blob: e3c1ca7ffe255838e0d58f1fda715f8e42c5cffc [file] [log] [blame]
/*
* drivers/cpufreq/cpufreq_hybrid.c
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* Jun Nakajima <jun.nakajima@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/cpu.h>
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
#include <linux/mutex.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>
#include <linux/sched.h>
/*
* dbs is used in this file as a shortform for demandbased switching
* It helps to keep variable names smaller, simpler
*/
#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
#define DEF_FREQUENCY_UP_THRESHOLD (80)
#define DEF_SAMPLING_DOWN_FACTOR (1)
#define MAX_SAMPLING_DOWN_FACTOR (100000)
#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (15)
#define MIN_FREQUENCY_DOWN_DIFFERENTIAL (5)
#define MAX_FREQUENCY_DOWN_DIFFERENTIAL (20)
#define MICRO_FREQUENCY_UP_THRESHOLD (85)
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (30000)
#define MIN_FREQUENCY_UP_THRESHOLD (21)
#define MAX_FREQUENCY_UP_THRESHOLD (100)
#define DEF_CPU_DOWN_THRESHOLD (80)
#define MICRO_CPU_DOWN_THRESHOLD (80)
#define MIN_CPU_DOWN_THRESHOLD (60)
#define MAX_CPU_DOWN_THRESHOLD (85)
#define LOAD_CRITICAL_GRADE (10)
#define LOAD_HIGH_GRADE (5)
#define LOAD_WARNING_GRADE (0)
#define LOAD_MEDIUM_GRADE (-10)
#define LOAD_LIGHT_GRADE (-20)
#define LOAD_CRITICAL (100)
#define LOAD_HIGH (90)
#define LOAD_WARNING (80)
#define LOAD_MEDIUM (50)
#define LOAD_LIGHT (0)
#define CPU_UP_BOUND (100)
#define CPU_DOWN_AVG_TIMES (50)
//#define DEBUG_LOG
/*
* The polling frequency of this governor depends on the capability of
* the processor. Default polling frequency is 1000 times the transition
* latency of the processor. The governor will work on any processor with
* transition latency <= 10mS, using appropriate sampling
* rate.
* For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
* this governor will not work.
* All times here are in uS.
*/
#define MIN_SAMPLING_RATE_RATIO (2)
static unsigned int min_sampling_rate;
#define LATENCY_MULTIPLIER (1000)
#define MIN_LATENCY_MULTIPLIER (100)
#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
static void do_dbs_timer(struct work_struct *work);
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event);
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_HYBRID
static
#endif
struct cpufreq_governor cpufreq_gov_hybrid = {
.name = "hybrid",
.governor = cpufreq_governor_dbs,
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
.owner = THIS_MODULE,
};
static int g_disable_hotplug = false;
#ifdef CONFIG_SMP
static int g_next_hp_action = 0;
static int g_cpu_up_sum_grade = 0;
static long g_cpu_down_sum_load_freq = 0;
static int g_cpu_down_count = 0;
static void hp_work_handler(struct work_struct *work);
static struct delayed_work hp_work;
#endif
static int g_sum_load = 0;
static int g_available_cpu_num = 0;
static int g_limit_cpu_num = 0;
/* Sampling types */
enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
struct cpu_dbs_info_s {
cputime64_t prev_cpu_idle;
cputime64_t prev_cpu_iowait;
cputime64_t prev_cpu_wall;
cputime64_t prev_cpu_nice;
struct cpufreq_policy *cur_policy;
struct delayed_work work;
struct cpufreq_frequency_table *freq_table;
unsigned int freq_lo;
unsigned int freq_lo_jiffies;
unsigned int freq_hi_jiffies;
unsigned int rate_mult;
int cpu;
unsigned int sample_type:1;
/*
* percpu mutex that serializes governor limit change with
* do_dbs_timer invocation. We do not want do_dbs_timer to run
* when user is changing the governor or limits.
*/
struct mutex timer_mutex;
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, hb_cpu_dbs_info);
static unsigned int dbs_enable; /* number of CPUs using this policy */
/*
* dbs_mutex protects dbs_enable in governor start/stop.
*/
static DEFINE_MUTEX(dbs_mutex);
/*
* dbs_hotplug protects all hotplug related global variables
*/
static DEFINE_MUTEX(hp_mutex);
static DEFINE_MUTEX(hp_onoff_mutex);
static struct dbs_tuners {
unsigned int sampling_rate;
unsigned int up_threshold;
unsigned int down_differential;
unsigned int ignore_nice;
unsigned int sampling_down_factor;
unsigned int powersave_bias;
unsigned int io_is_busy;
unsigned int cpu_down_threshold;
int load_critical_grade;
int load_high_grade;
int load_warning_grade;
int load_medium_grade;
int load_light_grade;
unsigned int load_critical;
unsigned int load_high;
unsigned int load_warning;
unsigned int load_medium;
unsigned int load_light;
unsigned int cpu_up_bound;
unsigned int cpu_down_avg_times;
} dbs_tuners_ins = {
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
.ignore_nice = 0,
.powersave_bias = 0,
.cpu_down_threshold = DEF_CPU_DOWN_THRESHOLD,
.load_critical_grade = LOAD_CRITICAL_GRADE,
.load_high_grade = LOAD_HIGH_GRADE,
.load_warning_grade = LOAD_WARNING_GRADE,
.load_medium_grade = LOAD_MEDIUM_GRADE,
.load_light_grade = LOAD_LIGHT_GRADE,
.load_critical = LOAD_CRITICAL,
.load_high = LOAD_HIGH,
.load_warning = LOAD_WARNING,
.load_medium = LOAD_MEDIUM,
.load_light = LOAD_LIGHT,
.cpu_up_bound = CPU_UP_BOUND,
.cpu_down_avg_times = CPU_DOWN_AVG_TIMES,
};
static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
{
u64 idle_time;
u64 cur_wall_time;
u64 busy_time;
cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
idle_time = cur_wall_time - busy_time;
if (wall)
*wall = jiffies_to_usecs(cur_wall_time);
return jiffies_to_usecs(idle_time);
}
static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
if (idle_time == -1ULL)
return get_cpu_idle_time_jiffy(cpu, wall);
else
idle_time += get_cpu_iowait_time_us(cpu, wall);
return idle_time;
}
static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
{
u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
if (iowait_time == -1ULL)
return 0;
return iowait_time;
}
/*
* Find right freq to be set now with powersave_bias on.
* Returns the freq_hi to be used right now and will set freq_hi_jiffies,
* freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
*/
static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
unsigned int freq_next,
unsigned int relation)
{
unsigned int freq_req, freq_reduc, freq_avg;
unsigned int freq_hi, freq_lo;
unsigned int index = 0;
unsigned int jiffies_total, jiffies_hi, jiffies_lo;
struct cpu_dbs_info_s *dbs_info = &per_cpu(hb_cpu_dbs_info,
policy->cpu);
if (!dbs_info->freq_table) {
dbs_info->freq_lo = 0;
dbs_info->freq_lo_jiffies = 0;
return freq_next;
}
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
relation, &index);
freq_req = dbs_info->freq_table[index].frequency;
freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
freq_avg = freq_req - freq_reduc;
/* Find freq bounds for freq_avg in freq_table */
index = 0;
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
CPUFREQ_RELATION_H, &index);
freq_lo = dbs_info->freq_table[index].frequency;
index = 0;
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
CPUFREQ_RELATION_L, &index);
freq_hi = dbs_info->freq_table[index].frequency;
/* Find out how long we have to be in hi and lo freqs */
if (freq_hi == freq_lo) {
dbs_info->freq_lo = 0;
dbs_info->freq_lo_jiffies = 0;
return freq_lo;
}
jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
jiffies_hi += ((freq_hi - freq_lo) / 2);
jiffies_hi /= (freq_hi - freq_lo);
jiffies_lo = jiffies_total - jiffies_hi;
dbs_info->freq_lo = freq_lo;
dbs_info->freq_lo_jiffies = jiffies_lo;
dbs_info->freq_hi_jiffies = jiffies_hi;
return freq_hi;
}
static void hybrid_powersave_bias_init_cpu(int cpu)
{
struct cpu_dbs_info_s *dbs_info = &per_cpu(hb_cpu_dbs_info, cpu);
dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
dbs_info->freq_lo = 0;
}
static void hybrid_powersave_bias_init(void)
{
int i;
for_each_online_cpu(i) {
hybrid_powersave_bias_init_cpu(i);
}
}
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_min(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", min_sampling_rate);
}
define_one_global_ro(sampling_rate_min);
/* cpufreq_hybrid Governor Tunables */
#define show_one_unsigned(file_name, object) \
static ssize_t show_##file_name \
(struct kobject *kobj, struct attribute *attr, char *buf) \
{ \
return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
}
#define show_one_signed(file_name, object) \
static ssize_t show_##file_name \
(struct kobject *kobj, struct attribute *attr, char *buf) \
{ \
return sprintf(buf, "%d\n", dbs_tuners_ins.object); \
}
show_one_unsigned(sampling_rate, sampling_rate);
show_one_unsigned(io_is_busy, io_is_busy);
show_one_unsigned(up_threshold, up_threshold);
show_one_unsigned(down_differential, down_differential);
show_one_unsigned(sampling_down_factor, sampling_down_factor);
show_one_unsigned(ignore_nice_load, ignore_nice);
show_one_unsigned(powersave_bias, powersave_bias);
show_one_unsigned(cpu_down_threshold, cpu_down_threshold);
show_one_signed(load_critical_grade, load_critical_grade);
show_one_signed(load_high_grade, load_high_grade);
show_one_signed(load_warning_grade, load_warning_grade);
show_one_signed(load_medium_grade, load_medium_grade);
show_one_signed(load_light_grade, load_light_grade);
show_one_unsigned(load_critical, load_critical);
show_one_unsigned(load_high, load_high);
show_one_unsigned(load_warning, load_warning);
show_one_unsigned(load_medium, load_medium);
show_one_unsigned(load_light, load_light);
show_one_unsigned(cpu_up_bound, cpu_up_bound);
show_one_unsigned(cpu_down_avg_times, cpu_down_avg_times);
/**
* update_sampling_rate - update sampling rate effective immediately if needed.
* @new_rate: new sampling rate
*
* If new rate is smaller than the old, simply updaing
* dbs_tuners_int.sampling_rate might not be appropriate. For example,
* if the original sampling_rate was 1 second and the requested new sampling
* rate is 10 ms because the user needs immediate reaction from hybrid
* governor, but not sure if higher frequency will be required or not,
* then, the governor may change the sampling rate too late; up to 1 second
* later. Thus, if we are reducing the sampling rate, we need to make the
* new value effective immediately.
*/
static void update_sampling_rate(unsigned int new_rate)
{
int cpu;
dbs_tuners_ins.sampling_rate = new_rate
= max(new_rate, min_sampling_rate);
for_each_online_cpu(cpu) {
struct cpufreq_policy *policy;
struct cpu_dbs_info_s *dbs_info;
unsigned long next_sampling, appointed_at;
policy = cpufreq_cpu_get(cpu);
if (!policy)
continue;
dbs_info = &per_cpu(hb_cpu_dbs_info, policy->cpu);
cpufreq_cpu_put(policy);
mutex_lock(&dbs_info->timer_mutex);
if (!delayed_work_pending(&dbs_info->work)) {
mutex_unlock(&dbs_info->timer_mutex);
continue;
}
next_sampling = jiffies + usecs_to_jiffies(new_rate);
appointed_at = dbs_info->work.timer.expires;
if (time_before(next_sampling, appointed_at)) {
mutex_unlock(&dbs_info->timer_mutex);
cancel_delayed_work_sync(&dbs_info->work);
mutex_lock(&dbs_info->timer_mutex);
schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work,
usecs_to_jiffies(new_rate));
}
mutex_unlock(&dbs_info->timer_mutex);
}
}
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
update_sampling_rate(input);
return count;
}
static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
dbs_tuners_ins.io_is_busy = !!input;
return count;
}
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
input < MIN_FREQUENCY_UP_THRESHOLD) {
return -EINVAL;
}
dbs_tuners_ins.up_threshold = input;
return count;
}
static ssize_t store_down_differential(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_FREQUENCY_DOWN_DIFFERENTIAL ||
input < MIN_FREQUENCY_DOWN_DIFFERENTIAL) {
return -EINVAL;
}
dbs_tuners_ins.down_differential = input;
return count;
}
static ssize_t store_sampling_down_factor(struct kobject *a,
struct attribute *b, const char *buf, size_t count)
{
unsigned int input, j;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
return -EINVAL;
dbs_tuners_ins.sampling_down_factor = input;
/* Reset down sampling multiplier in case it was active */
for_each_online_cpu(j) {
struct cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(hb_cpu_dbs_info, j);
dbs_info->rate_mult = 1;
}
return count;
}
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
unsigned int j;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1)
input = 1;
if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
return count;
}
dbs_tuners_ins.ignore_nice = input;
/* we need to re-evaluate prev_cpu_idle */
for_each_online_cpu(j) {
struct cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(hb_cpu_dbs_info, j);
dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
&dbs_info->prev_cpu_wall);
if (dbs_tuners_ins.ignore_nice)
dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
}
return count;
}
static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1000)
input = 1000;
dbs_tuners_ins.powersave_bias = input;
hybrid_powersave_bias_init();
return count;
}
static ssize_t store_cpu_down_threshold(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_DOWN_THRESHOLD ||
input < MIN_CPU_DOWN_THRESHOLD) {
return -EINVAL;
}
dbs_tuners_ins.cpu_down_threshold = input;
return count;
}
static ssize_t store_load_critical_grade(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
int input;
int ret;
ret = sscanf(buf, "%d", &input);
dbs_tuners_ins.load_critical_grade = input;
return count;
}
static ssize_t store_load_high_grade(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
int input;
int ret;
ret = sscanf(buf, "%d", &input);
dbs_tuners_ins.load_high_grade = input;
return count;
}
static ssize_t store_load_warning_grade(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
int input;
int ret;
ret = sscanf(buf, "%d", &input);
dbs_tuners_ins.load_warning_grade = input;
return count;
}
static ssize_t store_load_medium_grade(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
int input;
int ret;
ret = sscanf(buf, "%d", &input);
dbs_tuners_ins.load_medium_grade = input;
return count;
}
static ssize_t store_load_light_grade(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
int input;
int ret;
ret = sscanf(buf, "%d", &input);
dbs_tuners_ins.load_light_grade = input;
return count;
}
static ssize_t store_load_critical(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
dbs_tuners_ins.load_critical = input;
return count;
}
static ssize_t store_load_high(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
dbs_tuners_ins.load_high = input;
return count;
}
static ssize_t store_load_warning(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
dbs_tuners_ins.load_warning = input;
return count;
}
static ssize_t store_load_medium(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
dbs_tuners_ins.load_medium = input;
return count;
}
static ssize_t store_load_light(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
dbs_tuners_ins.load_light = input;
return count;
}
static ssize_t store_cpu_up_bound(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
dbs_tuners_ins.cpu_up_bound = input;
return count;
}
static ssize_t store_cpu_down_avg_times(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
dbs_tuners_ins.cpu_down_avg_times = input;
return count;
}
define_one_global_rw(sampling_rate);
define_one_global_rw(io_is_busy);
define_one_global_rw(up_threshold);
define_one_global_rw(down_differential);
define_one_global_rw(sampling_down_factor);
define_one_global_rw(ignore_nice_load);
define_one_global_rw(powersave_bias);
define_one_global_rw(cpu_down_threshold);
define_one_global_rw(load_critical_grade);
define_one_global_rw(load_high_grade);
define_one_global_rw(load_warning_grade);
define_one_global_rw(load_medium_grade);
define_one_global_rw(load_light_grade);
define_one_global_rw(load_critical);
define_one_global_rw(load_high);
define_one_global_rw(load_warning);
define_one_global_rw(load_medium);
define_one_global_rw(load_light);
define_one_global_rw(cpu_up_bound);
define_one_global_rw(cpu_down_avg_times);
static struct attribute *dbs_attributes[] = {
&sampling_rate_min.attr,
&sampling_rate.attr,
&up_threshold.attr,
&down_differential.attr,
&sampling_down_factor.attr,
&ignore_nice_load.attr,
&powersave_bias.attr,
&io_is_busy.attr,
&cpu_down_threshold.attr,
&load_critical_grade.attr,
&load_high_grade.attr,
&load_warning_grade.attr,
&load_medium_grade.attr,
&load_light_grade.attr,
&load_critical.attr,
&load_high.attr,
&load_warning.attr,
&load_medium.attr,
&load_light.attr,
&cpu_up_bound.attr,
&cpu_down_avg_times.attr,
NULL
};
static struct attribute_group dbs_attr_group = {
.attrs = dbs_attributes,
.name = "hybrid",
};
/************************** sysfs end ************************/
static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
{
if (dbs_tuners_ins.powersave_bias)
freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
else if (p->cur == p->max)
return;
__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
}
void disable_hotplug_policy(bool disable, int limit_cpu_num)
{
mutex_lock(&hp_mutex);
if (disable) {
g_disable_hotplug = true;
printk("cpufreq_hybrid: disable hotplug policy\n");
}
else {
g_disable_hotplug = false;
printk("cpufreq_hybrid: enable hotplug policy\n");
}
g_limit_cpu_num = limit_cpu_num;
mutex_unlock(&hp_mutex);
}
EXPORT_SYMBOL(disable_hotplug_policy);
#ifdef CONFIG_SMP
static int hb_check_grade(int load)
{
int grade = 0;
if (load >= dbs_tuners_ins.load_critical)
grade = dbs_tuners_ins.load_critical_grade;
else if (load >= dbs_tuners_ins.load_high)
grade = dbs_tuners_ins.load_high_grade;
else if (load >= dbs_tuners_ins.load_warning)
grade = dbs_tuners_ins.load_warning_grade;
else if (load >= dbs_tuners_ins.load_medium)
grade = dbs_tuners_ins.load_medium_grade;
else if (load >= dbs_tuners_ins.load_light)
grade = dbs_tuners_ins.load_light_grade;
else
grade = 0;
#ifdef DEBUG_LOG
printk("hb_check_grade: load = %d, grade = %d\n", load, grade);
#endif
return grade;
}
static void hp_work_handler(struct work_struct *work)
{
if (mutex_trylock(&hp_onoff_mutex))
{
if (g_next_hp_action)
{
printk("hp_work_handler: cpu_up kick off\n");
cpu_up(1);
printk("hp_work_handler: cpu_up completion\n");
}
else
{
printk("hp_work_handler: cpu_down kick off\n");
cpu_down(1);
printk("hp_work_handler: cpu_down completion\n");
}
mutex_unlock(&hp_onoff_mutex);
}
}
#endif
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
{
unsigned int max_load_freq;
unsigned int sum_load_freq;
struct cpufreq_policy *policy;
unsigned int j;
this_dbs_info->freq_lo = 0;
policy = this_dbs_info->cur_policy;
/*
* Every sampling_rate, we check, if current idle time is less
* than 20% (default), then we try to increase frequency
* Every sampling_rate, we look for a the lowest
* frequency which can sustain the load while keeping idle time over
* 30%. If such a frequency exist, we try to decrease to this frequency.
*
* Any frequency increase takes it to the maximum frequency.
* Frequency reduction happens at minimum steps of
* 5% (default) of current frequency
*/
/* Get Absolute Load - in terms of freq */
max_load_freq = 0;
sum_load_freq = 0;
g_sum_load = 0;
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info_s *j_dbs_info;
cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
unsigned int idle_time, wall_time, iowait_time;
unsigned int load, load_freq;
int freq_avg;
j_dbs_info = &per_cpu(hb_cpu_dbs_info, j);
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
wall_time = (unsigned int)
(cur_wall_time - j_dbs_info->prev_cpu_wall);
j_dbs_info->prev_cpu_wall = cur_wall_time;
idle_time = (unsigned int)
(cur_idle_time - j_dbs_info->prev_cpu_idle);
j_dbs_info->prev_cpu_idle = cur_idle_time;
iowait_time = (unsigned int)
(cur_iowait_time - j_dbs_info->prev_cpu_iowait);
j_dbs_info->prev_cpu_iowait = cur_iowait_time;
if (dbs_tuners_ins.ignore_nice) {
u64 cur_nice;
unsigned long cur_nice_jiffies;
cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
j_dbs_info->prev_cpu_nice;
/*
* Assumption: nice time between sampling periods will
* be less than 2^32 jiffies for 32 bit sys
*/
cur_nice_jiffies = (unsigned long)
cputime64_to_jiffies64(cur_nice);
j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
idle_time += jiffies_to_usecs(cur_nice_jiffies);
}
/*
* For the purpose of hybrid, waiting for disk IO is an
* indication that you're performance critical, and not that
* the system is actually idle. So subtract the iowait time
* from the cpu idle time.
*/
if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
idle_time -= iowait_time;
if (unlikely(!wall_time || wall_time < idle_time))
continue;
load = 100 * (wall_time - idle_time) / wall_time;
g_sum_load += load;
freq_avg = __cpufreq_driver_getavg(policy, j);
if (freq_avg <= 0)
freq_avg = policy->cur;
load_freq = load * freq_avg;
if (load_freq > max_load_freq)
max_load_freq = load_freq;
sum_load_freq += load_freq;
#ifdef DEBUG_LOG
printk("dbs_check_cpu: cpu = %d\n", j);
printk("dbs_check_cpu: wall_time = %d, idle_time = %d, load = %d\n", wall_time, idle_time, load);
printk("dbs_check_cpu: freq_avg = %d, max_load_freq = %d, sum_load_freq = %d\n", freq_avg, max_load_freq, sum_load_freq);
#endif
}
/* Check for frequency increase */
if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
/* If switching to max speed, apply sampling_down_factor */
if (policy->cur < policy->max)
this_dbs_info->rate_mult =
dbs_tuners_ins.sampling_down_factor;
dbs_freq_increase(policy, policy->max);
goto hp_check;
}
/* Check for frequency decrease */
/* if we cannot reduce the frequency anymore, break out early */
if (policy->cur == policy->min)
goto hp_check;
/*
* The optimal frequency is the frequency that is the lowest that
* can support the current CPU usage without triggering the up
* policy. To be safe, we focus 10 points under the threshold.
*/
if (max_load_freq <
(dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
policy->cur) {
unsigned int freq_next;
freq_next = max_load_freq /
(dbs_tuners_ins.up_threshold -
dbs_tuners_ins.down_differential);
/* No longer fully busy, reset rate_mult */
this_dbs_info->rate_mult = 1;
if (freq_next < policy->min)
freq_next = policy->min;
if (!dbs_tuners_ins.powersave_bias) {
__cpufreq_driver_target(policy, freq_next,
CPUFREQ_RELATION_L);
} else {
int freq = powersave_bias_target(policy, freq_next,
CPUFREQ_RELATION_L);
__cpufreq_driver_target(policy, freq,
CPUFREQ_RELATION_L);
}
}
hp_check:
#ifdef CONFIG_SMP
mutex_lock(&hp_mutex);
if (!g_disable_hotplug) {
/* Check if power up slave CPU */
if (num_online_cpus() == 1) {
g_cpu_up_sum_grade += hb_check_grade((sum_load_freq / policy->cur));
if (g_cpu_up_sum_grade < 0)
g_cpu_up_sum_grade = 0;
if (g_cpu_up_sum_grade >= dbs_tuners_ins.cpu_up_bound) {
#ifdef DEBUG_LOG
printk("dbs_check_cpu: g_cpu_up_sum_grade = %d, turn on CPU1\n", g_cpu_up_sum_grade);
#endif
if (num_online_cpus() < g_limit_cpu_num) {
printk("dbs_check_cpu: turn on CPU1\n");
g_next_hp_action = 1;
schedule_delayed_work_on(0, &hp_work, 0);
}
g_cpu_up_sum_grade = 0;
}
#ifdef DEBUG_LOG
printk("dbs_check_cpu: g_cpu_up_sum_grade = %d\n", g_cpu_up_sum_grade);
#endif
} else { /* Check if power down slave CPU */
if (num_online_cpus() > 1) {
g_cpu_down_count++;
g_cpu_down_sum_load_freq += ((sum_load_freq) / 100);
if (g_cpu_down_count == dbs_tuners_ins.cpu_down_avg_times) {
g_cpu_down_sum_load_freq /= dbs_tuners_ins.cpu_down_avg_times;
if (g_cpu_down_sum_load_freq <
((dbs_tuners_ins.cpu_down_threshold * policy->max) / 100)) {
#ifdef DEBUG_LOG
printk("dbs_check_cpu: g_cpu_down_sum_load_freq = %d, turn off CPU1\n", g_cpu_down_sum_load_freq);
#endif
dbs_freq_increase(policy, policy->max);
printk("dbs_check_cpu: turn off CPU1\n");
g_next_hp_action = 0;
schedule_delayed_work_on(0, &hp_work, 0);
}
g_cpu_down_count = 0;
g_cpu_down_sum_load_freq = 0;
}
#ifdef DEBUG_LOG
printk("dbs_check_cpu: g_cpu_down_count = %d, g_cpu_down_sum_load_freq = %d\n", g_cpu_down_count, g_cpu_down_sum_load_freq);
printk("dbs_check_cpu: cpu_down_freq = %d\n", dbs_tuners_ins.cpu_down_threshold * policy->max);
#endif
}
}
}
mutex_unlock(&hp_mutex);
#endif
return;
}
static void do_dbs_timer(struct work_struct *work)
{
struct cpu_dbs_info_s *dbs_info =
container_of(work, struct cpu_dbs_info_s, work.work);
unsigned int cpu = dbs_info->cpu;
int sample_type = dbs_info->sample_type;
int delay;
mutex_lock(&dbs_info->timer_mutex);
/* Common NORMAL_SAMPLE setup */
dbs_info->sample_type = DBS_NORMAL_SAMPLE;
if (!dbs_tuners_ins.powersave_bias ||
sample_type == DBS_NORMAL_SAMPLE) {
dbs_check_cpu(dbs_info);
if (dbs_info->freq_lo) {
/* Setup timer for SUB_SAMPLE */
dbs_info->sample_type = DBS_SUB_SAMPLE;
delay = dbs_info->freq_hi_jiffies;
} else {
/* We want all CPUs to do sampling nearly on
* same jiffy
*/
delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
* dbs_info->rate_mult);
if (num_online_cpus() > 1)
delay -= jiffies % delay;
}
} else {
__cpufreq_driver_target(dbs_info->cur_policy,
dbs_info->freq_lo, CPUFREQ_RELATION_H);
delay = dbs_info->freq_lo_jiffies;
}
schedule_delayed_work_on(cpu, &dbs_info->work, delay);
mutex_unlock(&dbs_info->timer_mutex);
}
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
{
/* We want all CPUs to do sampling nearly on same jiffy */
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
if (num_online_cpus() > 1)
delay -= jiffies % delay;
dbs_info->sample_type = DBS_NORMAL_SAMPLE;
INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
}
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
{
cancel_delayed_work_sync(&dbs_info->work);
}
/*
* Not all CPUs want IO time to be accounted as busy; this dependson how
* efficient idling at a higher frequency/voltage is.
* Pavel Machek says this is not so for various generations of AMD and old
* Intel systems.
* Mike Chan (androidlcom) calis this is also not true for ARM.
* Because of this, whitelist specific known (series) of CPUs by default, and
* leave all others up to the user.
*/
static int should_io_be_busy(void)
{
#if defined(CONFIG_X86)
/*
* For Intel, Core 2 (model 15) andl later have an efficient idle.
*/
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
boot_cpu_data.x86 == 6 &&
boot_cpu_data.x86_model >= 15)
return 1;
#endif
return 1; // io wait time should be subtracted from idle time
}
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event)
{
unsigned int cpu = policy->cpu;
struct cpu_dbs_info_s *this_dbs_info;
unsigned int j;
int rc;
this_dbs_info = &per_cpu(hb_cpu_dbs_info, cpu);
switch (event) {
case CPUFREQ_GOV_START:
if ((!cpu_online(cpu)) || (!policy->cur))
return -EINVAL;
mutex_lock(&dbs_mutex);
dbs_enable++;
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info_s *j_dbs_info;
j_dbs_info = &per_cpu(hb_cpu_dbs_info, j);
j_dbs_info->cur_policy = policy;
j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
&j_dbs_info->prev_cpu_wall);
if (dbs_tuners_ins.ignore_nice)
j_dbs_info->prev_cpu_nice =
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
}
this_dbs_info->cpu = cpu;
this_dbs_info->rate_mult = 1;
hybrid_powersave_bias_init_cpu(cpu);
/*
* Start the timerschedule work, when this governor
* is used for first time
*/
if (dbs_enable == 1) {
unsigned int latency;
rc = sysfs_create_group(cpufreq_global_kobject,
&dbs_attr_group);
if (rc) {
mutex_unlock(&dbs_mutex);
return rc;
}
/* policy latency is in nS. Convert it to uS first */
latency = policy->cpuinfo.transition_latency / 1000;
if (latency == 0)
latency = 1;
/* Bring kernel and HW constraints together */
min_sampling_rate = max(min_sampling_rate,
MIN_LATENCY_MULTIPLIER * latency);
dbs_tuners_ins.sampling_rate =
max(min_sampling_rate,
latency * LATENCY_MULTIPLIER);
dbs_tuners_ins.io_is_busy = should_io_be_busy();
#ifdef DEBUG_LOG
printk("cpufreq_governor_dbs: min_sampling_rate = %d\n", min_sampling_rate);
printk("cpufreq_governor_dbs: dbs_tuners_ins.sampling_rate = %d\n", dbs_tuners_ins.sampling_rate);
printk("cpufreq_governor_dbs: dbs_tuners_ins.io_is_busy = %d\n", dbs_tuners_ins.io_is_busy);
#endif
}
mutex_unlock(&dbs_mutex);
mutex_init(&this_dbs_info->timer_mutex);
dbs_timer_init(this_dbs_info);
break;
case CPUFREQ_GOV_STOP:
dbs_timer_exit(this_dbs_info);
mutex_lock(&dbs_mutex);
mutex_destroy(&this_dbs_info->timer_mutex);
dbs_enable--;
mutex_unlock(&dbs_mutex);
if (!dbs_enable)
sysfs_remove_group(cpufreq_global_kobject,
&dbs_attr_group);
break;
case CPUFREQ_GOV_LIMITS:
mutex_lock(&this_dbs_info->timer_mutex);
if (policy->max < this_dbs_info->cur_policy->cur)
__cpufreq_driver_target(this_dbs_info->cur_policy,
policy->max, CPUFREQ_RELATION_H);
else if (policy->min > this_dbs_info->cur_policy->cur)
__cpufreq_driver_target(this_dbs_info->cur_policy,
policy->min, CPUFREQ_RELATION_L);
mutex_unlock(&this_dbs_info->timer_mutex);
break;
}
return 0;
}
int cpufreq_gov_dbs_get_sum_load(void)
{
/* only for dual core turbo mode */
return g_sum_load;
}
static int __init cpufreq_gov_dbs_init(void)
{
u64 idle_time;
int cpu = get_cpu();
idle_time = get_cpu_idle_time_us(cpu, NULL);
put_cpu();
if (idle_time != -1ULL) {
/* Idle micro accounting is supported. Use finer thresholds */
dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
dbs_tuners_ins.down_differential =
MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
dbs_tuners_ins.cpu_down_threshold =
MICRO_CPU_DOWN_THRESHOLD;
/*
* In nohz/micro accounting case we set the minimum frequency
* not depending on HZ, but fixed (very low). The deferred
* timer might skip some samples if idle/sleeping as needed.
*/
min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
} else {
/* For correct statistics, we need 10 ticks for each measure */
min_sampling_rate =
MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
}
g_limit_cpu_num = g_available_cpu_num = num_possible_cpus();
#ifdef CONFIG_SMP
INIT_DELAYED_WORK_DEFERRABLE(&hp_work, hp_work_handler);
#endif
#ifdef DEBUG_LOG
printk("cpufreq_gov_dbs_init: min_sampling_rate = %d\n", min_sampling_rate);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.up_threshold = %d\n", dbs_tuners_ins.up_threshold);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.down_differential = %d\n", dbs_tuners_ins.down_differential);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_down_threshold = %d\n", dbs_tuners_ins.cpu_down_threshold);
printk("cpufreq_gov_dbs_init: g_available_cpu_num = %d\n", g_available_cpu_num);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.load_critical_grade = %d\n", dbs_tuners_ins.load_critical_grade);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.load_high_grade = %d\n", dbs_tuners_ins.load_high_grade);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.load_warning_grade = %d\n", dbs_tuners_ins.load_warning_grade);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.load_medium_grade = %d\n", dbs_tuners_ins.load_medium_grade);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.load_light_grade = %d\n", dbs_tuners_ins.load_light_grade);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.load_critical = %d\n", dbs_tuners_ins.load_critical);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.load_high = %d\n", dbs_tuners_ins.load_high);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.load_warning = %d\n", dbs_tuners_ins.load_warning);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.load_medium = %d\n", dbs_tuners_ins.load_medium);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.load_light = %d\n", dbs_tuners_ins.load_light);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_up_bound = %d\n", dbs_tuners_ins.cpu_up_bound);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_down_avg_times = %d\n", dbs_tuners_ins.cpu_down_avg_times);
#endif
return cpufreq_register_governor(&cpufreq_gov_hybrid);
}
static void __exit cpufreq_gov_dbs_exit(void)
{
#ifdef CONFIG_SMP
cancel_delayed_work_sync(&hp_work);
#endif
cpufreq_unregister_governor(&cpufreq_gov_hybrid);
}
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
MODULE_DESCRIPTION("'cpufreq_hybrid' - A dynamic cpufreq governor for "
"Low Latency Frequency Transition capable processors");
MODULE_LICENSE("GPL");
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_HYBRID
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);