blob: 791bae661f31a5cb2ef971d1fd069487b5bae7a1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2020, The Linux Foundation. All rights reserved.
*/
#include <linux/of.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include "cam_soc_util.h"
#include "cam_debug_util.h"
#include "cam_cx_ipeak.h"
#include "cam_mem_mgr.h"
static char supported_clk_info[256];
static char debugfs_dir_name[64];
int cam_soc_util_get_clk_level(struct cam_hw_soc_info *soc_info,
int64_t clk_rate, int clk_idx, int32_t *clk_lvl)
{
int i;
long clk_rate_round;
if (!soc_info || (clk_idx < 0) || (clk_idx >= CAM_SOC_MAX_CLK)) {
CAM_ERR(CAM_UTIL, "Invalid src_clk_idx: %d", clk_idx);
*clk_lvl = -1;
return -EINVAL;
}
clk_rate_round = clk_round_rate(soc_info->clk[clk_idx], clk_rate);
if (clk_rate_round < 0) {
CAM_ERR(CAM_UTIL, "round failed rc = %ld",
clk_rate_round);
*clk_lvl = -1;
return -EINVAL;
}
for (i = 0; i < CAM_MAX_VOTE; i++) {
if ((soc_info->clk_level_valid[i]) &&
(soc_info->clk_rate[i][clk_idx] >=
clk_rate_round)) {
CAM_DBG(CAM_UTIL,
"soc = %d round rate = %ld actual = %lld",
soc_info->clk_rate[i][clk_idx],
clk_rate_round, clk_rate);
*clk_lvl = i;
return 0;
}
}
CAM_WARN(CAM_UTIL, "Invalid clock rate %ld", clk_rate_round);
*clk_lvl = -1;
return -EINVAL;
}
EXPORT_SYMBOL_GPL(cam_soc_util_get_clk_level);
/**
* cam_soc_util_get_string_from_level()
*
* @brief: Returns the string for a given clk level
*
* @level: Clock level
*
* @return: String corresponding to the clk level
*/
static const char *cam_soc_util_get_string_from_level(
enum cam_vote_level level)
{
switch (level) {
case CAM_SUSPEND_VOTE:
return "";
case CAM_MINSVS_VOTE:
return "MINSVS[1]";
case CAM_LOWSVS_VOTE:
return "LOWSVS[2]";
case CAM_SVS_VOTE:
return "SVS[3]";
case CAM_SVSL1_VOTE:
return "SVSL1[4]";
case CAM_NOMINAL_VOTE:
return "NOM[5]";
case CAM_NOMINALL1_VOTE:
return "NOML1[6]";
case CAM_TURBO_VOTE:
return "TURBO[7]";
default:
return "";
}
}
/**
* cam_soc_util_get_supported_clk_levels()
*
* @brief: Returns the string of all the supported clk levels for
* the given device
*
* @soc_info: Device soc information
*
* @return: String containing all supported clk levels
*/
static const char *cam_soc_util_get_supported_clk_levels(
struct cam_hw_soc_info *soc_info)
{
int i = 0;
memset(supported_clk_info, 0, sizeof(supported_clk_info));
strlcat(supported_clk_info, "Supported levels: ",
sizeof(supported_clk_info));
for (i = 0; i < CAM_MAX_VOTE; i++) {
if (soc_info->clk_level_valid[i] == true) {
strlcat(supported_clk_info,
cam_soc_util_get_string_from_level(i),
sizeof(supported_clk_info));
strlcat(supported_clk_info, " ",
sizeof(supported_clk_info));
}
}
strlcat(supported_clk_info, "\n", sizeof(supported_clk_info));
return supported_clk_info;
}
static int cam_soc_util_clk_lvl_options_open(struct inode *inode,
struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static ssize_t cam_soc_util_clk_lvl_options_read(struct file *file,
char __user *clk_info, size_t size_t, loff_t *loff_t)
{
struct cam_hw_soc_info *soc_info =
(struct cam_hw_soc_info *)file->private_data;
const char *display_string =
cam_soc_util_get_supported_clk_levels(soc_info);
return simple_read_from_buffer(clk_info, size_t, loff_t, display_string,
strlen(display_string));
}
static const struct file_operations cam_soc_util_clk_lvl_options = {
.open = cam_soc_util_clk_lvl_options_open,
.read = cam_soc_util_clk_lvl_options_read,
};
static int cam_soc_util_set_clk_lvl(void *data, u64 val)
{
struct cam_hw_soc_info *soc_info = (struct cam_hw_soc_info *)data;
if (val <= CAM_SUSPEND_VOTE || val >= CAM_MAX_VOTE)
return 0;
if (soc_info->clk_level_valid[val] == true)
soc_info->clk_level_override = val;
else
soc_info->clk_level_override = 0;
return 0;
}
static int cam_soc_util_get_clk_lvl(void *data, u64 *val)
{
struct cam_hw_soc_info *soc_info = (struct cam_hw_soc_info *)data;
*val = soc_info->clk_level_override;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(cam_soc_util_clk_lvl_control,
cam_soc_util_get_clk_lvl, cam_soc_util_set_clk_lvl, "%08llu");
/**
* cam_soc_util_create_clk_lvl_debugfs()
*
* @brief: Creates debugfs files to view/control device clk rates
*
* @soc_info: Device soc information
*
* @return: Success or failure
*/
static int cam_soc_util_create_clk_lvl_debugfs(
struct cam_hw_soc_info *soc_info)
{
struct dentry *dentry = NULL;
if (!soc_info) {
CAM_ERR(CAM_UTIL, "soc info is NULL");
return -EINVAL;
}
if (soc_info->dentry)
return 0;
memset(debugfs_dir_name, 0, sizeof(debugfs_dir_name));
strlcat(debugfs_dir_name, "clk_dir_", sizeof(debugfs_dir_name));
strlcat(debugfs_dir_name, soc_info->dev_name, sizeof(debugfs_dir_name));
dentry = soc_info->dentry;
dentry = debugfs_create_dir(debugfs_dir_name, NULL);
if (!dentry) {
CAM_ERR(CAM_UTIL, "failed to create debug directory");
return -ENOMEM;
}
if (!debugfs_create_file("clk_lvl_options", 0444,
dentry, soc_info, &cam_soc_util_clk_lvl_options)) {
CAM_ERR(CAM_UTIL, "failed to create clk_lvl_options");
goto err;
}
if (!debugfs_create_file("clk_lvl_control", 0644,
dentry, soc_info, &cam_soc_util_clk_lvl_control)) {
CAM_ERR(CAM_UTIL, "failed to create clk_lvl_control");
goto err;
}
CAM_DBG(CAM_UTIL, "clk lvl debugfs for %s successfully created",
soc_info->dev_name);
return 0;
err:
debugfs_remove_recursive(dentry);
dentry = NULL;
return -ENOMEM;
}
/**
* cam_soc_util_remove_clk_lvl_debugfs()
*
* @brief: Removes the debugfs files used to view/control
* device clk rates
*
* @soc_info: Device soc information
*
*/
static void cam_soc_util_remove_clk_lvl_debugfs(
struct cam_hw_soc_info *soc_info)
{
debugfs_remove_recursive(soc_info->dentry);
soc_info->dentry = NULL;
}
int cam_soc_util_get_level_from_string(const char *string,
enum cam_vote_level *level)
{
if (!level)
return -EINVAL;
if (!strcmp(string, "suspend")) {
*level = CAM_SUSPEND_VOTE;
} else if (!strcmp(string, "minsvs")) {
*level = CAM_MINSVS_VOTE;
} else if (!strcmp(string, "lowsvs")) {
*level = CAM_LOWSVS_VOTE;
} else if (!strcmp(string, "svs")) {
*level = CAM_SVS_VOTE;
} else if (!strcmp(string, "svs_l1")) {
*level = CAM_SVSL1_VOTE;
} else if (!strcmp(string, "nominal")) {
*level = CAM_NOMINAL_VOTE;
} else if (!strcmp(string, "nominal_l1")) {
*level = CAM_NOMINALL1_VOTE;
} else if (!strcmp(string, "turbo")) {
*level = CAM_TURBO_VOTE;
} else {
CAM_ERR(CAM_UTIL, "Invalid string %s", string);
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL_GPL(cam_soc_util_get_level_from_string);
/**
* cam_soc_util_get_clk_level_to_apply()
*
* @brief: Get the clock level to apply. If the requested level
* is not valid, bump the level to next available valid
* level. If no higher level found, return failure.
*
* @soc_info: Device soc struct to be populated
* @req_level: Requested level
* @apply_level Level to apply
*
* @return: success or failure
*/
static int cam_soc_util_get_clk_level_to_apply(
struct cam_hw_soc_info *soc_info, enum cam_vote_level req_level,
enum cam_vote_level *apply_level)
{
if (req_level >= CAM_MAX_VOTE) {
CAM_ERR(CAM_UTIL, "Invalid clock level parameter %d",
req_level);
return -EINVAL;
}
if (soc_info->clk_level_valid[req_level] == true) {
*apply_level = req_level;
} else {
int i;
for (i = (req_level + 1); i < CAM_MAX_VOTE; i++)
if (soc_info->clk_level_valid[i] == true) {
*apply_level = i;
break;
}
if (i == CAM_MAX_VOTE) {
CAM_ERR(CAM_UTIL,
"No valid clock level found to apply, req=%d",
req_level);
return -EINVAL;
}
}
CAM_DBG(CAM_UTIL, "Req level %d, Applying %d",
req_level, *apply_level);
return 0;
}
int cam_soc_util_irq_enable(struct cam_hw_soc_info *soc_info)
{
if (!soc_info) {
CAM_ERR(CAM_UTIL, "Invalid arguments");
return -EINVAL;
}
if (!soc_info->irq_line) {
CAM_ERR(CAM_UTIL, "No IRQ line available");
return -ENODEV;
}
enable_irq(soc_info->irq_line->start);
return 0;
}
int cam_soc_util_irq_disable(struct cam_hw_soc_info *soc_info)
{
if (!soc_info) {
CAM_ERR(CAM_UTIL, "Invalid arguments");
return -EINVAL;
}
if (!soc_info->irq_line) {
CAM_ERR(CAM_UTIL, "No IRQ line available");
return -ENODEV;
}
disable_irq(soc_info->irq_line->start);
return 0;
}
EXPORT_SYMBOL_GPL(cam_soc_util_irq_disable);
long cam_soc_util_get_clk_round_rate(struct cam_hw_soc_info *soc_info,
uint32_t clk_index, unsigned long clk_rate)
{
if (!soc_info || (clk_index >= soc_info->num_clk) || (clk_rate == 0)) {
CAM_ERR(CAM_UTIL, "Invalid input params %pK, %d %lu",
soc_info, clk_index, clk_rate);
return clk_rate;
}
return clk_round_rate(soc_info->clk[clk_index], clk_rate);
}
/**
* cam_soc_util_set_clk_rate()
*
* @brief: Sets the given rate for the clk requested for
*
* @clk: Clock structure information for which rate is to be set
* @clk_name: Name of the clock for which rate is being set
* @clk_rate Clock rate to be set
*
* @return: Success or failure
*/
static int cam_soc_util_set_clk_rate(struct clk *clk, const char *clk_name,
int64_t clk_rate)
{
int rc = 0;
long clk_rate_round;
if (!clk || !clk_name)
return -EINVAL;
CAM_DBG(CAM_UTIL, "set %s, rate %lld", clk_name, clk_rate);
if (clk_rate > 0) {
clk_rate_round = clk_round_rate(clk, clk_rate);
CAM_DBG(CAM_UTIL, "new_rate %ld", clk_rate_round);
if (clk_rate_round < 0) {
CAM_ERR(CAM_UTIL, "round failed for clock %s rc = %ld",
clk_name, clk_rate_round);
return clk_rate_round;
}
rc = clk_set_rate(clk, clk_rate_round);
if (rc) {
CAM_ERR(CAM_UTIL, "set_rate failed on %s", clk_name);
return rc;
}
} else if (clk_rate == INIT_RATE) {
clk_rate_round = clk_get_rate(clk);
CAM_DBG(CAM_UTIL, "init new_rate %ld", clk_rate_round);
if (clk_rate_round == 0) {
clk_rate_round = clk_round_rate(clk, 0);
if (clk_rate_round <= 0) {
CAM_ERR(CAM_UTIL, "round rate failed on %s",
clk_name);
return clk_rate_round;
}
}
rc = clk_set_rate(clk, clk_rate_round);
if (rc) {
CAM_ERR(CAM_UTIL, "set_rate failed on %s", clk_name);
return rc;
}
}
return rc;
}
int cam_soc_util_set_src_clk_rate(struct cam_hw_soc_info *soc_info,
int64_t clk_rate)
{
int rc = 0;
int i = 0;
int32_t src_clk_idx;
int32_t scl_clk_idx;
struct clk *clk = NULL;
int32_t apply_level;
uint32_t clk_level_override = 0;
if (!soc_info || (soc_info->src_clk_idx < 0) ||
(soc_info->src_clk_idx >= CAM_SOC_MAX_CLK)) {
CAM_ERR(CAM_UTIL, "Invalid src_clk_idx: %d",
soc_info ? soc_info->src_clk_idx : -1);
return -EINVAL;
}
src_clk_idx = soc_info->src_clk_idx;
clk_level_override = soc_info->clk_level_override;
if (clk_level_override && clk_rate)
clk_rate =
soc_info->clk_rate[clk_level_override][src_clk_idx];
clk = soc_info->clk[src_clk_idx];
rc = cam_soc_util_get_clk_level(soc_info, clk_rate, src_clk_idx,
&apply_level);
if (rc || (apply_level < 0) || (apply_level >= CAM_MAX_VOTE)) {
CAM_ERR(CAM_UTIL,
"set %s, rate %lld dev_name = %s apply level = %d",
soc_info->clk_name[src_clk_idx], clk_rate,
soc_info->dev_name, apply_level);
return -EINVAL;
}
CAM_DBG(CAM_UTIL, "set %s, rate %lld dev_name = %s apply level = %d",
soc_info->clk_name[src_clk_idx], clk_rate,
soc_info->dev_name, apply_level);
if ((soc_info->cam_cx_ipeak_enable) && (clk_rate >= 0)) {
cam_cx_ipeak_update_vote_cx_ipeak(soc_info,
apply_level);
}
rc = cam_soc_util_set_clk_rate(clk,
soc_info->clk_name[src_clk_idx], clk_rate);
if (rc) {
CAM_ERR(CAM_UTIL,
"SET_RATE Failed: src clk: %s, rate %lld, dev_name = %s rc: %d",
soc_info->clk_name[src_clk_idx], clk_rate,
soc_info->dev_name, rc);
return rc;
}
/* set clk rate for scalable clk if available */
for (i = 0; i < soc_info->scl_clk_count; i++) {
scl_clk_idx = soc_info->scl_clk_idx[i];
if (scl_clk_idx < 0) {
CAM_DBG(CAM_UTIL, "Scl clk index invalid");
continue;
}
clk = soc_info->clk[scl_clk_idx];
rc = cam_soc_util_set_clk_rate(clk,
soc_info->clk_name[scl_clk_idx],
soc_info->clk_rate[apply_level][scl_clk_idx]);
if (rc) {
CAM_WARN(CAM_UTIL,
"SET_RATE Failed: scl clk: %s, rate %d dev_name = %s, rc: %d",
soc_info->clk_name[scl_clk_idx],
soc_info->clk_rate[apply_level][scl_clk_idx],
soc_info->dev_name, rc);
}
}
return 0;
}
EXPORT_SYMBOL_GPL(cam_soc_util_set_src_clk_rate);
int cam_soc_util_clk_put(struct clk **clk)
{
if (!(*clk)) {
CAM_ERR(CAM_UTIL, "Invalid params clk");
return -EINVAL;
}
clk_put(*clk);
*clk = NULL;
return 0;
}
EXPORT_SYMBOL_GPL(cam_soc_util_clk_put);
static struct clk *cam_soc_util_option_clk_get(struct device_node *np,
int index)
{
struct of_phandle_args clkspec;
struct clk *clk;
int rc;
if (index < 0)
return ERR_PTR(-EINVAL);
rc = of_parse_phandle_with_args(np, "clocks-option", "#clock-cells",
index, &clkspec);
if (rc)
return ERR_PTR(rc);
clk = of_clk_get_from_provider(&clkspec);
of_node_put(clkspec.np);
return clk;
}
int cam_soc_util_get_option_clk_by_name(struct cam_hw_soc_info *soc_info,
const char *clk_name, struct clk **clk, int32_t *clk_index,
int32_t *clk_rate)
{
int index = 0;
int rc = 0;
struct device_node *of_node = NULL;
if (!soc_info || !clk_name || !clk) {
CAM_ERR(CAM_UTIL,
"Invalid params soc_info %pK clk_name %s clk %pK",
soc_info, clk_name, clk);
return -EINVAL;
}
of_node = soc_info->dev->of_node;
index = of_property_match_string(of_node, "clock-names-option",
clk_name);
if (index < 0) {
CAM_INFO(CAM_UTIL, "No clk data for %s", clk_name);
*clk_index = -1;
*clk = ERR_PTR(-EINVAL);
return -EINVAL;
}
*clk = cam_soc_util_option_clk_get(of_node, index);
if (IS_ERR(*clk)) {
CAM_ERR(CAM_UTIL, "No clk named %s found. Dev %s", clk_name,
soc_info->dev_name);
*clk_index = -1;
return -EFAULT;
}
*clk_index = index;
rc = of_property_read_u32_index(of_node, "clock-rates-option",
index, clk_rate);
if (rc) {
CAM_ERR(CAM_UTIL,
"Error reading clock-rates clk_name %s index %d",
clk_name, index);
cam_soc_util_clk_put(clk);
*clk_rate = 0;
return rc;
}
/*
* Option clocks are assumed to be available to single Device here.
* Hence use INIT_RATE instead of NO_SET_RATE.
*/
*clk_rate = (*clk_rate == 0) ? (int32_t)INIT_RATE : *clk_rate;
CAM_DBG(CAM_UTIL, "clk_name %s index %d clk_rate %d",
clk_name, *clk_index, *clk_rate);
return 0;
}
EXPORT_SYMBOL_GPL(cam_soc_util_get_option_clk_by_name);
int cam_soc_util_clk_enable(struct clk *clk, const char *clk_name,
int32_t clk_rate)
{
int rc = 0;
if (!clk || !clk_name)
return -EINVAL;
rc = cam_soc_util_set_clk_rate(clk, clk_name, clk_rate);
if (rc)
return rc;
rc = clk_prepare_enable(clk);
if (rc) {
CAM_ERR(CAM_UTIL, "enable failed for %s: rc(%d)", clk_name, rc);
return rc;
}
return rc;
}
EXPORT_SYMBOL_GPL(cam_soc_util_clk_enable);
int cam_soc_util_clk_disable(struct clk *clk, const char *clk_name)
{
if (!clk || !clk_name)
return -EINVAL;
CAM_DBG(CAM_UTIL, "disable %s", clk_name);
clk_disable_unprepare(clk);
return 0;
}
EXPORT_SYMBOL_GPL(cam_soc_util_clk_disable);
/**
* cam_soc_util_clk_enable_default()
*
* @brief: This function enables the default clocks present
* in soc_info
*
* @soc_info: Device soc struct to be populated
* @clk_level: Clk level to apply while enabling
*
* @return: success or failure
*/
int cam_soc_util_clk_enable_default(struct cam_hw_soc_info *soc_info,
enum cam_vote_level clk_level)
{
int i, rc = 0;
enum cam_vote_level apply_level;
if ((soc_info->num_clk == 0) ||
(soc_info->num_clk >= CAM_SOC_MAX_CLK)) {
CAM_ERR(CAM_UTIL, "Invalid number of clock %d",
soc_info->num_clk);
return -EINVAL;
}
rc = cam_soc_util_get_clk_level_to_apply(soc_info, clk_level,
&apply_level);
if (rc)
return rc;
if (soc_info->cam_cx_ipeak_enable)
cam_cx_ipeak_update_vote_cx_ipeak(soc_info, apply_level);
for (i = 0; i < soc_info->num_clk; i++) {
rc = cam_soc_util_clk_enable(soc_info->clk[i],
soc_info->clk_name[i],
soc_info->clk_rate[apply_level][i]);
if (rc)
goto clk_disable;
if (soc_info->cam_cx_ipeak_enable) {
CAM_DBG(CAM_UTIL,
"dev name = %s clk name = %s idx = %d\n"
"apply_level = %d clc idx = %d",
soc_info->dev_name, soc_info->clk_name[i], i,
apply_level, i);
}
}
return rc;
clk_disable:
if (soc_info->cam_cx_ipeak_enable)
cam_cx_ipeak_update_vote_cx_ipeak(soc_info, 0);
for (i--; i >= 0; i--) {
cam_soc_util_clk_disable(soc_info->clk[i],
soc_info->clk_name[i]);
}
return rc;
}
EXPORT_SYMBOL_GPL(cam_soc_util_clk_enable_default);
/**
* cam_soc_util_clk_disable_default()
*
* @brief: This function disables the default clocks present
* in soc_info
*
* @soc_info: device soc struct to be populated
*
* @return: success or failure
*/
void cam_soc_util_clk_disable_default(struct cam_hw_soc_info *soc_info)
{
int i;
if (soc_info->num_clk == 0)
return;
if (soc_info->cam_cx_ipeak_enable)
cam_cx_ipeak_unvote_cx_ipeak(soc_info);
for (i = soc_info->num_clk - 1; i >= 0; i--)
cam_soc_util_clk_disable(soc_info->clk[i],
soc_info->clk_name[i]);
}
EXPORT_SYMBOL_GPL(cam_soc_util_clk_disable_default);
/**
* cam_soc_util_get_dt_clk_info()
*
* @brief: Parse the DT and populate the Clock properties
*
* @soc_info: device soc struct to be populated
* @src_clk_str name of src clock that has rate control
*
* @return: success or failure
*/
static int cam_soc_util_get_dt_clk_info(struct cam_hw_soc_info *soc_info)
{
struct device_node *of_node = NULL;
int count;
int num_clk_rates, num_clk_levels;
int i, j, rc;
int32_t num_clk_level_strings;
const char *src_clk_str = NULL;
const char *scl_clk_str = NULL;
const char *clk_control_debugfs = NULL;
const char *clk_cntl_lvl_string = NULL;
enum cam_vote_level level;
if (!soc_info || !soc_info->dev)
return -EINVAL;
of_node = soc_info->dev->of_node;
if (!of_property_read_bool(of_node, "use-shared-clk")) {
CAM_DBG(CAM_UTIL, "No shared clk parameter defined");
soc_info->use_shared_clk = false;
} else {
soc_info->use_shared_clk = true;
}
count = of_property_count_strings(of_node, "clock-names");
CAM_DBG(CAM_UTIL, "E: dev_name = %s count = %d",
soc_info->dev_name, count);
if (count > CAM_SOC_MAX_CLK) {
CAM_ERR(CAM_UTIL, "invalid count of clocks, count=%d", count);
rc = -EINVAL;
return rc;
}
if (count <= 0) {
CAM_DBG(CAM_UTIL, "No clock-names found");
count = 0;
soc_info->num_clk = count;
return 0;
}
soc_info->num_clk = count;
for (i = 0; i < count; i++) {
rc = of_property_read_string_index(of_node, "clock-names",
i, &(soc_info->clk_name[i]));
CAM_DBG(CAM_UTIL, "clock-names[%d] = %s",
i, soc_info->clk_name[i]);
if (rc) {
CAM_ERR(CAM_UTIL,
"i= %d count= %d reading clock-names failed",
i, count);
return rc;
}
}
num_clk_rates = of_property_count_u32_elems(of_node, "clock-rates");
if (num_clk_rates <= 0) {
CAM_ERR(CAM_UTIL, "reading clock-rates count failed");
return -EINVAL;
}
if ((num_clk_rates % soc_info->num_clk) != 0) {
CAM_ERR(CAM_UTIL,
"mismatch clk/rates, No of clocks=%d, No of rates=%d",
soc_info->num_clk, num_clk_rates);
return -EINVAL;
}
num_clk_levels = (num_clk_rates / soc_info->num_clk);
num_clk_level_strings = of_property_count_strings(of_node,
"clock-cntl-level");
if (num_clk_level_strings != num_clk_levels) {
CAM_ERR(CAM_UTIL,
"Mismatch No of levels=%d, No of level string=%d",
num_clk_levels, num_clk_level_strings);
return -EINVAL;
}
for (i = 0; i < num_clk_levels; i++) {
rc = of_property_read_string_index(of_node,
"clock-cntl-level", i, &clk_cntl_lvl_string);
if (rc) {
CAM_ERR(CAM_UTIL,
"Error reading clock-cntl-level, rc=%d", rc);
return rc;
}
rc = cam_soc_util_get_level_from_string(clk_cntl_lvl_string,
&level);
if (rc)
return rc;
CAM_DBG(CAM_UTIL,
"[%d] : %s %d", i, clk_cntl_lvl_string, level);
soc_info->clk_level_valid[level] = true;
for (j = 0; j < soc_info->num_clk; j++) {
rc = of_property_read_u32_index(of_node, "clock-rates",
((i * soc_info->num_clk) + j),
&soc_info->clk_rate[level][j]);
if (rc) {
CAM_ERR(CAM_UTIL,
"Error reading clock-rates, rc=%d",
rc);
return rc;
}
soc_info->clk_rate[level][j] =
(soc_info->clk_rate[level][j] == 0) ?
(int32_t)NO_SET_RATE :
soc_info->clk_rate[level][j];
CAM_DBG(CAM_UTIL, "soc_info->clk_rate[%d][%d] = %d",
level, j,
soc_info->clk_rate[level][j]);
}
}
soc_info->src_clk_idx = -1;
rc = of_property_read_string_index(of_node, "src-clock-name", 0,
&src_clk_str);
if (rc || !src_clk_str) {
CAM_DBG(CAM_UTIL, "No src_clk_str found");
rc = 0;
goto end;
}
for (i = 0; i < soc_info->num_clk; i++) {
if (strcmp(soc_info->clk_name[i], src_clk_str) == 0) {
soc_info->src_clk_idx = i;
CAM_DBG(CAM_UTIL, "src clock = %s, index = %d",
src_clk_str, i);
break;
}
}
/* scalable clk info parsing */
soc_info->scl_clk_count = 0;
soc_info->scl_clk_count = of_property_count_strings(of_node,
"scl-clk-names");
if ((soc_info->scl_clk_count <= 0) ||
(soc_info->scl_clk_count > CAM_SOC_MAX_CLK)) {
if (soc_info->scl_clk_count == -EINVAL) {
CAM_DBG(CAM_UTIL, "scl_clk_name prop not avialable");
} else if ((soc_info->scl_clk_count == -ENODATA) ||
(soc_info->scl_clk_count > CAM_SOC_MAX_CLK)) {
CAM_ERR(CAM_UTIL, "Invalid scl_clk_count: %d",
soc_info->scl_clk_count);
return -EINVAL;
}
CAM_DBG(CAM_UTIL, "Invalid scl_clk count: %d",
soc_info->scl_clk_count);
soc_info->scl_clk_count = -1;
} else {
CAM_DBG(CAM_UTIL, "No of scalable clocks: %d",
soc_info->scl_clk_count);
for (i = 0; i < soc_info->scl_clk_count; i++) {
rc = of_property_read_string_index(of_node,
"scl-clk-names", i,
(const char **)&scl_clk_str);
if (rc || !scl_clk_str) {
CAM_WARN(CAM_UTIL, "scl_clk_str is NULL");
soc_info->scl_clk_idx[i] = -1;
continue;
}
for (j = 0; j < soc_info->num_clk; j++) {
if (strnstr(scl_clk_str, soc_info->clk_name[j],
strlen(scl_clk_str))) {
soc_info->scl_clk_idx[i] = j;
CAM_DBG(CAM_UTIL,
"scl clock = %s, index = %d",
scl_clk_str, j);
break;
}
}
}
}
rc = of_property_read_string_index(of_node,
"clock-control-debugfs", 0, &clk_control_debugfs);
if (rc || !clk_control_debugfs) {
CAM_DBG(CAM_UTIL, "No clock_control_debugfs property found");
rc = 0;
goto end;
}
if (strcmp("true", clk_control_debugfs) == 0)
soc_info->clk_control_enable = true;
CAM_DBG(CAM_UTIL, "X: dev_name = %s count = %d",
soc_info->dev_name, count);
end:
return rc;
}
int cam_soc_util_set_clk_rate_level(struct cam_hw_soc_info *soc_info,
enum cam_vote_level clk_level)
{
int i, rc = 0;
enum cam_vote_level apply_level;
if ((soc_info->num_clk == 0) ||
(soc_info->num_clk >= CAM_SOC_MAX_CLK)) {
CAM_ERR(CAM_UTIL, "Invalid number of clock %d",
soc_info->num_clk);
return -EINVAL;
}
rc = cam_soc_util_get_clk_level_to_apply(soc_info, clk_level,
&apply_level);
if (rc)
return rc;
if (soc_info->cam_cx_ipeak_enable)
cam_cx_ipeak_update_vote_cx_ipeak(soc_info, apply_level);
for (i = 0; i < soc_info->num_clk; i++) {
rc = cam_soc_util_set_clk_rate(soc_info->clk[i],
soc_info->clk_name[i],
soc_info->clk_rate[apply_level][i]);
if (rc < 0) {
CAM_DBG(CAM_UTIL,
"dev name = %s clk_name = %s idx = %d\n"
"apply_level = %d",
soc_info->dev_name, soc_info->clk_name[i],
i, apply_level);
if (soc_info->cam_cx_ipeak_enable)
cam_cx_ipeak_update_vote_cx_ipeak(soc_info, 0);
break;
}
}
return rc;
}
EXPORT_SYMBOL_GPL(cam_soc_util_set_clk_rate_level);
static int cam_soc_util_get_dt_gpio_req_tbl(struct device_node *of_node,
struct cam_soc_gpio_data *gconf, uint16_t *gpio_array,
uint16_t gpio_array_size)
{
int32_t rc = 0, i = 0;
uint32_t count = 0;
uint32_t *val_array = NULL;
if (!of_get_property(of_node, "gpio-req-tbl-num", &count))
return 0;
count /= sizeof(uint32_t);
if (!count) {
CAM_ERR(CAM_UTIL, "gpio-req-tbl-num 0");
return 0;
}
val_array = kcalloc(count, sizeof(uint32_t), GFP_KERNEL);
if (!val_array)
return -ENOMEM;
gconf->cam_gpio_req_tbl = kcalloc(count, sizeof(struct gpio),
GFP_KERNEL);
if (!gconf->cam_gpio_req_tbl) {
rc = -ENOMEM;
goto free_val_array;
}
gconf->cam_gpio_req_tbl_size = count;
rc = of_property_read_u32_array(of_node, "gpio-req-tbl-num",
val_array, count);
if (rc) {
CAM_ERR(CAM_UTIL, "failed in reading gpio-req-tbl-num, rc = %d",
rc);
goto free_gpio_req_tbl;
}
for (i = 0; i < count; i++) {
if (val_array[i] >= gpio_array_size) {
CAM_ERR(CAM_UTIL, "gpio req tbl index %d invalid",
val_array[i]);
goto free_gpio_req_tbl;
}
gconf->cam_gpio_req_tbl[i].gpio = gpio_array[val_array[i]];
CAM_DBG(CAM_UTIL, "cam_gpio_req_tbl[%d].gpio = %d", i,
gconf->cam_gpio_req_tbl[i].gpio);
}
rc = of_property_read_u32_array(of_node, "gpio-req-tbl-flags",
val_array, count);
if (rc) {
CAM_ERR(CAM_UTIL, "Failed in gpio-req-tbl-flags, rc %d", rc);
goto free_gpio_req_tbl;
}
for (i = 0; i < count; i++) {
gconf->cam_gpio_req_tbl[i].flags = val_array[i];
CAM_DBG(CAM_UTIL, "cam_gpio_req_tbl[%d].flags = %ld", i,
gconf->cam_gpio_req_tbl[i].flags);
}
for (i = 0; i < count; i++) {
rc = of_property_read_string_index(of_node,
"gpio-req-tbl-label", i,
&gconf->cam_gpio_req_tbl[i].label);
if (rc) {
CAM_ERR(CAM_UTIL, "Failed rc %d", rc);
goto free_gpio_req_tbl;
}
CAM_DBG(CAM_UTIL, "cam_gpio_req_tbl[%d].label = %s", i,
gconf->cam_gpio_req_tbl[i].label);
}
if (!of_get_property(of_node, "gpio-req-tbl-delay", &count)) {
CAM_DBG(CAM_UTIL, "no gpio-req-tbl-delay");
kfree(val_array);
return rc;
}
count /= sizeof(uint32_t);
if (!count) {
CAM_ERR(CAM_UTIL, "Invalid gpio count for gpio-req-tbl-delay");
kfree(val_array);
return rc;
}
if (count != gconf->cam_gpio_req_tbl_size) {
CAM_ERR(CAM_UTIL,
"Invalid number of gpio-req-tbl-delay entries: %d",
count);
goto free_val_array;
}
gconf->gpio_delay_tbl = kcalloc(count, sizeof(uint32_t),
GFP_KERNEL);
if (!gconf->gpio_delay_tbl) {
CAM_ERR(CAM_UTIL,
"Failed to allocate memory for gpio_delay_tbl");
rc = -ENOMEM;
goto free_val_array;
}
gconf->gpio_delay_tbl_size = count;
rc = of_property_read_u32_array(of_node, "gpio-req-tbl-delay",
val_array, count);
if (rc) {
CAM_ERR(CAM_UTIL, "Failed to read gpio-req-tbl-delay entry");
kfree(gconf->gpio_delay_tbl);
gconf->gpio_delay_tbl_size = 0;
kfree(val_array);
return rc;
}
for (i = 0; i < count; i++) {
gconf->gpio_delay_tbl[i] = val_array[i];
CAM_DBG(CAM_UTIL, "gpio_delay_tbl[%d] = %ld", i,
gconf->gpio_delay_tbl[i]);
}
kfree(val_array);
return rc;
free_gpio_req_tbl:
kfree(gconf->cam_gpio_req_tbl);
free_val_array:
kfree(val_array);
gconf->cam_gpio_req_tbl_size = 0;
return rc;
}
static int cam_soc_util_get_gpio_info(struct cam_hw_soc_info *soc_info)
{
int32_t rc = 0, i = 0;
uint16_t *gpio_array = NULL;
int16_t gpio_array_size = 0;
struct cam_soc_gpio_data *gconf = NULL;
struct device_node *of_node = NULL;
if (!soc_info || !soc_info->dev)
return -EINVAL;
of_node = soc_info->dev->of_node;
/* Validate input parameters */
if (!of_node) {
CAM_ERR(CAM_UTIL, "Invalid param of_node");
return -EINVAL;
}
gpio_array_size = of_gpio_count(of_node);
if (gpio_array_size <= 0)
return 0;
CAM_DBG(CAM_UTIL, "gpio count %d", gpio_array_size);
gpio_array = kcalloc(gpio_array_size, sizeof(uint16_t), GFP_KERNEL);
if (!gpio_array)
goto free_gpio_conf;
for (i = 0; i < gpio_array_size; i++) {
gpio_array[i] = of_get_gpio(of_node, i);
CAM_DBG(CAM_UTIL, "gpio_array[%d] = %d", i, gpio_array[i]);
}
gconf = kzalloc(sizeof(*gconf), GFP_KERNEL);
if (!gconf)
return -ENOMEM;
rc = cam_soc_util_get_dt_gpio_req_tbl(of_node, gconf, gpio_array,
gpio_array_size);
if (rc) {
CAM_ERR(CAM_UTIL, "failed in msm_camera_get_dt_gpio_req_tbl");
goto free_gpio_array;
}
gconf->cam_gpio_common_tbl = kcalloc(gpio_array_size,
sizeof(struct gpio), GFP_KERNEL);
if (!gconf->cam_gpio_common_tbl) {
rc = -ENOMEM;
goto free_gpio_array;
}
for (i = 0; i < gpio_array_size; i++)
gconf->cam_gpio_common_tbl[i].gpio = gpio_array[i];
gconf->cam_gpio_common_tbl_size = gpio_array_size;
soc_info->gpio_data = gconf;
kfree(gpio_array);
return rc;
free_gpio_array:
kfree(gpio_array);
free_gpio_conf:
kfree(gconf);
soc_info->gpio_data = NULL;
return rc;
}
static int cam_soc_util_request_gpio_table(
struct cam_hw_soc_info *soc_info, bool gpio_en)
{
int rc = 0, i = 0;
uint8_t size = 0;
struct cam_soc_gpio_data *gpio_conf =
soc_info->gpio_data;
struct gpio *gpio_tbl = NULL;
if (!gpio_conf) {
CAM_DBG(CAM_UTIL, "No GPIO entry");
return 0;
}
if (gpio_conf->cam_gpio_common_tbl_size <= 0) {
CAM_ERR(CAM_UTIL, "GPIO table size is invalid");
return -EINVAL;
}
size = gpio_conf->cam_gpio_req_tbl_size;
gpio_tbl = gpio_conf->cam_gpio_req_tbl;
if (!gpio_tbl || !size) {
CAM_ERR(CAM_UTIL, "Invalid gpio_tbl %pK / size %d",
gpio_tbl, size);
return -EINVAL;
}
for (i = 0; i < size; i++) {
CAM_DBG(CAM_UTIL, "i=%d, gpio=%d dir=%ld", i,
gpio_tbl[i].gpio, gpio_tbl[i].flags);
}
if (gpio_en) {
for (i = 0; i < size; i++) {
rc = gpio_request_one(gpio_tbl[i].gpio,
gpio_tbl[i].flags, gpio_tbl[i].label);
if (rc) {
/*
* After GPIO request fails, contine to
* apply new gpios, outout a error message
* for driver bringup debug
*/
CAM_ERR(CAM_UTIL, "gpio %d:%s request fails",
gpio_tbl[i].gpio, gpio_tbl[i].label);
}
}
} else {
gpio_free_array(gpio_tbl, size);
}
return rc;
}
static int cam_soc_util_get_dt_regulator_info
(struct cam_hw_soc_info *soc_info)
{
int rc = 0, count = 0, i = 0;
struct device_node *of_node = NULL;
if (!soc_info || !soc_info->dev) {
CAM_ERR(CAM_UTIL, "Invalid parameters");
return -EINVAL;
}
of_node = soc_info->dev->of_node;
soc_info->num_rgltr = 0;
count = of_property_count_strings(of_node, "regulator-names");
if (count != -EINVAL) {
if (count <= 0) {
CAM_ERR(CAM_UTIL, "no regulators found");
count = 0;
return -EINVAL;
}
soc_info->num_rgltr = count;
} else {
CAM_DBG(CAM_UTIL, "No regulators node found");
return 0;
}
for (i = 0; i < soc_info->num_rgltr; i++) {
rc = of_property_read_string_index(of_node,
"regulator-names", i, &soc_info->rgltr_name[i]);
CAM_DBG(CAM_UTIL, "rgltr_name[%d] = %s",
i, soc_info->rgltr_name[i]);
if (rc) {
CAM_ERR(CAM_UTIL, "no regulator resource at cnt=%d", i);
return -ENODEV;
}
}
if (!of_property_read_bool(of_node, "rgltr-cntrl-support")) {
CAM_DBG(CAM_UTIL, "No regulator control parameter defined");
soc_info->rgltr_ctrl_support = false;
return 0;
}
soc_info->rgltr_ctrl_support = true;
rc = of_property_read_u32_array(of_node, "rgltr-min-voltage",
soc_info->rgltr_min_volt, soc_info->num_rgltr);
if (rc) {
CAM_ERR(CAM_UTIL, "No minimum volatage value found, rc=%d", rc);
return -EINVAL;
}
rc = of_property_read_u32_array(of_node, "rgltr-max-voltage",
soc_info->rgltr_max_volt, soc_info->num_rgltr);
if (rc) {
CAM_ERR(CAM_UTIL, "No maximum volatage value found, rc=%d", rc);
return -EINVAL;
}
rc = of_property_read_u32_array(of_node, "rgltr-load-current",
soc_info->rgltr_op_mode, soc_info->num_rgltr);
if (rc) {
CAM_ERR(CAM_UTIL, "No Load curent found rc=%d", rc);
return -EINVAL;
}
return rc;
}
int cam_soc_util_get_dt_properties(struct cam_hw_soc_info *soc_info)
{
struct device_node *of_node = NULL;
int count = 0, i = 0, rc = 0;
if (!soc_info || !soc_info->dev)
return -EINVAL;
of_node = soc_info->dev->of_node;
rc = of_property_read_u32(of_node, "cell-index", &soc_info->index);
if (rc) {
CAM_ERR(CAM_UTIL, "device %s failed to read cell-index",
soc_info->dev_name);
return rc;
}
count = of_property_count_strings(of_node, "reg-names");
if (count <= 0) {
CAM_DBG(CAM_UTIL, "no reg-names found for: %s",
soc_info->dev_name);
count = 0;
}
soc_info->num_mem_block = count;
for (i = 0; i < soc_info->num_mem_block; i++) {
rc = of_property_read_string_index(of_node, "reg-names", i,
&soc_info->mem_block_name[i]);
if (rc) {
CAM_ERR(CAM_UTIL, "failed to read reg-names at %d", i);
return rc;
}
soc_info->mem_block[i] =
platform_get_resource_byname(soc_info->pdev,
IORESOURCE_MEM, soc_info->mem_block_name[i]);
if (!soc_info->mem_block[i]) {
CAM_ERR(CAM_UTIL, "no mem resource by name %s",
soc_info->mem_block_name[i]);
rc = -ENODEV;
return rc;
}
}
if (soc_info->num_mem_block > 0) {
rc = of_property_read_u32_array(of_node, "reg-cam-base",
soc_info->mem_block_cam_base, soc_info->num_mem_block);
if (rc) {
CAM_ERR(CAM_UTIL, "Error reading register offsets");
return rc;
}
}
rc = of_property_read_string_index(of_node, "interrupt-names", 0,
&soc_info->irq_name);
if (rc) {
CAM_DBG(CAM_UTIL, "No interrupt line preset for: %s",
soc_info->dev_name);
rc = 0;
} else {
soc_info->irq_line =
platform_get_resource_byname(soc_info->pdev,
IORESOURCE_IRQ, soc_info->irq_name);
if (!soc_info->irq_line) {
CAM_ERR(CAM_UTIL, "no irq resource");
rc = -ENODEV;
return rc;
}
}
rc = of_property_read_string_index(of_node, "compatible", 0,
(const char **)&soc_info->compatible);
if (rc) {
CAM_DBG(CAM_UTIL, "No compatible string present for: %s",
soc_info->dev_name);
rc = 0;
}
rc = cam_soc_util_get_dt_regulator_info(soc_info);
if (rc)
return rc;
rc = cam_soc_util_get_dt_clk_info(soc_info);
if (rc)
return rc;
rc = cam_soc_util_get_gpio_info(soc_info);
if (rc)
return rc;
if (of_find_property(of_node, "qcom,cam-cx-ipeak", NULL))
rc = cam_cx_ipeak_register_cx_ipeak(soc_info);
return rc;
}
EXPORT_SYMBOL_GPL(cam_soc_util_get_dt_properties);
/**
* cam_soc_util_get_regulator()
*
* @brief: Get regulator resource named vdd
*
* @dev: Device associated with regulator
* @reg: Return pointer to be filled with regulator on success
* @rgltr_name: Name of regulator to get
*
* @return: 0 for Success, negative value for failure
*/
static int cam_soc_util_get_regulator(struct device *dev,
struct regulator **reg, const char *rgltr_name)
{
int rc = 0;
*reg = regulator_get(dev, rgltr_name);
if (IS_ERR_OR_NULL(*reg)) {
rc = PTR_ERR(*reg);
rc = rc ? rc : -EINVAL;
CAM_ERR(CAM_UTIL, "Regulator %s get failed %d", rgltr_name, rc);
*reg = NULL;
}
return rc;
}
int cam_soc_util_regulator_disable(struct regulator *rgltr,
const char *rgltr_name, uint32_t rgltr_min_volt,
uint32_t rgltr_max_volt, uint32_t rgltr_op_mode,
uint32_t rgltr_delay_ms)
{
int32_t rc = 0;
if (!rgltr) {
CAM_ERR(CAM_UTIL, "Invalid NULL parameter");
return -EINVAL;
}
rc = regulator_disable(rgltr);
if (rc) {
CAM_ERR(CAM_UTIL, "%s regulator disable failed", rgltr_name);
return rc;
}
if (rgltr_delay_ms > 20)
msleep(rgltr_delay_ms);
else if (rgltr_delay_ms)
usleep_range(rgltr_delay_ms * 1000,
(rgltr_delay_ms * 1000) + 1000);
if (regulator_count_voltages(rgltr) > 0) {
regulator_set_load(rgltr, 0);
regulator_set_voltage(rgltr, 0, rgltr_max_volt);
}
return rc;
}
EXPORT_SYMBOL_GPL(cam_soc_util_regulator_disable);
int cam_soc_util_regulator_enable(struct regulator *rgltr,
const char *rgltr_name,
uint32_t rgltr_min_volt, uint32_t rgltr_max_volt,
uint32_t rgltr_op_mode, uint32_t rgltr_delay)
{
int32_t rc = 0;
if (!rgltr) {
CAM_ERR(CAM_UTIL, "Invalid NULL parameter");
return -EINVAL;
}
if (regulator_count_voltages(rgltr) > 0) {
CAM_DBG(CAM_UTIL, "voltage min=%d, max=%d",
rgltr_min_volt, rgltr_max_volt);
rc = regulator_set_voltage(
rgltr, rgltr_min_volt, rgltr_max_volt);
if (rc) {
CAM_ERR(CAM_UTIL, "%s set voltage failed", rgltr_name);
return rc;
}
rc = regulator_set_load(rgltr, rgltr_op_mode);
if (rc) {
CAM_ERR(CAM_UTIL, "%s set optimum mode failed",
rgltr_name);
return rc;
}
}
rc = regulator_enable(rgltr);
if (rc) {
CAM_ERR(CAM_UTIL, "%s regulator_enable failed", rgltr_name);
return rc;
}
if (rgltr_delay > 20)
msleep(rgltr_delay);
else if (rgltr_delay)
usleep_range(rgltr_delay * 1000,
(rgltr_delay * 1000) + 1000);
return rc;
}
EXPORT_SYMBOL_GPL(cam_soc_util_regulator_enable);
static int cam_soc_util_request_pinctrl(
struct cam_hw_soc_info *soc_info)
{
struct cam_soc_pinctrl_info *device_pctrl = &soc_info->pinctrl_info;
struct device *dev = soc_info->dev;
device_pctrl->pinctrl = devm_pinctrl_get(dev);
if (IS_ERR_OR_NULL(device_pctrl->pinctrl)) {
CAM_DBG(CAM_UTIL, "Pinctrl not available");
device_pctrl->pinctrl = NULL;
return 0;
}
device_pctrl->gpio_state_active =
pinctrl_lookup_state(device_pctrl->pinctrl,
CAM_SOC_PINCTRL_STATE_DEFAULT);
if (IS_ERR_OR_NULL(device_pctrl->gpio_state_active)) {
CAM_ERR(CAM_UTIL,
"Failed to get the active state pinctrl handle");
device_pctrl->gpio_state_active = NULL;
return -EINVAL;
}
device_pctrl->gpio_state_suspend
= pinctrl_lookup_state(device_pctrl->pinctrl,
CAM_SOC_PINCTRL_STATE_SLEEP);
if (IS_ERR_OR_NULL(device_pctrl->gpio_state_suspend)) {
CAM_ERR(CAM_UTIL,
"Failed to get the suspend state pinctrl handle");
device_pctrl->gpio_state_suspend = NULL;
return -EINVAL;
}
return 0;
}
static void cam_soc_util_regulator_disable_default(
struct cam_hw_soc_info *soc_info)
{
int j = 0;
uint32_t num_rgltr = soc_info->num_rgltr;
for (j = num_rgltr-1; j >= 0; j--) {
if (soc_info->rgltr_ctrl_support == true) {
cam_soc_util_regulator_disable(soc_info->rgltr[j],
soc_info->rgltr_name[j],
soc_info->rgltr_min_volt[j],
soc_info->rgltr_max_volt[j],
soc_info->rgltr_op_mode[j],
soc_info->rgltr_delay[j]);
} else {
if (soc_info->rgltr[j])
regulator_disable(soc_info->rgltr[j]);
}
}
}
static int cam_soc_util_regulator_enable_default(
struct cam_hw_soc_info *soc_info)
{
int j = 0, rc = 0;
uint32_t num_rgltr = soc_info->num_rgltr;
for (j = 0; j < num_rgltr; j++) {
if (soc_info->rgltr_ctrl_support == true) {
rc = cam_soc_util_regulator_enable(soc_info->rgltr[j],
soc_info->rgltr_name[j],
soc_info->rgltr_min_volt[j],
soc_info->rgltr_max_volt[j],
soc_info->rgltr_op_mode[j],
soc_info->rgltr_delay[j]);
} else {
if (soc_info->rgltr[j])
rc = regulator_enable(soc_info->rgltr[j]);
}
if (rc) {
CAM_ERR(CAM_UTIL, "%s enable failed",
soc_info->rgltr_name[j]);
goto disable_rgltr;
}
}
return rc;
disable_rgltr:
for (j--; j >= 0; j--) {
if (soc_info->rgltr_ctrl_support == true) {
cam_soc_util_regulator_disable(soc_info->rgltr[j],
soc_info->rgltr_name[j],
soc_info->rgltr_min_volt[j],
soc_info->rgltr_max_volt[j],
soc_info->rgltr_op_mode[j],
soc_info->rgltr_delay[j]);
} else {
if (soc_info->rgltr[j])
regulator_disable(soc_info->rgltr[j]);
}
}
return rc;
}
int cam_soc_util_request_platform_resource(
struct cam_hw_soc_info *soc_info,
irq_handler_t handler, void *irq_data)
{
int i = 0, rc = 0;
if (!soc_info || !soc_info->dev) {
CAM_ERR(CAM_UTIL, "Invalid parameters");
return -EINVAL;
}
for (i = 0; i < soc_info->num_mem_block; i++) {
if (soc_info->reserve_mem) {
if (!request_mem_region(soc_info->mem_block[i]->start,
resource_size(soc_info->mem_block[i]),
soc_info->mem_block_name[i])){
CAM_ERR(CAM_UTIL,
"Error Mem region request Failed:%s",
soc_info->mem_block_name[i]);
rc = -ENOMEM;
goto unmap_base;
}
}
soc_info->reg_map[i].mem_base = ioremap(
soc_info->mem_block[i]->start,
resource_size(soc_info->mem_block[i]));
if (!soc_info->reg_map[i].mem_base) {
CAM_ERR(CAM_UTIL, "i= %d base NULL", i);
rc = -ENOMEM;
goto unmap_base;
}
soc_info->reg_map[i].mem_cam_base =
soc_info->mem_block_cam_base[i];
soc_info->reg_map[i].size =
resource_size(soc_info->mem_block[i]);
soc_info->num_reg_map++;
}
for (i = 0; i < soc_info->num_rgltr; i++) {
if (soc_info->rgltr_name[i] == NULL) {
CAM_ERR(CAM_UTIL, "can't find regulator name");
goto put_regulator;
}
rc = cam_soc_util_get_regulator(soc_info->dev,
&soc_info->rgltr[i],
soc_info->rgltr_name[i]);
if (rc)
goto put_regulator;
}
if (soc_info->irq_line) {
rc = devm_request_irq(soc_info->dev, soc_info->irq_line->start,
handler, IRQF_TRIGGER_RISING,
soc_info->irq_name, irq_data);
if (rc) {
CAM_ERR(CAM_UTIL, "irq request fail");
rc = -EBUSY;
goto put_regulator;
}
disable_irq(soc_info->irq_line->start);
soc_info->irq_data = irq_data;
}
/* Get Clock */
for (i = 0; i < soc_info->num_clk; i++) {
soc_info->clk[i] = clk_get(soc_info->dev,
soc_info->clk_name[i]);
if (!soc_info->clk[i]) {
CAM_ERR(CAM_UTIL, "get failed for %s",
soc_info->clk_name[i]);
rc = -ENOENT;
goto put_clk;
}
}
rc = cam_soc_util_request_pinctrl(soc_info);
if (rc)
CAM_DBG(CAM_UTIL, "Failed in request pinctrl, rc=%d", rc);
rc = cam_soc_util_request_gpio_table(soc_info, true);
if (rc) {
CAM_ERR(CAM_UTIL, "Failed in request gpio table, rc=%d", rc);
goto put_clk;
}
if (soc_info->clk_control_enable)
cam_soc_util_create_clk_lvl_debugfs(soc_info);
return rc;
put_clk:
if (i == -1)
i = soc_info->num_clk;
for (i = i - 1; i >= 0; i--) {
if (soc_info->clk[i]) {
clk_put(soc_info->clk[i]);
soc_info->clk[i] = NULL;
}
}
if (soc_info->irq_line) {
disable_irq(soc_info->irq_line->start);
devm_free_irq(soc_info->dev,
soc_info->irq_line->start, irq_data);
}
put_regulator:
if (i == -1)
i = soc_info->num_rgltr;
for (i = i - 1; i >= 0; i--) {
if (soc_info->rgltr[i]) {
regulator_disable(soc_info->rgltr[i]);
regulator_put(soc_info->rgltr[i]);
soc_info->rgltr[i] = NULL;
}
}
unmap_base:
if (i == -1)
i = soc_info->num_reg_map;
for (i = i - 1; i >= 0; i--) {
if (soc_info->reserve_mem)
release_mem_region(soc_info->mem_block[i]->start,
resource_size(soc_info->mem_block[i]));
iounmap(soc_info->reg_map[i].mem_base);
soc_info->reg_map[i].mem_base = NULL;
soc_info->reg_map[i].size = 0;
}
return rc;
}
EXPORT_SYMBOL_GPL(cam_soc_util_request_platform_resource);
int cam_soc_util_release_platform_resource(struct cam_hw_soc_info *soc_info)
{
int i;
if (!soc_info || !soc_info->dev) {
CAM_ERR(CAM_UTIL, "Invalid parameter");
return -EINVAL;
}
for (i = soc_info->num_clk - 1; i >= 0; i--) {
clk_put(soc_info->clk[i]);
soc_info->clk[i] = NULL;
}
for (i = soc_info->num_rgltr - 1; i >= 0; i--) {
if (soc_info->rgltr[i]) {
regulator_put(soc_info->rgltr[i]);
soc_info->rgltr[i] = NULL;
}
}
for (i = soc_info->num_reg_map - 1; i >= 0; i--) {
iounmap(soc_info->reg_map[i].mem_base);
soc_info->reg_map[i].mem_base = NULL;
soc_info->reg_map[i].size = 0;
}
if (soc_info->irq_line) {
disable_irq(soc_info->irq_line->start);
devm_free_irq(soc_info->dev,
soc_info->irq_line->start, soc_info->irq_data);
}
if (soc_info->pinctrl_info.pinctrl)
devm_pinctrl_put(soc_info->pinctrl_info.pinctrl);
/* release for gpio */
cam_soc_util_request_gpio_table(soc_info, false);
if (soc_info->clk_control_enable)
cam_soc_util_remove_clk_lvl_debugfs(soc_info);
return 0;
}
EXPORT_SYMBOL_GPL(cam_soc_util_release_platform_resource);
int cam_soc_util_enable_platform_resource(struct cam_hw_soc_info *soc_info,
bool enable_clocks, enum cam_vote_level clk_level, bool enable_irq)
{
int rc = 0;
if (!soc_info)
return -EINVAL;
rc = cam_soc_util_regulator_enable_default(soc_info);
if (rc) {
CAM_ERR(CAM_UTIL, "Regulators enable failed");
return rc;
}
if (enable_clocks) {
rc = cam_soc_util_clk_enable_default(soc_info, clk_level);
if (rc)
goto disable_regulator;
}
if (enable_irq) {
rc = cam_soc_util_irq_enable(soc_info);
if (rc)
goto disable_clk;
}
if (soc_info->pinctrl_info.pinctrl &&
soc_info->pinctrl_info.gpio_state_active) {
rc = pinctrl_select_state(soc_info->pinctrl_info.pinctrl,
soc_info->pinctrl_info.gpio_state_active);
if (rc)
goto disable_irq;
}
return rc;
disable_irq:
if (enable_irq)
cam_soc_util_irq_disable(soc_info);
disable_clk:
if (enable_clocks)
cam_soc_util_clk_disable_default(soc_info);
disable_regulator:
cam_soc_util_regulator_disable_default(soc_info);
return rc;
}
EXPORT_SYMBOL_GPL(cam_soc_util_enable_platform_resource);
int cam_soc_util_disable_platform_resource(struct cam_hw_soc_info *soc_info,
bool disable_clocks, bool disable_irq)
{
int rc = 0;
if (!soc_info)
return -EINVAL;
if (disable_irq)
rc |= cam_soc_util_irq_disable(soc_info);
if (disable_clocks)
cam_soc_util_clk_disable_default(soc_info);
cam_soc_util_regulator_disable_default(soc_info);
if (soc_info->pinctrl_info.pinctrl &&
soc_info->pinctrl_info.gpio_state_suspend)
rc = pinctrl_select_state(soc_info->pinctrl_info.pinctrl,
soc_info->pinctrl_info.gpio_state_suspend);
return rc;
}
EXPORT_SYMBOL_GPL(cam_soc_util_disable_platform_resource);
int cam_soc_util_reg_dump(struct cam_hw_soc_info *soc_info,
uint32_t base_index, uint32_t offset, int size)
{
void __iomem *base_addr = NULL;
CAM_DBG(CAM_UTIL, "base_idx %u size=%d", base_index, size);
if (!soc_info || base_index >= soc_info->num_reg_map ||
size <= 0 || (offset + size) >=
CAM_SOC_GET_REG_MAP_SIZE(soc_info, base_index))
return -EINVAL;
base_addr = CAM_SOC_GET_REG_MAP_START(soc_info, base_index);
/*
* All error checking already done above,
* hence ignoring the return value below.
*/
cam_io_dump(base_addr, offset, size);
return 0;
}
static int cam_soc_util_dump_cont_reg_range(
struct cam_hw_soc_info *soc_info,
struct cam_reg_range_read_desc *reg_read, uint32_t base_idx,
struct cam_reg_dump_out_buffer *dump_out_buf, uintptr_t cmd_buf_end)
{
int i = 0, rc = 0;
uint32_t write_idx = 0;
if (!soc_info || !dump_out_buf || !reg_read || !cmd_buf_end) {
CAM_ERR(CAM_UTIL,
"Invalid input args soc_info: %pK, dump_out_buffer: %pK reg_read: %pK cmd_buf_end: %pK",
soc_info, dump_out_buf, reg_read, cmd_buf_end);
rc = -EINVAL;
goto end;
}
if ((reg_read->num_values) && ((reg_read->num_values > U32_MAX / 2) ||
(sizeof(uint32_t) > ((U32_MAX -
sizeof(struct cam_reg_dump_out_buffer) -
dump_out_buf->bytes_written) /
(reg_read->num_values * 2))))) {
CAM_ERR(CAM_UTIL,
"Integer Overflow bytes_written: [%u] num_values: [%u]",
dump_out_buf->bytes_written, reg_read->num_values);
rc = -EOVERFLOW;
goto end;
}
if ((cmd_buf_end - (uintptr_t)dump_out_buf) <=
(uintptr_t)(sizeof(struct cam_reg_dump_out_buffer)
- sizeof(uint32_t) + dump_out_buf->bytes_written +
(reg_read->num_values * 2 * sizeof(uint32_t)))) {
CAM_ERR(CAM_UTIL,
"Insufficient space in out buffer num_values: [%d] cmd_buf_end: %pK dump_out_buf: %pK",
reg_read->num_values, cmd_buf_end,
(uintptr_t)dump_out_buf);
rc = -EINVAL;
goto end;
}
write_idx = dump_out_buf->bytes_written / sizeof(uint32_t);
for (i = 0; i < reg_read->num_values; i++) {
if ((reg_read->offset + (i * sizeof(uint32_t))) >
(uint32_t)soc_info->reg_map[base_idx].size) {
CAM_ERR(CAM_UTIL,
"Reg offset out of range, offset: 0x%X reg_map size: 0x%X",
(reg_read->offset + (i * sizeof(uint32_t))),
(uint32_t)soc_info->reg_map[base_idx].size);
rc = -EINVAL;
goto end;
}
dump_out_buf->dump_data[write_idx++] = reg_read->offset +
(i * sizeof(uint32_t));
dump_out_buf->dump_data[write_idx++] =
cam_soc_util_r(soc_info, base_idx,
(reg_read->offset + (i * sizeof(uint32_t))));
dump_out_buf->bytes_written += (2 * sizeof(uint32_t));
}
end:
return rc;
}
static int cam_soc_util_dump_dmi_reg_range(
struct cam_hw_soc_info *soc_info,
struct cam_dmi_read_desc *dmi_read, uint32_t base_idx,
struct cam_reg_dump_out_buffer *dump_out_buf, uintptr_t cmd_buf_end)
{
int i = 0, rc = 0;
uint32_t write_idx = 0;
if (!soc_info || !dump_out_buf || !dmi_read || !cmd_buf_end) {
CAM_ERR(CAM_UTIL,
"Invalid input args soc_info: %pK, dump_out_buffer: %pK",
soc_info, dump_out_buf);
rc = -EINVAL;
goto end;
}
if (dmi_read->num_pre_writes > CAM_REG_DUMP_DMI_CONFIG_MAX ||
dmi_read->num_post_writes > CAM_REG_DUMP_DMI_CONFIG_MAX) {
CAM_ERR(CAM_UTIL,
"Invalid number of requested writes, pre: %d post: %d",
dmi_read->num_pre_writes, dmi_read->num_post_writes);
rc = -EINVAL;
goto end;
}
if ((dmi_read->num_pre_writes + dmi_read->dmi_data_read.num_values)
&& ((dmi_read->num_pre_writes > U32_MAX / 2) ||
(dmi_read->dmi_data_read.num_values > U32_MAX / 2) ||
((dmi_read->num_pre_writes * 2) > U32_MAX -
(dmi_read->dmi_data_read.num_values * 2)) ||
(sizeof(uint32_t) > ((U32_MAX -
sizeof(struct cam_reg_dump_out_buffer) -
dump_out_buf->bytes_written) / ((dmi_read->num_pre_writes +
dmi_read->dmi_data_read.num_values) * 2))))) {
CAM_ERR(CAM_UTIL,
"Integer Overflow bytes_written: [%u] num_pre_writes: [%u] num_values: [%u]",
dump_out_buf->bytes_written, dmi_read->num_pre_writes,
dmi_read->dmi_data_read.num_values);
rc = -EOVERFLOW;
goto end;
}
if ((cmd_buf_end - (uintptr_t)dump_out_buf) <=
(uintptr_t)(
sizeof(struct cam_reg_dump_out_buffer) - sizeof(uint32_t) +
(dump_out_buf->bytes_written +
(dmi_read->num_pre_writes * 2 * sizeof(uint32_t)) +
(dmi_read->dmi_data_read.num_values * 2 *
sizeof(uint32_t))))) {
CAM_ERR(CAM_UTIL,
"Insufficient space in out buffer num_read_val: [%d] num_write_val: [%d] cmd_buf_end: %pK dump_out_buf: %pK",
dmi_read->dmi_data_read.num_values,
dmi_read->num_pre_writes, cmd_buf_end,
(uintptr_t)dump_out_buf);
rc = -EINVAL;
goto end;
}
write_idx = dump_out_buf->bytes_written / sizeof(uint32_t);
for (i = 0; i < dmi_read->num_pre_writes; i++) {
if (dmi_read->pre_read_config[i].offset >
(uint32_t)soc_info->reg_map[base_idx].size) {
CAM_ERR(CAM_UTIL,
"Reg offset out of range, offset: 0x%X reg_map size: 0x%X",
dmi_read->pre_read_config[i].offset,
(uint32_t)soc_info->reg_map[base_idx].size);
rc = -EINVAL;
goto end;
}
cam_soc_util_w_mb(soc_info, base_idx,
dmi_read->pre_read_config[i].offset,
dmi_read->pre_read_config[i].value);
dump_out_buf->dump_data[write_idx++] =
dmi_read->pre_read_config[i].offset;
dump_out_buf->dump_data[write_idx++] =
dmi_read->pre_read_config[i].value;
dump_out_buf->bytes_written += (2 * sizeof(uint32_t));
}
if (dmi_read->dmi_data_read.offset >
(uint32_t)soc_info->reg_map[base_idx].size) {
CAM_ERR(CAM_UTIL,
"Reg offset out of range, offset: 0x%X reg_map size: 0x%X",
dmi_read->dmi_data_read.offset,
(uint32_t)soc_info->reg_map[base_idx].size);
rc = -EINVAL;
goto end;
}
for (i = 0; i < dmi_read->dmi_data_read.num_values; i++) {
dump_out_buf->dump_data[write_idx++] =
dmi_read->dmi_data_read.offset;
dump_out_buf->dump_data[write_idx++] =
cam_soc_util_r_mb(soc_info, base_idx,
dmi_read->dmi_data_read.offset);
dump_out_buf->bytes_written += (2 * sizeof(uint32_t));
}
for (i = 0; i < dmi_read->num_post_writes; i++) {
if (dmi_read->post_read_config[i].offset >
(uint32_t)soc_info->reg_map[base_idx].size) {
CAM_ERR(CAM_UTIL,
"Reg offset out of range, offset: 0x%X reg_map size: 0x%X",
dmi_read->post_read_config[i].offset,
(uint32_t)soc_info->reg_map[base_idx].size);
rc = -EINVAL;
goto end;
}
cam_soc_util_w_mb(soc_info, base_idx,
dmi_read->post_read_config[i].offset,
dmi_read->post_read_config[i].value);
}
end:
return rc;
}
static int cam_soc_util_dump_dmi_reg_range_user_buf(
struct cam_hw_soc_info *soc_info,
struct cam_dmi_read_desc *dmi_read, uint32_t base_idx,
struct cam_hw_soc_dump_args *dump_args)
{
int i;
int rc;
size_t buf_len = 0;
uint8_t *dst;
size_t remain_len;
uint32_t min_len;
uint32_t *waddr, *start;
uintptr_t cpu_addr;
struct cam_hw_soc_dump_header *hdr;
if (!soc_info || !dump_args || !dmi_read) {
CAM_ERR(CAM_UTIL,
"Invalid input args soc_info: %pK, dump_args: %pK",
soc_info, dump_args);
rc = -EINVAL;
goto end;
}
if (dmi_read->num_pre_writes > CAM_REG_DUMP_DMI_CONFIG_MAX ||
dmi_read->num_post_writes > CAM_REG_DUMP_DMI_CONFIG_MAX) {
CAM_ERR(CAM_UTIL,
"Invalid number of requested writes, pre: %d post: %d",
dmi_read->num_pre_writes, dmi_read->num_post_writes);
rc = -EINVAL;
goto end;
}
rc = cam_mem_get_cpu_buf(dump_args->buf_handle, &cpu_addr, &buf_len);
if (rc) {
CAM_ERR(CAM_UTIL, "Invalid handle %u rc %d",
dump_args->buf_handle, rc);
goto end;
}
if (buf_len <= dump_args->offset) {
CAM_WARN(CAM_UTIL, "Dump offset overshoot offset %zu len %zu",
dump_args->offset, buf_len);
rc = -ENOSPC;
goto end;
}
remain_len = buf_len - dump_args->offset;
min_len = (dmi_read->num_pre_writes * 2 * sizeof(uint32_t)) +
(dmi_read->dmi_data_read.num_values * 2 * sizeof(uint32_t)) +
sizeof(uint32_t);
if (remain_len < min_len) {
CAM_WARN(CAM_UTIL,
"Dump Buffer exhaust read %d write %d remain %zu min %u",
dmi_read->dmi_data_read.num_values,
dmi_read->num_pre_writes, remain_len,
min_len);
rc = -ENOSPC;
goto end;
}
dst = (uint8_t *)cpu_addr + dump_args->offset;
hdr = (struct cam_hw_soc_dump_header *)dst;
memset(hdr, 0, sizeof(struct cam_hw_soc_dump_header));
scnprintf(hdr->tag, CAM_SOC_HW_DUMP_TAG_MAX_LEN,
"DMI_DUMP:");
waddr = (uint32_t *)(dst + sizeof(struct cam_hw_soc_dump_header));
start = waddr;
hdr->word_size = sizeof(uint32_t);
*waddr = soc_info->index;
waddr++;
for (i = 0; i < dmi_read->num_pre_writes; i++) {
if (dmi_read->pre_read_config[i].offset >
(uint32_t)soc_info->reg_map[base_idx].size) {
CAM_ERR(CAM_UTIL,
"Reg offset out of range, offset: 0x%X reg_map size: 0x%X",
dmi_read->pre_read_config[i].offset,
(uint32_t)soc_info->reg_map[base_idx].size);
rc = -EINVAL;
goto end;
}
cam_soc_util_w_mb(soc_info, base_idx,
dmi_read->pre_read_config[i].offset,
dmi_read->pre_read_config[i].value);
*waddr++ = dmi_read->pre_read_config[i].offset;
*waddr++ = dmi_read->pre_read_config[i].value;
}
if (dmi_read->dmi_data_read.offset >
(uint32_t)soc_info->reg_map[base_idx].size) {
CAM_ERR(CAM_UTIL,
"Reg offset out of range, offset: 0x%X reg_map size: 0x%X",
dmi_read->dmi_data_read.offset,
(uint32_t)soc_info->reg_map[base_idx].size);
rc = -EINVAL;
goto end;
}
for (i = 0; i < dmi_read->dmi_data_read.num_values; i++) {
*waddr++ = dmi_read->dmi_data_read.offset;
*waddr++ = cam_soc_util_r_mb(soc_info, base_idx,
dmi_read->dmi_data_read.offset);
}
for (i = 0; i < dmi_read->num_post_writes; i++) {
if (dmi_read->post_read_config[i].offset >
(uint32_t)soc_info->reg_map[base_idx].size) {
CAM_ERR(CAM_UTIL,
"Reg offset out of range, offset: 0x%X reg_map size: 0x%X",
dmi_read->post_read_config[i].offset,
(uint32_t)soc_info->reg_map[base_idx].size);
rc = -EINVAL;
goto end;
}
cam_soc_util_w_mb(soc_info, base_idx,
dmi_read->post_read_config[i].offset,
dmi_read->post_read_config[i].value);
}
hdr->size = (waddr - start) * hdr->word_size;
dump_args->offset += hdr->size +
sizeof(struct cam_hw_soc_dump_header);
end:
return rc;
}
static int cam_soc_util_dump_cont_reg_range_user_buf(
struct cam_hw_soc_info *soc_info,
struct cam_reg_range_read_desc *reg_read,
uint32_t base_idx,
struct cam_hw_soc_dump_args *dump_args)
{
int i;
int rc = 0;
size_t buf_len;
uint8_t *dst;
size_t remain_len;
uint32_t min_len;
uint32_t *waddr, *start;
uintptr_t cpu_addr;
struct cam_hw_soc_dump_header *hdr;
if (!soc_info || !dump_args || !reg_read) {
CAM_ERR(CAM_UTIL,
"Invalid input args soc_info: %pK, dump_out_buffer: %pK reg_read: %pK",
soc_info, dump_args, reg_read);
rc = -EINVAL;
goto end;
}
rc = cam_mem_get_cpu_buf(dump_args->buf_handle, &cpu_addr, &buf_len);
if (rc) {
CAM_ERR(CAM_UTIL, "Invalid handle %u rc %d",
dump_args->buf_handle, rc);
goto end;
}
if (buf_len <= dump_args->offset) {
CAM_WARN(CAM_UTIL, "Dump offset overshoot %zu %zu",
dump_args->offset, buf_len);
rc = -ENOSPC;
goto end;
}
remain_len = buf_len - dump_args->offset;
min_len = (reg_read->num_values * 2 * sizeof(uint32_t)) +
sizeof(struct cam_hw_soc_dump_header) + sizeof(uint32_t);
if (remain_len < min_len) {
CAM_WARN(CAM_UTIL,
"Dump Buffer exhaust read_values %d remain %zu min %u",
reg_read->num_values,
remain_len,
min_len);
rc = -ENOSPC;
goto end;
}
dst = (uint8_t *)cpu_addr + dump_args->offset;
hdr = (struct cam_hw_soc_dump_header *)dst;
memset(hdr, 0, sizeof(struct cam_hw_soc_dump_header));
scnprintf(hdr->tag, CAM_SOC_HW_DUMP_TAG_MAX_LEN, "%s_REG:",
soc_info->dev_name);
waddr = (uint32_t *)(dst + sizeof(struct cam_hw_soc_dump_header));
start = waddr;
hdr->word_size = sizeof(uint32_t);
*waddr = soc_info->index;
waddr++;
for (i = 0; i < reg_read->num_values; i++) {
if ((reg_read->offset + (i * sizeof(uint32_t))) >
(uint32_t)soc_info->reg_map[base_idx].size) {
CAM_ERR(CAM_UTIL,
"Reg offset out of range, offset: 0x%X reg_map size: 0x%X",
(reg_read->offset + (i * sizeof(uint32_t))),
(uint32_t)soc_info->reg_map[base_idx].size);
rc = -EINVAL;
goto end;
}
waddr[0] = reg_read->offset + (i * sizeof(uint32_t));
waddr[1] = cam_soc_util_r(soc_info, base_idx,
(reg_read->offset + (i * sizeof(uint32_t))));
waddr += 2;
}
hdr->size = (waddr - start) * hdr->word_size;
dump_args->offset += hdr->size +
sizeof(struct cam_hw_soc_dump_header);
end:
return rc;
}
static int cam_soc_util_user_reg_dump(
struct cam_reg_dump_desc *reg_dump_desc,
struct cam_hw_soc_dump_args *dump_args,
struct cam_hw_soc_info *soc_info,
uint32_t reg_base_idx)
{
int rc = 0;
int i;
struct cam_reg_read_info *reg_read_info = NULL;
if (!dump_args || !reg_dump_desc || !soc_info) {
CAM_ERR(CAM_UTIL,
"Invalid input parameters %pK %pK %pK",
dump_args, reg_dump_desc, soc_info);
return -EINVAL;
}
for (i = 0; i < reg_dump_desc->num_read_range; i++) {
reg_read_info = &reg_dump_desc->read_range[i];
if (reg_read_info->type ==
CAM_REG_DUMP_READ_TYPE_CONT_RANGE) {
rc = cam_soc_util_dump_cont_reg_range_user_buf(
soc_info,
&reg_read_info->reg_read,
reg_base_idx,
dump_args);
} else if (reg_read_info->type ==
CAM_REG_DUMP_READ_TYPE_DMI) {
rc = cam_soc_util_dump_dmi_reg_range_user_buf(
soc_info,
&reg_read_info->dmi_read,
reg_base_idx,
dump_args);
} else {
CAM_ERR(CAM_UTIL,
"Invalid Reg dump read type: %d",
reg_read_info->type);
rc = -EINVAL;
goto end;
}
if (rc) {
CAM_ERR(CAM_UTIL,
"Reg range read failed rc: %d reg_base_idx: %d",
rc, reg_base_idx);
goto end;
}
}
end:
return rc;
}
int cam_soc_util_reg_dump_to_cmd_buf(void *ctx,
struct cam_cmd_buf_desc *cmd_desc, uint64_t req_id,
cam_soc_util_regspace_data_cb reg_data_cb,
struct cam_hw_soc_dump_args *soc_dump_args,
bool user_triggered_dump)
{
int rc = 0, i, j;
uintptr_t cpu_addr = 0;
uintptr_t cmd_buf_start = 0;
uintptr_t cmd_in_data_end = 0;
uintptr_t cmd_buf_end = 0;
uint32_t reg_base_type = 0;
size_t buf_size = 0, remain_len = 0;
struct cam_reg_dump_input_info *reg_input_info = NULL;
struct cam_reg_dump_desc *reg_dump_desc = NULL;
struct cam_reg_dump_out_buffer *dump_out_buf = NULL;
struct cam_reg_read_info *reg_read_info = NULL;
struct cam_hw_soc_info *soc_info;
uint32_t reg_base_idx = 0;
if (!ctx || !cmd_desc || !reg_data_cb) {
CAM_ERR(CAM_UTIL, "Invalid args to reg dump [%pK] [%pK]",
cmd_desc, reg_data_cb);
return -EINVAL;
}
if (!cmd_desc->length || !cmd_desc->size) {
CAM_ERR(CAM_UTIL, "Invalid cmd buf size %d %d",
cmd_desc->length, cmd_desc->size);
return -EINVAL;
}
rc = cam_mem_get_cpu_buf(cmd_desc->mem_handle, &cpu_addr, &buf_size);
if (rc || !cpu_addr || (buf_size == 0)) {
CAM_ERR(CAM_UTIL, "Failed in Get cpu addr, rc=%d, cpu_addr=%pK",
rc, (void *)cpu_addr);
goto end;
}
CAM_DBG(CAM_UTIL, "Get cpu buf success req_id: %llu buf_size: %zu",
req_id, buf_size);
if ((buf_size < sizeof(uint32_t)) ||
((size_t)cmd_desc->offset > (buf_size - sizeof(uint32_t)))) {
CAM_ERR(CAM_UTIL, "Invalid offset for cmd buf: %zu",
(size_t)cmd_desc->offset);
rc = -EINVAL;
goto end;
}
remain_len = buf_size - (size_t)cmd_desc->offset;
if ((remain_len < (size_t)cmd_desc->size) || (cmd_desc->size <
cmd_desc->length)) {
CAM_ERR(CAM_UTIL,
"Invalid params for cmd buf len: %zu size: %zu remain_len: %zu",
(size_t)cmd_desc->length, (size_t)cmd_desc->length,
remain_len);
rc = -EINVAL;
goto end;
}
cmd_buf_start = cpu_addr + (uintptr_t)cmd_desc->offset;
cmd_in_data_end = cmd_buf_start + (uintptr_t)cmd_desc->length;
cmd_buf_end = cmd_buf_start + (uintptr_t)cmd_desc->size;
if ((cmd_buf_end <= cmd_buf_start) ||
(cmd_in_data_end <= cmd_buf_start)) {
CAM_ERR(CAM_UTIL,
"Invalid length or size for cmd buf: [%zu] [%zu]",
(size_t)cmd_desc->length, (size_t)cmd_desc->size);
rc = -EINVAL;
goto end;
}
CAM_DBG(CAM_UTIL,
"Buffer params start [%pK] input_end [%pK] buf_end [%pK]",
cmd_buf_start, cmd_in_data_end, cmd_buf_end);
reg_input_info = (struct cam_reg_dump_input_info *) cmd_buf_start;
if ((reg_input_info->num_dump_sets > 1) && (sizeof(uint32_t) >
((U32_MAX - sizeof(struct cam_reg_dump_input_info)) /
(reg_input_info->num_dump_sets - 1)))) {
CAM_ERR(CAM_UTIL,
"Integer Overflow req_id: [%llu] num_dump_sets: [%u]",
req_id, reg_input_info->num_dump_sets);
rc = -EOVERFLOW;
goto end;
}
if ((!reg_input_info->num_dump_sets) ||
((cmd_in_data_end - cmd_buf_start) <= (uintptr_t)
(sizeof(struct cam_reg_dump_input_info) +
((reg_input_info->num_dump_sets - 1) * sizeof(uint32_t))))) {
CAM_ERR(CAM_UTIL,
"Invalid number of dump sets, req_id: [%llu] num_dump_sets: [%u]",
req_id, reg_input_info->num_dump_sets);
rc = -EINVAL;
goto end;
}
CAM_DBG(CAM_UTIL,
"reg_input_info req_id: %llu ctx %pK num_dump_sets: %d",
req_id, ctx, reg_input_info->num_dump_sets);
for (i = 0; i < reg_input_info->num_dump_sets; i++) {
if ((cmd_in_data_end - cmd_buf_start) <= (uintptr_t)
reg_input_info->dump_set_offsets[i]) {
CAM_ERR(CAM_UTIL,
"Invalid dump set offset: [%pK], cmd_buf_start: [%pK] cmd_in_data_end: [%pK]",
(uintptr_t)reg_input_info->dump_set_offsets[i],
cmd_buf_start, cmd_in_data_end);
rc = -EINVAL;
goto end;
}
reg_dump_desc = (struct cam_reg_dump_desc *)
(cmd_buf_start +
(uintptr_t)reg_input_info->dump_set_offsets[i]);
if ((reg_dump_desc->num_read_range > 1) &&
(sizeof(struct cam_reg_read_info) > ((U32_MAX -
sizeof(struct cam_reg_dump_desc)) /
(reg_dump_desc->num_read_range - 1)))) {
CAM_ERR(CAM_UTIL,
"Integer Overflow req_id: [%llu] num_read_range: [%u]",
req_id, reg_dump_desc->num_read_range);
rc = -EOVERFLOW;
goto end;
}
if ((!reg_dump_desc->num_read_range) ||
((cmd_in_data_end - (uintptr_t)reg_dump_desc) <=
(uintptr_t)(sizeof(struct cam_reg_dump_desc) +
((reg_dump_desc->num_read_range - 1) *
sizeof(struct cam_reg_read_info))))) {
CAM_ERR(CAM_UTIL,
"Invalid number of read ranges, req_id: [%llu] num_read_range: [%d]",
req_id, reg_dump_desc->num_read_range);
rc = -EINVAL;
goto end;
}
if ((cmd_buf_end - cmd_buf_start) <= (uintptr_t)
(reg_dump_desc->dump_buffer_offset +
sizeof(struct cam_reg_dump_out_buffer))) {
CAM_ERR(CAM_UTIL,
"Invalid out buffer offset: [%pK], cmd_buf_start: [%pK] cmd_buf_end: [%pK]",
(uintptr_t)reg_dump_desc->dump_buffer_offset,
cmd_buf_start, cmd_buf_end);
rc = -EINVAL;
goto end;
}
reg_base_type = reg_dump_desc->reg_base_type;
if (reg_base_type == 0 || reg_base_type >
CAM_REG_DUMP_BASE_TYPE_CAMNOC) {
CAM_ERR(CAM_UTIL,
"Invalid Reg dump base type: %d",
reg_base_type);
rc = -EINVAL;
goto end;
}
rc = reg_data_cb(reg_base_type, ctx, &soc_info, &reg_base_idx);
if (rc || !soc_info) {
CAM_ERR(CAM_UTIL,
"Reg space data callback failed rc: %d soc_info: [%pK]",
rc, soc_info);
rc = -EINVAL;
goto end;
}
if (reg_base_idx > soc_info->num_reg_map) {
CAM_ERR(CAM_UTIL,
"Invalid reg base idx: %d num reg map: %d",
reg_base_idx, soc_info->num_reg_map);
rc = -EINVAL;
goto end;
}
CAM_DBG(CAM_UTIL,
"Reg data callback success req_id: %llu base_type: %d base_idx: %d num_read_range: %d",
req_id, reg_base_type, reg_base_idx,
reg_dump_desc->num_read_range);
/* If the dump request is triggered by user space
* buffer will be different from the buffer which is received
* in init packet. In this case, dump the data to the
* user provided buffer and exit.
*/
if (user_triggered_dump) {
rc = cam_soc_util_user_reg_dump(reg_dump_desc,
soc_dump_args, soc_info, reg_base_idx);
CAM_INFO(CAM_UTIL,
"%s reg_base_idx %d dumped offset %u",
soc_info->dev_name, reg_base_idx,
soc_dump_args->offset);
goto end;
}
/* Below code is executed when data is dumped to the
* out buffer received in init packet
*/
dump_out_buf = (struct cam_reg_dump_out_buffer *)
(cmd_buf_start +
(uintptr_t)reg_dump_desc->dump_buffer_offset);
dump_out_buf->req_id = req_id;
dump_out_buf->bytes_written = 0;
for (j = 0; j < reg_dump_desc->num_read_range; j++) {
CAM_DBG(CAM_UTIL,
"Number of bytes written to cmd buffer: %u req_id: %llu",
dump_out_buf->bytes_written, req_id);
reg_read_info = &reg_dump_desc->read_range[j];
if (reg_read_info->type ==
CAM_REG_DUMP_READ_TYPE_CONT_RANGE) {
rc = cam_soc_util_dump_cont_reg_range(soc_info,
&reg_read_info->reg_read, reg_base_idx,
dump_out_buf, cmd_buf_end);
} else if (reg_read_info->type ==
CAM_REG_DUMP_READ_TYPE_DMI) {
rc = cam_soc_util_dump_dmi_reg_range(soc_info,
&reg_read_info->dmi_read, reg_base_idx,
dump_out_buf, cmd_buf_end);
} else {
CAM_ERR(CAM_UTIL,
"Invalid Reg dump read type: %d",
reg_read_info->type);
rc = -EINVAL;
goto end;
}
if (rc) {
CAM_ERR(CAM_UTIL,
"Reg range read failed rc: %d reg_base_idx: %d dump_out_buf: %pK",
rc, reg_base_idx, dump_out_buf);
goto end;
}
}
}
end:
return rc;
}
EXPORT_SYMBOL_GPL(cam_soc_util_reg_dump_to_cmd_buf);