blob: 845e5d3636de9908223ea5486733cd3cdc5f9706 [file] [log] [blame]
/*
* drivers/cpufreq/cpufreq_hotplug.c
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* Jun Nakajima <jun.nakajima@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/cpu.h>
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
#include <linux/mutex.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>
#include <linux/sched.h>
#include <linux/input.h>
#include <linux/slab.h>
/*
* dbs is used in this file as a shortform for demandbased switching
* It helps to keep variable names smaller, simpler
*/
#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
#define DEF_FREQUENCY_UP_THRESHOLD (80)
#define DEF_SAMPLING_DOWN_FACTOR (1)
#define MAX_SAMPLING_DOWN_FACTOR (100000)
#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (15)
#define MIN_FREQUENCY_DOWN_DIFFERENTIAL (5)
#define MAX_FREQUENCY_DOWN_DIFFERENTIAL (20)
#define MICRO_FREQUENCY_UP_THRESHOLD (85)
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (30000)
#define MIN_FREQUENCY_UP_THRESHOLD (21)
#define MAX_FREQUENCY_UP_THRESHOLD (100)
/*
* cpu hotplug - macro
*/
#define DEF_CPU_DOWN_DIFFERENTIAL (10)
#define MICRO_CPU_DOWN_DIFFERENTIAL (10)
#define MIN_CPU_DOWN_DIFFERENTIAL (0)
#define MAX_CPU_DOWN_DIFFERENTIAL (30)
#define DEF_CPU_UP_THRESHOLD (90)
#define MICRO_CPU_UP_THRESHOLD (90)
#define MIN_CPU_UP_THRESHOLD (50)
#define MAX_CPU_UP_THRESHOLD (100)
#define DEF_CPU_UP_AVG_TIMES (10)
#define MIN_CPU_UP_AVG_TIMES (1)
#define MAX_CPU_UP_AVG_TIMES (20)
#define DEF_CPU_DOWN_AVG_TIMES (100)
#define MIN_CPU_DOWN_AVG_TIMES (20)
#define MAX_CPU_DOWN_AVG_TIMES (200)
#define DEF_CPU_INPUT_BOOST_ENABLE (1)
#define DEF_CPU_INPUT_BOOST_NUM (2)
#define DEF_CPU_RUSH_BOOST_ENABLE (1)
#define DEF_CPU_RUSH_THRESHOLD (98)
#define MICRO_CPU_RUSH_THRESHOLD (98)
#define MIN_CPU_RUSH_THRESHOLD (80)
#define MAX_CPU_RUSH_THRESHOLD (100)
#define DEF_CPU_RUSH_AVG_TIMES (5)
#define MIN_CPU_RUSH_AVG_TIMES (1)
#define MAX_CPU_RUSH_AVG_TIMES (10)
#define DEF_CPU_RUSH_TLP_TIMES (5)
#define MIN_CPU_RUSH_TLP_TIMES (1)
#define MAX_CPU_RUSH_TLP_TIMES (10)
/*
* cpu hotplug - enum
*/
typedef enum {
CPU_HOTPLUG_WORK_TYPE_NONE = 0,
CPU_HOTPLUG_WORK_TYPE_BASE,
CPU_HOTPLUG_WORK_TYPE_LIMIT,
CPU_HOTPLUG_WORK_TYPE_UP,
CPU_HOTPLUG_WORK_TYPE_DOWN,
CPU_HOTPLUG_WORK_TYPE_RUSH,
} cpu_hotplug_work_type_t;
//#define DEBUG_LOG
/*
* The polling frequency of this governor depends on the capability of
* the processor. Default polling frequency is 1000 times the transition
* latency of the processor. The governor will work on any processor with
* transition latency <= 10mS, using appropriate sampling
* rate.
* For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
* this governor will not work.
* All times here are in uS.
*/
#define MIN_SAMPLING_RATE_RATIO (2)
static unsigned int min_sampling_rate;
#define LATENCY_MULTIPLIER (1000)
#define MIN_LATENCY_MULTIPLIER (100)
#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
static void do_dbs_timer(struct work_struct *work);
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event);
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_HOTPLUG
static
#endif
struct cpufreq_governor cpufreq_gov_hotplug = {
.name = "hotplug",
.governor = cpufreq_governor_dbs,
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
.owner = THIS_MODULE,
};
/*
* cpu hotplug - global variable, function declaration & definition
*/
int g_cpus_sum_load_current = 0; //set global for information purpose
#ifdef CONFIG_HOTPLUG_CPU
long g_cpu_up_sum_load = 0;
int g_cpu_up_count = 0;
int g_cpu_up_load_index = 0;
long g_cpu_up_load_history[MAX_CPU_UP_AVG_TIMES] = {0};
long g_cpu_down_sum_load = 0;
int g_cpu_down_count = 0;
int g_cpu_down_load_index = 0;
long g_cpu_down_load_history[MAX_CPU_DOWN_AVG_TIMES] = {0};
cpu_hotplug_work_type_t g_trigger_hp_work = 0;
unsigned int g_next_hp_action = 0;
struct delayed_work hp_work;
int g_tlp_avg_current = 0; //set global for information purpose
int g_tlp_avg_sum = 0;
int g_tlp_avg_count = 0;
int g_tlp_avg_index = 0;
int g_tlp_avg_average = 0; //set global for information purpose
int g_tlp_avg_history[MAX_CPU_RUSH_TLP_TIMES] = {0};
int g_tlp_iowait_av = 0;
int g_cpu_rush_count = 0;
static void hp_reset_strategy_nolock(void);
static void hp_reset_strategy(void);
#else //#ifdef CONFIG_HOTPLUG_CPU
static void hp_reset_strategy_nolock(void) {};
#endif
/*
* dvfs - function declaration
*/
static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq);
#if defined(CONFIG_THERMAL_LIMIT_TEST)
extern unsigned int mt_cpufreq_thermal_test_limited_load(void);
#endif
/* Sampling types */
enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
struct cpu_dbs_info_s {
cputime64_t prev_cpu_idle;
cputime64_t prev_cpu_iowait;
cputime64_t prev_cpu_wall;
cputime64_t prev_cpu_nice;
struct cpufreq_policy *cur_policy;
struct delayed_work work;
struct cpufreq_frequency_table *freq_table;
unsigned int freq_lo;
unsigned int freq_lo_jiffies;
unsigned int freq_hi_jiffies;
unsigned int rate_mult;
int cpu;
unsigned int sample_type:1;
/*
* percpu mutex that serializes governor limit change with
* do_dbs_timer invocation. We do not want do_dbs_timer to run
* when user is changing the governor or limits.
*/
struct mutex timer_mutex;
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, hp_cpu_dbs_info);
static unsigned int dbs_enable; /* number of CPUs using this policy */
static unsigned int dbs_ignore = 1;
static unsigned int dbs_thermal_limited = 0;
static unsigned int dbs_thermal_limited_freq = 0;
/*
* dbs_mutex protects dbs_enable in governor start/stop.
*/
static DEFINE_MUTEX(dbs_mutex);
/*
* dbs_hotplug protects all hotplug related global variables
*/
static DEFINE_MUTEX(hp_mutex);
DEFINE_MUTEX(hp_onoff_mutex);
static struct dbs_tuners {
unsigned int sampling_rate;
unsigned int up_threshold;
unsigned int down_differential;
unsigned int ignore_nice;
unsigned int sampling_down_factor;
unsigned int powersave_bias;
unsigned int io_is_busy;
unsigned int cpu_up_threshold;
unsigned int cpu_down_differential;
unsigned int cpu_up_avg_times;
unsigned int cpu_down_avg_times;
unsigned int cpu_num_limit;
unsigned int cpu_num_base;
unsigned int is_cpu_hotplug_disable;
unsigned int cpu_input_boost_enable;
unsigned int cpu_input_boost_num;
unsigned int cpu_rush_boost_enable;
unsigned int cpu_rush_boost_num;
unsigned int cpu_rush_threshold;
unsigned int cpu_rush_tlp_times;
unsigned int cpu_rush_avg_times;
} dbs_tuners_ins = {
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
.ignore_nice = 0,
.powersave_bias = 0,
.cpu_up_threshold = DEF_CPU_UP_THRESHOLD,
.cpu_down_differential = DEF_CPU_DOWN_DIFFERENTIAL,
.cpu_up_avg_times = DEF_CPU_UP_AVG_TIMES,
.cpu_down_avg_times = DEF_CPU_DOWN_AVG_TIMES,
.cpu_num_limit = 1,
.cpu_num_base = 1,
.is_cpu_hotplug_disable = 1,
.cpu_input_boost_enable = DEF_CPU_INPUT_BOOST_ENABLE,
.cpu_input_boost_num = DEF_CPU_INPUT_BOOST_NUM,
.cpu_rush_boost_enable = DEF_CPU_RUSH_BOOST_ENABLE,
.cpu_rush_boost_num = NR_CPUS,
.cpu_rush_threshold = DEF_CPU_RUSH_THRESHOLD,
.cpu_rush_tlp_times = DEF_CPU_RUSH_TLP_TIMES,
.cpu_rush_avg_times = DEF_CPU_RUSH_AVG_TIMES,
};
/* dvfs thermal limit */
void dbs_freq_thermal_limited(unsigned int limited, unsigned int freq)
{
dbs_thermal_limited = limited;
dbs_thermal_limited_freq = freq;
}
EXPORT_SYMBOL(dbs_freq_thermal_limited);
static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
{
u64 idle_time;
u64 cur_wall_time;
u64 busy_time;
cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
idle_time = cur_wall_time - busy_time;
if (wall)
*wall = jiffies_to_usecs(cur_wall_time);
return jiffies_to_usecs(idle_time);
}
static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
if (idle_time == -1ULL)
return get_cpu_idle_time_jiffy(cpu, wall);
else
idle_time += get_cpu_iowait_time_us(cpu, wall);
return idle_time;
}
static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
{
u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
if (iowait_time == -1ULL)
return 0;
return iowait_time;
}
/*
* Find right freq to be set now with powersave_bias on.
* Returns the freq_hi to be used right now and will set freq_hi_jiffies,
* freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
*/
static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
unsigned int freq_next,
unsigned int relation)
{
unsigned int freq_req, freq_reduc, freq_avg;
unsigned int freq_hi, freq_lo;
unsigned int index = 0;
unsigned int jiffies_total, jiffies_hi, jiffies_lo;
struct cpu_dbs_info_s *dbs_info = &per_cpu(hp_cpu_dbs_info,
policy->cpu);
if (!dbs_info->freq_table) {
dbs_info->freq_lo = 0;
dbs_info->freq_lo_jiffies = 0;
return freq_next;
}
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
relation, &index);
freq_req = dbs_info->freq_table[index].frequency;
freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
freq_avg = freq_req - freq_reduc;
/* Find freq bounds for freq_avg in freq_table */
index = 0;
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
CPUFREQ_RELATION_H, &index);
freq_lo = dbs_info->freq_table[index].frequency;
index = 0;
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
CPUFREQ_RELATION_L, &index);
freq_hi = dbs_info->freq_table[index].frequency;
/* Find out how long we have to be in hi and lo freqs */
if (freq_hi == freq_lo) {
dbs_info->freq_lo = 0;
dbs_info->freq_lo_jiffies = 0;
return freq_lo;
}
jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
jiffies_hi += ((freq_hi - freq_lo) / 2);
jiffies_hi /= (freq_hi - freq_lo);
jiffies_lo = jiffies_total - jiffies_hi;
dbs_info->freq_lo = freq_lo;
dbs_info->freq_lo_jiffies = jiffies_lo;
dbs_info->freq_hi_jiffies = jiffies_hi;
return freq_hi;
}
static void hotplug_powersave_bias_init_cpu(int cpu)
{
struct cpu_dbs_info_s *dbs_info = &per_cpu(hp_cpu_dbs_info, cpu);
dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
dbs_info->freq_lo = 0;
}
static void hotplug_powersave_bias_init(void)
{
int i;
for_each_online_cpu(i) {
hotplug_powersave_bias_init_cpu(i);
}
}
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_min(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", min_sampling_rate);
}
define_one_global_ro(sampling_rate_min);
/* cpufreq_hotplug Governor Tunables */
#define show_one(file_name, object) \
static ssize_t show_##file_name \
(struct kobject *kobj, struct attribute *attr, char *buf) \
{ \
return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
}
show_one(sampling_rate, sampling_rate);
show_one(io_is_busy, io_is_busy);
show_one(up_threshold, up_threshold);
show_one(down_differential, down_differential);
show_one(sampling_down_factor, sampling_down_factor);
show_one(ignore_nice_load, ignore_nice);
show_one(powersave_bias, powersave_bias);
show_one(cpu_up_threshold, cpu_up_threshold);
show_one(cpu_down_differential, cpu_down_differential);
show_one(cpu_up_avg_times, cpu_up_avg_times);
show_one(cpu_down_avg_times, cpu_down_avg_times);
show_one(cpu_num_limit, cpu_num_limit);
show_one(cpu_num_base, cpu_num_base);
show_one(is_cpu_hotplug_disable, is_cpu_hotplug_disable);
show_one(cpu_input_boost_enable, cpu_input_boost_enable);
show_one(cpu_input_boost_num, cpu_input_boost_num);
show_one(cpu_rush_boost_enable, cpu_rush_boost_enable);
show_one(cpu_rush_boost_num, cpu_rush_boost_num);
show_one(cpu_rush_threshold, cpu_rush_threshold);
show_one(cpu_rush_tlp_times, cpu_rush_tlp_times);
show_one(cpu_rush_avg_times, cpu_rush_avg_times);
/**
* update_sampling_rate - update sampling rate effective immediately if needed.
* @new_rate: new sampling rate
*
* If new rate is smaller than the old, simply updaing
* dbs_tuners_int.sampling_rate might not be appropriate. For example,
* if the original sampling_rate was 1 second and the requested new sampling
* rate is 10 ms because the user needs immediate reaction from hotplug
* governor, but not sure if higher frequency will be required or not,
* then, the governor may change the sampling rate too late; up to 1 second
* later. Thus, if we are reducing the sampling rate, we need to make the
* new value effective immediately.
*/
static void update_sampling_rate(unsigned int new_rate)
{
int cpu;
dbs_tuners_ins.sampling_rate = new_rate
= max(new_rate, min_sampling_rate);
for_each_online_cpu(cpu) {
struct cpufreq_policy *policy;
struct cpu_dbs_info_s *dbs_info;
unsigned long next_sampling, appointed_at;
policy = cpufreq_cpu_get(cpu);
if (!policy)
continue;
dbs_info = &per_cpu(hp_cpu_dbs_info, policy->cpu);
cpufreq_cpu_put(policy);
mutex_lock(&dbs_info->timer_mutex);
if (!delayed_work_pending(&dbs_info->work)) {
mutex_unlock(&dbs_info->timer_mutex);
continue;
}
next_sampling = jiffies + usecs_to_jiffies(new_rate);
appointed_at = dbs_info->work.timer.expires;
if (time_before(next_sampling, appointed_at)) {
mutex_unlock(&dbs_info->timer_mutex);
cancel_delayed_work_sync(&dbs_info->work);
mutex_lock(&dbs_info->timer_mutex);
schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work,
usecs_to_jiffies(new_rate));
}
mutex_unlock(&dbs_info->timer_mutex);
}
}
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
update_sampling_rate(input);
return count;
}
static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
dbs_tuners_ins.io_is_busy = !!input;
return count;
}
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
input < MIN_FREQUENCY_UP_THRESHOLD) {
return -EINVAL;
}
dbs_tuners_ins.up_threshold = input;
return count;
}
static ssize_t store_down_differential(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_FREQUENCY_DOWN_DIFFERENTIAL ||
input < MIN_FREQUENCY_DOWN_DIFFERENTIAL) {
return -EINVAL;
}
dbs_tuners_ins.down_differential = input;
return count;
}
static ssize_t store_sampling_down_factor(struct kobject *a,
struct attribute *b, const char *buf, size_t count)
{
unsigned int input, j;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
return -EINVAL;
dbs_tuners_ins.sampling_down_factor = input;
/* Reset down sampling multiplier in case it was active */
for_each_online_cpu(j) {
struct cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(hp_cpu_dbs_info, j);
dbs_info->rate_mult = 1;
}
return count;
}
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
unsigned int j;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1)
input = 1;
if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
return count;
}
dbs_tuners_ins.ignore_nice = input;
/* we need to re-evaluate prev_cpu_idle */
for_each_online_cpu(j) {
struct cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(hp_cpu_dbs_info, j);
dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
&dbs_info->prev_cpu_wall);
if (dbs_tuners_ins.ignore_nice)
dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
}
return count;
}
static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1000)
input = 1000;
dbs_tuners_ins.powersave_bias = input;
hotplug_powersave_bias_init();
return count;
}
/*
* cpu hotplug - store_xxx function definition
*/
static ssize_t store_cpu_up_threshold(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_UP_THRESHOLD ||
input < MIN_CPU_UP_THRESHOLD) {
return -EINVAL;
}
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_up_threshold = input;
hp_reset_strategy_nolock();
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_down_differential(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_DOWN_DIFFERENTIAL ||
input < MIN_CPU_DOWN_DIFFERENTIAL) {
return -EINVAL;
}
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_down_differential = input;
hp_reset_strategy_nolock();
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_up_avg_times(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_UP_AVG_TIMES ||
input < MIN_CPU_UP_AVG_TIMES) {
return -EINVAL;
}
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_up_avg_times = input;
hp_reset_strategy_nolock();
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_down_avg_times(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_DOWN_AVG_TIMES ||
input < MIN_CPU_DOWN_AVG_TIMES) {
return -EINVAL;
}
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_down_avg_times = input;
hp_reset_strategy_nolock();
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_num_limit(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > num_possible_cpus() ||
input < 1) {
return -EINVAL;
}
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_num_limit = input;
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_num_base(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
unsigned int online_cpus_count;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > num_possible_cpus() ||
input < 1) {
return -EINVAL;
}
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_num_base = input;
online_cpus_count = num_online_cpus();
#ifdef CONFIG_HOTPLUG_CPU
if (online_cpus_count < input && online_cpus_count < dbs_tuners_ins.cpu_num_limit)
{
struct cpu_dbs_info_s *this_dbs_info;
struct cpufreq_policy *policy;
this_dbs_info = &per_cpu(hp_cpu_dbs_info, 0);
policy = this_dbs_info->cur_policy;
dbs_freq_increase(policy, policy->max);
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_BASE;
schedule_delayed_work_on(0, &hp_work, 0);
}
#endif
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_is_cpu_hotplug_disable(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > 1 ||
input < 0) {
return -EINVAL;
}
mutex_lock(&hp_mutex);
if (dbs_tuners_ins.is_cpu_hotplug_disable && !input)
hp_reset_strategy_nolock();
dbs_tuners_ins.is_cpu_hotplug_disable = input;
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_input_boost_enable(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > 1 ||
input < 0) {
return -EINVAL;
}
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_input_boost_enable = input;
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_input_boost_num(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > num_possible_cpus() ||
input < 2) {
return -EINVAL;
}
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_input_boost_num = input;
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_rush_boost_enable(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > 1 ||
input < 0) {
return -EINVAL;
}
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_rush_boost_enable = input;
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_rush_boost_num(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > num_possible_cpus() ||
input < 2) {
return -EINVAL;
}
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_rush_boost_num = input;
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_rush_threshold(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_RUSH_THRESHOLD ||
input < MIN_CPU_RUSH_THRESHOLD) {
return -EINVAL;
}
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_rush_threshold = input;
//hp_reset_strategy_nolock(); //no need
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_rush_tlp_times(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_RUSH_TLP_TIMES ||
input < MIN_CPU_RUSH_TLP_TIMES) {
return -EINVAL;
}
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_rush_tlp_times = input;
hp_reset_strategy_nolock();
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_rush_avg_times(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_RUSH_AVG_TIMES ||
input < MIN_CPU_RUSH_AVG_TIMES) {
return -EINVAL;
}
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_rush_avg_times = input;
hp_reset_strategy_nolock();
mutex_unlock(&hp_mutex);
return count;
}
define_one_global_rw(sampling_rate);
define_one_global_rw(io_is_busy);
define_one_global_rw(up_threshold);
define_one_global_rw(down_differential);
define_one_global_rw(sampling_down_factor);
define_one_global_rw(ignore_nice_load);
define_one_global_rw(powersave_bias);
define_one_global_rw(cpu_up_threshold);
define_one_global_rw(cpu_down_differential);
define_one_global_rw(cpu_up_avg_times);
define_one_global_rw(cpu_down_avg_times);
define_one_global_rw(cpu_num_limit);
define_one_global_rw(cpu_num_base);
define_one_global_rw(is_cpu_hotplug_disable);
define_one_global_rw(cpu_input_boost_enable);
define_one_global_rw(cpu_input_boost_num);
define_one_global_rw(cpu_rush_boost_enable);
define_one_global_rw(cpu_rush_boost_num);
define_one_global_rw(cpu_rush_threshold);
define_one_global_rw(cpu_rush_tlp_times);
define_one_global_rw(cpu_rush_avg_times);
static struct attribute *dbs_attributes[] = {
&sampling_rate_min.attr,
&sampling_rate.attr,
&up_threshold.attr,
&down_differential.attr,
&sampling_down_factor.attr,
&ignore_nice_load.attr,
&powersave_bias.attr,
&io_is_busy.attr,
&cpu_up_threshold.attr,
&cpu_down_differential.attr,
&cpu_up_avg_times.attr,
&cpu_down_avg_times.attr,
&cpu_num_limit.attr,
&cpu_num_base.attr,
&is_cpu_hotplug_disable.attr,
&cpu_input_boost_enable.attr,
&cpu_input_boost_num.attr,
&cpu_rush_boost_enable.attr,
&cpu_rush_boost_num.attr,
&cpu_rush_threshold.attr,
&cpu_rush_tlp_times.attr,
&cpu_rush_avg_times.attr,
NULL
};
static struct attribute_group dbs_attr_group = {
.attrs = dbs_attributes,
.name = "hotplug",
};
/************************** sysfs end ************************/
static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
{
if (dbs_tuners_ins.powersave_bias)
freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
else if (p->cur == p->max)
{
if (dbs_ignore == 0)
{
if((dbs_thermal_limited == 1) && (freq > dbs_thermal_limited_freq))
{
freq = dbs_thermal_limited_freq;
printk("[dbs_freq_increase] thermal limit freq = %d\n", freq);
}
dbs_ignore = 1;
}
else
return;
}
__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
}
int hp_get_dynamic_cpu_hotplug_enable(void)
{
return !(dbs_tuners_ins.is_cpu_hotplug_disable);
}
EXPORT_SYMBOL(hp_get_dynamic_cpu_hotplug_enable);
void hp_set_dynamic_cpu_hotplug_enable(int enable)
{
if (enable > 1 || enable < 0)
return;
mutex_lock(&hp_mutex);
if (dbs_tuners_ins.is_cpu_hotplug_disable && enable)
hp_reset_strategy_nolock();
dbs_tuners_ins.is_cpu_hotplug_disable = !enable;
mutex_unlock(&hp_mutex);
}
EXPORT_SYMBOL(hp_set_dynamic_cpu_hotplug_enable);
void hp_limited_cpu_num(int num)
{
if (num > num_possible_cpus() || num < 1)
return;
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_num_limit = num;
mutex_unlock(&hp_mutex);
}
EXPORT_SYMBOL(hp_limited_cpu_num);
void hp_based_cpu_num(int num)
{
unsigned int online_cpus_count;
if (num > num_possible_cpus() || num < 1)
return;
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_num_base = num;
online_cpus_count = num_online_cpus();
#ifdef CONFIG_HOTPLUG_CPU
if (online_cpus_count < num && online_cpus_count < dbs_tuners_ins.cpu_num_limit)
{
struct cpu_dbs_info_s *this_dbs_info;
struct cpufreq_policy *policy;
this_dbs_info = &per_cpu(hp_cpu_dbs_info, 0);
policy = this_dbs_info->cur_policy;
dbs_freq_increase(policy, policy->max);
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_BASE;
schedule_delayed_work_on(0, &hp_work, 0);
}
#endif
mutex_unlock(&hp_mutex);
}
EXPORT_SYMBOL(hp_based_cpu_num);
int hp_get_cpu_rush_boost_enable(void)
{
return dbs_tuners_ins.cpu_rush_boost_enable;
}
EXPORT_SYMBOL(hp_get_cpu_rush_boost_enable);
void hp_set_cpu_rush_boost_enable(int enable)
{
if (enable > 1 || enable < 0)
return;
mutex_lock(&hp_mutex);
dbs_tuners_ins.cpu_rush_boost_enable = enable;
mutex_unlock(&hp_mutex);
}
EXPORT_SYMBOL(hp_set_cpu_rush_boost_enable);
#ifdef CONFIG_HOTPLUG_CPU
#ifdef CONFIG_MTK_SCHED_RQAVG_KS
extern void sched_get_nr_running_avg(int *avg, int *iowait_avg);
#else //#ifdef CONFIG_MTK_SCHED_RQAVG_KS
static void sched_get_nr_running_avg(int *avg, int *iowait_avg)
{
//*avg = num_possible_cpus() * 100;
*avg = 1 * 100;
}
#endif //#ifdef CONFIG_MTK_SCHED_RQAVG_KS
static void hp_reset_strategy_nolock(void)
{
g_cpu_up_count = 0;
g_cpu_up_sum_load = 0;
g_cpu_up_load_index = 0;
g_cpu_up_load_history[dbs_tuners_ins.cpu_up_avg_times - 1] = 0;
//memset(g_cpu_up_load_history, 0, sizeof(long) * MAX_CPU_UP_AVG_TIMES);
g_cpu_down_count = 0;
g_cpu_down_sum_load = 0;
g_cpu_down_load_index = 0;
g_cpu_down_load_history[dbs_tuners_ins.cpu_down_avg_times - 1] = 0;
//memset(g_cpu_down_load_history, 0, sizeof(long) * MAX_CPU_DOWN_AVG_TIMES);
g_tlp_avg_sum = 0;
g_tlp_avg_count = 0;
g_tlp_avg_index = 0;
g_tlp_avg_history[dbs_tuners_ins.cpu_rush_tlp_times - 1] = 0;
g_cpu_rush_count = 0;
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_NONE;
}
static void hp_reset_strategy(void)
{
mutex_lock(&hp_mutex);
hp_reset_strategy_nolock();
mutex_unlock(&hp_mutex);
}
static void hp_work_handler(struct work_struct *work)
{
if (mutex_trylock(&hp_onoff_mutex))
{
if (!dbs_tuners_ins.is_cpu_hotplug_disable)
{
unsigned int online_cpus_count = num_online_cpus();
unsigned int i;
printk("[power/hotplug] hp_work_handler(%d)(%d)(%d)(%d)(%ld)(%ld)(%d)(%d) begin\n", g_trigger_hp_work, g_tlp_avg_average, g_tlp_avg_current,
g_cpus_sum_load_current, g_cpu_up_sum_load, g_cpu_down_sum_load,
dbs_tuners_ins.cpu_num_base, dbs_tuners_ins.cpu_num_limit);
switch (g_trigger_hp_work)
{
case CPU_HOTPLUG_WORK_TYPE_RUSH:
for (i = online_cpus_count; i < min(g_next_hp_action, dbs_tuners_ins.cpu_num_limit); ++i)
cpu_up(i);
break;
case CPU_HOTPLUG_WORK_TYPE_BASE:
for (i = online_cpus_count; i < min(dbs_tuners_ins.cpu_num_base, dbs_tuners_ins.cpu_num_limit); ++i)
cpu_up(i);
break;
case CPU_HOTPLUG_WORK_TYPE_LIMIT:
for (i = online_cpus_count - 1; i >= dbs_tuners_ins.cpu_num_limit; --i)
cpu_down(i);
break;
case CPU_HOTPLUG_WORK_TYPE_UP:
for (i = online_cpus_count; i < g_next_hp_action; ++i)
cpu_up(i);
break;
case CPU_HOTPLUG_WORK_TYPE_DOWN:
for (i = online_cpus_count - 1; i >= g_next_hp_action; --i)
cpu_down(i);
break;
default:
for (i = online_cpus_count; i < min(dbs_tuners_ins.cpu_input_boost_num, dbs_tuners_ins.cpu_num_limit); ++i)
cpu_up(i);
//printk("[power/hotplug] cpu input boost\n");
break;
}
hp_reset_strategy();
dbs_ignore = 0; // force trigger frequency scaling
printk("[power/hotplug] hp_work_handler end\n");
/*
if (g_next_hp_action) // turn on CPU
{
if (online_cpus_count < num_possible_cpus())
{
printk("hp_work_handler: cpu_up(%d) kick off\n", online_cpus_count);
cpu_up(online_cpus_count);
hp_reset_strategy();
printk("hp_work_handler: cpu_up(%d) completion\n", online_cpus_count);
dbs_ignore = 0; // force trigger frequency scaling
}
}
else // turn off CPU
{
if (online_cpus_count > 1)
{
printk("hp_work_handler: cpu_down(%d) kick off\n", (online_cpus_count - 1));
cpu_down((online_cpus_count - 1));
hp_reset_strategy();
printk("hp_work_handler: cpu_down(%d) completion\n", (online_cpus_count - 1));
dbs_ignore = 0; // force trigger frequency scaling
}
}
*/
}
mutex_unlock(&hp_onoff_mutex);
}
}
#endif
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
{
unsigned int max_load_freq;
struct cpufreq_policy *policy;
unsigned int j;
#ifdef CONFIG_HOTPLUG_CPU
long cpus_sum_load_last_up = 0;
long cpus_sum_load_last_down = 0;
unsigned int online_cpus_count;
int v_tlp_avg_last = 0;
#endif
this_dbs_info->freq_lo = 0;
policy = this_dbs_info->cur_policy;
/*
* Every sampling_rate, we check, if current idle time is less
* than 20% (default), then we try to increase frequency
* Every sampling_rate, we look for a the lowest
* frequency which can sustain the load while keeping idle time over
* 30%. If such a frequency exist, we try to decrease to this frequency.
*
* Any frequency increase takes it to the maximum frequency.
* Frequency reduction happens at minimum steps of
* 5% (default) of current frequency
*/
/* Get Absolute Load - in terms of freq */
max_load_freq = 0;
g_cpus_sum_load_current = 0;
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info_s *j_dbs_info;
cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
unsigned int idle_time, wall_time, iowait_time;
unsigned int load, load_freq;
int freq_avg;
j_dbs_info = &per_cpu(hp_cpu_dbs_info, j);
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
wall_time = (unsigned int)
(cur_wall_time - j_dbs_info->prev_cpu_wall);
j_dbs_info->prev_cpu_wall = cur_wall_time;
idle_time = (unsigned int)
(cur_idle_time - j_dbs_info->prev_cpu_idle);
j_dbs_info->prev_cpu_idle = cur_idle_time;
iowait_time = (unsigned int)
(cur_iowait_time - j_dbs_info->prev_cpu_iowait);
j_dbs_info->prev_cpu_iowait = cur_iowait_time;
if (dbs_tuners_ins.ignore_nice) {
u64 cur_nice;
unsigned long cur_nice_jiffies;
cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
j_dbs_info->prev_cpu_nice;
/*
* Assumption: nice time between sampling periods will
* be less than 2^32 jiffies for 32 bit sys
*/
cur_nice_jiffies = (unsigned long)
cputime64_to_jiffies64(cur_nice);
j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
idle_time += jiffies_to_usecs(cur_nice_jiffies);
}
/*
* For the purpose of hotplug, waiting for disk IO is an
* indication that you're performance critical, and not that
* the system is actually idle. So subtract the iowait time
* from the cpu idle time.
*/
if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
idle_time -= iowait_time;
if (unlikely(!wall_time || wall_time < idle_time))
continue;
load = 100 * (wall_time - idle_time) / wall_time;
#if defined(CONFIG_THERMAL_LIMIT_TEST)
if(mt_cpufreq_thermal_test_limited_load() > 0)
load = mt_cpufreq_thermal_test_limited_load();
#endif
g_cpus_sum_load_current += load;
freq_avg = __cpufreq_driver_getavg(policy, j);
if (freq_avg <= 0)
freq_avg = policy->cur;
load_freq = load * freq_avg;
if (load_freq > max_load_freq)
max_load_freq = load_freq;
#ifdef DEBUG_LOG
printk("dbs_check_cpu: cpu = %d\n", j);
printk("dbs_check_cpu: wall_time = %d, idle_time = %d, load = %d\n", wall_time, idle_time, load);
printk("dbs_check_cpu: freq_avg = %d, max_load_freq = %d, g_cpus_sum_load_current = %d\n", freq_avg, max_load_freq, g_cpus_sum_load_current);
#endif
}
/* Check for frequency increase */
if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
/* If switching to max speed, apply sampling_down_factor */
if (policy->cur < policy->max)
this_dbs_info->rate_mult =
dbs_tuners_ins.sampling_down_factor;
dbs_freq_increase(policy, policy->max);
goto hp_check;
}
/* Check for frequency decrease */
/* if we cannot reduce the frequency anymore, break out early */
if (policy->cur == policy->min)
goto hp_check;
/*
* The optimal frequency is the frequency that is the lowest that
* can support the current CPU usage without triggering the up
* policy. To be safe, we focus 10 points under the threshold.
*/
if (max_load_freq <
(dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
policy->cur) {
unsigned int freq_next;
freq_next = max_load_freq /
(dbs_tuners_ins.up_threshold -
dbs_tuners_ins.down_differential);
/* No longer fully busy, reset rate_mult */
this_dbs_info->rate_mult = 1;
if (freq_next < policy->min)
freq_next = policy->min;
if (!dbs_tuners_ins.powersave_bias) {
__cpufreq_driver_target(policy, freq_next,
CPUFREQ_RELATION_L);
} else {
int freq = powersave_bias_target(policy, freq_next,
CPUFREQ_RELATION_L);
__cpufreq_driver_target(policy, freq,
CPUFREQ_RELATION_L);
}
}
hp_check:
/* If Hot Plug policy disable, return directly */
if (dbs_tuners_ins.is_cpu_hotplug_disable)
return;
#ifdef CONFIG_HOTPLUG_CPU
if (g_trigger_hp_work != CPU_HOTPLUG_WORK_TYPE_NONE)
return;
mutex_lock(&hp_mutex);
online_cpus_count = num_online_cpus();
sched_get_nr_running_avg(&g_tlp_avg_current, &g_tlp_iowait_av);
v_tlp_avg_last = g_tlp_avg_history[g_tlp_avg_index];
g_tlp_avg_history[g_tlp_avg_index] = g_tlp_avg_current;
g_tlp_avg_sum += g_tlp_avg_current;
g_tlp_avg_index = (g_tlp_avg_index + 1 == dbs_tuners_ins.cpu_rush_tlp_times)? 0 : g_tlp_avg_index + 1;
g_tlp_avg_count++;
if (g_tlp_avg_count >= dbs_tuners_ins.cpu_rush_tlp_times)
{
if (g_tlp_avg_sum > v_tlp_avg_last)
g_tlp_avg_sum -= v_tlp_avg_last;
else
g_tlp_avg_sum = 0;
}
g_tlp_avg_average = g_tlp_avg_sum / dbs_tuners_ins.cpu_rush_tlp_times;
if (dbs_tuners_ins.cpu_rush_boost_enable)
{
//printk("@@@@@@@@@@@@@@@@@@@@@@@@@@@ tlp: %d @@@@@@@@@@@@@@@@@@@@@@@@@@@\n", g_tlp_avg_average);
if (g_cpus_sum_load_current > dbs_tuners_ins.cpu_rush_threshold * online_cpus_count)
++g_cpu_rush_count;
else
g_cpu_rush_count = 0;
if ((g_cpu_rush_count >= dbs_tuners_ins.cpu_rush_avg_times) &&
(online_cpus_count * 100 < g_tlp_avg_average) &&
(online_cpus_count < dbs_tuners_ins.cpu_num_limit) &&
(online_cpus_count < num_possible_cpus()))
{
dbs_freq_increase(policy, policy->max);
printk("dbs_check_cpu: turn on CPU\n");
g_next_hp_action = g_tlp_avg_average / 100 + (g_tlp_avg_average % 100 ? 1 : 0);
if (g_next_hp_action > num_possible_cpus())
g_next_hp_action = num_possible_cpus();
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_RUSH;
schedule_delayed_work_on(0, &hp_work, 0);
goto hp_check_end;
}
}
if (online_cpus_count < dbs_tuners_ins.cpu_num_base && online_cpus_count < dbs_tuners_ins.cpu_num_limit)
{
dbs_freq_increase(policy, policy->max);
printk("dbs_check_cpu: turn on CPU\n");
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_BASE;
schedule_delayed_work_on(0, &hp_work, 0);
goto hp_check_end;
}
if (online_cpus_count > dbs_tuners_ins.cpu_num_limit)
{
dbs_freq_increase(policy, policy->max);
printk("dbs_check_cpu: turn off CPU\n");
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_LIMIT;
schedule_delayed_work_on(0, &hp_work, 0);
goto hp_check_end;
}
/* Check CPU loading to power up slave CPU */
if (online_cpus_count < num_possible_cpus())
{
cpus_sum_load_last_up = g_cpu_up_load_history[g_cpu_up_load_index];
g_cpu_up_load_history[g_cpu_up_load_index] = g_cpus_sum_load_current;
g_cpu_up_sum_load += g_cpus_sum_load_current;
g_cpu_up_count++;
g_cpu_up_load_index = (g_cpu_up_load_index + 1 == dbs_tuners_ins.cpu_up_avg_times)? 0 : g_cpu_up_load_index + 1;
if (g_cpu_up_count >= dbs_tuners_ins.cpu_up_avg_times)
{
if (g_cpu_up_sum_load > cpus_sum_load_last_up)
g_cpu_up_sum_load -= cpus_sum_load_last_up;
else
g_cpu_up_sum_load = 0;
//g_cpu_up_sum_load /= dbs_tuners_ins.cpu_up_avg_times;
if (g_cpu_up_sum_load >
(dbs_tuners_ins.cpu_up_threshold * online_cpus_count * dbs_tuners_ins.cpu_up_avg_times))
{
if (online_cpus_count < dbs_tuners_ins.cpu_num_limit)
{
#ifdef DEBUG_LOG
printk("dbs_check_cpu: g_cpu_up_sum_load = %d\n", g_cpu_up_sum_load);
#endif
dbs_freq_increase(policy, policy->max);
printk("dbs_check_cpu: turn on CPU\n");
g_next_hp_action = online_cpus_count + 1;
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_UP;
schedule_delayed_work_on(0, &hp_work, 0);
goto hp_check_end;
}
}
}
#ifdef DEBUG_LOG
printk("dbs_check_cpu: g_cpu_up_count = %d, g_cpu_up_sum_load = %d\n", g_cpu_up_count, g_cpu_up_sum_load);
printk("dbs_check_cpu: cpu_up_threshold = %d\n", (dbs_tuners_ins.cpu_up_threshold * online_cpus_count));
#endif
}
/* Check CPU loading to power down slave CPU */
if (online_cpus_count > 1)
{
cpus_sum_load_last_down = g_cpu_down_load_history[g_cpu_down_load_index];
g_cpu_down_load_history[g_cpu_down_load_index] = g_cpus_sum_load_current;
g_cpu_down_sum_load += g_cpus_sum_load_current;
g_cpu_down_count++;
g_cpu_down_load_index = (g_cpu_down_load_index + 1 == dbs_tuners_ins.cpu_down_avg_times)? 0 : g_cpu_down_load_index + 1;
if (g_cpu_down_count >= dbs_tuners_ins.cpu_down_avg_times)
{
long cpu_down_threshold;
if (g_cpu_down_sum_load > cpus_sum_load_last_down)
g_cpu_down_sum_load -= cpus_sum_load_last_down;
else
g_cpu_down_sum_load = 0;
g_next_hp_action = online_cpus_count;
cpu_down_threshold = ((dbs_tuners_ins.cpu_up_threshold - dbs_tuners_ins.cpu_down_differential) * dbs_tuners_ins.cpu_down_avg_times);
while ((g_cpu_down_sum_load < cpu_down_threshold * (g_next_hp_action - 1)) &&
//(g_next_hp_action > tlp_cpu_num) &&
(g_next_hp_action > dbs_tuners_ins.cpu_num_base))
--g_next_hp_action;
//printk("### g_next_hp_action: %d, tlp_cpu_num: %d, g_cpu_down_sum_load / dbs_tuners_ins.cpu_down_avg_times: %d ###\n", g_next_hp_action, tlp_cpu_num, g_cpu_down_sum_load / dbs_tuners_ins.cpu_down_avg_times);
if (g_next_hp_action < online_cpus_count)
{
#ifdef DEBUG_LOG
printk("dbs_check_cpu: g_cpu_down_sum_load = %d\n", g_cpu_down_sum_load);
#endif
dbs_freq_increase(policy, policy->max);
printk("dbs_check_cpu: turn off CPU\n");
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_DOWN;
schedule_delayed_work_on(0, &hp_work, 0);
}
}
#ifdef DEBUG_LOG
printk("dbs_check_cpu: g_cpu_down_count = %d, g_cpu_down_sum_load = %d\n", g_cpu_down_count, g_cpu_down_sum_load);
printk("dbs_check_cpu: cpu_down_threshold = %d\n", ((dbs_tuners_ins.cpu_up_threshold - dbs_tuners_ins.cpu_down_differential) * (online_cpus_count - 1)));
#endif
}
hp_check_end:
mutex_unlock(&hp_mutex);
#endif //#ifdef CONFIG_HOTPLUG_CPU
return;
}
void (*cpufreq_freq_check)(void) = NULL;
static void do_dbs_timer(struct work_struct *work)
{
struct cpu_dbs_info_s *dbs_info =
container_of(work, struct cpu_dbs_info_s, work.work);
unsigned int cpu = dbs_info->cpu;
int sample_type = dbs_info->sample_type;
int delay;
mutex_lock(&dbs_info->timer_mutex);
/* Common NORMAL_SAMPLE setup */
dbs_info->sample_type = DBS_NORMAL_SAMPLE;
if (!dbs_tuners_ins.powersave_bias ||
sample_type == DBS_NORMAL_SAMPLE) {
dbs_check_cpu(dbs_info);
if (dbs_info->freq_lo) {
/* Setup timer for SUB_SAMPLE */
dbs_info->sample_type = DBS_SUB_SAMPLE;
delay = dbs_info->freq_hi_jiffies;
} else {
/* We want all CPUs to do sampling nearly on
* same jiffy
*/
delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
* dbs_info->rate_mult);
if (num_online_cpus() > 1)
delay -= jiffies % delay;
}
} else {
__cpufreq_driver_target(dbs_info->cur_policy,
dbs_info->freq_lo, CPUFREQ_RELATION_H);
delay = dbs_info->freq_lo_jiffies;
}
schedule_delayed_work_on(cpu, &dbs_info->work, delay);
mutex_unlock(&dbs_info->timer_mutex);
if(cpufreq_freq_check != NULL)
{
cpufreq_freq_check();
}
}
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
{
/* We want all CPUs to do sampling nearly on same jiffy */
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
if (num_online_cpus() > 1)
delay -= jiffies % delay;
dbs_info->sample_type = DBS_NORMAL_SAMPLE;
INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
}
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
{
cancel_delayed_work_sync(&dbs_info->work);
}
/*
* Not all CPUs want IO time to be accounted as busy; this dependson how
* efficient idling at a higher frequency/voltage is.
* Pavel Machek says this is not so for various generations of AMD and old
* Intel systems.
* Mike Chan (androidlcom) calis this is also not true for ARM.
* Because of this, whitelist specific known (series) of CPUs by default, and
* leave all others up to the user.
*/
static int should_io_be_busy(void)
{
#if defined(CONFIG_X86)
/*
* For Intel, Core 2 (model 15) andl later have an efficient idle.
*/
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
boot_cpu_data.x86 == 6 &&
boot_cpu_data.x86_model >= 15)
return 1;
#endif
return 1; // io wait time should be subtracted from idle time
}
#ifdef CONFIG_HOTPLUG_CPU
static void dbs_input_event(struct input_handle *handle, unsigned int type,
unsigned int code, int value)
{
//int i;
//if ((dbs_tuners_ins.powersave_bias == POWERSAVE_BIAS_MAXLEVEL) ||
// (dbs_tuners_ins.powersave_bias == POWERSAVE_BIAS_MINLEVEL)) {
// /* nothing to do */
// return;
//}
//for_each_online_cpu(i) {
// queue_work_on(i, input_wq, &per_cpu(dbs_refresh_work, i));
//}
//printk("$$$ in_interrupt(): %d, in_irq(): %d, type: %d, code: %d, value: %d $$$\n", in_interrupt(), in_irq(), type, code, value);
if ((type == EV_KEY) && (code == BTN_TOUCH) && (value == 1) && (dbs_tuners_ins.cpu_input_boost_enable))
{
//if (!in_interrupt())
//{
unsigned int online_cpus_count = num_online_cpus();
if (online_cpus_count < dbs_tuners_ins.cpu_input_boost_num && online_cpus_count < dbs_tuners_ins.cpu_num_limit)
{
schedule_delayed_work_on(0, &hp_work, 0);
}
//}
}
}
static int dbs_input_connect(struct input_handler *handler,
struct input_dev *dev, const struct input_device_id *id)
{
struct input_handle *handle;
int error;
handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
if (!handle)
return -ENOMEM;
handle->dev = dev;
handle->handler = handler;
handle->name = "cpufreq";
error = input_register_handle(handle);
if (error)
goto err2;
error = input_open_device(handle);
if (error)
goto err1;
return 0;
err1:
input_unregister_handle(handle);
err2:
kfree(handle);
return error;
}
static void dbs_input_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
static const struct input_device_id dbs_ids[] = {
{ .driver_info = 1 },
{ },
};
static struct input_handler dbs_input_handler = {
.event = dbs_input_event,
.connect = dbs_input_connect,
.disconnect = dbs_input_disconnect,
.name = "cpufreq_ond",
.id_table = dbs_ids,
};
#endif //#ifdef CONFIG_HOTPLUG_CPU
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event)
{
unsigned int cpu = policy->cpu;
struct cpu_dbs_info_s *this_dbs_info;
unsigned int j;
int rc;
this_dbs_info = &per_cpu(hp_cpu_dbs_info, cpu);
switch (event) {
case CPUFREQ_GOV_START:
if ((!cpu_online(cpu)) || (!policy->cur))
return -EINVAL;
mutex_lock(&dbs_mutex);
dbs_enable++;
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info_s *j_dbs_info;
j_dbs_info = &per_cpu(hp_cpu_dbs_info, j);
j_dbs_info->cur_policy = policy;
j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
&j_dbs_info->prev_cpu_wall);
if (dbs_tuners_ins.ignore_nice)
j_dbs_info->prev_cpu_nice =
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
}
this_dbs_info->cpu = cpu;
this_dbs_info->rate_mult = 1;
hotplug_powersave_bias_init_cpu(cpu);
/*
* Start the timerschedule work, when this governor
* is used for first time
*/
if (dbs_enable == 1) {
unsigned int latency;
rc = sysfs_create_group(cpufreq_global_kobject,
&dbs_attr_group);
if (rc) {
mutex_unlock(&dbs_mutex);
return rc;
}
/* policy latency is in nS. Convert it to uS first */
latency = policy->cpuinfo.transition_latency / 1000;
if (latency == 0)
latency = 1;
/* Bring kernel and HW constraints together */
min_sampling_rate = max(min_sampling_rate,
MIN_LATENCY_MULTIPLIER * latency);
dbs_tuners_ins.sampling_rate =
max(min_sampling_rate,
latency * LATENCY_MULTIPLIER);
dbs_tuners_ins.io_is_busy = should_io_be_busy();
#ifdef DEBUG_LOG
printk("cpufreq_governor_dbs: min_sampling_rate = %d\n", min_sampling_rate);
printk("cpufreq_governor_dbs: dbs_tuners_ins.sampling_rate = %d\n", dbs_tuners_ins.sampling_rate);
printk("cpufreq_governor_dbs: dbs_tuners_ins.io_is_busy = %d\n", dbs_tuners_ins.io_is_busy);
#endif
}
#ifdef CONFIG_HOTPLUG_CPU
if (!cpu)
rc = input_register_handler(&dbs_input_handler);
#endif
mutex_unlock(&dbs_mutex);
mutex_init(&this_dbs_info->timer_mutex);
dbs_timer_init(this_dbs_info);
break;
case CPUFREQ_GOV_STOP:
dbs_timer_exit(this_dbs_info);
mutex_lock(&dbs_mutex);
mutex_destroy(&this_dbs_info->timer_mutex);
dbs_enable--;
#ifdef CONFIG_HOTPLUG_CPU
/* If device is being removed, policy is no longer
* valid. */
this_dbs_info->cur_policy = NULL;
if (!cpu)
input_unregister_handler(&dbs_input_handler);
#endif
mutex_unlock(&dbs_mutex);
if (!dbs_enable)
sysfs_remove_group(cpufreq_global_kobject,
&dbs_attr_group);
break;
case CPUFREQ_GOV_LIMITS:
mutex_lock(&this_dbs_info->timer_mutex);
if (policy->max < this_dbs_info->cur_policy->cur)
__cpufreq_driver_target(this_dbs_info->cur_policy,
policy->max, CPUFREQ_RELATION_H);
else if (policy->min > this_dbs_info->cur_policy->cur)
__cpufreq_driver_target(this_dbs_info->cur_policy,
policy->min, CPUFREQ_RELATION_L);
mutex_unlock(&this_dbs_info->timer_mutex);
break;
}
return 0;
}
//int cpufreq_gov_dbs_get_sum_load(void)
//{
// return g_cpus_sum_load_current;
//}
static int __init cpufreq_gov_dbs_init(void)
{
u64 idle_time;
int cpu = get_cpu();
idle_time = get_cpu_idle_time_us(cpu, NULL);
put_cpu();
if (idle_time != -1ULL) {
/* Idle micro accounting is supported. Use finer thresholds */
dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
dbs_tuners_ins.down_differential =
MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
dbs_tuners_ins.cpu_up_threshold =
MICRO_CPU_UP_THRESHOLD;
dbs_tuners_ins.cpu_down_differential =
MICRO_CPU_DOWN_DIFFERENTIAL;
/*
* In nohz/micro accounting case we set the minimum frequency
* not depending on HZ, but fixed (very low). The deferred
* timer might skip some samples if idle/sleeping as needed.
*/
min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
/* cpu rush boost */
dbs_tuners_ins.cpu_rush_threshold =
MICRO_CPU_RUSH_THRESHOLD;
dbs_tuners_ins.cpu_rush_boost_num =
num_possible_cpus();
} else {
/* For correct statistics, we need 10 ticks for each measure */
min_sampling_rate =
MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
}
dbs_tuners_ins.cpu_num_limit = num_possible_cpus();
dbs_tuners_ins.cpu_num_base = 1;
if (dbs_tuners_ins.cpu_num_limit > 1)
dbs_tuners_ins.is_cpu_hotplug_disable = 0;
#ifdef CONFIG_HOTPLUG_CPU
INIT_DELAYED_WORK_DEFERRABLE(&hp_work, hp_work_handler);
g_next_hp_action = num_online_cpus();
#endif
#ifdef DEBUG_LOG
printk("cpufreq_gov_dbs_init: min_sampling_rate = %d\n", min_sampling_rate);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.up_threshold = %d\n", dbs_tuners_ins.up_threshold);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.down_differential = %d\n", dbs_tuners_ins.down_differential);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_up_threshold = %d\n", dbs_tuners_ins.cpu_up_threshold);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_down_differential = %d\n", dbs_tuners_ins.cpu_down_differential);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_up_avg_times = %d\n", dbs_tuners_ins.cpu_up_avg_times);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_down_avg_times = %d\n", dbs_tuners_ins.cpu_down_avg_times);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_num_limit = %d\n", dbs_tuners_ins.cpu_num_limit);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_num_base = %d\n", dbs_tuners_ins.cpu_num_base);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.is_cpu_hotplug_disable = %d\n", dbs_tuners_ins.is_cpu_hotplug_disable);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_input_boost_enable = %d\n", dbs_tuners_ins.cpu_input_boost_enable);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_input_boost_num = %d\n", dbs_tuners_ins.cpu_input_boost_num);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_rush_boost_enable = %d\n", dbs_tuners_ins.cpu_rush_boost_enable);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_rush_boost_num = %d\n", dbs_tuners_ins.cpu_rush_boost_num);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_rush_threshold = %d\n", dbs_tuners_ins.cpu_rush_threshold);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_rush_tlp_times = %d\n", dbs_tuners_ins.cpu_rush_tlp_times);
printk("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_rush_avg_times = %d\n", dbs_tuners_ins.cpu_rush_avg_times);
#endif
return cpufreq_register_governor(&cpufreq_gov_hotplug);
}
static void __exit cpufreq_gov_dbs_exit(void)
{
#ifdef CONFIG_HOTPLUG_CPU
cancel_delayed_work_sync(&hp_work);
#endif
cpufreq_unregister_governor(&cpufreq_gov_hotplug);
}
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
MODULE_DESCRIPTION("'cpufreq_hotplug' - A dynamic cpufreq governor for "
"Low Latency Frequency Transition capable processors");
MODULE_LICENSE("GPL");
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_HOTPLUG
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);