hdcp off\n");
return;
}
if (!hdcp->repeater_flag) {
pr_debug("invalid state, not a repeater\n");
return;
}
if (!hdcp->authenticated &&
hdcp->app_data.response.data[0] != REP_SEND_ACK) {
pr_debug("invalid state. HDCP repeater not authenticated\n");
return;
}
rc = hdcp2_app_comm(hdcp->hdcp2_ctx, HDCP2_CMD_QUERY_STREAM,
&hdcp->app_data);
if (rc)
goto exit;
if (!hdcp->app_data.response.data || !hdcp->app_data.request.data) {
pr_err("invalid response/request buffers\n");
rc = -EINVAL;
goto exit;
}
pr_debug("[tz]: %s\n", sde_hdcp_2x_message_name(
hdcp->app_data.response.data[0]));
exit:
if (!rc && !atomic_read(&hdcp->hdcp_off)) {
/* Modify last message to ensure the proper message is sent */
hdcp->last_msg = REP_SEND_ACK;
sde_hdcp_2x_send_message(hdcp);
}
}
static void sde_hdcp_2x_initialize_command(struct sde_hdcp_2x_ctrl *hdcp,
enum hdcp_transport_wakeup_cmd cmd,
struct hdcp_transport_wakeup_data *cdata)
{
cdata->cmd = cmd;
cdata->transaction_delay = hdcp->timeout_left;
cdata->buf = hdcp->app_data.request.data + 1;
}
static void sde_hdcp_2x_msg_sent(struct sde_hdcp_2x_ctrl *hdcp)
{
struct hdcp_transport_wakeup_data cdata = {
HDCP_TRANSPORT_CMD_INVALID,
hdcp->client_data};
if (atomic_read(&hdcp->hdcp_off)) {
pr_debug("invalid state, hdcp off\n");
return;
}
switch (hdcp->app_data.response.data[0]) {
case SKE_SEND_TYPE_ID:
if (!hdcp2_app_comm(hdcp->hdcp2_ctx,
HDCP2_CMD_EN_ENCRYPTION, &hdcp->app_data)) {
hdcp->authenticated = true;
if (hdcp->force_encryption)
hdcp2_force_encryption(hdcp->hdcp2_ctx, 1);
cdata.cmd = HDCP_TRANSPORT_CMD_STATUS_SUCCESS;
sde_hdcp_2x_wakeup_client(hdcp, &cdata);
}
/* poll for link check */
sde_hdcp_2x_initialize_command(hdcp,
HDCP_TRANSPORT_CMD_LINK_POLL, &cdata);
break;
case SKE_SEND_EKS:
if (hdcp->repeater_flag && !atomic_read(&hdcp->hdcp_off)) {
/* poll for link check */
sde_hdcp_2x_initialize_command(hdcp,
HDCP_TRANSPORT_CMD_LINK_POLL, &cdata);
} else {
hdcp->app_data.response.data[0] = SKE_SEND_TYPE_ID;
hdcp->app_data.response.data[1] =
sde_hdcp_2x_stream_type(hdcp->min_enc_level);
hdcp->app_data.response.length = 1;
hdcp->app_data.timeout = 100;
sde_hdcp_2x_send_message(hdcp);
}
break;
case REP_SEND_ACK:
pr_debug("Repeater authentication successful. update_stream=%d\n",
hdcp->update_stream);
if (hdcp->update_stream) {
sde_hdcp_2x_query_stream(hdcp);
hdcp->update_stream = false;
} else {
sde_hdcp_2x_initialize_command(hdcp,
HDCP_TRANSPORT_CMD_LINK_POLL, &cdata);
}
break;
default:
cdata.cmd = HDCP_TRANSPORT_CMD_RECV_MESSAGE;
cdata.transaction_delay = hdcp->app_data.timeout;
cdata.buf = hdcp->app_data.request.data + 1;
}
sde_hdcp_2x_wakeup_client(hdcp, &cdata);
}
static void sde_hdcp_2x_init(struct sde_hdcp_2x_ctrl *hdcp)
{
int rc;
rc = hdcp2_app_comm(hdcp->hdcp2_ctx, HDCP2_CMD_START, &hdcp->app_data);
if (rc)
sde_hdcp_2x_clean(hdcp);
}
static void sde_hdcp_2x_start_auth(struct sde_hdcp_2x_ctrl *hdcp)
{
int rc;
rc = hdcp2_app_comm(hdcp->hdcp2_ctx, HDCP2_CMD_START_AUTH,
&hdcp->app_data);
if (rc) {
sde_hdcp_2x_clean(hdcp);
return;
}
pr_debug("message received from TZ: %s\n",
sde_hdcp_2x_message_name(hdcp->app_data.response.data[0]));
sde_hdcp_2x_send_message(hdcp);
}
static void sde_hdcp_2x_timeout(struct sde_hdcp_2x_ctrl *hdcp)
{
int rc = 0;
int message_id;
if (atomic_read(&hdcp->hdcp_off)) {
pr_debug("invalid state, hdcp off\n");
return;
}
rc = hdcp2_app_comm(hdcp->hdcp2_ctx, HDCP2_CMD_TIMEOUT,
&hdcp->app_data);
if (rc)
goto error;
message_id = (int)hdcp->app_data.response.data[0];
if (message_id == LC_INIT && !atomic_read(&hdcp->hdcp_off))
sde_hdcp_2x_send_message(hdcp);
return;
error:
if (!atomic_read(&hdcp->hdcp_off))
sde_hdcp_2x_clean(hdcp);
}
static void sde_hdcp_2x_msg_recvd(struct sde_hdcp_2x_ctrl *hdcp)
{
int rc = 0;
char *msg = NULL;
u32 message_id_bytes = 0;
u32 request_length, out_msg;
struct hdcp_transport_wakeup_data cdata = {HDCP_TRANSPORT_CMD_INVALID};
if (atomic_read(&hdcp->hdcp_off)) {
pr_debug("invalid state, hdcp off\n");
return;
}
cdata.context = hdcp->client_data;
request_length = hdcp->total_message_length;
msg = hdcp->app_data.request.data;
if (request_length == 0) {
pr_err("invalid message length\n");
goto exit;
}
if (hdcp->device_type == HDCP_TXMTR_DP ||
hdcp->device_type == HDCP_TXMTR_DP_MST) {
msg[0] = hdcp->last_msg;
message_id_bytes = 1;
}
request_length += message_id_bytes;
pr_debug("[sink]: %s\n", sde_hdcp_2x_message_name(msg[0]));
hdcp->app_data.request.length = request_length;
rc = hdcp2_app_comm(hdcp->hdcp2_ctx, HDCP2_CMD_PROCESS_MSG,
&hdcp->app_data);
if (rc) {
pr_err("failed to process sink's response to %s (%d)\n",
sde_hdcp_2x_message_name(msg[0]), rc);
rc = -EINVAL;
goto exit;
}
if (msg[0] == AKE_SEND_H_PRIME && hdcp->no_stored_km) {
cdata.cmd = HDCP_TRANSPORT_CMD_RECV_MESSAGE;
cdata.transaction_delay = hdcp->app_data.timeout;
cdata.buf = hdcp->app_data.request.data + 1;
goto exit;
}
if (hdcp->app_data.response.length == 0)
out_msg = INVALID_MESSAGE;
else
out_msg = (u32)hdcp->app_data.response.data[0];
pr_debug("[tz]: %s\n", sde_hdcp_2x_message_name(out_msg));
if (msg[0] == REP_STREAM_READY && out_msg != REP_STREAM_MANAGE) {
if (hdcp->resend_stream_manage) {
pr_debug("resend stream management\n");
} else if (!hdcp->authenticated) {
rc = hdcp2_app_comm(hdcp->hdcp2_ctx,
HDCP2_CMD_EN_ENCRYPTION,
&hdcp->app_data);
if (!rc) {
hdcp->authenticated = true;
if (hdcp->force_encryption)
hdcp2_force_encryption(
hdcp->hdcp2_ctx, 1);
cdata.cmd = HDCP_TRANSPORT_CMD_STATUS_SUCCESS;
sde_hdcp_2x_wakeup_client(hdcp, &cdata);
} else {
pr_err("failed to enable encryption (%d)\n",
rc);
}
}
sde_hdcp_2x_initialize_command(hdcp,
HDCP_TRANSPORT_CMD_LINK_POLL, &cdata);
goto exit;
}
hdcp->resend_lc_init = false;
if (msg[0] == LC_SEND_L_PRIME && out_msg == LC_INIT)
hdcp->resend_lc_init = true;
if (msg[0] == REP_STREAM_READY && out_msg == REP_STREAM_MANAGE)
pr_debug("resend %s\n", sde_hdcp_2x_message_name(out_msg));
if (out_msg == AKE_NO_STORED_KM)
hdcp->no_stored_km = true;
else
hdcp->no_stored_km = false;
if (out_msg == SKE_SEND_EKS) {
hdcp->repeater_flag = hdcp->app_data.repeater_flag;
hdcp->update_stream = true;
}
if (!atomic_read(&hdcp->hdcp_off)) {
cdata.cmd = HDCP_TRANSPORT_CMD_SEND_MESSAGE;
cdata.buf = hdcp->app_data.response.data + 1;
cdata.buf_len = hdcp->app_data.response.length;
cdata.transaction_delay = hdcp->app_data.timeout;
}
exit:
sde_hdcp_2x_wakeup_client(hdcp, &cdata);
if (rc && !atomic_read(&hdcp->hdcp_off))
sde_hdcp_2x_clean(hdcp);
}
static struct list_head *sde_hdcp_2x_stream_present(
struct sde_hdcp_2x_ctrl *hdcp, u8 stream_id, u8 virtual_channel)
{
struct sde_hdcp_stream *stream_entry;
struct list_head *entry;
bool present = false;
list_for_each(entry, &hdcp->stream_handles) {
stream_entry = list_entry(entry,
struct sde_hdcp_stream, list);
if (stream_entry->virtual_channel == virtual_channel &&
stream_entry->stream_id == stream_id) {
present = true;
break;
}
}
if (!present)
entry = NULL;
return entry;
}
static void sde_hdcp_2x_manage_stream(struct sde_hdcp_2x_ctrl *hdcp)
{
struct list_head *entry;
struct list_head *element;
struct sde_hdcp_stream *stream_entry;
bool query_streams = false;
entry = hdcp->stream_handles.next;
while (entry != &hdcp->stream_handles) {
stream_entry = list_entry(entry, struct sde_hdcp_stream, list);
element = entry;
entry = entry->next;
if (!stream_entry->active) {
hdcp2_close_stream(hdcp->hdcp2_ctx,
stream_entry->stream_handle);
hdcp->stream_count--;
list_del(element);
kzfree(stream_entry);
query_streams = true;
} else if (!stream_entry->stream_handle) {
if (hdcp2_open_stream(hdcp->hdcp2_ctx,
stream_entry->virtual_channel,
stream_entry->stream_id,
&stream_entry->stream_handle))
pr_err("Unable to open stream %d, virtual channel %d\n",
stream_entry->stream_id,
stream_entry->virtual_channel);
else
query_streams = true;
}
}
if (query_streams) {
if (hdcp->authenticated) {
sde_hdcp_2x_query_stream(hdcp);
} else if (hdcp->last_msg == REP_STREAM_MANAGE ||
hdcp->last_msg == REP_STREAM_READY) {
hdcp->resend_stream_manage = true;
}
}
}
static bool sde_hdcp_2x_remove_streams(struct sde_hdcp_2x_ctrl *hdcp,
struct stream_info *streams, u8 num_streams)
{
u8 i;
u8 stream_id;
u8 virtual_channel;
struct list_head *entry;
struct sde_hdcp_stream *stream_entry;
bool changed = false;
for (i = 0 ; i < num_streams; i++) {
stream_id = streams[i].stream_id;
virtual_channel = streams[i].virtual_channel;
entry = sde_hdcp_2x_stream_present(hdcp, stream_id,
virtual_channel);
if (!entry)
continue;
stream_entry = list_entry(entry, struct sde_hdcp_stream,
list);
if (!stream_entry->stream_handle) {
/* Stream wasn't fully initialized so remove it */
hdcp->stream_count--;
list_del(entry);
kzfree(stream_entry);
} else {
stream_entry->active = false;
}
changed = true;
}
return changed;
}
static bool sde_hdcp_2x_add_streams(struct sde_hdcp_2x_ctrl *hdcp,
struct stream_info *streams, u8 num_streams)
{
u8 i;
u8 stream_id;
u8 virtual_channel;
struct sde_hdcp_stream *stream;
bool changed = false;
for (i = 0 ; i < num_streams; i++) {
stream_id = streams[i].stream_id;
virtual_channel = streams[i].virtual_channel;
if (sde_hdcp_2x_stream_present(hdcp, stream_id,
virtual_channel))
continue;
stream = kzalloc(sizeof(struct sde_hdcp_stream), GFP_KERNEL);
if (!stream)
continue;
INIT_LIST_HEAD(&stream->list);
stream->stream_handle = 0;
stream->stream_id = stream_id;
stream->virtual_channel = virtual_channel;
stream->active = true;
list_add(&stream->list, &hdcp->stream_handles);
hdcp->stream_count++;
changed = true;
}
return changed;
}
/** sde_hdcp_2x_wakeup() - wakeup the module to execute a requested command
* @data: data required for executing corresponding command.
*
* This function is executed on caller's thread. Update the local data
* and wakeup the local thread to execute the command. Once the local
* thread is activated, caller's thread is returned and this function
* is ready to receive next command.
*/
static int sde_hdcp_2x_wakeup(struct sde_hdcp_2x_wakeup_data *data)
{
struct sde_hdcp_2x_ctrl *hdcp;
int rc = 0;
if (!data)
return -EINVAL;
hdcp = data->context;
if (!hdcp)
return -EINVAL;
hdcp->timeout_left = data->timeout;
hdcp->total_message_length = data->total_message_length;
if (!completion_done(&hdcp->response_completion))
complete_all(&hdcp->response_completion);
switch (data->cmd) {
case HDCP_2X_CMD_ENABLE:
if (!atomic_cmpxchg(&hdcp->enable_pending, 0, 1)) {
hdcp->device_type = data->device_type;
kfifo_put(&hdcp->cmd_q, data->cmd);
kthread_unpark(hdcp->thread);
wake_up(&hdcp->wait_q);
}
break;
case HDCP_2X_CMD_DISABLE:
if (!atomic_xchg(&hdcp->hdcp_off, 1))
kfifo_put(&hdcp->cmd_q, HDCP_2X_CMD_STOP);
kfifo_put(&hdcp->cmd_q, data->cmd);
kthread_park(hdcp->thread);
break;
case HDCP_2X_CMD_STOP:
atomic_set(&hdcp->hdcp_off, 1);
kfifo_put(&hdcp->cmd_q, data->cmd);
kthread_park(hdcp->thread);
break;
case HDCP_2X_CMD_START:
hdcp->no_stored_km = false;
hdcp->repeater_flag = false;
hdcp->update_stream = false;
hdcp->authenticated = false;
hdcp->last_msg = INVALID_MESSAGE;
hdcp->timeout_left = 0;
atomic_set(&hdcp->hdcp_off, 0);
kfifo_put(&hdcp->cmd_q, data->cmd);
kthread_unpark(hdcp->thread);
wake_up(&hdcp->wait_q);
break;
case HDCP_2X_CMD_OPEN_STREAMS:
if (sde_hdcp_2x_add_streams(hdcp, data->streams,
data->num_streams)) {
kfifo_put(&hdcp->cmd_q, data->cmd);
wake_up(&hdcp->wait_q);
}
break;
case HDCP_2X_CMD_CLOSE_STREAMS:
if (sde_hdcp_2x_remove_streams(hdcp, data->streams,
data->num_streams)) {
kfifo_put(&hdcp->cmd_q, data->cmd);
wake_up(&hdcp->wait_q);
}
break;
case HDCP_2X_CMD_MIN_ENC_LEVEL:
hdcp->min_enc_level = data->min_enc_level;
if (hdcp->authenticated) {
kfifo_put(&hdcp->cmd_q, data->cmd);
wake_up(&hdcp->wait_q);
}
break;
default:
kfifo_put(&hdcp->cmd_q, data->cmd);
wake_up(&hdcp->wait_q);
break;
}
return rc;
}
static void sde_hdcp_2x_enable(struct sde_hdcp_2x_ctrl *hdcp)
{
if (!hdcp)
return;
if (hdcp->hdcp2_ctx) {
pr_debug("HDCP library context already acquired\n");
return;
}
hdcp->hdcp2_ctx = hdcp2_init(hdcp->device_type);
if (!hdcp->hdcp2_ctx)
pr_err("Unable to acquire HDCP library handle\n");
}
static void sde_hdcp_2x_disable(struct sde_hdcp_2x_ctrl *hdcp)
{
if (!hdcp->hdcp2_ctx)
return;
hdcp2_deinit(hdcp->hdcp2_ctx);
hdcp->hdcp2_ctx = NULL;
}
static int sde_hdcp_2x_main(void *data)
{
struct sde_hdcp_2x_ctrl *hdcp = data;
enum sde_hdcp_2x_wakeup_cmd cmd;
while (1) {
wait_event(hdcp->wait_q,
!kfifo_is_empty(&hdcp->cmd_q) ||
kthread_should_stop() ||
kthread_should_park());
if (kthread_should_stop())
break;
if (kfifo_is_empty(&hdcp->cmd_q) && kthread_should_park()) {
kthread_parkme();
continue;
}
if (!kfifo_get(&hdcp->cmd_q, &cmd))
continue;
switch (cmd) {
case HDCP_2X_CMD_ENABLE:
sde_hdcp_2x_enable(hdcp);
atomic_set(&hdcp->enable_pending, 0);
break;
case HDCP_2X_CMD_DISABLE:
sde_hdcp_2x_disable(hdcp);
break;
case HDCP_2X_CMD_START:
sde_hdcp_2x_init(hdcp);
break;
case HDCP_2X_CMD_STOP:
sde_hdcp_2x_clean(hdcp);
break;
case HDCP_2X_CMD_START_AUTH:
sde_hdcp_2x_start_auth(hdcp);
break;
case HDCP_2X_CMD_MSG_SEND_SUCCESS:
sde_hdcp_2x_msg_sent(hdcp);
break;
case HDCP_2X_CMD_MSG_SEND_FAILED:
case HDCP_2X_CMD_MSG_RECV_FAILED:
case HDCP_2X_CMD_LINK_FAILED:
sde_hdcp_2x_clean(hdcp);
break;
case HDCP_2X_CMD_MSG_RECV_SUCCESS:
sde_hdcp_2x_msg_recvd(hdcp);
break;
case HDCP_2X_CMD_MSG_RECV_TIMEOUT:
sde_hdcp_2x_timeout(hdcp);
break;
case HDCP_2X_CMD_QUERY_STREAM_TYPE:
sde_hdcp_2x_query_stream(hdcp);
break;
case HDCP_2X_CMD_MIN_ENC_LEVEL:
if (!hdcp->repeater_flag) {
sde_hdcp_2x_send_type(hdcp);
break;
}
sde_hdcp_2x_query_stream(hdcp);
break;
case HDCP_2X_CMD_OPEN_STREAMS:
case HDCP_2X_CMD_CLOSE_STREAMS:
sde_hdcp_2x_manage_stream(hdcp);
break;
default:
break;
}
}
return 0;
}
int sde_hdcp_2x_register(struct sde_hdcp_2x_register_data *data)
{
int rc = 0;
struct sde_hdcp_2x_ctrl *hdcp = NULL;
if (!data) {
pr_err("invalid input\n");
return -EINVAL;
}
if (!data->ops) {
pr_err("invalid input: txmtr context\n");
return -EINVAL;
}
if (!data->client_ops) {
pr_err("invalid input: client_ops\n");
return -EINVAL;
}
if (!data->hdcp_data) {
pr_err("invalid input: hdcp_data\n");
return -EINVAL;
}
/* populate ops to be called by client */
data->ops->feature_supported = sde_hdcp_2x_client_feature_supported;
data->ops->wakeup = sde_hdcp_2x_wakeup;
data->ops->force_encryption = sde_hdcp_2x_force_encryption;
hdcp = kzalloc(sizeof(*hdcp), GFP_KERNEL);
if (!hdcp) {
rc = -ENOMEM;
goto unlock;
}
INIT_LIST_HEAD(&hdcp->stream_handles);
hdcp->client_data = data->client_data;
hdcp->client_ops = data->client_ops;
INIT_KFIFO(hdcp->cmd_q);
init_waitqueue_head(&hdcp->wait_q);
atomic_set(&hdcp->hdcp_off, 1);
atomic_set(&hdcp->enable_pending, 0);
init_completion(&hdcp->response_completion);
*data->hdcp_data = hdcp;
hdcp->thread = kthread_run(sde_hdcp_2x_main, hdcp, "hdcp_2x");
if (IS_ERR(hdcp->thread)) {
pr_err("unable to start lib thread\n");
rc = PTR_ERR(hdcp->thread);
hdcp->thread = NULL;
goto error;
}
hdcp->force_encryption = false;
return 0;
error:
kzfree(hdcp);
hdcp = NULL;
unlock:
return rc;
}
void sde_hdcp_2x_deregister(void *data)
{
struct sde_hdcp_2x_ctrl *hdcp = data;
if (!hdcp)
return;
kthread_stop(hdcp->thread);
sde_hdcp_2x_disable(data);
kzfree(hdcp);
}