blob: 8493fdf2624b985d6837bb350971b9e96130767e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2020, The Linux Foundation. All rights reserved.
*/
#include <linux/of_device.h>
#include <linux/err.h>
#include <linux/regulator/consumer.h>
#include <linux/clk.h>
#include <linux/msm-bus.h>
#include <linux/of_irq.h>
#include <video/mipi_display.h>
#include "msm_drv.h"
#include "msm_kms.h"
#include "msm_mmu.h"
#include "dsi_ctrl.h"
#include "dsi_ctrl_hw.h"
#include "dsi_clk.h"
#include "dsi_pwr.h"
#include "dsi_catalog.h"
#include "dsi_panel.h"
#include "sde_dbg.h"
#define DSI_CTRL_DEFAULT_LABEL "MDSS DSI CTRL"
#define DSI_CTRL_TX_TO_MS 200
#define TO_ON_OFF(x) ((x) ? "ON" : "OFF")
#define CEIL(x, y) (((x) + ((y)-1)) / (y))
#define TICKS_IN_MICRO_SECOND 1000000
#define DSI_CTRL_DEBUG(c, fmt, ...) DRM_DEV_DEBUG(NULL, "[msm-dsi-debug]: %s: "\
fmt, c ? c->name : "inv", ##__VA_ARGS__)
#define DSI_CTRL_ERR(c, fmt, ...) DRM_DEV_ERROR(NULL, "[msm-dsi-error]: %s: "\
fmt, c ? c->name : "inv", ##__VA_ARGS__)
#define DSI_CTRL_INFO(c, fmt, ...) DRM_DEV_INFO(NULL, "[msm-dsi-info]: %s: "\
fmt, c->name, ##__VA_ARGS__)
#define DSI_CTRL_WARN(c, fmt, ...) DRM_WARN("[msm-dsi-warn]: %s: " fmt,\
c ? c->name : "inv", ##__VA_ARGS__)
struct dsi_ctrl_list_item {
struct dsi_ctrl *ctrl;
struct list_head list;
};
static LIST_HEAD(dsi_ctrl_list);
static DEFINE_MUTEX(dsi_ctrl_list_lock);
static const enum dsi_ctrl_version dsi_ctrl_v1_4 = DSI_CTRL_VERSION_1_4;
static const enum dsi_ctrl_version dsi_ctrl_v2_0 = DSI_CTRL_VERSION_2_0;
static const enum dsi_ctrl_version dsi_ctrl_v2_2 = DSI_CTRL_VERSION_2_2;
static const enum dsi_ctrl_version dsi_ctrl_v2_3 = DSI_CTRL_VERSION_2_3;
static const enum dsi_ctrl_version dsi_ctrl_v2_4 = DSI_CTRL_VERSION_2_4;
static const struct of_device_id msm_dsi_of_match[] = {
{
.compatible = "qcom,dsi-ctrl-hw-v1.4",
.data = &dsi_ctrl_v1_4,
},
{
.compatible = "qcom,dsi-ctrl-hw-v2.0",
.data = &dsi_ctrl_v2_0,
},
{
.compatible = "qcom,dsi-ctrl-hw-v2.2",
.data = &dsi_ctrl_v2_2,
},
{
.compatible = "qcom,dsi-ctrl-hw-v2.3",
.data = &dsi_ctrl_v2_3,
},
{
.compatible = "qcom,dsi-ctrl-hw-v2.4",
.data = &dsi_ctrl_v2_4,
},
{}
};
#ifdef CONFIG_DEBUG_FS
static ssize_t debugfs_state_info_read(struct file *file,
char __user *buff,
size_t count,
loff_t *ppos)
{
struct dsi_ctrl *dsi_ctrl = file->private_data;
char *buf;
u32 len = 0;
if (!dsi_ctrl)
return -ENODEV;
if (*ppos)
return 0;
buf = kzalloc(SZ_4K, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* Dump current state */
len += snprintf((buf + len), (SZ_4K - len), "Current State:\n");
len += snprintf((buf + len), (SZ_4K - len),
"\tCTRL_ENGINE = %s\n",
TO_ON_OFF(dsi_ctrl->current_state.controller_state));
len += snprintf((buf + len), (SZ_4K - len),
"\tVIDEO_ENGINE = %s\n\tCOMMAND_ENGINE = %s\n",
TO_ON_OFF(dsi_ctrl->current_state.vid_engine_state),
TO_ON_OFF(dsi_ctrl->current_state.cmd_engine_state));
/* Dump clock information */
len += snprintf((buf + len), (SZ_4K - len), "\nClock Info:\n");
len += snprintf((buf + len), (SZ_4K - len),
"\tBYTE_CLK = %u, PIXEL_CLK = %u, ESC_CLK = %u\n",
dsi_ctrl->clk_freq.byte_clk_rate,
dsi_ctrl->clk_freq.pix_clk_rate,
dsi_ctrl->clk_freq.esc_clk_rate);
if (len > count)
len = count;
len = min_t(size_t, len, SZ_4K);
if (copy_to_user(buff, buf, len)) {
kfree(buf);
return -EFAULT;
}
*ppos += len;
kfree(buf);
return len;
}
static ssize_t debugfs_reg_dump_read(struct file *file,
char __user *buff,
size_t count,
loff_t *ppos)
{
struct dsi_ctrl *dsi_ctrl = file->private_data;
char *buf;
u32 len = 0;
struct dsi_clk_ctrl_info clk_info;
int rc = 0;
if (!dsi_ctrl)
return -ENODEV;
if (*ppos)
return 0;
buf = kzalloc(SZ_4K, GFP_KERNEL);
if (!buf)
return -ENOMEM;
clk_info.client = DSI_CLK_REQ_DSI_CLIENT;
clk_info.clk_type = DSI_CORE_CLK;
clk_info.clk_state = DSI_CLK_ON;
rc = dsi_ctrl->clk_cb.dsi_clk_cb(dsi_ctrl->clk_cb.priv, clk_info);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "failed to enable DSI core clocks\n");
kfree(buf);
return rc;
}
if (dsi_ctrl->hw.ops.reg_dump_to_buffer)
len = dsi_ctrl->hw.ops.reg_dump_to_buffer(&dsi_ctrl->hw,
buf, SZ_4K);
clk_info.clk_state = DSI_CLK_OFF;
rc = dsi_ctrl->clk_cb.dsi_clk_cb(dsi_ctrl->clk_cb.priv, clk_info);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "failed to disable DSI core clocks\n");
kfree(buf);
return rc;
}
if (len > count)
len = count;
len = min_t(size_t, len, SZ_4K);
if (copy_to_user(buff, buf, len)) {
kfree(buf);
return -EFAULT;
}
*ppos += len;
kfree(buf);
return len;
}
static const struct file_operations state_info_fops = {
.open = simple_open,
.read = debugfs_state_info_read,
};
static const struct file_operations reg_dump_fops = {
.open = simple_open,
.read = debugfs_reg_dump_read,
};
static int dsi_ctrl_debugfs_init(struct dsi_ctrl *dsi_ctrl,
struct dentry *parent)
{
int rc = 0;
struct dentry *dir, *state_file, *reg_dump;
char dbg_name[DSI_DEBUG_NAME_LEN];
if (!dsi_ctrl || !parent) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
dir = debugfs_create_dir(dsi_ctrl->name, parent);
if (IS_ERR_OR_NULL(dir)) {
rc = PTR_ERR(dir);
DSI_CTRL_ERR(dsi_ctrl, "debugfs create dir failed, rc=%d\n",
rc);
goto error;
}
state_file = debugfs_create_file("state_info",
0444,
dir,
dsi_ctrl,
&state_info_fops);
if (IS_ERR_OR_NULL(state_file)) {
rc = PTR_ERR(state_file);
DSI_CTRL_ERR(dsi_ctrl, "state file failed, rc=%d\n", rc);
goto error_remove_dir;
}
reg_dump = debugfs_create_file("reg_dump",
0444,
dir,
dsi_ctrl,
&reg_dump_fops);
if (IS_ERR_OR_NULL(reg_dump)) {
rc = PTR_ERR(reg_dump);
DSI_CTRL_ERR(dsi_ctrl, "reg dump file failed, rc=%d\n", rc);
goto error_remove_dir;
}
dsi_ctrl->debugfs_root = dir;
snprintf(dbg_name, DSI_DEBUG_NAME_LEN, "dsi%d_ctrl",
dsi_ctrl->cell_index);
sde_dbg_reg_register_base(dbg_name, dsi_ctrl->hw.base,
msm_iomap_size(dsi_ctrl->pdev, "dsi_ctrl"));
error_remove_dir:
debugfs_remove(dir);
error:
return rc;
}
static int dsi_ctrl_debugfs_deinit(struct dsi_ctrl *dsi_ctrl)
{
debugfs_remove(dsi_ctrl->debugfs_root);
return 0;
}
#else
static int dsi_ctrl_debugfs_init(struct dsi_ctrl *dsi_ctrl,
struct dentry *parent)
{
return 0;
}
static int dsi_ctrl_debugfs_deinit(struct dsi_ctrl *dsi_ctrl)
{
return 0;
}
#endif /* CONFIG_DEBUG_FS */
static inline struct msm_gem_address_space*
dsi_ctrl_get_aspace(struct dsi_ctrl *dsi_ctrl,
int domain)
{
if (!dsi_ctrl || !dsi_ctrl->drm_dev)
return NULL;
return msm_gem_smmu_address_space_get(dsi_ctrl->drm_dev, domain);
}
static void dsi_ctrl_flush_cmd_dma_queue(struct dsi_ctrl *dsi_ctrl)
{
/*
* If a command is triggered right after another command,
* check if the previous command transfer is completed. If
* transfer is done, cancel any work that has been
* queued. Otherwise wait till the work is scheduled and
* completed before triggering the next command by
* flushing the workqueue.
*/
if (atomic_read(&dsi_ctrl->dma_irq_trig)) {
cancel_work_sync(&dsi_ctrl->dma_cmd_wait);
} else {
flush_workqueue(dsi_ctrl->dma_cmd_workq);
}
}
static void dsi_ctrl_dma_cmd_wait_for_done(struct work_struct *work)
{
int ret = 0;
struct dsi_ctrl *dsi_ctrl = NULL;
u32 status;
u32 mask = DSI_CMD_MODE_DMA_DONE;
struct dsi_ctrl_hw_ops dsi_hw_ops;
dsi_ctrl = container_of(work, struct dsi_ctrl, dma_cmd_wait);
dsi_hw_ops = dsi_ctrl->hw.ops;
SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_ENTRY);
/*
* This atomic state will be set if ISR has been triggered,
* so the wait is not needed.
*/
if (atomic_read(&dsi_ctrl->dma_irq_trig))
goto done;
ret = wait_for_completion_timeout(
&dsi_ctrl->irq_info.cmd_dma_done,
msecs_to_jiffies(DSI_CTRL_TX_TO_MS));
if (ret == 0 && !atomic_read(&dsi_ctrl->dma_irq_trig)) {
status = dsi_hw_ops.get_interrupt_status(&dsi_ctrl->hw);
if (status & mask) {
status |= (DSI_CMD_MODE_DMA_DONE | DSI_BTA_DONE);
dsi_hw_ops.clear_interrupt_status(&dsi_ctrl->hw,
status);
DSI_CTRL_WARN(dsi_ctrl,
"dma_tx done but irq not triggered\n");
} else {
DSI_CTRL_ERR(dsi_ctrl,
"Command transfer failed\n");
}
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_CMD_MODE_DMA_DONE);
}
done:
dsi_ctrl->dma_wait_queued = false;
}
static int dsi_ctrl_check_state(struct dsi_ctrl *dsi_ctrl,
enum dsi_ctrl_driver_ops op,
u32 op_state)
{
int rc = 0;
struct dsi_ctrl_state_info *state = &dsi_ctrl->current_state;
SDE_EVT32(dsi_ctrl->cell_index, op);
switch (op) {
case DSI_CTRL_OP_POWER_STATE_CHANGE:
if (state->power_state == op_state) {
DSI_CTRL_ERR(dsi_ctrl, "No change in state, pwr_state=%d\n",
op_state);
rc = -EINVAL;
} else if (state->power_state == DSI_CTRL_POWER_VREG_ON) {
if (state->vid_engine_state == DSI_CTRL_ENGINE_ON) {
DSI_CTRL_ERR(dsi_ctrl, "State error: op=%d: %d\n",
op_state,
state->vid_engine_state);
rc = -EINVAL;
}
}
break;
case DSI_CTRL_OP_CMD_ENGINE:
if (state->cmd_engine_state == op_state) {
DSI_CTRL_ERR(dsi_ctrl, "No change in state, cmd_state=%d\n",
op_state);
rc = -EINVAL;
} else if ((state->power_state != DSI_CTRL_POWER_VREG_ON) ||
(state->controller_state != DSI_CTRL_ENGINE_ON)) {
DSI_CTRL_ERR(dsi_ctrl, "State error: op=%d: %d, %d\n",
op,
state->power_state,
state->controller_state);
rc = -EINVAL;
}
break;
case DSI_CTRL_OP_VID_ENGINE:
if (state->vid_engine_state == op_state) {
DSI_CTRL_ERR(dsi_ctrl, "No change in state, cmd_state=%d\n",
op_state);
rc = -EINVAL;
} else if ((state->power_state != DSI_CTRL_POWER_VREG_ON) ||
(state->controller_state != DSI_CTRL_ENGINE_ON)) {
DSI_CTRL_ERR(dsi_ctrl, "State error: op=%d: %d, %d\n",
op,
state->power_state,
state->controller_state);
rc = -EINVAL;
}
break;
case DSI_CTRL_OP_HOST_ENGINE:
if (state->controller_state == op_state) {
DSI_CTRL_ERR(dsi_ctrl, "No change in state, ctrl_state=%d\n",
op_state);
rc = -EINVAL;
} else if (state->power_state != DSI_CTRL_POWER_VREG_ON) {
DSI_CTRL_ERR(dsi_ctrl, "State error (link is off): op=%d:, %d\n",
op_state,
state->power_state);
rc = -EINVAL;
} else if ((op_state == DSI_CTRL_ENGINE_OFF) &&
((state->cmd_engine_state != DSI_CTRL_ENGINE_OFF) ||
(state->vid_engine_state != DSI_CTRL_ENGINE_OFF))) {
DSI_CTRL_ERR(dsi_ctrl, "State error (eng on): op=%d: %d, %d\n",
op_state,
state->cmd_engine_state,
state->vid_engine_state);
rc = -EINVAL;
}
break;
case DSI_CTRL_OP_CMD_TX:
if ((state->power_state != DSI_CTRL_POWER_VREG_ON) ||
(!state->host_initialized) ||
(state->cmd_engine_state != DSI_CTRL_ENGINE_ON)) {
DSI_CTRL_ERR(dsi_ctrl, "State error: op=%d: %d, %d, %d\n",
op,
state->power_state,
state->host_initialized,
state->cmd_engine_state);
rc = -EINVAL;
}
break;
case DSI_CTRL_OP_HOST_INIT:
if (state->host_initialized == op_state) {
DSI_CTRL_ERR(dsi_ctrl, "No change in state, host_init=%d\n",
op_state);
rc = -EINVAL;
} else if (state->power_state != DSI_CTRL_POWER_VREG_ON) {
DSI_CTRL_ERR(dsi_ctrl, "State error: op=%d: %d\n",
op, state->power_state);
rc = -EINVAL;
}
break;
case DSI_CTRL_OP_TPG:
if (state->tpg_enabled == op_state) {
DSI_CTRL_ERR(dsi_ctrl, "No change in state, tpg_enabled=%d\n",
op_state);
rc = -EINVAL;
} else if ((state->power_state != DSI_CTRL_POWER_VREG_ON) ||
(state->controller_state != DSI_CTRL_ENGINE_ON)) {
DSI_CTRL_ERR(dsi_ctrl, "State error: op=%d: %d, %d\n",
op,
state->power_state,
state->controller_state);
rc = -EINVAL;
}
break;
case DSI_CTRL_OP_PHY_SW_RESET:
if (state->power_state != DSI_CTRL_POWER_VREG_ON) {
DSI_CTRL_ERR(dsi_ctrl, "State error: op=%d: %d\n",
op, state->power_state);
rc = -EINVAL;
}
break;
case DSI_CTRL_OP_ASYNC_TIMING:
if (state->vid_engine_state != op_state) {
DSI_CTRL_ERR(dsi_ctrl, "Unexpected engine state vid_state=%d\n",
op_state);
rc = -EINVAL;
}
break;
default:
rc = -ENOTSUPP;
break;
}
return rc;
}
bool dsi_ctrl_validate_host_state(struct dsi_ctrl *dsi_ctrl)
{
struct dsi_ctrl_state_info *state = &dsi_ctrl->current_state;
if (!state) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid host state for DSI controller\n");
return -EINVAL;
}
if (!state->host_initialized)
return false;
return true;
}
static void dsi_ctrl_update_state(struct dsi_ctrl *dsi_ctrl,
enum dsi_ctrl_driver_ops op,
u32 op_state)
{
struct dsi_ctrl_state_info *state = &dsi_ctrl->current_state;
switch (op) {
case DSI_CTRL_OP_POWER_STATE_CHANGE:
state->power_state = op_state;
break;
case DSI_CTRL_OP_CMD_ENGINE:
state->cmd_engine_state = op_state;
break;
case DSI_CTRL_OP_VID_ENGINE:
state->vid_engine_state = op_state;
break;
case DSI_CTRL_OP_HOST_ENGINE:
state->controller_state = op_state;
break;
case DSI_CTRL_OP_HOST_INIT:
state->host_initialized = (op_state == 1) ? true : false;
break;
case DSI_CTRL_OP_TPG:
state->tpg_enabled = (op_state == 1) ? true : false;
break;
case DSI_CTRL_OP_CMD_TX:
case DSI_CTRL_OP_PHY_SW_RESET:
default:
break;
}
}
static int dsi_ctrl_init_regmap(struct platform_device *pdev,
struct dsi_ctrl *ctrl)
{
int rc = 0;
void __iomem *ptr;
ptr = msm_ioremap(pdev, "dsi_ctrl", ctrl->name);
if (IS_ERR(ptr)) {
rc = PTR_ERR(ptr);
return rc;
}
ctrl->hw.base = ptr;
DSI_CTRL_DEBUG(ctrl, "map dsi_ctrl registers to %pK\n", ctrl->hw.base);
switch (ctrl->version) {
case DSI_CTRL_VERSION_1_4:
case DSI_CTRL_VERSION_2_0:
ptr = msm_ioremap(pdev, "mmss_misc", ctrl->name);
if (IS_ERR(ptr)) {
DSI_CTRL_ERR(ctrl, "mmss_misc base address not found\n");
rc = PTR_ERR(ptr);
return rc;
}
ctrl->hw.mmss_misc_base = ptr;
ctrl->hw.disp_cc_base = NULL;
break;
case DSI_CTRL_VERSION_2_2:
case DSI_CTRL_VERSION_2_3:
case DSI_CTRL_VERSION_2_4:
ptr = msm_ioremap(pdev, "disp_cc_base", ctrl->name);
if (IS_ERR(ptr)) {
DSI_CTRL_ERR(ctrl, "disp_cc base address not found for\n");
rc = PTR_ERR(ptr);
return rc;
}
ctrl->hw.disp_cc_base = ptr;
ctrl->hw.mmss_misc_base = NULL;
break;
default:
break;
}
return rc;
}
static int dsi_ctrl_clocks_deinit(struct dsi_ctrl *ctrl)
{
struct dsi_core_clk_info *core = &ctrl->clk_info.core_clks;
struct dsi_link_lp_clk_info *lp_link = &ctrl->clk_info.lp_link_clks;
struct dsi_link_hs_clk_info *hs_link = &ctrl->clk_info.hs_link_clks;
struct dsi_clk_link_set *rcg = &ctrl->clk_info.rcg_clks;
if (core->mdp_core_clk)
devm_clk_put(&ctrl->pdev->dev, core->mdp_core_clk);
if (core->iface_clk)
devm_clk_put(&ctrl->pdev->dev, core->iface_clk);
if (core->core_mmss_clk)
devm_clk_put(&ctrl->pdev->dev, core->core_mmss_clk);
if (core->bus_clk)
devm_clk_put(&ctrl->pdev->dev, core->bus_clk);
if (core->mnoc_clk)
devm_clk_put(&ctrl->pdev->dev, core->mnoc_clk);
memset(core, 0x0, sizeof(*core));
if (hs_link->byte_clk)
devm_clk_put(&ctrl->pdev->dev, hs_link->byte_clk);
if (hs_link->pixel_clk)
devm_clk_put(&ctrl->pdev->dev, hs_link->pixel_clk);
if (lp_link->esc_clk)
devm_clk_put(&ctrl->pdev->dev, lp_link->esc_clk);
if (hs_link->byte_intf_clk)
devm_clk_put(&ctrl->pdev->dev, hs_link->byte_intf_clk);
memset(hs_link, 0x0, sizeof(*hs_link));
memset(lp_link, 0x0, sizeof(*lp_link));
if (rcg->byte_clk)
devm_clk_put(&ctrl->pdev->dev, rcg->byte_clk);
if (rcg->pixel_clk)
devm_clk_put(&ctrl->pdev->dev, rcg->pixel_clk);
memset(rcg, 0x0, sizeof(*rcg));
return 0;
}
static int dsi_ctrl_clocks_init(struct platform_device *pdev,
struct dsi_ctrl *ctrl)
{
int rc = 0;
struct dsi_core_clk_info *core = &ctrl->clk_info.core_clks;
struct dsi_link_lp_clk_info *lp_link = &ctrl->clk_info.lp_link_clks;
struct dsi_link_hs_clk_info *hs_link = &ctrl->clk_info.hs_link_clks;
struct dsi_clk_link_set *rcg = &ctrl->clk_info.rcg_clks;
core->mdp_core_clk = devm_clk_get(&pdev->dev, "mdp_core_clk");
if (IS_ERR(core->mdp_core_clk)) {
core->mdp_core_clk = NULL;
DSI_CTRL_DEBUG(ctrl, "failed to get mdp_core_clk, rc=%d\n", rc);
}
core->iface_clk = devm_clk_get(&pdev->dev, "iface_clk");
if (IS_ERR(core->iface_clk)) {
core->iface_clk = NULL;
DSI_CTRL_DEBUG(ctrl, "failed to get iface_clk, rc=%d\n", rc);
}
core->core_mmss_clk = devm_clk_get(&pdev->dev, "core_mmss_clk");
if (IS_ERR(core->core_mmss_clk)) {
core->core_mmss_clk = NULL;
DSI_CTRL_DEBUG(ctrl, "failed to get core_mmss_clk, rc=%d\n",
rc);
}
core->bus_clk = devm_clk_get(&pdev->dev, "bus_clk");
if (IS_ERR(core->bus_clk)) {
core->bus_clk = NULL;
DSI_CTRL_DEBUG(ctrl, "failed to get bus_clk, rc=%d\n", rc);
}
core->mnoc_clk = devm_clk_get(&pdev->dev, "mnoc_clk");
if (IS_ERR(core->mnoc_clk)) {
core->mnoc_clk = NULL;
DSI_CTRL_DEBUG(ctrl, "can't get mnoc clock, rc=%d\n", rc);
}
hs_link->byte_clk = devm_clk_get(&pdev->dev, "byte_clk");
if (IS_ERR(hs_link->byte_clk)) {
rc = PTR_ERR(hs_link->byte_clk);
DSI_CTRL_ERR(ctrl, "failed to get byte_clk, rc=%d\n", rc);
goto fail;
}
hs_link->pixel_clk = devm_clk_get(&pdev->dev, "pixel_clk");
if (IS_ERR(hs_link->pixel_clk)) {
rc = PTR_ERR(hs_link->pixel_clk);
DSI_CTRL_ERR(ctrl, "failed to get pixel_clk, rc=%d\n", rc);
goto fail;
}
lp_link->esc_clk = devm_clk_get(&pdev->dev, "esc_clk");
if (IS_ERR(lp_link->esc_clk)) {
rc = PTR_ERR(lp_link->esc_clk);
DSI_CTRL_ERR(ctrl, "failed to get esc_clk, rc=%d\n", rc);
goto fail;
}
hs_link->byte_intf_clk = devm_clk_get(&pdev->dev, "byte_intf_clk");
if (IS_ERR(hs_link->byte_intf_clk)) {
hs_link->byte_intf_clk = NULL;
DSI_CTRL_DEBUG(ctrl, "can't find byte intf clk, rc=%d\n", rc);
}
rcg->byte_clk = devm_clk_get(&pdev->dev, "byte_clk_rcg");
if (IS_ERR(rcg->byte_clk)) {
rc = PTR_ERR(rcg->byte_clk);
DSI_CTRL_ERR(ctrl, "failed to get byte_clk_rcg, rc=%d\n", rc);
goto fail;
}
rcg->pixel_clk = devm_clk_get(&pdev->dev, "pixel_clk_rcg");
if (IS_ERR(rcg->pixel_clk)) {
rc = PTR_ERR(rcg->pixel_clk);
DSI_CTRL_ERR(ctrl, "failed to get pixel_clk_rcg, rc=%d\n", rc);
goto fail;
}
return 0;
fail:
dsi_ctrl_clocks_deinit(ctrl);
return rc;
}
static int dsi_ctrl_supplies_deinit(struct dsi_ctrl *ctrl)
{
int i = 0;
int rc = 0;
struct dsi_regulator_info *regs;
regs = &ctrl->pwr_info.digital;
for (i = 0; i < regs->count; i++) {
if (!regs->vregs[i].vreg)
DSI_CTRL_ERR(ctrl,
"vreg is NULL, should not reach here\n");
else
devm_regulator_put(regs->vregs[i].vreg);
}
regs = &ctrl->pwr_info.host_pwr;
for (i = 0; i < regs->count; i++) {
if (!regs->vregs[i].vreg)
DSI_CTRL_ERR(ctrl,
"vreg is NULL, should not reach here\n");
else
devm_regulator_put(regs->vregs[i].vreg);
}
if (!ctrl->pwr_info.host_pwr.vregs) {
devm_kfree(&ctrl->pdev->dev, ctrl->pwr_info.host_pwr.vregs);
ctrl->pwr_info.host_pwr.vregs = NULL;
ctrl->pwr_info.host_pwr.count = 0;
}
if (!ctrl->pwr_info.digital.vregs) {
devm_kfree(&ctrl->pdev->dev, ctrl->pwr_info.digital.vregs);
ctrl->pwr_info.digital.vregs = NULL;
ctrl->pwr_info.digital.count = 0;
}
return rc;
}
static int dsi_ctrl_supplies_init(struct platform_device *pdev,
struct dsi_ctrl *ctrl)
{
int rc = 0;
int i = 0;
struct dsi_regulator_info *regs;
struct regulator *vreg = NULL;
rc = dsi_pwr_get_dt_vreg_data(&pdev->dev,
&ctrl->pwr_info.digital,
"qcom,core-supply-entries");
if (rc)
DSI_CTRL_DEBUG(ctrl,
"failed to get digital supply, rc = %d\n", rc);
rc = dsi_pwr_get_dt_vreg_data(&pdev->dev,
&ctrl->pwr_info.host_pwr,
"qcom,ctrl-supply-entries");
if (rc) {
DSI_CTRL_ERR(ctrl,
"failed to get host power supplies, rc = %d\n", rc);
goto error_digital;
}
regs = &ctrl->pwr_info.digital;
for (i = 0; i < regs->count; i++) {
vreg = devm_regulator_get(&pdev->dev, regs->vregs[i].vreg_name);
if (IS_ERR(vreg)) {
DSI_CTRL_ERR(ctrl, "failed to get %s regulator\n",
regs->vregs[i].vreg_name);
rc = PTR_ERR(vreg);
goto error_host_pwr;
}
regs->vregs[i].vreg = vreg;
}
regs = &ctrl->pwr_info.host_pwr;
for (i = 0; i < regs->count; i++) {
vreg = devm_regulator_get(&pdev->dev, regs->vregs[i].vreg_name);
if (IS_ERR(vreg)) {
DSI_CTRL_ERR(ctrl, "failed to get %s regulator\n",
regs->vregs[i].vreg_name);
for (--i; i >= 0; i--)
devm_regulator_put(regs->vregs[i].vreg);
rc = PTR_ERR(vreg);
goto error_digital_put;
}
regs->vregs[i].vreg = vreg;
}
return rc;
error_digital_put:
regs = &ctrl->pwr_info.digital;
for (i = 0; i < regs->count; i++)
devm_regulator_put(regs->vregs[i].vreg);
error_host_pwr:
devm_kfree(&pdev->dev, ctrl->pwr_info.host_pwr.vregs);
ctrl->pwr_info.host_pwr.vregs = NULL;
ctrl->pwr_info.host_pwr.count = 0;
error_digital:
if (ctrl->pwr_info.digital.vregs)
devm_kfree(&pdev->dev, ctrl->pwr_info.digital.vregs);
ctrl->pwr_info.digital.vregs = NULL;
ctrl->pwr_info.digital.count = 0;
return rc;
}
static int dsi_ctrl_axi_bus_client_init(struct platform_device *pdev,
struct dsi_ctrl *ctrl)
{
int rc = 0;
struct dsi_ctrl_bus_scale_info *bus = &ctrl->axi_bus_info;
bus->bus_scale_table = msm_bus_cl_get_pdata(pdev);
if (IS_ERR_OR_NULL(bus->bus_scale_table)) {
rc = PTR_ERR(bus->bus_scale_table);
DSI_CTRL_DEBUG(ctrl, "msm_bus_cl_get_pdata() failed, rc = %d\n",
rc);
bus->bus_scale_table = NULL;
return rc;
}
bus->bus_handle = msm_bus_scale_register_client(bus->bus_scale_table);
if (!bus->bus_handle) {
rc = -EINVAL;
DSI_CTRL_ERR(ctrl, "failed to register axi bus client\n");
}
return rc;
}
static int dsi_ctrl_axi_bus_client_deinit(struct dsi_ctrl *ctrl)
{
struct dsi_ctrl_bus_scale_info *bus = &ctrl->axi_bus_info;
if (bus->bus_handle) {
msm_bus_scale_unregister_client(bus->bus_handle);
bus->bus_handle = 0;
}
return 0;
}
static int dsi_ctrl_validate_panel_info(struct dsi_ctrl *dsi_ctrl,
struct dsi_host_config *config)
{
int rc = 0;
struct dsi_host_common_cfg *host_cfg = &config->common_config;
if (config->panel_mode >= DSI_OP_MODE_MAX) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid dsi operation mode (%d)\n",
config->panel_mode);
rc = -EINVAL;
goto err;
}
if ((host_cfg->data_lanes & (DSI_CLOCK_LANE - 1)) == 0) {
DSI_CTRL_ERR(dsi_ctrl, "No data lanes are enabled\n");
rc = -EINVAL;
goto err;
}
err:
return rc;
}
/* Function returns number of bits per pxl */
int dsi_ctrl_pixel_format_to_bpp(enum dsi_pixel_format dst_format)
{
u32 bpp = 0;
switch (dst_format) {
case DSI_PIXEL_FORMAT_RGB111:
bpp = 3;
break;
case DSI_PIXEL_FORMAT_RGB332:
bpp = 8;
break;
case DSI_PIXEL_FORMAT_RGB444:
bpp = 12;
break;
case DSI_PIXEL_FORMAT_RGB565:
bpp = 16;
break;
case DSI_PIXEL_FORMAT_RGB666:
case DSI_PIXEL_FORMAT_RGB666_LOOSE:
bpp = 18;
break;
case DSI_PIXEL_FORMAT_RGB888:
bpp = 24;
break;
default:
bpp = 24;
break;
}
return bpp;
}
static int dsi_ctrl_update_link_freqs(struct dsi_ctrl *dsi_ctrl,
struct dsi_host_config *config, void *clk_handle,
struct dsi_display_mode *mode)
{
int rc = 0;
u32 num_of_lanes = 0;
u32 bits_per_symbol = 16, num_of_symbols = 7; /* For Cphy */
u32 bpp, frame_time_us, byte_intf_clk_div;
u64 h_period, v_period, bit_rate, pclk_rate, bit_rate_per_lane,
byte_clk_rate, byte_intf_clk_rate;
struct dsi_host_common_cfg *host_cfg = &config->common_config;
struct dsi_split_link_config *split_link = &host_cfg->split_link;
struct dsi_mode_info *timing = &config->video_timing;
u64 dsi_transfer_time_us = mode->priv_info->dsi_transfer_time_us;
u64 min_dsi_clk_hz = mode->priv_info->min_dsi_clk_hz;
/* Get bits per pxl in destination format */
bpp = dsi_ctrl_pixel_format_to_bpp(host_cfg->dst_format);
frame_time_us = mult_frac(1000, 1000, (timing->refresh_rate));
if (host_cfg->data_lanes & DSI_DATA_LANE_0)
num_of_lanes++;
if (host_cfg->data_lanes & DSI_DATA_LANE_1)
num_of_lanes++;
if (host_cfg->data_lanes & DSI_DATA_LANE_2)
num_of_lanes++;
if (host_cfg->data_lanes & DSI_DATA_LANE_3)
num_of_lanes++;
if (split_link->split_link_enabled)
num_of_lanes = split_link->lanes_per_sublink;
config->common_config.num_data_lanes = num_of_lanes;
config->common_config.bpp = bpp;
if (config->bit_clk_rate_hz_override != 0) {
bit_rate = config->bit_clk_rate_hz_override * num_of_lanes;
if (host_cfg->phy_type == DSI_PHY_TYPE_CPHY) {
bit_rate *= bits_per_symbol;
do_div(bit_rate, num_of_symbols);
}
} else if (config->panel_mode == DSI_OP_CMD_MODE) {
/* Calculate the bit rate needed to match dsi transfer time */
bit_rate = min_dsi_clk_hz * frame_time_us;
do_div(bit_rate, dsi_transfer_time_us);
bit_rate = bit_rate * num_of_lanes;
} else {
h_period = DSI_H_TOTAL_DSC(timing);
v_period = DSI_V_TOTAL(timing);
bit_rate = h_period * v_period * timing->refresh_rate * bpp;
}
pclk_rate = bit_rate;
do_div(pclk_rate, bpp);
if (host_cfg->phy_type == DSI_PHY_TYPE_DPHY) {
bit_rate_per_lane = bit_rate;
do_div(bit_rate_per_lane, num_of_lanes);
byte_clk_rate = bit_rate_per_lane;
do_div(byte_clk_rate, 8);
byte_intf_clk_rate = byte_clk_rate;
byte_intf_clk_div = host_cfg->byte_intf_clk_div;
do_div(byte_intf_clk_rate, byte_intf_clk_div);
config->bit_clk_rate_hz = byte_clk_rate * 8;
} else {
do_div(bit_rate, bits_per_symbol);
bit_rate *= num_of_symbols;
bit_rate_per_lane = bit_rate;
do_div(bit_rate_per_lane, num_of_lanes);
byte_clk_rate = bit_rate_per_lane;
do_div(byte_clk_rate, 7);
/* For CPHY, byte_intf_clk is same as byte_clk */
byte_intf_clk_rate = byte_clk_rate;
config->bit_clk_rate_hz = byte_clk_rate * 7;
}
DSI_CTRL_DEBUG(dsi_ctrl, "bit_clk_rate = %llu, bit_clk_rate_per_lane = %llu\n",
bit_rate, bit_rate_per_lane);
DSI_CTRL_DEBUG(dsi_ctrl, "byte_clk_rate = %llu, byte_intf_clk = %llu\n",
byte_clk_rate, byte_intf_clk_rate);
DSI_CTRL_DEBUG(dsi_ctrl, "pclk_rate = %llu\n", pclk_rate);
dsi_ctrl->clk_freq.byte_clk_rate = byte_clk_rate;
dsi_ctrl->clk_freq.byte_intf_clk_rate = byte_intf_clk_rate;
dsi_ctrl->clk_freq.pix_clk_rate = pclk_rate;
dsi_ctrl->clk_freq.esc_clk_rate = config->esc_clk_rate_hz;
rc = dsi_clk_set_link_frequencies(clk_handle, dsi_ctrl->clk_freq,
dsi_ctrl->cell_index);
if (rc)
DSI_CTRL_ERR(dsi_ctrl, "Failed to update link frequencies\n");
return rc;
}
static int dsi_ctrl_enable_supplies(struct dsi_ctrl *dsi_ctrl, bool enable)
{
int rc = 0;
if (enable) {
rc = pm_runtime_get_sync(dsi_ctrl->drm_dev->dev);
if (rc < 0) {
DSI_CTRL_ERR(dsi_ctrl,
"Power resource enable failed, rc=%d\n", rc);
goto error;
}
if (!dsi_ctrl->current_state.host_initialized) {
rc = dsi_pwr_enable_regulator(
&dsi_ctrl->pwr_info.host_pwr, true);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "failed to enable host power regs\n");
goto error_get_sync;
}
}
rc = dsi_pwr_enable_regulator(&dsi_ctrl->pwr_info.digital,
true);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "failed to enable gdsc, rc=%d\n",
rc);
(void)dsi_pwr_enable_regulator(
&dsi_ctrl->pwr_info.host_pwr,
false
);
goto error_get_sync;
}
return rc;
} else {
rc = dsi_pwr_enable_regulator(&dsi_ctrl->pwr_info.digital,
false);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "failed to disable gdsc, rc=%d\n",
rc);
goto error;
}
if (!dsi_ctrl->current_state.host_initialized) {
rc = dsi_pwr_enable_regulator(
&dsi_ctrl->pwr_info.host_pwr, false);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "failed to disable host power regs\n");
goto error;
}
}
pm_runtime_put_sync(dsi_ctrl->drm_dev->dev);
return rc;
}
error_get_sync:
pm_runtime_put_sync(dsi_ctrl->drm_dev->dev);
error:
return rc;
}
static int dsi_ctrl_copy_and_pad_cmd(const struct mipi_dsi_packet *packet,
u8 *buf, size_t len)
{
int rc = 0;
u8 cmd_type = 0;
if (unlikely(len < packet->size))
return -EINVAL;
memcpy(buf, packet->header, sizeof(packet->header));
if (packet->payload_length)
memcpy(buf + sizeof(packet->header), packet->payload,
packet->payload_length);
if (packet->size < len)
memset(buf + packet->size, 0xFF, len - packet->size);
if (packet->payload_length > 0)
buf[3] |= BIT(6);
/* send embedded BTA for read commands */
cmd_type = buf[2] & 0x3f;
if ((cmd_type == MIPI_DSI_DCS_READ) ||
(cmd_type == MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM) ||
(cmd_type == MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM) ||
(cmd_type == MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM))
buf[3] |= BIT(5);
return rc;
}
int dsi_ctrl_wait_for_cmd_mode_mdp_idle(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
if (dsi_ctrl->host_config.panel_mode != DSI_OP_CMD_MODE)
return -EINVAL;
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl->hw.ops.wait_for_cmd_mode_mdp_idle(&dsi_ctrl->hw);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
static void dsi_ctrl_wait_for_video_done(struct dsi_ctrl *dsi_ctrl)
{
u32 v_total = 0, v_blank = 0, sleep_ms = 0, fps = 0, ret;
struct dsi_mode_info *timing;
/**
* No need to wait if the panel is not video mode or
* if DSI controller supports command DMA scheduling or
* if we are sending init commands.
*/
if ((dsi_ctrl->host_config.panel_mode != DSI_OP_VIDEO_MODE) ||
(dsi_ctrl->version >= DSI_CTRL_VERSION_2_2) ||
(dsi_ctrl->current_state.vid_engine_state !=
DSI_CTRL_ENGINE_ON))
return;
dsi_ctrl->hw.ops.clear_interrupt_status(&dsi_ctrl->hw,
DSI_VIDEO_MODE_FRAME_DONE);
dsi_ctrl_enable_status_interrupt(dsi_ctrl,
DSI_SINT_VIDEO_MODE_FRAME_DONE, NULL);
reinit_completion(&dsi_ctrl->irq_info.vid_frame_done);
ret = wait_for_completion_timeout(
&dsi_ctrl->irq_info.vid_frame_done,
msecs_to_jiffies(DSI_CTRL_TX_TO_MS));
if (ret <= 0)
DSI_CTRL_DEBUG(dsi_ctrl, "wait for video done failed\n");
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_VIDEO_MODE_FRAME_DONE);
timing = &(dsi_ctrl->host_config.video_timing);
v_total = timing->v_sync_width + timing->v_back_porch +
timing->v_front_porch + timing->v_active;
v_blank = timing->v_sync_width + timing->v_back_porch;
fps = timing->refresh_rate;
sleep_ms = CEIL((v_blank * 1000), (v_total * fps)) + 1;
udelay(sleep_ms * 1000);
}
void dsi_message_setup_tx_mode(struct dsi_ctrl *dsi_ctrl,
u32 cmd_len,
u32 *flags)
{
/**
* Setup the mode of transmission
* override cmd fetch mode during secure session
*/
if (dsi_ctrl->secure_mode) {
*flags &= ~DSI_CTRL_CMD_FETCH_MEMORY;
*flags |= DSI_CTRL_CMD_FIFO_STORE;
DSI_CTRL_DEBUG(dsi_ctrl,
"override to TPG during secure session\n");
return;
}
/* Check to see if cmd len plus header is greater than fifo size */
if ((cmd_len + 4) > DSI_EMBEDDED_MODE_DMA_MAX_SIZE_BYTES) {
*flags |= DSI_CTRL_CMD_NON_EMBEDDED_MODE;
DSI_CTRL_DEBUG(dsi_ctrl, "override to non-embedded mode,cmd len =%d\n",
cmd_len);
return;
}
}
int dsi_message_validate_tx_mode(struct dsi_ctrl *dsi_ctrl,
u32 cmd_len,
u32 *flags)
{
int rc = 0;
if (*flags & DSI_CTRL_CMD_FIFO_STORE) {
/* if command size plus header is greater than fifo size */
if ((cmd_len + 4) > DSI_CTRL_MAX_CMD_FIFO_STORE_SIZE) {
DSI_CTRL_ERR(dsi_ctrl, "Cannot transfer Cmd in FIFO config\n");
return -ENOTSUPP;
}
if (!dsi_ctrl->hw.ops.kickoff_fifo_command) {
DSI_CTRL_ERR(dsi_ctrl, "Cannot transfer command,ops not defined\n");
return -ENOTSUPP;
}
}
if (*flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) {
if (*flags & DSI_CTRL_CMD_BROADCAST) {
DSI_CTRL_ERR(dsi_ctrl, "Non embedded not supported with broadcast\n");
return -ENOTSUPP;
}
if (!dsi_ctrl->hw.ops.kickoff_command_non_embedded_mode) {
DSI_CTRL_ERR(dsi_ctrl, " Cannot transfer command,ops not defined\n");
return -ENOTSUPP;
}
if ((cmd_len + 4) > SZ_4K) {
DSI_CTRL_ERR(dsi_ctrl, "Cannot transfer,size is greater than 4096\n");
return -ENOTSUPP;
}
} else if (*flags & DSI_CTRL_CMD_FETCH_MEMORY) {
const size_t transfer_size = dsi_ctrl->cmd_len + cmd_len + 4;
if (transfer_size > DSI_EMBEDDED_MODE_DMA_MAX_SIZE_BYTES) {
DSI_CTRL_ERR(dsi_ctrl,"Cannot transfer, size: %zu is greater than %d\n",
transfer_size,
DSI_EMBEDDED_MODE_DMA_MAX_SIZE_BYTES);
return -ENOTSUPP;
}
}
return rc;
}
static void dsi_kickoff_msg_tx(struct dsi_ctrl *dsi_ctrl,
const struct mipi_dsi_msg *msg,
struct dsi_ctrl_cmd_dma_fifo_info *cmd,
struct dsi_ctrl_cmd_dma_info *cmd_mem,
u32 flags)
{
u32 hw_flags = 0;
u32 line_no = 0x1;
struct dsi_mode_info *timing;
struct dsi_ctrl_hw_ops dsi_hw_ops = dsi_ctrl->hw.ops;
SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_ENTRY, flags);
/* check if custom dma scheduling line needed */
if ((dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE) &&
(flags & DSI_CTRL_CMD_CUSTOM_DMA_SCHED))
line_no = dsi_ctrl->host_config.u.video_engine.dma_sched_line;
timing = &(dsi_ctrl->host_config.video_timing);
if (timing)
line_no += timing->v_back_porch + timing->v_sync_width +
timing->v_active;
if ((dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE) &&
dsi_hw_ops.schedule_dma_cmd &&
(dsi_ctrl->current_state.vid_engine_state ==
DSI_CTRL_ENGINE_ON))
dsi_hw_ops.schedule_dma_cmd(&dsi_ctrl->hw,
line_no);
hw_flags |= (flags & DSI_CTRL_CMD_DEFER_TRIGGER) ?
DSI_CTRL_HW_CMD_WAIT_FOR_TRIGGER : 0;
if ((msg->flags & MIPI_DSI_MSG_LASTCOMMAND))
hw_flags |= DSI_CTRL_CMD_LAST_COMMAND;
if (flags & DSI_CTRL_CMD_DEFER_TRIGGER) {
if (flags & DSI_CTRL_CMD_FETCH_MEMORY) {
if (flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) {
dsi_hw_ops.kickoff_command_non_embedded_mode(
&dsi_ctrl->hw,
cmd_mem,
hw_flags);
} else {
dsi_hw_ops.kickoff_command(
&dsi_ctrl->hw,
cmd_mem,
hw_flags);
}
} else if (flags & DSI_CTRL_CMD_FIFO_STORE) {
dsi_hw_ops.kickoff_fifo_command(&dsi_ctrl->hw,
cmd,
hw_flags);
}
}
if (!(flags & DSI_CTRL_CMD_DEFER_TRIGGER)) {
dsi_ctrl_wait_for_video_done(dsi_ctrl);
if (dsi_hw_ops.mask_error_intr)
dsi_hw_ops.mask_error_intr(&dsi_ctrl->hw,
BIT(DSI_FIFO_OVERFLOW), true);
atomic_set(&dsi_ctrl->dma_irq_trig, 0);
dsi_ctrl_enable_status_interrupt(dsi_ctrl,
DSI_SINT_CMD_MODE_DMA_DONE, NULL);
reinit_completion(&dsi_ctrl->irq_info.cmd_dma_done);
if (flags & DSI_CTRL_CMD_FETCH_MEMORY) {
if (flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) {
dsi_hw_ops.kickoff_command_non_embedded_mode(
&dsi_ctrl->hw,
cmd_mem,
hw_flags);
} else {
dsi_hw_ops.kickoff_command(
&dsi_ctrl->hw,
cmd_mem,
hw_flags);
}
} else if (flags & DSI_CTRL_CMD_FIFO_STORE) {
dsi_hw_ops.kickoff_fifo_command(&dsi_ctrl->hw,
cmd,
hw_flags);
}
if (flags & DSI_CTRL_CMD_ASYNC_WAIT) {
dsi_ctrl->dma_wait_queued = true;
queue_work(dsi_ctrl->dma_cmd_workq,
&dsi_ctrl->dma_cmd_wait);
} else {
dsi_ctrl->dma_wait_queued = false;
dsi_ctrl_dma_cmd_wait_for_done(&dsi_ctrl->dma_cmd_wait);
}
if (dsi_hw_ops.mask_error_intr && !dsi_ctrl->esd_check_underway)
dsi_hw_ops.mask_error_intr(&dsi_ctrl->hw,
BIT(DSI_FIFO_OVERFLOW), false);
dsi_hw_ops.reset_cmd_fifo(&dsi_ctrl->hw);
/*
* DSI 2.2 needs a soft reset whenever we send non-embedded
* mode command followed by embedded mode. Otherwise it will
* result in smmu write faults with DSI as client.
*/
if (flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) {
if (dsi_ctrl->version < DSI_CTRL_VERSION_2_4)
dsi_hw_ops.soft_reset(&dsi_ctrl->hw);
dsi_ctrl->cmd_len = 0;
}
}
}
static void dsi_ctrl_validate_msg_flags(struct dsi_ctrl *dsi_ctrl,
const struct mipi_dsi_msg *msg,
u32 *flags)
{
/*
* ASYNC command wait mode is not supported for
* - commands sent using DSI FIFO memory
* - DSI read commands
* - DCS commands sent in non-embedded mode
* - whenever an explicit wait time is specificed for the command
* since the wait time cannot be guaranteed in async mode
* - video mode panels
* If async override is set, skip async flag reset
*/
if (((*flags & DSI_CTRL_CMD_FIFO_STORE) ||
*flags & DSI_CTRL_CMD_READ ||
*flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE ||
msg->wait_ms ||
(dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE)) &&
!(msg->flags & MIPI_DSI_MSG_ASYNC_OVERRIDE))
*flags &= ~DSI_CTRL_CMD_ASYNC_WAIT;
}
static int dsi_msm_create_packet(struct mipi_dsi_packet *packet,
const struct mipi_dsi_msg *msg)
{
int rc;
u8 tmp;
if (!packet)
return -EINVAL;
rc = mipi_dsi_create_packet(packet, msg);
if (rc)
return rc;
/* MSM chipsets swap the Data ID with the Word Count. So we need to shift
* the header over. */
tmp = packet->header[0];
packet->header[0] = packet->header[1];
packet->header[1] = packet->header[2];
packet->header[2] = tmp;
return 0;
}
static int dsi_message_tx(struct dsi_ctrl *dsi_ctrl,
const struct mipi_dsi_msg *msg,
u32 *flags)
{
int rc = 0;
struct mipi_dsi_packet packet;
struct dsi_ctrl_cmd_dma_fifo_info cmd;
struct dsi_ctrl_cmd_dma_info cmd_mem;
u32 length;
u8 *buffer = NULL;
u8 *cmdbuf;
/* Select the tx mode to transfer the command */
dsi_message_setup_tx_mode(dsi_ctrl, msg->tx_len, flags);
/* Validate the mode before sending the command */
rc = dsi_message_validate_tx_mode(dsi_ctrl, msg->tx_len, flags);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl,
"Cmd tx validation failed, cannot transfer cmd\n");
rc = -ENOTSUPP;
goto error;
}
dsi_ctrl_validate_msg_flags(dsi_ctrl, msg, flags);
if (dsi_ctrl->dma_wait_queued)
dsi_ctrl_flush_cmd_dma_queue(dsi_ctrl);
DSI_CTRL_DEBUG(dsi_ctrl, "cmd tx type=%02x cmd=%02x len=%d last=%d\n",
msg->type, msg->tx_len ? *((u8 *)msg->tx_buf) : 0, msg->tx_len,
(msg->flags & MIPI_DSI_MSG_LASTCOMMAND) != 0);
if (*flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) {
cmd_mem.offset = dsi_ctrl->cmd_buffer_iova;
cmd_mem.en_broadcast = (*flags & DSI_CTRL_CMD_BROADCAST) ?
true : false;
cmd_mem.is_master = (*flags & DSI_CTRL_CMD_BROADCAST_MASTER) ?
true : false;
cmd_mem.use_lpm = (msg->flags & MIPI_DSI_MSG_USE_LPM) ?
true : false;
cmd_mem.datatype = msg->type;
cmd_mem.length = msg->tx_len;
dsi_ctrl->cmd_len = msg->tx_len;
memcpy(dsi_ctrl->vaddr, msg->tx_buf, msg->tx_len);
DSI_CTRL_DEBUG(dsi_ctrl,
"non-embedded mode , size of command =%zd\n",
msg->tx_len);
goto kickoff;
}
rc = dsi_msm_create_packet(&packet, msg);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Failed to create message packet, rc=%d\n",
rc);
goto error;
}
length = ALIGN(packet.size, 4);
if ((msg->flags & MIPI_DSI_MSG_LASTCOMMAND))
packet.header[3] |= BIT(7);//set the last cmd bit in header.
if (*flags & DSI_CTRL_CMD_FETCH_MEMORY) {
msm_gem_sync(dsi_ctrl->tx_cmd_buf);
cmdbuf = dsi_ctrl->vaddr + dsi_ctrl->cmd_len;
rc = dsi_ctrl_copy_and_pad_cmd(&packet, cmdbuf, length);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "failed to copy message, rc=%d\n",
rc);
goto error;
}
/* Embedded mode config is selected */
cmd_mem.offset = dsi_ctrl->cmd_buffer_iova;
cmd_mem.en_broadcast = (*flags & DSI_CTRL_CMD_BROADCAST) ?
true : false;
cmd_mem.is_master = (*flags & DSI_CTRL_CMD_BROADCAST_MASTER) ?
true : false;
cmd_mem.use_lpm = (msg->flags & MIPI_DSI_MSG_USE_LPM) ?
true : false;
dsi_ctrl->cmd_len += length;
if (!(msg->flags & MIPI_DSI_MSG_LASTCOMMAND)) {
goto error;
} else {
cmd_mem.length = dsi_ctrl->cmd_len;
dsi_ctrl->cmd_len = 0;
}
} else if (*flags & DSI_CTRL_CMD_FIFO_STORE) {
buffer = devm_kzalloc(&dsi_ctrl->pdev->dev, length,
GFP_KERNEL);
if (!buffer) {
rc = -ENOMEM;
goto error;
}
rc = dsi_ctrl_copy_and_pad_cmd(&packet, buffer, length);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "failed to copy message, rc=%d\n",
rc);
goto error;
}
cmd.command = (u32 *)buffer;
cmd.size = length;
cmd.en_broadcast = (*flags & DSI_CTRL_CMD_BROADCAST) ?
true : false;
cmd.is_master = (*flags & DSI_CTRL_CMD_BROADCAST_MASTER) ?
true : false;
cmd.use_lpm = (msg->flags & MIPI_DSI_MSG_USE_LPM) ?
true : false;
}
kickoff:
dsi_kickoff_msg_tx(dsi_ctrl, msg, &cmd, &cmd_mem, *flags);
error:
if (buffer)
devm_kfree(&dsi_ctrl->pdev->dev, buffer);
return rc;
}
static int dsi_set_max_return_size(struct dsi_ctrl *dsi_ctrl,
const struct mipi_dsi_msg *rx_msg,
u32 size)
{
int rc = 0;
u8 tx[2] = { (u8)(size & 0xFF), (u8)(size >> 8) };
u32 flags = DSI_CTRL_CMD_FETCH_MEMORY;
u16 dflags = rx_msg->flags;
struct mipi_dsi_msg msg = {
.channel = rx_msg->channel,
.type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE,
.tx_len = 2,
.tx_buf = tx,
.flags = rx_msg->flags,
};
/* remove last message flag to batch max packet cmd to read command */
dflags &= ~BIT(3);
msg.flags = dflags;
rc = dsi_message_tx(dsi_ctrl, &msg, &flags);
if (rc)
DSI_CTRL_ERR(dsi_ctrl, "failed to send max return size packet, rc=%d\n",
rc);
return rc;
}
/* Helper functions to support DCS read operation */
static int dsi_parse_short_read1_resp(const struct mipi_dsi_msg *msg,
unsigned char *buff)
{
u8 *data = msg->rx_buf;
int read_len = 1;
if (!data)
return 0;
/* remove dcs type */
if (msg->rx_len >= 1)
data[0] = buff[1];
else
read_len = 0;
return read_len;
}
static int dsi_parse_short_read2_resp(const struct mipi_dsi_msg *msg,
unsigned char *buff)
{
u8 *data = msg->rx_buf;
int read_len = 2;
if (!data)
return 0;
/* remove dcs type */
if (msg->rx_len >= 2) {
data[0] = buff[1];
data[1] = buff[2];
} else {
read_len = 0;
}
return read_len;
}
static int dsi_parse_long_read_resp(const struct mipi_dsi_msg *msg,
unsigned char *buff)
{
if (!msg->rx_buf)
return 0;
/* remove dcs type */
if (msg->rx_buf && msg->rx_len)
memcpy(msg->rx_buf, buff + 4, msg->rx_len);
return msg->rx_len;
}
static int dsi_message_rx(struct dsi_ctrl *dsi_ctrl,
const struct mipi_dsi_msg *msg,
u32 *flags)
{
int rc = 0, i = 0;
u32 rd_pkt_size, total_read_len, hw_read_cnt;
u32 current_read_len = 0, total_bytes_read = 0;
bool short_resp = false;
bool read_done = false;
u32 dlen, diff, rlen;
unsigned char *buff = NULL;
char cmd;
u32 buffer_sz = 0, header_offset = 0;
u8 *head = NULL;
if (!msg) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid msg\n");
rc = -EINVAL;
goto error;
}
rlen = msg->rx_len;
if (msg->rx_len <= 2) {
short_resp = true;
rd_pkt_size = msg->rx_len;
total_read_len = 4;
/*
* buffer size: header + data
* No 32 bits alignment issue, thus offset is 0
*/
buffer_sz = 4;
} else {
short_resp = false;
current_read_len = 10;
if (msg->rx_len < current_read_len)
rd_pkt_size = msg->rx_len;
else
rd_pkt_size = current_read_len;
total_read_len = current_read_len + 6;
/*
* buffer size: header + data + footer, rounded up to 4 bytes
* Out of bound can occurs is rx_len is not aligned to size 4.
* We are reading 32 bits registers, and converting
* the data to CPU endianness, thus inserting garbage data
* at the beginning of buffer.
*/
buffer_sz = ALIGN(4 + msg->rx_len + 2, 4);
if (buffer_sz < 16)
buffer_sz = 16;
}
DSI_CTRL_DEBUG(dsi_ctrl, "short_resp %d, msg->rx_len %zd, rd_pkt_size %u\n",
short_resp, msg->rx_len, rd_pkt_size);
DSI_CTRL_DEBUG(dsi_ctrl, "total_read_len %u, buffer_sz %u\n",
total_read_len, buffer_sz);
buff = kzalloc(buffer_sz, GFP_KERNEL);
if (!buff) {
rc = -ENOMEM;
goto error;
}
head = buff;
while (!read_done) {
rc = dsi_set_max_return_size(dsi_ctrl, msg, rd_pkt_size);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Failed to set max return packet size, rc=%d\n",
rc);
goto error;
}
/* clear RDBK_DATA registers before proceeding */
dsi_ctrl->hw.ops.clear_rdbk_register(&dsi_ctrl->hw);
rc = dsi_message_tx(dsi_ctrl, msg, flags);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Message transmission failed, rc=%d\n",
rc);
goto error;
}
/*
* wait before reading rdbk_data register, if any delay is
* required after sending the read command.
*/
if (msg->wait_ms)
usleep_range(msg->wait_ms * 1000,
((msg->wait_ms * 1000) + 10));
dlen = dsi_ctrl->hw.ops.get_cmd_read_data(&dsi_ctrl->hw,
buff, total_bytes_read,
total_read_len, rd_pkt_size,
&hw_read_cnt);
if (!dlen)
goto error;
if (short_resp)
break;
if (rlen <= current_read_len) {
diff = current_read_len - rlen;
read_done = true;
} else {
diff = 0;
rlen -= current_read_len;
}
dlen -= 2; /* 2 bytes of CRC */
dlen -= diff;
buff += dlen;
total_bytes_read += dlen;
if (!read_done) {
current_read_len = 14; /* Not first read */
if (rlen < current_read_len)
rd_pkt_size += rlen;
else
rd_pkt_size += current_read_len;
}
}
buff = head;
for (i = 0; i < buffer_sz; i += 4)
DSI_CTRL_DEBUG(dsi_ctrl, "buffer[%d-%d] = %08x\n",
i, i + 3, *((u32 *)&buff[i]));
if (hw_read_cnt < 16 && !short_resp)
header_offset = (16 - hw_read_cnt);
else
header_offset = 0;
DSI_CTRL_DEBUG(dsi_ctrl, "hw_read_cnt %d, header_offset %d\n",
hw_read_cnt, header_offset);
/* parse the data read from panel */
cmd = buff[header_offset];
DSI_CTRL_DEBUG(dsi_ctrl, "response type %d\n", cmd);
switch (cmd) {
case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
DSI_CTRL_ERR(dsi_ctrl, "Rx ACK_ERROR 0x%x\n", cmd);
rc = 0;
break;
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
rc = dsi_parse_short_read1_resp(msg, &buff[header_offset]);
break;
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
rc = dsi_parse_short_read2_resp(msg, &buff[header_offset]);
break;
case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
rc = dsi_parse_long_read_resp(msg, &buff[header_offset]);
break;
default:
DSI_CTRL_WARN(dsi_ctrl, "Invalid response: 0x%x\n", cmd);
rc = 0;
}
error:
kfree(buff);
return rc;
}
static int dsi_enable_ulps(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
u32 lanes = 0;
u32 ulps_lanes;
lanes = dsi_ctrl->host_config.common_config.data_lanes;
rc = dsi_ctrl->hw.ops.wait_for_lane_idle(&dsi_ctrl->hw, lanes);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "lanes not entering idle, skip ULPS\n");
return rc;
}
if (!dsi_ctrl->hw.ops.ulps_ops.ulps_request ||
!dsi_ctrl->hw.ops.ulps_ops.ulps_exit) {
DSI_CTRL_DEBUG(dsi_ctrl, "DSI controller ULPS ops not present\n");
return 0;
}
lanes |= DSI_CLOCK_LANE;
dsi_ctrl->hw.ops.ulps_ops.ulps_request(&dsi_ctrl->hw, lanes);
ulps_lanes = dsi_ctrl->hw.ops.ulps_ops.get_lanes_in_ulps(&dsi_ctrl->hw);
if ((lanes & ulps_lanes) != lanes) {
DSI_CTRL_ERR(dsi_ctrl, "Failed to enter ULPS, request=0x%x, actual=0x%x\n",
lanes, ulps_lanes);
rc = -EIO;
}
return rc;
}
static int dsi_disable_ulps(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
u32 ulps_lanes, lanes = 0;
dsi_ctrl->hw.ops.clear_phy0_ln_err(&dsi_ctrl->hw);
if (!dsi_ctrl->hw.ops.ulps_ops.ulps_request ||
!dsi_ctrl->hw.ops.ulps_ops.ulps_exit) {
DSI_CTRL_DEBUG(dsi_ctrl, "DSI controller ULPS ops not present\n");
return 0;
}
lanes = dsi_ctrl->host_config.common_config.data_lanes;
lanes |= DSI_CLOCK_LANE;
ulps_lanes = dsi_ctrl->hw.ops.ulps_ops.get_lanes_in_ulps(&dsi_ctrl->hw);
if ((lanes & ulps_lanes) != lanes)
DSI_CTRL_ERR(dsi_ctrl, "Mismatch between lanes in ULPS\n");
lanes &= ulps_lanes;
dsi_ctrl->hw.ops.ulps_ops.ulps_exit(&dsi_ctrl->hw, lanes);
ulps_lanes = dsi_ctrl->hw.ops.ulps_ops.get_lanes_in_ulps(&dsi_ctrl->hw);
if (ulps_lanes & lanes) {
DSI_CTRL_ERR(dsi_ctrl, "Lanes (0x%x) stuck in ULPS\n",
ulps_lanes);
rc = -EIO;
}
return rc;
}
static void dsi_ctrl_enable_error_interrupts(struct dsi_ctrl *dsi_ctrl)
{
if (dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE &&
!dsi_ctrl->host_config.u.video_engine.bllp_lp11_en &&
!dsi_ctrl->host_config.u.video_engine.eof_bllp_lp11_en)
dsi_ctrl->hw.ops.enable_error_interrupts(&dsi_ctrl->hw,
0xFF00A0);
else
dsi_ctrl->hw.ops.enable_error_interrupts(&dsi_ctrl->hw,
0xFF00E0);
}
static int dsi_ctrl_drv_state_init(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
bool splash_enabled = false;
struct dsi_ctrl_state_info *state = &dsi_ctrl->current_state;
if (!splash_enabled) {
state->power_state = DSI_CTRL_POWER_VREG_OFF;
state->cmd_engine_state = DSI_CTRL_ENGINE_OFF;
state->vid_engine_state = DSI_CTRL_ENGINE_OFF;
}
return rc;
}
static int dsi_ctrl_buffer_deinit(struct dsi_ctrl *dsi_ctrl)
{
struct msm_gem_address_space *aspace = NULL;
if (dsi_ctrl->tx_cmd_buf) {
aspace = dsi_ctrl_get_aspace(dsi_ctrl,
MSM_SMMU_DOMAIN_UNSECURE);
if (!aspace) {
DSI_CTRL_ERR(dsi_ctrl, "failed to get address space\n");
return -ENOMEM;
}
msm_gem_put_iova(dsi_ctrl->tx_cmd_buf, aspace);
mutex_lock(&dsi_ctrl->drm_dev->struct_mutex);
msm_gem_free_object(dsi_ctrl->tx_cmd_buf);
mutex_unlock(&dsi_ctrl->drm_dev->struct_mutex);
dsi_ctrl->tx_cmd_buf = NULL;
}
return 0;
}
int dsi_ctrl_buffer_init(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
u64 iova = 0;
struct msm_gem_address_space *aspace = NULL;
aspace = dsi_ctrl_get_aspace(dsi_ctrl, MSM_SMMU_DOMAIN_UNSECURE);
if (!aspace) {
DSI_CTRL_ERR(dsi_ctrl, "failed to get address space\n");
return -ENOMEM;
}
dsi_ctrl->tx_cmd_buf = msm_gem_new(dsi_ctrl->drm_dev,
SZ_4K,
MSM_BO_UNCACHED);
if (IS_ERR(dsi_ctrl->tx_cmd_buf)) {
rc = PTR_ERR(dsi_ctrl->tx_cmd_buf);
DSI_CTRL_ERR(dsi_ctrl, "failed to allocate gem, rc=%d\n", rc);
dsi_ctrl->tx_cmd_buf = NULL;
goto error;
}
dsi_ctrl->cmd_buffer_size = SZ_4K;
rc = msm_gem_get_iova(dsi_ctrl->tx_cmd_buf, aspace, &iova);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "failed to get iova, rc=%d\n", rc);
(void)dsi_ctrl_buffer_deinit(dsi_ctrl);
goto error;
}
if (iova & 0x07) {
DSI_CTRL_ERR(dsi_ctrl, "Tx command buffer is not 8 byte aligned\n");
rc = -ENOTSUPP;
(void)dsi_ctrl_buffer_deinit(dsi_ctrl);
goto error;
}
error:
return rc;
}
static int dsi_enable_io_clamp(struct dsi_ctrl *dsi_ctrl,
bool enable, bool ulps_enabled)
{
u32 lanes = 0;
if (dsi_ctrl->host_config.panel_mode == DSI_OP_CMD_MODE)
lanes = dsi_ctrl->host_config.common_config.data_lanes;
lanes |= DSI_CLOCK_LANE;
if (enable)
dsi_ctrl->hw.ops.clamp_enable(&dsi_ctrl->hw,
lanes, ulps_enabled);
else
dsi_ctrl->hw.ops.clamp_disable(&dsi_ctrl->hw,
lanes, ulps_enabled);
return 0;
}
static int dsi_ctrl_dts_parse(struct dsi_ctrl *dsi_ctrl,
struct device_node *of_node)
{
u32 index = 0, frame_threshold_time_us = 0;
int rc = 0;
if (!dsi_ctrl || !of_node) {
DSI_CTRL_ERR(dsi_ctrl, "invalid dsi_ctrl:%d or of_node:%d\n",
dsi_ctrl != NULL, of_node != NULL);
return -EINVAL;
}
rc = of_property_read_u32(of_node, "cell-index", &index);
if (rc) {
DSI_CTRL_DEBUG(dsi_ctrl, "cell index not set, default to 0\n");
index = 0;
}
dsi_ctrl->cell_index = index;
dsi_ctrl->name = of_get_property(of_node, "label", NULL);
if (!dsi_ctrl->name)
dsi_ctrl->name = DSI_CTRL_DEFAULT_LABEL;
dsi_ctrl->phy_isolation_enabled = of_property_read_bool(of_node,
"qcom,dsi-phy-isolation-enabled");
dsi_ctrl->null_insertion_enabled = of_property_read_bool(of_node,
"qcom,null-insertion-enabled");
dsi_ctrl->split_link_supported = of_property_read_bool(of_node,
"qcom,split-link-supported");
rc = of_property_read_u32(of_node, "frame-threshold-time-us",
&frame_threshold_time_us);
if (rc) {
DSI_CTRL_DEBUG(dsi_ctrl,
"frame-threshold-time not specified, defaulting\n");
frame_threshold_time_us = 2666;
}
dsi_ctrl->frame_threshold_time_us = frame_threshold_time_us;
return 0;
}
static int dsi_ctrl_dev_probe(struct platform_device *pdev)
{
struct dsi_ctrl *dsi_ctrl;
struct dsi_ctrl_list_item *item;
const struct of_device_id *id;
enum dsi_ctrl_version version;
int rc = 0;
id = of_match_node(msm_dsi_of_match, pdev->dev.of_node);
if (!id)
return -ENODEV;
version = *(enum dsi_ctrl_version *)id->data;
item = devm_kzalloc(&pdev->dev, sizeof(*item), GFP_KERNEL);
if (!item)
return -ENOMEM;
dsi_ctrl = devm_kzalloc(&pdev->dev, sizeof(*dsi_ctrl), GFP_KERNEL);
if (!dsi_ctrl)
return -ENOMEM;
dsi_ctrl->version = version;
dsi_ctrl->irq_info.irq_num = -1;
dsi_ctrl->irq_info.irq_stat_mask = 0x0;
INIT_WORK(&dsi_ctrl->dma_cmd_wait, dsi_ctrl_dma_cmd_wait_for_done);
atomic_set(&dsi_ctrl->dma_irq_trig, 0);
spin_lock_init(&dsi_ctrl->irq_info.irq_lock);
rc = dsi_ctrl_dts_parse(dsi_ctrl, pdev->dev.of_node);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "dts parse failed, rc = %d\n", rc);
goto fail;
}
rc = dsi_ctrl_init_regmap(pdev, dsi_ctrl);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Failed to parse register information, rc = %d\n",
rc);
goto fail;
}
rc = dsi_ctrl_clocks_init(pdev, dsi_ctrl);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Failed to parse clock information, rc = %d\n",
rc);
goto fail;
}
rc = dsi_ctrl_supplies_init(pdev, dsi_ctrl);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Failed to parse voltage supplies, rc = %d\n",
rc);
goto fail_clks;
}
rc = dsi_catalog_ctrl_setup(&dsi_ctrl->hw, dsi_ctrl->version,
dsi_ctrl->cell_index, dsi_ctrl->phy_isolation_enabled,
dsi_ctrl->null_insertion_enabled);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Catalog does not support version (%d)\n",
dsi_ctrl->version);
goto fail_supplies;
}
rc = dsi_ctrl_axi_bus_client_init(pdev, dsi_ctrl);
if (rc)
DSI_CTRL_DEBUG(dsi_ctrl, "failed to init axi bus client, rc = %d\n",
rc);
item->ctrl = dsi_ctrl;
mutex_lock(&dsi_ctrl_list_lock);
list_add(&item->list, &dsi_ctrl_list);
mutex_unlock(&dsi_ctrl_list_lock);
mutex_init(&dsi_ctrl->ctrl_lock);
dsi_ctrl->secure_mode = false;
dsi_ctrl->pdev = pdev;
platform_set_drvdata(pdev, dsi_ctrl);
DSI_CTRL_INFO(dsi_ctrl, "Probe successful\n");
return 0;
fail_supplies:
(void)dsi_ctrl_supplies_deinit(dsi_ctrl);
fail_clks:
(void)dsi_ctrl_clocks_deinit(dsi_ctrl);
fail:
return rc;
}
static int dsi_ctrl_dev_remove(struct platform_device *pdev)
{
int rc = 0;
struct dsi_ctrl *dsi_ctrl;
struct list_head *pos, *tmp;
dsi_ctrl = platform_get_drvdata(pdev);
mutex_lock(&dsi_ctrl_list_lock);
list_for_each_safe(pos, tmp, &dsi_ctrl_list) {
struct dsi_ctrl_list_item *n = list_entry(pos,
struct dsi_ctrl_list_item,
list);
if (n->ctrl == dsi_ctrl) {
list_del(&n->list);
break;
}
}
mutex_unlock(&dsi_ctrl_list_lock);
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_axi_bus_client_deinit(dsi_ctrl);
if (rc)
DSI_CTRL_ERR(dsi_ctrl, "failed to deinitialize axi bus client, rc = %d\n",
rc);
rc = dsi_ctrl_supplies_deinit(dsi_ctrl);
if (rc)
DSI_CTRL_ERR(dsi_ctrl,
"failed to deinitialize voltage supplies, rc=%d\n",
rc);
rc = dsi_ctrl_clocks_deinit(dsi_ctrl);
if (rc)
DSI_CTRL_ERR(dsi_ctrl,
"failed to deinitialize clocks, rc=%d\n", rc);
atomic_set(&dsi_ctrl->dma_irq_trig, 0);
mutex_unlock(&dsi_ctrl->ctrl_lock);
mutex_destroy(&dsi_ctrl->ctrl_lock);
devm_kfree(&pdev->dev, dsi_ctrl);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver dsi_ctrl_driver = {
.probe = dsi_ctrl_dev_probe,
.remove = dsi_ctrl_dev_remove,
.driver = {
.name = "drm_dsi_ctrl",
.of_match_table = msm_dsi_of_match,
.suppress_bind_attrs = true,
},
};
#if defined(CONFIG_DEBUG_FS)
void dsi_ctrl_debug_dump(u32 *entries, u32 size)
{
struct list_head *pos, *tmp;
struct dsi_ctrl *ctrl = NULL;
if (!entries || !size)
return;
mutex_lock(&dsi_ctrl_list_lock);
list_for_each_safe(pos, tmp, &dsi_ctrl_list) {
struct dsi_ctrl_list_item *n;
n = list_entry(pos, struct dsi_ctrl_list_item, list);
ctrl = n->ctrl;
DSI_ERR("dsi ctrl:%d\n", ctrl->cell_index);
ctrl->hw.ops.debug_bus(&ctrl->hw, entries, size);
}
mutex_unlock(&dsi_ctrl_list_lock);
}
#endif
/**
* dsi_ctrl_get() - get a dsi_ctrl handle from an of_node
* @of_node: of_node of the DSI controller.
*
* Gets the DSI controller handle for the corresponding of_node. The ref count
* is incremented to one and all subsequent gets will fail until the original
* clients calls a put.
*
* Return: DSI Controller handle.
*/
struct dsi_ctrl *dsi_ctrl_get(struct device_node *of_node)
{
struct list_head *pos, *tmp;
struct dsi_ctrl *ctrl = NULL;
mutex_lock(&dsi_ctrl_list_lock);
list_for_each_safe(pos, tmp, &dsi_ctrl_list) {
struct dsi_ctrl_list_item *n;
n = list_entry(pos, struct dsi_ctrl_list_item, list);
if (n->ctrl->pdev->dev.of_node == of_node) {
ctrl = n->ctrl;
break;
}
}
mutex_unlock(&dsi_ctrl_list_lock);
if (!ctrl) {
DSI_CTRL_ERR(ctrl, "Device with of node not found\n");
ctrl = ERR_PTR(-EPROBE_DEFER);
return ctrl;
}
mutex_lock(&ctrl->ctrl_lock);
if (ctrl->refcount == 1) {
DSI_CTRL_ERR(ctrl, "Device in use\n");
mutex_unlock(&ctrl->ctrl_lock);
ctrl = ERR_PTR(-EBUSY);
return ctrl;
}
ctrl->refcount++;
mutex_unlock(&ctrl->ctrl_lock);
return ctrl;
}
/**
* dsi_ctrl_put() - releases a dsi controller handle.
* @dsi_ctrl: DSI controller handle.
*
* Releases the DSI controller. Driver will clean up all resources and puts back
* the DSI controller into reset state.
*/
void dsi_ctrl_put(struct dsi_ctrl *dsi_ctrl)
{
mutex_lock(&dsi_ctrl->ctrl_lock);
if (dsi_ctrl->refcount == 0)
DSI_CTRL_ERR(dsi_ctrl, "Unbalanced %s call\n", __func__);
else
dsi_ctrl->refcount--;
mutex_unlock(&dsi_ctrl->ctrl_lock);
}
/**
* dsi_ctrl_drv_init() - initialize dsi controller driver.
* @dsi_ctrl: DSI controller handle.
* @parent: Parent directory for debug fs.
*
* Initializes DSI controller driver. Driver should be initialized after
* dsi_ctrl_get() succeeds.
*
* Return: error code.
*/
int dsi_ctrl_drv_init(struct dsi_ctrl *dsi_ctrl, struct dentry *parent)
{
int rc = 0;
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_drv_state_init(dsi_ctrl);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Failed to initialize driver state, rc=%d\n",
rc);
goto error;
}
rc = dsi_ctrl_debugfs_init(dsi_ctrl, parent);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "failed to init debug fs, rc=%d\n", rc);
goto error;
}
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_drv_deinit() - de-initializes dsi controller driver
* @dsi_ctrl: DSI controller handle.
*
* Releases all resources acquired by dsi_ctrl_drv_init().
*
* Return: error code.
*/
int dsi_ctrl_drv_deinit(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_debugfs_deinit(dsi_ctrl);
if (rc)
DSI_CTRL_ERR(dsi_ctrl, "failed to release debugfs root, rc=%d\n",
rc);
rc = dsi_ctrl_buffer_deinit(dsi_ctrl);
if (rc)
DSI_CTRL_ERR(dsi_ctrl, "Failed to free cmd buffers, rc=%d\n",
rc);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
int dsi_ctrl_clk_cb_register(struct dsi_ctrl *dsi_ctrl,
struct clk_ctrl_cb *clk_cb)
{
if (!dsi_ctrl || !clk_cb) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
dsi_ctrl->clk_cb.priv = clk_cb->priv;
dsi_ctrl->clk_cb.dsi_clk_cb = clk_cb->dsi_clk_cb;
return 0;
}
/**
* dsi_ctrl_phy_sw_reset() - perform a PHY software reset
* @dsi_ctrl: DSI controller handle.
*
* Performs a PHY software reset on the DSI controller. Reset should be done
* when the controller power state is DSI_CTRL_POWER_CORE_CLK_ON and the PHY is
* not enabled.
*
* This function will fail if driver is in any other state.
*
* Return: error code.
*/
int dsi_ctrl_phy_sw_reset(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_PHY_SW_RESET, 0x0);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n",
rc);
goto error;
}
dsi_ctrl->hw.ops.phy_sw_reset(&dsi_ctrl->hw);
DSI_CTRL_DEBUG(dsi_ctrl, "PHY soft reset done\n");
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_PHY_SW_RESET, 0x0);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_seamless_timing_update() - update only controller timing
* @dsi_ctrl: DSI controller handle.
* @timing: New DSI timing info
*
* Updates host timing values to conduct a seamless transition to new timing
* For example, to update the porch values in a dynamic fps switch.
*
* Return: error code.
*/
int dsi_ctrl_async_timing_update(struct dsi_ctrl *dsi_ctrl,
struct dsi_mode_info *timing)
{
struct dsi_mode_info *host_mode;
int rc = 0;
if (!dsi_ctrl || !timing) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_ASYNC_TIMING,
DSI_CTRL_ENGINE_ON);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n",
rc);
goto exit;
}
host_mode = &dsi_ctrl->host_config.video_timing;
memcpy(host_mode, timing, sizeof(*host_mode));
dsi_ctrl->hw.ops.set_timing_db(&dsi_ctrl->hw, true);
dsi_ctrl->hw.ops.set_video_timing(&dsi_ctrl->hw, host_mode);
exit:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_timing_db_update() - update only controller Timing DB
* @dsi_ctrl: DSI controller handle.
* @enable: Enable/disable Timing DB register
*
* Update timing db register value during dfps usecases
*
* Return: error code.
*/
int dsi_ctrl_timing_db_update(struct dsi_ctrl *dsi_ctrl,
bool enable)
{
int rc = 0;
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid dsi_ctrl\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_ASYNC_TIMING,
DSI_CTRL_ENGINE_ON);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n",
rc);
goto exit;
}
/*
* Add HW recommended delay for dfps feature.
* When prefetch is enabled, MDSS HW works on 2 vsync
* boundaries i.e. mdp_vsync and panel_vsync.
* In the current implementation we are only waiting
* for mdp_vsync. We need to make sure that interface
* flush is after panel_vsync. So, added the recommended
* delays after dfps update.
*/
usleep_range(2000, 2010);
dsi_ctrl->hw.ops.set_timing_db(&dsi_ctrl->hw, enable);
exit:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
int dsi_ctrl_timing_setup(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
if (dsi_ctrl->host_config.panel_mode == DSI_OP_CMD_MODE) {
dsi_ctrl->hw.ops.cmd_engine_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config,
&dsi_ctrl->host_config.u.cmd_engine);
dsi_ctrl->hw.ops.setup_cmd_stream(&dsi_ctrl->hw,
&dsi_ctrl->host_config.video_timing,
dsi_ctrl->host_config.video_timing.h_active * 3,
0x0,
&dsi_ctrl->roi);
dsi_ctrl->hw.ops.cmd_engine_en(&dsi_ctrl->hw, true);
} else {
dsi_ctrl->hw.ops.video_engine_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config,
&dsi_ctrl->host_config.u.video_engine);
dsi_ctrl->hw.ops.set_video_timing(&dsi_ctrl->hw,
&dsi_ctrl->host_config.video_timing);
dsi_ctrl->hw.ops.video_engine_en(&dsi_ctrl->hw, true);
}
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
int dsi_ctrl_setup(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
rc = dsi_ctrl_timing_setup(dsi_ctrl);
if (rc)
return -EINVAL;
mutex_lock(&dsi_ctrl->ctrl_lock);
dsi_ctrl->hw.ops.setup_lane_map(&dsi_ctrl->hw,
&dsi_ctrl->host_config.lane_map);
dsi_ctrl->hw.ops.host_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config);
dsi_ctrl->hw.ops.enable_status_interrupts(&dsi_ctrl->hw, 0x0);
dsi_ctrl_enable_error_interrupts(dsi_ctrl);
dsi_ctrl->hw.ops.ctrl_en(&dsi_ctrl->hw, true);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
int dsi_ctrl_set_roi(struct dsi_ctrl *dsi_ctrl, struct dsi_rect *roi,
bool *changed)
{
int rc = 0;
if (!dsi_ctrl || !roi || !changed) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
if ((!dsi_rect_is_equal(&dsi_ctrl->roi, roi)) ||
dsi_ctrl->modeupdated) {
*changed = true;
memcpy(&dsi_ctrl->roi, roi, sizeof(dsi_ctrl->roi));
dsi_ctrl->modeupdated = false;
} else
*changed = false;
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_config_clk_gating() - Enable/disable DSI PHY clk gating.
* @dsi_ctrl: DSI controller handle.
* @enable: Enable/disable DSI PHY clk gating
* @clk_selection: clock to enable/disable clock gating
*
* Return: error code.
*/
int dsi_ctrl_config_clk_gating(struct dsi_ctrl *dsi_ctrl, bool enable,
enum dsi_clk_gate_type clk_selection)
{
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
if (dsi_ctrl->hw.ops.config_clk_gating)
dsi_ctrl->hw.ops.config_clk_gating(&dsi_ctrl->hw, enable,
clk_selection);
return 0;
}
/**
* dsi_ctrl_phy_reset_config() - Mask/unmask propagation of ahb reset signal
* to DSI PHY hardware.
* @dsi_ctrl: DSI controller handle.
* @enable: Mask/unmask the PHY reset signal.
*
* Return: error code.
*/
int dsi_ctrl_phy_reset_config(struct dsi_ctrl *dsi_ctrl, bool enable)
{
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
if (dsi_ctrl->hw.ops.phy_reset_config)
dsi_ctrl->hw.ops.phy_reset_config(&dsi_ctrl->hw, enable);
return 0;
}
static bool dsi_ctrl_check_for_spurious_error_interrupts(
struct dsi_ctrl *dsi_ctrl)
{
const unsigned long intr_check_interval = msecs_to_jiffies(1000);
const unsigned int interrupt_threshold = 15;
unsigned long jiffies_now = jiffies;
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid DSI controller structure\n");
return false;
}
if (dsi_ctrl->jiffies_start == 0)
dsi_ctrl->jiffies_start = jiffies;
dsi_ctrl->error_interrupt_count++;
if ((jiffies_now - dsi_ctrl->jiffies_start) < intr_check_interval) {
if (dsi_ctrl->error_interrupt_count > interrupt_threshold) {
DSI_CTRL_WARN(dsi_ctrl, "Detected spurious interrupts on dsi ctrl\n");
return true;
}
} else {
dsi_ctrl->jiffies_start = jiffies;
dsi_ctrl->error_interrupt_count = 1;
}
return false;
}
static void dsi_ctrl_handle_error_status(struct dsi_ctrl *dsi_ctrl,
unsigned long error)
{
struct dsi_event_cb_info cb_info;
cb_info = dsi_ctrl->irq_info.irq_err_cb;
/* disable error interrupts */
if (dsi_ctrl->hw.ops.error_intr_ctrl)
dsi_ctrl->hw.ops.error_intr_ctrl(&dsi_ctrl->hw, false);
/* clear error interrupts first */
if (dsi_ctrl->hw.ops.clear_error_status)
dsi_ctrl->hw.ops.clear_error_status(&dsi_ctrl->hw,
error);
/* DTLN PHY error */
if (error & 0x3000E00)
DSI_CTRL_ERR(dsi_ctrl, "dsi PHY contention error: 0x%lx\n",
error);
/* ignore TX timeout if blpp_lp11 is disabled */
if (dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE &&
!dsi_ctrl->host_config.u.video_engine.bllp_lp11_en &&
!dsi_ctrl->host_config.u.video_engine.eof_bllp_lp11_en)
error &= ~DSI_HS_TX_TIMEOUT;
/* TX timeout error */
if (error & 0xE0) {
if (error & 0xA0) {
if (cb_info.event_cb) {
cb_info.event_idx = DSI_LP_Rx_TIMEOUT;
(void)cb_info.event_cb(cb_info.event_usr_ptr,
cb_info.event_idx,
dsi_ctrl->cell_index,
0, 0, 0, 0);
}
}
DSI_CTRL_ERR(dsi_ctrl, "tx timeout error: 0x%lx\n", error);
}
/* DSI FIFO OVERFLOW error */
if (error & 0xF0000) {
u32 mask = 0;
if (dsi_ctrl->hw.ops.get_error_mask)
mask = dsi_ctrl->hw.ops.get_error_mask(&dsi_ctrl->hw);
/* no need to report FIFO overflow if already masked */
if (cb_info.event_cb && !(mask & 0xf0000)) {
cb_info.event_idx = DSI_FIFO_OVERFLOW;
(void)cb_info.event_cb(cb_info.event_usr_ptr,
cb_info.event_idx,
dsi_ctrl->cell_index,
0, 0, 0, 0);
DSI_CTRL_ERR(dsi_ctrl, "dsi FIFO OVERFLOW error: 0x%lx\n",
error);
}
}
/* DSI FIFO UNDERFLOW error */
if (error & 0xF00000) {
if (cb_info.event_cb) {
cb_info.event_idx = DSI_FIFO_UNDERFLOW;
(void)cb_info.event_cb(cb_info.event_usr_ptr,
cb_info.event_idx,
dsi_ctrl->cell_index,
0, 0, 0, 0);
}
DSI_CTRL_ERR(dsi_ctrl, "dsi FIFO UNDERFLOW error: 0x%lx\n",
error);
}
/* DSI PLL UNLOCK error */
if (error & BIT(8))
DSI_CTRL_ERR(dsi_ctrl, "dsi PLL unlock error: 0x%lx\n", error);
/* ACK error */
if (error & 0xF)
DSI_CTRL_ERR(dsi_ctrl, "ack error: 0x%lx\n", error);
/*
* DSI Phy can go into bad state during ESD influence. This can
* manifest as various types of spurious error interrupts on
* DSI controller. This check will allow us to handle afore mentioned
* case and prevent us from re enabling interrupts until a full ESD
* recovery is completed.
*/
if (dsi_ctrl_check_for_spurious_error_interrupts(dsi_ctrl) &&
dsi_ctrl->esd_check_underway) {
dsi_ctrl->hw.ops.soft_reset(&dsi_ctrl->hw);
return;
}
/* enable back DSI interrupts */
if (dsi_ctrl->hw.ops.error_intr_ctrl)
dsi_ctrl->hw.ops.error_intr_ctrl(&dsi_ctrl->hw, true);
}
/**
* dsi_ctrl_isr - interrupt service routine for DSI CTRL component
* @irq: Incoming IRQ number
* @ptr: Pointer to user data structure (struct dsi_ctrl)
* Returns: IRQ_HANDLED if no further action required
*/
static irqreturn_t dsi_ctrl_isr(int irq, void *ptr)
{
struct dsi_ctrl *dsi_ctrl;
struct dsi_event_cb_info cb_info;
unsigned long flags;
uint32_t status = 0x0, i;
uint64_t errors = 0x0;
if (!ptr)
return IRQ_NONE;
dsi_ctrl = ptr;
/* check status interrupts */
if (dsi_ctrl->hw.ops.get_interrupt_status)
status = dsi_ctrl->hw.ops.get_interrupt_status(&dsi_ctrl->hw);
/* check error interrupts */
if (dsi_ctrl->hw.ops.get_error_status)
errors = dsi_ctrl->hw.ops.get_error_status(&dsi_ctrl->hw);
/* clear interrupts */
if (dsi_ctrl->hw.ops.clear_interrupt_status)
dsi_ctrl->hw.ops.clear_interrupt_status(&dsi_ctrl->hw, 0x0);
SDE_EVT32_IRQ(dsi_ctrl->cell_index, status, errors);
/* handle DSI error recovery */
if (status & DSI_ERROR)
dsi_ctrl_handle_error_status(dsi_ctrl, errors);
if (status & DSI_CMD_MODE_DMA_DONE) {
atomic_set(&dsi_ctrl->dma_irq_trig, 1);
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_CMD_MODE_DMA_DONE);
complete_all(&dsi_ctrl->irq_info.cmd_dma_done);
}
if (status & DSI_CMD_FRAME_DONE) {
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_CMD_FRAME_DONE);
complete_all(&dsi_ctrl->irq_info.cmd_frame_done);
}
if (status & DSI_VIDEO_MODE_FRAME_DONE) {
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_VIDEO_MODE_FRAME_DONE);
complete_all(&dsi_ctrl->irq_info.vid_frame_done);
}
if (status & DSI_BTA_DONE) {
u32 fifo_overflow_mask = (DSI_DLN0_HS_FIFO_OVERFLOW |
DSI_DLN1_HS_FIFO_OVERFLOW |
DSI_DLN2_HS_FIFO_OVERFLOW |
DSI_DLN3_HS_FIFO_OVERFLOW);
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_BTA_DONE);
complete_all(&dsi_ctrl->irq_info.bta_done);
if (dsi_ctrl->hw.ops.clear_error_status)
dsi_ctrl->hw.ops.clear_error_status(&dsi_ctrl->hw,
fifo_overflow_mask);
}
for (i = 0; status && i < DSI_STATUS_INTERRUPT_COUNT; ++i) {
if (status & 0x1) {
spin_lock_irqsave(&dsi_ctrl->irq_info.irq_lock, flags);
cb_info = dsi_ctrl->irq_info.irq_stat_cb[i];
spin_unlock_irqrestore(
&dsi_ctrl->irq_info.irq_lock, flags);
if (cb_info.event_cb)
(void)cb_info.event_cb(cb_info.event_usr_ptr,
cb_info.event_idx,
dsi_ctrl->cell_index,
irq, 0, 0, 0);
}
status >>= 1;
}
return IRQ_HANDLED;
}
/**
* _dsi_ctrl_setup_isr - register ISR handler
* @dsi_ctrl: Pointer to associated dsi_ctrl structure
* Returns: Zero on success
*/
static int _dsi_ctrl_setup_isr(struct dsi_ctrl *dsi_ctrl)
{
int irq_num, rc;
if (!dsi_ctrl)
return -EINVAL;
if (dsi_ctrl->irq_info.irq_num != -1)
return 0;
init_completion(&dsi_ctrl->irq_info.cmd_dma_done);
init_completion(&dsi_ctrl->irq_info.vid_frame_done);
init_completion(&dsi_ctrl->irq_info.cmd_frame_done);
init_completion(&dsi_ctrl->irq_info.bta_done);
irq_num = platform_get_irq(dsi_ctrl->pdev, 0);
if (irq_num < 0) {
DSI_CTRL_ERR(dsi_ctrl, "Failed to get IRQ number, %d\n",
irq_num);
rc = irq_num;
} else {
rc = devm_request_threaded_irq(&dsi_ctrl->pdev->dev, irq_num,
dsi_ctrl_isr, NULL, 0, "dsi_ctrl", dsi_ctrl);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Failed to request IRQ, %d\n",
rc);
} else {
dsi_ctrl->irq_info.irq_num = irq_num;
disable_irq_nosync(irq_num);
DSI_CTRL_INFO(dsi_ctrl, "IRQ %d registered\n", irq_num);
}
}
return rc;
}
/**
* _dsi_ctrl_destroy_isr - unregister ISR handler
* @dsi_ctrl: Pointer to associated dsi_ctrl structure
*/
static void _dsi_ctrl_destroy_isr(struct dsi_ctrl *dsi_ctrl)
{
if (!dsi_ctrl || !dsi_ctrl->pdev || dsi_ctrl->irq_info.irq_num < 0)
return;
if (dsi_ctrl->irq_info.irq_num != -1) {
devm_free_irq(&dsi_ctrl->pdev->dev,
dsi_ctrl->irq_info.irq_num, dsi_ctrl);
dsi_ctrl->irq_info.irq_num = -1;
}
}
void dsi_ctrl_enable_status_interrupt(struct dsi_ctrl *dsi_ctrl,
uint32_t intr_idx, struct dsi_event_cb_info *event_info)
{
unsigned long flags;
if (!dsi_ctrl || dsi_ctrl->irq_info.irq_num == -1 ||
intr_idx >= DSI_STATUS_INTERRUPT_COUNT)
return;
SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_ENTRY);
spin_lock_irqsave(&dsi_ctrl->irq_info.irq_lock, flags);
if (dsi_ctrl->irq_info.irq_stat_refcount[intr_idx] == 0) {
/* enable irq on first request */
if (dsi_ctrl->irq_info.irq_stat_mask == 0)
enable_irq(dsi_ctrl->irq_info.irq_num);
/* update hardware mask */
dsi_ctrl->irq_info.irq_stat_mask |= BIT(intr_idx);
dsi_ctrl->hw.ops.enable_status_interrupts(&dsi_ctrl->hw,
dsi_ctrl->irq_info.irq_stat_mask);
}
if (intr_idx == DSI_SINT_CMD_MODE_DMA_DONE)
dsi_ctrl->hw.ops.enable_status_interrupts(&dsi_ctrl->hw,
dsi_ctrl->irq_info.irq_stat_mask);
++(dsi_ctrl->irq_info.irq_stat_refcount[intr_idx]);
if (event_info)
dsi_ctrl->irq_info.irq_stat_cb[intr_idx] = *event_info;
spin_unlock_irqrestore(&dsi_ctrl->irq_info.irq_lock, flags);
}
void dsi_ctrl_disable_status_interrupt(struct dsi_ctrl *dsi_ctrl,
uint32_t intr_idx)
{
unsigned long flags;
if (!dsi_ctrl || intr_idx >= DSI_STATUS_INTERRUPT_COUNT)
return;
SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_ENTRY);
spin_lock_irqsave(&dsi_ctrl->irq_info.irq_lock, flags);
if (dsi_ctrl->irq_info.irq_stat_refcount[intr_idx])
if (--(dsi_ctrl->irq_info.irq_stat_refcount[intr_idx]) == 0) {
dsi_ctrl->irq_info.irq_stat_mask &= ~BIT(intr_idx);
dsi_ctrl->hw.ops.enable_status_interrupts(&dsi_ctrl->hw,
dsi_ctrl->irq_info.irq_stat_mask);
/* don't need irq if no lines are enabled */
if (dsi_ctrl->irq_info.irq_stat_mask == 0 &&
dsi_ctrl->irq_info.irq_num != -1)
disable_irq_nosync(dsi_ctrl->irq_info.irq_num);
}
spin_unlock_irqrestore(&dsi_ctrl->irq_info.irq_lock, flags);
}
int dsi_ctrl_host_timing_update(struct dsi_ctrl *dsi_ctrl)
{
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
if (dsi_ctrl->hw.ops.host_setup)
dsi_ctrl->hw.ops.host_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config);
if (dsi_ctrl->host_config.panel_mode == DSI_OP_CMD_MODE) {
if (dsi_ctrl->hw.ops.cmd_engine_setup)
dsi_ctrl->hw.ops.cmd_engine_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config,
&dsi_ctrl->host_config.u.cmd_engine);
if (dsi_ctrl->hw.ops.setup_cmd_stream)
dsi_ctrl->hw.ops.setup_cmd_stream(&dsi_ctrl->hw,
&dsi_ctrl->host_config.video_timing,
dsi_ctrl->host_config.video_timing.h_active * 3,
0x0, NULL);
} else {
DSI_CTRL_ERR(dsi_ctrl, "invalid panel mode for resolution switch\n");
return -EINVAL;
}
return 0;
}
/**
* dsi_ctrl_update_host_state() - Update the host initialization state.
* @dsi_ctrl: DSI controller handle.
* @op: ctrl driver ops
* @enable: boolean signifying host state.
*
* Update the host status only while exiting from ulps during suspend state.
*
* Return: error code.
*/
int dsi_ctrl_update_host_state(struct dsi_ctrl *dsi_ctrl,
enum dsi_ctrl_driver_ops op, bool enable)
{
int rc = 0;
u32 state = enable ? 0x1 : 0x0;
if (!dsi_ctrl)
return rc;
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, op, state);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n",
rc);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
dsi_ctrl_update_state(dsi_ctrl, op, state);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_host_init() - Initialize DSI host hardware.
* @dsi_ctrl: DSI controller handle.
* @is_splash_enabled: boolean signifying splash status.
*
* Initializes DSI controller hardware with host configuration provided by
* dsi_ctrl_update_host_config(). Initialization can be performed only during
* DSI_CTRL_POWER_CORE_CLK_ON state and after the PHY SW reset has been
* performed.
*
* Return: error code.
*/
int dsi_ctrl_host_init(struct dsi_ctrl *dsi_ctrl, bool is_splash_enabled)
{
int rc = 0;
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_HOST_INIT, 0x1);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n",
rc);
goto error;
}
/* For Splash usecases we omit hw operations as bootloader
* already takes care of them
*/
if (!is_splash_enabled) {
dsi_ctrl->hw.ops.setup_lane_map(&dsi_ctrl->hw,
&dsi_ctrl->host_config.lane_map);
dsi_ctrl->hw.ops.host_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config);
if (dsi_ctrl->host_config.panel_mode == DSI_OP_CMD_MODE) {
dsi_ctrl->hw.ops.cmd_engine_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config,
&dsi_ctrl->host_config.u.cmd_engine);
dsi_ctrl->hw.ops.setup_cmd_stream(&dsi_ctrl->hw,
&dsi_ctrl->host_config.video_timing,
dsi_ctrl->host_config.video_timing.h_active * 3,
0x0,
NULL);
} else {
dsi_ctrl->hw.ops.video_engine_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config,
&dsi_ctrl->host_config.u.video_engine);
dsi_ctrl->hw.ops.set_video_timing(&dsi_ctrl->hw,
&dsi_ctrl->host_config.video_timing);
}
}
dsi_ctrl->hw.ops.enable_status_interrupts(&dsi_ctrl->hw, 0x0);
dsi_ctrl_enable_error_interrupts(dsi_ctrl);
DSI_CTRL_DEBUG(dsi_ctrl, "Host initialization complete, continuous splash status:%d\n",
is_splash_enabled);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_HOST_INIT, 0x1);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_isr_configure() - API to register/deregister dsi isr
* @dsi_ctrl: DSI controller handle.
* @enable: variable to control register/deregister isr
*/
void dsi_ctrl_isr_configure(struct dsi_ctrl *dsi_ctrl, bool enable)
{
if (!dsi_ctrl)
return;
mutex_lock(&dsi_ctrl->ctrl_lock);
if (enable)
_dsi_ctrl_setup_isr(dsi_ctrl);
else
_dsi_ctrl_destroy_isr(dsi_ctrl);
mutex_unlock(&dsi_ctrl->ctrl_lock);
}
void dsi_ctrl_hs_req_sel(struct dsi_ctrl *dsi_ctrl, bool sel_phy)
{
if (!dsi_ctrl)
return;
mutex_lock(&dsi_ctrl->ctrl_lock);
dsi_ctrl->hw.ops.hs_req_sel(&dsi_ctrl->hw, sel_phy);
mutex_unlock(&dsi_ctrl->ctrl_lock);
}
void dsi_ctrl_set_continuous_clk(struct dsi_ctrl *dsi_ctrl, bool enable)
{
if (!dsi_ctrl)
return;
mutex_lock(&dsi_ctrl->ctrl_lock);
dsi_ctrl->hw.ops.set_continuous_clk(&dsi_ctrl->hw, enable);
mutex_unlock(&dsi_ctrl->ctrl_lock);
}
int dsi_ctrl_soft_reset(struct dsi_ctrl *dsi_ctrl)
{
if (!dsi_ctrl)
return -EINVAL;
mutex_lock(&dsi_ctrl->ctrl_lock);
dsi_ctrl->hw.ops.soft_reset(&dsi_ctrl->hw);
mutex_unlock(&dsi_ctrl->ctrl_lock);
DSI_CTRL_DEBUG(dsi_ctrl, "Soft reset complete\n");
return 0;
}
int dsi_ctrl_reset(struct dsi_ctrl *dsi_ctrl, int mask)
{
int rc = 0;
if (!dsi_ctrl)
return -EINVAL;
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl->hw.ops.ctrl_reset(&dsi_ctrl->hw, mask);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
int dsi_ctrl_get_hw_version(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
if (!dsi_ctrl)
return -EINVAL;
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl->hw.ops.get_hw_version(&dsi_ctrl->hw);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
int dsi_ctrl_vid_engine_en(struct dsi_ctrl *dsi_ctrl, bool on)
{
int rc = 0;
if (!dsi_ctrl)
return -EINVAL;
mutex_lock(&dsi_ctrl->ctrl_lock);
dsi_ctrl->hw.ops.video_engine_en(&dsi_ctrl->hw, on);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
int dsi_ctrl_setup_avr(struct dsi_ctrl *dsi_ctrl, bool enable)
{
if (!dsi_ctrl)
return -EINVAL;
if (dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE) {
mutex_lock(&dsi_ctrl->ctrl_lock);
dsi_ctrl->hw.ops.setup_avr(&dsi_ctrl->hw, enable);
mutex_unlock(&dsi_ctrl->ctrl_lock);
}
return 0;
}
/**
* dsi_ctrl_host_deinit() - De-Initialize DSI host hardware.
* @dsi_ctrl: DSI controller handle.
*
* De-initializes DSI controller hardware. It can be performed only during
* DSI_CTRL_POWER_CORE_CLK_ON state after LINK clocks have been turned off.
*
* Return: error code.
*/
int dsi_ctrl_host_deinit(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_HOST_INIT, 0x0);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n",
rc);
DSI_CTRL_ERR(dsi_ctrl, "driver state check failed, rc=%d\n",
rc);
goto error;
}
DSI_CTRL_DEBUG(dsi_ctrl, "Host deinitization complete\n");
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_HOST_INIT, 0x0);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_update_host_config() - update dsi host configuration
* @dsi_ctrl: DSI controller handle.
* @config: DSI host configuration.
* @flags: dsi_mode_flags modifying the behavior
*
* Updates driver with new Host configuration to use for host initialization.
* This function call will only update the software context. The stored
* configuration information will be used when the host is initialized.
*
* Return: error code.
*/
int dsi_ctrl_update_host_config(struct dsi_ctrl *ctrl,
struct dsi_host_config *config,
struct dsi_display_mode *mode, int flags,
void *clk_handle)
{
int rc = 0;
if (!ctrl || !config) {
DSI_CTRL_ERR(ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&ctrl->ctrl_lock);
rc = dsi_ctrl_validate_panel_info(ctrl, config);
if (rc) {
DSI_CTRL_ERR(ctrl, "panel validation failed, rc=%d\n", rc);
goto error;
}
if (!(flags & (DSI_MODE_FLAG_SEAMLESS | DSI_MODE_FLAG_VRR |
DSI_MODE_FLAG_DYN_CLK))) {
/*
* for dynamic clk switch case link frequence would
* be updated dsi_display_dynamic_clk_switch().
*/
rc = dsi_ctrl_update_link_freqs(ctrl, config, clk_handle,
mode);
if (rc) {
DSI_CTRL_ERR(ctrl, "failed to update link frequency, rc=%d\n",
rc);
goto error;
}
}
DSI_CTRL_DEBUG(ctrl, "Host config updated\n");
memcpy(&ctrl->host_config, config, sizeof(ctrl->host_config));
ctrl->mode_bounds.x = ctrl->host_config.video_timing.h_active *
ctrl->horiz_index;
ctrl->mode_bounds.y = 0;
ctrl->mode_bounds.w = ctrl->host_config.video_timing.h_active;
ctrl->mode_bounds.h = ctrl->host_config.video_timing.v_active;
memcpy(&ctrl->roi, &ctrl->mode_bounds, sizeof(ctrl->mode_bounds));
ctrl->modeupdated = true;
ctrl->roi.x = 0;
error:
mutex_unlock(&ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_validate_timing() - validate a video timing configuration
* @dsi_ctrl: DSI controller handle.
* @timing: Pointer to timing data.
*
* Driver will validate if the timing configuration is supported on the
* controller hardware.
*
* Return: error code if timing is not supported.
*/
int dsi_ctrl_validate_timing(struct dsi_ctrl *dsi_ctrl,
struct dsi_mode_info *mode)
{
int rc = 0;
if (!dsi_ctrl || !mode) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
return rc;
}
/**
* dsi_ctrl_cmd_transfer() - Transfer commands on DSI link
* @dsi_ctrl: DSI controller handle.
* @msg: Message to transfer on DSI link.
* @flags: Modifiers for message transfer.
*
* Command transfer can be done only when command engine is enabled. The
* transfer API will block until either the command transfer finishes or
* the timeout value is reached. If the trigger is deferred, it will return
* without triggering the transfer. Command parameters are programmed to
* hardware.
*
* Return: error code.
*/
int dsi_ctrl_cmd_transfer(struct dsi_ctrl *dsi_ctrl,
const struct mipi_dsi_msg *msg,
u32 *flags)
{
int rc = 0;
if (!dsi_ctrl || !msg) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_CMD_TX, 0x0);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n",
rc);
goto error;
}
if (*flags & DSI_CTRL_CMD_READ) {
rc = dsi_message_rx(dsi_ctrl, msg, flags);
if (rc < 0)
DSI_CTRL_ERR(dsi_ctrl, "read message failed read, rc=%d\n",
rc);
else if (rc == 0)
DSI_CTRL_WARN(dsi_ctrl, "empty message back\n");
} else {
rc = dsi_message_tx(dsi_ctrl, msg, flags);
if (rc)
DSI_CTRL_ERR(dsi_ctrl, "command msg transfer failed, rc = %d\n",
rc);
}
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_CMD_TX, 0x0);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_cmd_tx_trigger() - Trigger a deferred command.
* @dsi_ctrl: DSI controller handle.
* @flags: Modifiers.
*
* Return: error code.
*/
int dsi_ctrl_cmd_tx_trigger(struct dsi_ctrl *dsi_ctrl, u32 flags)
{
int rc = 0;
struct dsi_ctrl_hw_ops dsi_hw_ops;
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
dsi_hw_ops = dsi_ctrl->hw.ops;
SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_ENTRY, flags);
/* Dont trigger the command if this is not the last ocmmand */
if (!(flags & DSI_CTRL_CMD_LAST_COMMAND))
return rc;
mutex_lock(&dsi_ctrl->ctrl_lock);
if (!(flags & DSI_CTRL_CMD_BROADCAST_MASTER))
dsi_hw_ops.trigger_command_dma(&dsi_ctrl->hw);
if ((flags & DSI_CTRL_CMD_BROADCAST) &&
(flags & DSI_CTRL_CMD_BROADCAST_MASTER)) {
dsi_ctrl_wait_for_video_done(dsi_ctrl);
if (dsi_hw_ops.mask_error_intr)
dsi_hw_ops.mask_error_intr(&dsi_ctrl->hw,
BIT(DSI_FIFO_OVERFLOW), true);
atomic_set(&dsi_ctrl->dma_irq_trig, 0);
dsi_ctrl_enable_status_interrupt(dsi_ctrl,
DSI_SINT_CMD_MODE_DMA_DONE, NULL);
reinit_completion(&dsi_ctrl->irq_info.cmd_dma_done);
/* trigger command */
dsi_hw_ops.trigger_command_dma(&dsi_ctrl->hw);
if (flags & DSI_CTRL_CMD_ASYNC_WAIT) {
dsi_ctrl->dma_wait_queued = true;
queue_work(dsi_ctrl->dma_cmd_workq,
&dsi_ctrl->dma_cmd_wait);
} else {
dsi_ctrl->dma_wait_queued = false;
dsi_ctrl_dma_cmd_wait_for_done(&dsi_ctrl->dma_cmd_wait);
}
if (dsi_hw_ops.mask_error_intr &&
!dsi_ctrl->esd_check_underway)
dsi_hw_ops.mask_error_intr(&dsi_ctrl->hw,
BIT(DSI_FIFO_OVERFLOW), false);
if (flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) {
if (dsi_ctrl->version < DSI_CTRL_VERSION_2_4)
dsi_hw_ops.soft_reset(&dsi_ctrl->hw);
dsi_ctrl->cmd_len = 0;
}
}
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_cache_misr - Cache frame MISR value
* @dsi_ctrl: Pointer to associated dsi_ctrl structure
*/
void dsi_ctrl_cache_misr(struct dsi_ctrl *dsi_ctrl)
{
u32 misr;
if (!dsi_ctrl || !dsi_ctrl->hw.ops.collect_misr)
return;
misr = dsi_ctrl->hw.ops.collect_misr(&dsi_ctrl->hw,
dsi_ctrl->host_config.panel_mode);
if (misr)
dsi_ctrl->misr_cache = misr;
DSI_CTRL_DEBUG(dsi_ctrl, "misr_cache = %x\n", dsi_ctrl->misr_cache);
}
/**
* dsi_ctrl_get_host_engine_init_state() - Return host init state
* @dsi_ctrl: DSI controller handle.
* @state: Controller initialization state
*
* Return: error code.
*/
int dsi_ctrl_get_host_engine_init_state(struct dsi_ctrl *dsi_ctrl,
bool *state)
{
if (!dsi_ctrl || !state) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid Params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
*state = dsi_ctrl->current_state.host_initialized;
mutex_unlock(&dsi_ctrl->ctrl_lock);
return 0;
}
/**
* dsi_ctrl_update_host_engine_state_for_cont_splash() -
* set engine state for dsi controller during continuous splash
* @dsi_ctrl: DSI controller handle.
* @state: Engine state.
*
* Set host engine state for DSI controller during continuous splash.
*
* Return: error code.
*/
int dsi_ctrl_update_host_engine_state_for_cont_splash(struct dsi_ctrl *dsi_ctrl,
enum dsi_engine_state state)
{
int rc = 0;
if (!dsi_ctrl || (state >= DSI_CTRL_ENGINE_MAX)) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_HOST_ENGINE, state);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n",
rc);
goto error;
}
DSI_CTRL_DEBUG(dsi_ctrl, "Set host engine state = %d\n", state);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_HOST_ENGINE, state);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_set_power_state() - set power state for dsi controller
* @dsi_ctrl: DSI controller handle.
* @state: Power state.
*
* Set power state for DSI controller. Power state can be changed only when
* Controller, Video and Command engines are turned off.
*
* Return: error code.
*/
int dsi_ctrl_set_power_state(struct dsi_ctrl *dsi_ctrl,
enum dsi_power_state state)
{
int rc = 0;
if (!dsi_ctrl || (state >= DSI_CTRL_POWER_MAX)) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid Params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_POWER_STATE_CHANGE,
state);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n",
rc);
goto error;
}
if (state == DSI_CTRL_POWER_VREG_ON) {
rc = dsi_ctrl_enable_supplies(dsi_ctrl, true);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "failed to enable voltage supplies, rc=%d\n",
rc);
goto error;
}
} else if (state == DSI_CTRL_POWER_VREG_OFF) {
rc = dsi_ctrl_enable_supplies(dsi_ctrl, false);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "failed to disable vreg supplies, rc=%d\n",
rc);
goto error;
}
}
DSI_CTRL_DEBUG(dsi_ctrl, "Power state updated to %d\n", state);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_POWER_STATE_CHANGE, state);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_set_tpg_state() - enable/disable test pattern on the controller
* @dsi_ctrl: DSI controller handle.
* @on: enable/disable test pattern.
*
* Test pattern can be enabled only after Video engine (for video mode panels)
* or command engine (for cmd mode panels) is enabled.
*
* Return: error code.
*/
int dsi_ctrl_set_tpg_state(struct dsi_ctrl *dsi_ctrl, bool on)
{
int rc = 0;
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_TPG, on);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n",
rc);
goto error;
}
if (on) {
if (dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE) {
dsi_ctrl->hw.ops.video_test_pattern_setup(&dsi_ctrl->hw,
DSI_TEST_PATTERN_INC,
0xFFFF);
} else {
dsi_ctrl->hw.ops.cmd_test_pattern_setup(
&dsi_ctrl->hw,
DSI_TEST_PATTERN_INC,
0xFFFF,
0x0);
}
}
dsi_ctrl->hw.ops.test_pattern_enable(&dsi_ctrl->hw, on);
DSI_CTRL_DEBUG(dsi_ctrl, "Set test pattern state=%d\n", on);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_TPG, on);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_set_host_engine_state() - set host engine state
* @dsi_ctrl: DSI Controller handle.
* @state: Engine state.
*
* Host engine state can be modified only when DSI controller power state is
* set to DSI_CTRL_POWER_LINK_CLK_ON and cmd, video engines are disabled.
*
* Return: error code.
*/
int dsi_ctrl_set_host_engine_state(struct dsi_ctrl *dsi_ctrl,
enum dsi_engine_state state)
{
int rc = 0;
if (!dsi_ctrl || (state >= DSI_CTRL_ENGINE_MAX)) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_HOST_ENGINE, state);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n",
rc);
goto error;
}
if (state == DSI_CTRL_ENGINE_ON)
dsi_ctrl->hw.ops.ctrl_en(&dsi_ctrl->hw, true);
else
dsi_ctrl->hw.ops.ctrl_en(&dsi_ctrl->hw, false);
DSI_CTRL_DEBUG(dsi_ctrl, "Set host engine state = %d\n", state);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_HOST_ENGINE, state);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_set_cmd_engine_state() - set command engine state
* @dsi_ctrl: DSI Controller handle.
* @state: Engine state.
*
* Command engine state can be modified only when DSI controller power state is
* set to DSI_CTRL_POWER_LINK_CLK_ON.
*
* Return: error code.
*/
int dsi_ctrl_set_cmd_engine_state(struct dsi_ctrl *dsi_ctrl,
enum dsi_engine_state state)
{
int rc = 0;
if (!dsi_ctrl || (state >= DSI_CTRL_ENGINE_MAX)) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_CMD_ENGINE, state);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n",
rc);
goto error;
}
if (state == DSI_CTRL_ENGINE_ON)
dsi_ctrl->hw.ops.cmd_engine_en(&dsi_ctrl->hw, true);
else
dsi_ctrl->hw.ops.cmd_engine_en(&dsi_ctrl->hw, false);
DSI_CTRL_DEBUG(dsi_ctrl, "Set cmd engine state = %d\n", state);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_CMD_ENGINE, state);
error:
return rc;
}
/**
* dsi_ctrl_set_vid_engine_state() - set video engine state
* @dsi_ctrl: DSI Controller handle.
* @state: Engine state.
*
* Video engine state can be modified only when DSI controller power state is
* set to DSI_CTRL_POWER_LINK_CLK_ON.
*
* Return: error code.
*/
int dsi_ctrl_set_vid_engine_state(struct dsi_ctrl *dsi_ctrl,
enum dsi_engine_state state)
{
int rc = 0;
bool on;
if (!dsi_ctrl || (state >= DSI_CTRL_ENGINE_MAX)) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_VID_ENGINE, state);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n",
rc);
goto error;
}
on = (state == DSI_CTRL_ENGINE_ON) ? true : false;
dsi_ctrl->hw.ops.video_engine_en(&dsi_ctrl->hw, on);
/* perform a reset when turning off video engine */
if (!on)
dsi_ctrl->hw.ops.soft_reset(&dsi_ctrl->hw);
DSI_CTRL_DEBUG(dsi_ctrl, "Set video engine state = %d\n", state);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_VID_ENGINE, state);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_set_ulps() - set ULPS state for DSI lanes.
* @dsi_ctrl: DSI controller handle.
* @enable: enable/disable ULPS.
*
* ULPS can be enabled/disabled after DSI host engine is turned on.
*
* Return: error code.
*/
int dsi_ctrl_set_ulps(struct dsi_ctrl *dsi_ctrl, bool enable)
{
int rc = 0;
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
if (enable)
rc = dsi_enable_ulps(dsi_ctrl);
else
rc = dsi_disable_ulps(dsi_ctrl);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Ulps state change(%d) failed, rc=%d\n",
enable, rc);
goto error;
}
DSI_CTRL_DEBUG(dsi_ctrl, "ULPS state = %d\n", enable);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_set_clamp_state() - set clamp state for DSI phy
* @dsi_ctrl: DSI controller handle.
* @enable: enable/disable clamping.
*
* Clamps can be enabled/disabled while DSI controller is still turned on.
*
* Return: error code.
*/
int dsi_ctrl_set_clamp_state(struct dsi_ctrl *dsi_ctrl,
bool enable, bool ulps_enabled)
{
int rc = 0;
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
if (!dsi_ctrl->hw.ops.clamp_enable ||
!dsi_ctrl->hw.ops.clamp_disable) {
DSI_CTRL_DEBUG(dsi_ctrl, "No clamp control for DSI controller\n");
return 0;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_enable_io_clamp(dsi_ctrl, enable, ulps_enabled);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Failed to enable IO clamp\n");
goto error;
}
DSI_CTRL_DEBUG(dsi_ctrl, "Clamp state = %d\n", enable);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_set_clock_source() - set clock source fpr dsi link clocks
* @dsi_ctrl: DSI controller handle.
* @source_clks: Source clocks for DSI link clocks.
*
* Clock source should be changed while link clocks are disabled.
*
* Return: error code.
*/
int dsi_ctrl_set_clock_source(struct dsi_ctrl *dsi_ctrl,
struct dsi_clk_link_set *source_clks)
{
int rc = 0;
if (!dsi_ctrl || !source_clks) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_clk_update_parent(source_clks, &dsi_ctrl->clk_info.rcg_clks);
if (rc) {
DSI_CTRL_ERR(dsi_ctrl, "Failed to update link clk parent, rc=%d\n",
rc);
(void)dsi_clk_update_parent(&dsi_ctrl->clk_info.pll_op_clks,
&dsi_ctrl->clk_info.rcg_clks);
goto error;
}
dsi_ctrl->clk_info.pll_op_clks.byte_clk = source_clks->byte_clk;
dsi_ctrl->clk_info.pll_op_clks.pixel_clk = source_clks->pixel_clk;
DSI_CTRL_DEBUG(dsi_ctrl, "Source clocks are updated\n");
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_setup_misr() - Setup frame MISR
* @dsi_ctrl: DSI controller handle.
* @enable: enable/disable MISR.
* @frame_count: Number of frames to accumulate MISR.
*
* Return: error code.
*/
int dsi_ctrl_setup_misr(struct dsi_ctrl *dsi_ctrl,
bool enable,
u32 frame_count)
{
if (!dsi_ctrl) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return -EINVAL;
}
if (!dsi_ctrl->hw.ops.setup_misr)
return 0;
mutex_lock(&dsi_ctrl->ctrl_lock);
dsi_ctrl->misr_enable = enable;
dsi_ctrl->hw.ops.setup_misr(&dsi_ctrl->hw,
dsi_ctrl->host_config.panel_mode,
enable, frame_count);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return 0;
}
/**
* dsi_ctrl_collect_misr() - Read frame MISR
* @dsi_ctrl: DSI controller handle.
*
* Return: MISR value.
*/
u32 dsi_ctrl_collect_misr(struct dsi_ctrl *dsi_ctrl)
{
u32 misr;
if (!dsi_ctrl || !dsi_ctrl->hw.ops.collect_misr)
return 0;
misr = dsi_ctrl->hw.ops.collect_misr(&dsi_ctrl->hw,
dsi_ctrl->host_config.panel_mode);
if (!misr)
misr = dsi_ctrl->misr_cache;
DSI_CTRL_DEBUG(dsi_ctrl, "cached misr = %x, final = %x\n",
dsi_ctrl->misr_cache, misr);
return misr;
}
void dsi_ctrl_mask_error_status_interrupts(struct dsi_ctrl *dsi_ctrl, u32 idx,
bool mask_enable)
{
if (!dsi_ctrl || !dsi_ctrl->hw.ops.error_intr_ctrl
|| !dsi_ctrl->hw.ops.clear_error_status) {
DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n");
return;
}
/*
* Mask DSI error status interrupts and clear error status
* register
*/
mutex_lock(&dsi_ctrl->ctrl_lock);
if (idx & BIT(DSI_ERR_INTR_ALL)) {
/*
* The behavior of mask_enable is different in ctrl register
* and mask register and hence mask_enable is manipulated for
* selective error interrupt masking vs total error interrupt
* masking.
*/
dsi_ctrl->hw.ops.error_intr_ctrl(&dsi_ctrl->hw, !mask_enable);
dsi_ctrl->hw.ops.clear_error_status(&dsi_ctrl->hw,
DSI_ERROR_INTERRUPT_COUNT);
} else {
dsi_ctrl->hw.ops.mask_error_intr(&dsi_ctrl->hw, idx,
mask_enable);
dsi_ctrl->hw.ops.clear_error_status(&dsi_ctrl->hw,
DSI_ERROR_INTERRUPT_COUNT);
}
mutex_unlock(&dsi_ctrl->ctrl_lock);
}
/**
* dsi_ctrl_irq_update() - Put a irq vote to process DSI error
* interrupts at any time.
* @dsi_ctrl: DSI controller handle.
* @enable: variable to enable/disable irq
*/
void dsi_ctrl_irq_update(struct dsi_ctrl *dsi_ctrl, bool enable)
{
if (!dsi_ctrl)
return;
mutex_lock(&dsi_ctrl->ctrl_lock);
if (enable)
dsi_ctrl_enable_status_interrupt(dsi_ctrl,
DSI_SINT_ERROR, NULL);
else
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_ERROR);
mutex_unlock(&dsi_ctrl->ctrl_lock);
}
/**
* dsi_ctrl_wait4dynamic_refresh_done() - Poll for dynamci refresh
* done interrupt.
* @dsi_ctrl: DSI controller handle.
*/
int dsi_ctrl_wait4dynamic_refresh_done(struct dsi_ctrl *ctrl)
{
int rc = 0;
if (!ctrl)
return 0;
mutex_lock(&ctrl->ctrl_lock);
if (ctrl->hw.ops.wait4dynamic_refresh_done)
rc = ctrl->hw.ops.wait4dynamic_refresh_done(&ctrl->hw);
mutex_unlock(&ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_drv_register() - register platform driver for dsi controller
*/
void dsi_ctrl_drv_register(void)
{
platform_driver_register(&dsi_ctrl_driver);
}
/**
* dsi_ctrl_drv_unregister() - unregister platform driver
*/
void dsi_ctrl_drv_unregister(void)
{
platform_driver_unregister(&dsi_ctrl_driver);
}