| // SPDX-License-Identifier: GPL-2.0 | 
 |  | 
 | /* | 
 |  * fs/ext4/fast_commit.c | 
 |  * | 
 |  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> | 
 |  * | 
 |  * Ext4 fast commits routines. | 
 |  */ | 
 | #include "ext4.h" | 
 | #include "ext4_jbd2.h" | 
 | #include "ext4_extents.h" | 
 | #include "mballoc.h" | 
 |  | 
 | /* | 
 |  * Ext4 Fast Commits | 
 |  * ----------------- | 
 |  * | 
 |  * Ext4 fast commits implement fine grained journalling for Ext4. | 
 |  * | 
 |  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See | 
 |  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by | 
 |  * TLV during the recovery phase. For the scenarios for which we currently | 
 |  * don't have replay code, fast commit falls back to full commits. | 
 |  * Fast commits record delta in one of the following three categories. | 
 |  * | 
 |  * (A) Directory entry updates: | 
 |  * | 
 |  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink | 
 |  * - EXT4_FC_TAG_LINK		- records directory entry link | 
 |  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation | 
 |  * | 
 |  * (B) File specific data range updates: | 
 |  * | 
 |  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode | 
 |  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode | 
 |  * | 
 |  * (C) Inode metadata (mtime / ctime etc): | 
 |  * | 
 |  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed | 
 |  *				  during recovery. Note that iblocks field is | 
 |  *				  not replayed and instead derived during | 
 |  *				  replay. | 
 |  * Commit Operation | 
 |  * ---------------- | 
 |  * With fast commits, we maintain all the directory entry operations in the | 
 |  * order in which they are issued in an in-memory queue. This queue is flushed | 
 |  * to disk during the commit operation. We also maintain a list of inodes | 
 |  * that need to be committed during a fast commit in another in memory queue of | 
 |  * inodes. During the commit operation, we commit in the following order: | 
 |  * | 
 |  * [1] Lock inodes for any further data updates by setting COMMITTING state | 
 |  * [2] Submit data buffers of all the inodes | 
 |  * [3] Wait for [2] to complete | 
 |  * [4] Commit all the directory entry updates in the fast commit space | 
 |  * [5] Commit all the changed inode structures | 
 |  * [6] Write tail tag (this tag ensures the atomicity, please read the following | 
 |  *     section for more details). | 
 |  * [7] Wait for [4], [5] and [6] to complete. | 
 |  * | 
 |  * All the inode updates must call ext4_fc_start_update() before starting an | 
 |  * update. If such an ongoing update is present, fast commit waits for it to | 
 |  * complete. The completion of such an update is marked by | 
 |  * ext4_fc_stop_update(). | 
 |  * | 
 |  * Fast Commit Ineligibility | 
 |  * ------------------------- | 
 |  * Not all operations are supported by fast commits today (e.g extended | 
 |  * attributes). Fast commit ineligiblity is marked by calling one of the | 
 |  * two following functions: | 
 |  * | 
 |  * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall | 
 |  *   back to full commit. This is useful in case of transient errors. | 
 |  * | 
 |  * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all | 
 |  *   the fast commits happening between ext4_fc_start_ineligible() and | 
 |  *   ext4_fc_stop_ineligible() and one fast commit after the call to | 
 |  *   ext4_fc_stop_ineligible() to fall back to full commits. It is important to | 
 |  *   make one more fast commit to fall back to full commit after stop call so | 
 |  *   that it guaranteed that the fast commit ineligible operation contained | 
 |  *   within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is | 
 |  *   followed by at least 1 full commit. | 
 |  * | 
 |  * Atomicity of commits | 
 |  * -------------------- | 
 |  * In order to guarantee atomicity during the commit operation, fast commit | 
 |  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail | 
 |  * tag contains CRC of the contents and TID of the transaction after which | 
 |  * this fast commit should be applied. Recovery code replays fast commit | 
 |  * logs only if there's at least 1 valid tail present. For every fast commit | 
 |  * operation, there is 1 tail. This means, we may end up with multiple tails | 
 |  * in the fast commit space. Here's an example: | 
 |  * | 
 |  * - Create a new file A and remove existing file B | 
 |  * - fsync() | 
 |  * - Append contents to file A | 
 |  * - Truncate file A | 
 |  * - fsync() | 
 |  * | 
 |  * The fast commit space at the end of above operations would look like this: | 
 |  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] | 
 |  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->| | 
 |  * | 
 |  * Replay code should thus check for all the valid tails in the FC area. | 
 |  * | 
 |  * TODOs | 
 |  * ----- | 
 |  * 1) Make fast commit atomic updates more fine grained. Today, a fast commit | 
 |  *    eligible update must be protected within ext4_fc_start_update() and | 
 |  *    ext4_fc_stop_update(). These routines are called at much higher | 
 |  *    routines. This can be made more fine grained by combining with | 
 |  *    ext4_journal_start(). | 
 |  * | 
 |  * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() | 
 |  * | 
 |  * 3) Handle more ineligible cases. | 
 |  */ | 
 |  | 
 | #include <trace/events/ext4.h> | 
 | static struct kmem_cache *ext4_fc_dentry_cachep; | 
 |  | 
 | static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) | 
 | { | 
 | 	BUFFER_TRACE(bh, ""); | 
 | 	if (uptodate) { | 
 | 		ext4_debug("%s: Block %lld up-to-date", | 
 | 			   __func__, bh->b_blocknr); | 
 | 		set_buffer_uptodate(bh); | 
 | 	} else { | 
 | 		ext4_debug("%s: Block %lld not up-to-date", | 
 | 			   __func__, bh->b_blocknr); | 
 | 		clear_buffer_uptodate(bh); | 
 | 	} | 
 |  | 
 | 	unlock_buffer(bh); | 
 | } | 
 |  | 
 | static inline void ext4_fc_reset_inode(struct inode *inode) | 
 | { | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 |  | 
 | 	ei->i_fc_lblk_start = 0; | 
 | 	ei->i_fc_lblk_len = 0; | 
 | } | 
 |  | 
 | void ext4_fc_init_inode(struct inode *inode) | 
 | { | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 |  | 
 | 	ext4_fc_reset_inode(inode); | 
 | 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); | 
 | 	INIT_LIST_HEAD(&ei->i_fc_list); | 
 | 	init_waitqueue_head(&ei->i_fc_wait); | 
 | 	atomic_set(&ei->i_fc_updates, 0); | 
 | } | 
 |  | 
 | /* This function must be called with sbi->s_fc_lock held. */ | 
 | static void ext4_fc_wait_committing_inode(struct inode *inode) | 
 | __releases(&EXT4_SB(inode->i_sb)->s_fc_lock) | 
 | { | 
 | 	wait_queue_head_t *wq; | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 |  | 
 | #if (BITS_PER_LONG < 64) | 
 | 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags, | 
 | 			EXT4_STATE_FC_COMMITTING); | 
 | 	wq = bit_waitqueue(&ei->i_state_flags, | 
 | 				EXT4_STATE_FC_COMMITTING); | 
 | #else | 
 | 	DEFINE_WAIT_BIT(wait, &ei->i_flags, | 
 | 			EXT4_STATE_FC_COMMITTING); | 
 | 	wq = bit_waitqueue(&ei->i_flags, | 
 | 				EXT4_STATE_FC_COMMITTING); | 
 | #endif | 
 | 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock); | 
 | 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); | 
 | 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); | 
 | 	schedule(); | 
 | 	finish_wait(wq, &wait.wq_entry); | 
 | } | 
 |  | 
 | /* | 
 |  * Inform Ext4's fast about start of an inode update | 
 |  * | 
 |  * This function is called by the high level call VFS callbacks before | 
 |  * performing any inode update. This function blocks if there's an ongoing | 
 |  * fast commit on the inode in question. | 
 |  */ | 
 | void ext4_fc_start_update(struct inode *inode) | 
 | { | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 |  | 
 | 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || | 
 | 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)) | 
 | 		return; | 
 |  | 
 | restart: | 
 | 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); | 
 | 	if (list_empty(&ei->i_fc_list)) | 
 | 		goto out; | 
 |  | 
 | 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { | 
 | 		ext4_fc_wait_committing_inode(inode); | 
 | 		goto restart; | 
 | 	} | 
 | out: | 
 | 	atomic_inc(&ei->i_fc_updates); | 
 | 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Stop inode update and wake up waiting fast commits if any. | 
 |  */ | 
 | void ext4_fc_stop_update(struct inode *inode) | 
 | { | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 |  | 
 | 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || | 
 | 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)) | 
 | 		return; | 
 |  | 
 | 	if (atomic_dec_and_test(&ei->i_fc_updates)) | 
 | 		wake_up_all(&ei->i_fc_wait); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove inode from fast commit list. If the inode is being committed | 
 |  * we wait until inode commit is done. | 
 |  */ | 
 | void ext4_fc_del(struct inode *inode) | 
 | { | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 |  | 
 | 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || | 
 | 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)) | 
 | 		return; | 
 |  | 
 | restart: | 
 | 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); | 
 | 	if (list_empty(&ei->i_fc_list)) { | 
 | 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { | 
 | 		ext4_fc_wait_committing_inode(inode); | 
 | 		goto restart; | 
 | 	} | 
 | 	list_del_init(&ei->i_fc_list); | 
 | 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Mark file system as fast commit ineligible. This means that next commit | 
 |  * operation would result in a full jbd2 commit. | 
 |  */ | 
 | void ext4_fc_mark_ineligible(struct super_block *sb, int reason) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 |  | 
 | 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) || | 
 | 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)) | 
 | 		return; | 
 |  | 
 | 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); | 
 | 	WARN_ON(reason >= EXT4_FC_REASON_MAX); | 
 | 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; | 
 | } | 
 |  | 
 | /* | 
 |  * Start a fast commit ineligible update. Any commits that happen while | 
 |  * such an operation is in progress fall back to full commits. | 
 |  */ | 
 | void ext4_fc_start_ineligible(struct super_block *sb, int reason) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 |  | 
 | 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) || | 
 | 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)) | 
 | 		return; | 
 |  | 
 | 	WARN_ON(reason >= EXT4_FC_REASON_MAX); | 
 | 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; | 
 | 	atomic_inc(&sbi->s_fc_ineligible_updates); | 
 | } | 
 |  | 
 | /* | 
 |  * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here | 
 |  * to ensure that after stopping the ineligible update, at least one full | 
 |  * commit takes place. | 
 |  */ | 
 | void ext4_fc_stop_ineligible(struct super_block *sb) | 
 | { | 
 | 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) || | 
 | 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)) | 
 | 		return; | 
 |  | 
 | 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); | 
 | 	atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates); | 
 | } | 
 |  | 
 | static inline int ext4_fc_is_ineligible(struct super_block *sb) | 
 | { | 
 | 	return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) || | 
 | 		atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates)); | 
 | } | 
 |  | 
 | /* | 
 |  * Generic fast commit tracking function. If this is the first time this we are | 
 |  * called after a full commit, we initialize fast commit fields and then call | 
 |  * __fc_track_fn() with update = 0. If we have already been called after a full | 
 |  * commit, we pass update = 1. Based on that, the track function can determine | 
 |  * if it needs to track a field for the first time or if it needs to just | 
 |  * update the previously tracked value. | 
 |  * | 
 |  * If enqueue is set, this function enqueues the inode in fast commit list. | 
 |  */ | 
 | static int ext4_fc_track_template( | 
 | 	handle_t *handle, struct inode *inode, | 
 | 	int (*__fc_track_fn)(struct inode *, void *, bool), | 
 | 	void *args, int enqueue) | 
 | { | 
 | 	bool update = false; | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	tid_t tid = 0; | 
 | 	int ret; | 
 |  | 
 | 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || | 
 | 	    (sbi->s_mount_state & EXT4_FC_REPLAY)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (ext4_fc_is_ineligible(inode->i_sb)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	tid = handle->h_transaction->t_tid; | 
 | 	mutex_lock(&ei->i_fc_lock); | 
 | 	if (tid == ei->i_sync_tid) { | 
 | 		update = true; | 
 | 	} else { | 
 | 		ext4_fc_reset_inode(inode); | 
 | 		ei->i_sync_tid = tid; | 
 | 	} | 
 | 	ret = __fc_track_fn(inode, args, update); | 
 | 	mutex_unlock(&ei->i_fc_lock); | 
 |  | 
 | 	if (!enqueue) | 
 | 		return ret; | 
 |  | 
 | 	spin_lock(&sbi->s_fc_lock); | 
 | 	if (list_empty(&EXT4_I(inode)->i_fc_list)) | 
 | 		list_add_tail(&EXT4_I(inode)->i_fc_list, | 
 | 				(ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ? | 
 | 				&sbi->s_fc_q[FC_Q_STAGING] : | 
 | 				&sbi->s_fc_q[FC_Q_MAIN]); | 
 | 	spin_unlock(&sbi->s_fc_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct __track_dentry_update_args { | 
 | 	struct dentry *dentry; | 
 | 	int op; | 
 | }; | 
 |  | 
 | /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ | 
 | static int __track_dentry_update(struct inode *inode, void *arg, bool update) | 
 | { | 
 | 	struct ext4_fc_dentry_update *node; | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 	struct __track_dentry_update_args *dentry_update = | 
 | 		(struct __track_dentry_update_args *)arg; | 
 | 	struct dentry *dentry = dentry_update->dentry; | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 |  | 
 | 	mutex_unlock(&ei->i_fc_lock); | 
 | 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); | 
 | 	if (!node) { | 
 | 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM); | 
 | 		mutex_lock(&ei->i_fc_lock); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	node->fcd_op = dentry_update->op; | 
 | 	node->fcd_parent = dentry->d_parent->d_inode->i_ino; | 
 | 	node->fcd_ino = inode->i_ino; | 
 | 	if (dentry->d_name.len > DNAME_INLINE_LEN) { | 
 | 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS); | 
 | 		if (!node->fcd_name.name) { | 
 | 			kmem_cache_free(ext4_fc_dentry_cachep, node); | 
 | 			ext4_fc_mark_ineligible(inode->i_sb, | 
 | 				EXT4_FC_REASON_NOMEM); | 
 | 			mutex_lock(&ei->i_fc_lock); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name, | 
 | 			dentry->d_name.len); | 
 | 	} else { | 
 | 		memcpy(node->fcd_iname, dentry->d_name.name, | 
 | 			dentry->d_name.len); | 
 | 		node->fcd_name.name = node->fcd_iname; | 
 | 	} | 
 | 	node->fcd_name.len = dentry->d_name.len; | 
 |  | 
 | 	spin_lock(&sbi->s_fc_lock); | 
 | 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) | 
 | 		list_add_tail(&node->fcd_list, | 
 | 				&sbi->s_fc_dentry_q[FC_Q_STAGING]); | 
 | 	else | 
 | 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); | 
 | 	spin_unlock(&sbi->s_fc_lock); | 
 | 	mutex_lock(&ei->i_fc_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __ext4_fc_track_unlink(handle_t *handle, | 
 | 		struct inode *inode, struct dentry *dentry) | 
 | { | 
 | 	struct __track_dentry_update_args args; | 
 | 	int ret; | 
 |  | 
 | 	args.dentry = dentry; | 
 | 	args.op = EXT4_FC_TAG_UNLINK; | 
 |  | 
 | 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update, | 
 | 					(void *)&args, 0); | 
 | 	trace_ext4_fc_track_unlink(inode, dentry, ret); | 
 | } | 
 |  | 
 | void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) | 
 | { | 
 | 	__ext4_fc_track_unlink(handle, d_inode(dentry), dentry); | 
 | } | 
 |  | 
 | void __ext4_fc_track_link(handle_t *handle, | 
 | 	struct inode *inode, struct dentry *dentry) | 
 | { | 
 | 	struct __track_dentry_update_args args; | 
 | 	int ret; | 
 |  | 
 | 	args.dentry = dentry; | 
 | 	args.op = EXT4_FC_TAG_LINK; | 
 |  | 
 | 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update, | 
 | 					(void *)&args, 0); | 
 | 	trace_ext4_fc_track_link(inode, dentry, ret); | 
 | } | 
 |  | 
 | void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) | 
 | { | 
 | 	__ext4_fc_track_link(handle, d_inode(dentry), dentry); | 
 | } | 
 |  | 
 | void __ext4_fc_track_create(handle_t *handle, struct inode *inode, | 
 | 			  struct dentry *dentry) | 
 | { | 
 | 	struct __track_dentry_update_args args; | 
 | 	int ret; | 
 |  | 
 | 	args.dentry = dentry; | 
 | 	args.op = EXT4_FC_TAG_CREAT; | 
 |  | 
 | 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update, | 
 | 					(void *)&args, 0); | 
 | 	trace_ext4_fc_track_create(inode, dentry, ret); | 
 | } | 
 |  | 
 | void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) | 
 | { | 
 | 	__ext4_fc_track_create(handle, d_inode(dentry), dentry); | 
 | } | 
 |  | 
 | /* __track_fn for inode tracking */ | 
 | static int __track_inode(struct inode *inode, void *arg, bool update) | 
 | { | 
 | 	if (update) | 
 | 		return -EEXIST; | 
 |  | 
 | 	EXT4_I(inode)->i_fc_lblk_len = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void ext4_fc_track_inode(handle_t *handle, struct inode *inode) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (S_ISDIR(inode->i_mode)) | 
 | 		return; | 
 |  | 
 | 	if (ext4_should_journal_data(inode)) { | 
 | 		ext4_fc_mark_ineligible(inode->i_sb, | 
 | 					EXT4_FC_REASON_INODE_JOURNAL_DATA); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); | 
 | 	trace_ext4_fc_track_inode(inode, ret); | 
 | } | 
 |  | 
 | struct __track_range_args { | 
 | 	ext4_lblk_t start, end; | 
 | }; | 
 |  | 
 | /* __track_fn for tracking data updates */ | 
 | static int __track_range(struct inode *inode, void *arg, bool update) | 
 | { | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 	ext4_lblk_t oldstart; | 
 | 	struct __track_range_args *__arg = | 
 | 		(struct __track_range_args *)arg; | 
 |  | 
 | 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { | 
 | 		ext4_debug("Special inode %ld being modified\n", inode->i_ino); | 
 | 		return -ECANCELED; | 
 | 	} | 
 |  | 
 | 	oldstart = ei->i_fc_lblk_start; | 
 |  | 
 | 	if (update && ei->i_fc_lblk_len > 0) { | 
 | 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); | 
 | 		ei->i_fc_lblk_len = | 
 | 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - | 
 | 				ei->i_fc_lblk_start + 1; | 
 | 	} else { | 
 | 		ei->i_fc_lblk_start = __arg->start; | 
 | 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, | 
 | 			 ext4_lblk_t end) | 
 | { | 
 | 	struct __track_range_args args; | 
 | 	int ret; | 
 |  | 
 | 	if (S_ISDIR(inode->i_mode)) | 
 | 		return; | 
 |  | 
 | 	args.start = start; | 
 | 	args.end = end; | 
 |  | 
 | 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1); | 
 |  | 
 | 	trace_ext4_fc_track_range(inode, start, end, ret); | 
 | } | 
 |  | 
 | static void ext4_fc_submit_bh(struct super_block *sb) | 
 | { | 
 | 	int write_flags = REQ_SYNC; | 
 | 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; | 
 |  | 
 | 	/* TODO: REQ_FUA | REQ_PREFLUSH is unnecessarily expensive. */ | 
 | 	if (test_opt(sb, BARRIER)) | 
 | 		write_flags |= REQ_FUA | REQ_PREFLUSH; | 
 | 	lock_buffer(bh); | 
 | 	set_buffer_dirty(bh); | 
 | 	set_buffer_uptodate(bh); | 
 | 	bh->b_end_io = ext4_end_buffer_io_sync; | 
 | 	submit_bh(REQ_OP_WRITE, write_flags, bh); | 
 | 	EXT4_SB(sb)->s_fc_bh = NULL; | 
 | } | 
 |  | 
 | /* Ext4 commit path routines */ | 
 |  | 
 | /* memzero and update CRC */ | 
 | static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len, | 
 | 				u32 *crc) | 
 | { | 
 | 	void *ret; | 
 |  | 
 | 	ret = memset(dst, 0, len); | 
 | 	if (crc) | 
 | 		*crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate len bytes on a fast commit buffer. | 
 |  * | 
 |  * During the commit time this function is used to manage fast commit | 
 |  * block space. We don't split a fast commit log onto different | 
 |  * blocks. So this function makes sure that if there's not enough space | 
 |  * on the current block, the remaining space in the current block is | 
 |  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, | 
 |  * new block is from jbd2 and CRC is updated to reflect the padding | 
 |  * we added. | 
 |  */ | 
 | static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) | 
 | { | 
 | 	struct ext4_fc_tl *tl; | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 	struct buffer_head *bh; | 
 | 	int bsize = sbi->s_journal->j_blocksize; | 
 | 	int ret, off = sbi->s_fc_bytes % bsize; | 
 | 	int pad_len; | 
 |  | 
 | 	/* | 
 | 	 * After allocating len, we should have space at least for a 0 byte | 
 | 	 * padding. | 
 | 	 */ | 
 | 	if (len + sizeof(struct ext4_fc_tl) > bsize) | 
 | 		return NULL; | 
 |  | 
 | 	if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) { | 
 | 		/* | 
 | 		 * Only allocate from current buffer if we have enough space for | 
 | 		 * this request AND we have space to add a zero byte padding. | 
 | 		 */ | 
 | 		if (!sbi->s_fc_bh) { | 
 | 			ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); | 
 | 			if (ret) | 
 | 				return NULL; | 
 | 			sbi->s_fc_bh = bh; | 
 | 		} | 
 | 		sbi->s_fc_bytes += len; | 
 | 		return sbi->s_fc_bh->b_data + off; | 
 | 	} | 
 | 	/* Need to add PAD tag */ | 
 | 	tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off); | 
 | 	tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); | 
 | 	pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl); | 
 | 	tl->fc_len = cpu_to_le16(pad_len); | 
 | 	if (crc) | 
 | 		*crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl)); | 
 | 	if (pad_len > 0) | 
 | 		ext4_fc_memzero(sb, tl + 1, pad_len, crc); | 
 | 	ext4_fc_submit_bh(sb); | 
 |  | 
 | 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); | 
 | 	if (ret) | 
 | 		return NULL; | 
 | 	sbi->s_fc_bh = bh; | 
 | 	sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len; | 
 | 	return sbi->s_fc_bh->b_data; | 
 | } | 
 |  | 
 | /* memcpy to fc reserved space and update CRC */ | 
 | static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src, | 
 | 				int len, u32 *crc) | 
 | { | 
 | 	if (crc) | 
 | 		*crc = ext4_chksum(EXT4_SB(sb), *crc, src, len); | 
 | 	return memcpy(dst, src, len); | 
 | } | 
 |  | 
 | /* | 
 |  * Complete a fast commit by writing tail tag. | 
 |  * | 
 |  * Writing tail tag marks the end of a fast commit. In order to guarantee | 
 |  * atomicity, after writing tail tag, even if there's space remaining | 
 |  * in the block, next commit shouldn't use it. That's why tail tag | 
 |  * has the length as that of the remaining space on the block. | 
 |  */ | 
 | static int ext4_fc_write_tail(struct super_block *sb, u32 crc) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 	struct ext4_fc_tl tl; | 
 | 	struct ext4_fc_tail tail; | 
 | 	int off, bsize = sbi->s_journal->j_blocksize; | 
 | 	u8 *dst; | 
 |  | 
 | 	/* | 
 | 	 * ext4_fc_reserve_space takes care of allocating an extra block if | 
 | 	 * there's no enough space on this block for accommodating this tail. | 
 | 	 */ | 
 | 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc); | 
 | 	if (!dst) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	off = sbi->s_fc_bytes % bsize; | 
 |  | 
 | 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); | 
 | 	tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail)); | 
 | 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); | 
 |  | 
 | 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc); | 
 | 	dst += sizeof(tl); | 
 | 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); | 
 | 	ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc); | 
 | 	dst += sizeof(tail.fc_tid); | 
 | 	tail.fc_crc = cpu_to_le32(crc); | 
 | 	ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL); | 
 |  | 
 | 	ext4_fc_submit_bh(sb); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Adds tag, length, value and updates CRC. Returns true if tlv was added. | 
 |  * Returns false if there's not enough space. | 
 |  */ | 
 | static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, | 
 | 			   u32 *crc) | 
 | { | 
 | 	struct ext4_fc_tl tl; | 
 | 	u8 *dst; | 
 |  | 
 | 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc); | 
 | 	if (!dst) | 
 | 		return false; | 
 |  | 
 | 	tl.fc_tag = cpu_to_le16(tag); | 
 | 	tl.fc_len = cpu_to_le16(len); | 
 |  | 
 | 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc); | 
 | 	ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Same as above, but adds dentry tlv. */ | 
 | static  bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag, | 
 | 					int parent_ino, int ino, int dlen, | 
 | 					const unsigned char *dname, | 
 | 					u32 *crc) | 
 | { | 
 | 	struct ext4_fc_dentry_info fcd; | 
 | 	struct ext4_fc_tl tl; | 
 | 	u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen, | 
 | 					crc); | 
 |  | 
 | 	if (!dst) | 
 | 		return false; | 
 |  | 
 | 	fcd.fc_parent_ino = cpu_to_le32(parent_ino); | 
 | 	fcd.fc_ino = cpu_to_le32(ino); | 
 | 	tl.fc_tag = cpu_to_le16(tag); | 
 | 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); | 
 | 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc); | 
 | 	dst += sizeof(tl); | 
 | 	ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc); | 
 | 	dst += sizeof(fcd); | 
 | 	ext4_fc_memcpy(sb, dst, dname, dlen, crc); | 
 | 	dst += dlen; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Writes inode in the fast commit space under TLV with tag @tag. | 
 |  * Returns 0 on success, error on failure. | 
 |  */ | 
 | static int ext4_fc_write_inode(struct inode *inode, u32 *crc) | 
 | { | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE; | 
 | 	int ret; | 
 | 	struct ext4_iloc iloc; | 
 | 	struct ext4_fc_inode fc_inode; | 
 | 	struct ext4_fc_tl tl; | 
 | 	u8 *dst; | 
 |  | 
 | 	ret = ext4_get_inode_loc(inode, &iloc); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) | 
 | 		inode_len += ei->i_extra_isize; | 
 |  | 
 | 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino); | 
 | 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); | 
 | 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); | 
 |  | 
 | 	ret = -ECANCELED; | 
 | 	dst = ext4_fc_reserve_space(inode->i_sb, | 
 | 			sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc); | 
 | 	if (!dst) | 
 | 		goto err; | 
 |  | 
 | 	if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc)) | 
 | 		goto err; | 
 | 	dst += sizeof(tl); | 
 | 	if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc)) | 
 | 		goto err; | 
 | 	dst += sizeof(fc_inode); | 
 | 	if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc), | 
 | 					inode_len, crc)) | 
 | 		goto err; | 
 | 	ret = 0; | 
 | err: | 
 | 	brelse(iloc.bh); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Writes updated data ranges for the inode in question. Updates CRC. | 
 |  * Returns 0 on success, error otherwise. | 
 |  */ | 
 | static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) | 
 | { | 
 | 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 	struct ext4_map_blocks map; | 
 | 	struct ext4_fc_add_range fc_ext; | 
 | 	struct ext4_fc_del_range lrange; | 
 | 	struct ext4_extent *ex; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&ei->i_fc_lock); | 
 | 	if (ei->i_fc_lblk_len == 0) { | 
 | 		mutex_unlock(&ei->i_fc_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	old_blk_size = ei->i_fc_lblk_start; | 
 | 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; | 
 | 	ei->i_fc_lblk_len = 0; | 
 | 	mutex_unlock(&ei->i_fc_lock); | 
 |  | 
 | 	cur_lblk_off = old_blk_size; | 
 | 	jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n", | 
 | 		  __func__, cur_lblk_off, new_blk_size, inode->i_ino); | 
 |  | 
 | 	while (cur_lblk_off <= new_blk_size) { | 
 | 		map.m_lblk = cur_lblk_off; | 
 | 		map.m_len = new_blk_size - cur_lblk_off + 1; | 
 | 		ret = ext4_map_blocks(NULL, inode, &map, 0); | 
 | 		if (ret < 0) | 
 | 			return -ECANCELED; | 
 |  | 
 | 		if (map.m_len == 0) { | 
 | 			cur_lblk_off++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (ret == 0) { | 
 | 			lrange.fc_ino = cpu_to_le32(inode->i_ino); | 
 | 			lrange.fc_lblk = cpu_to_le32(map.m_lblk); | 
 | 			lrange.fc_len = cpu_to_le32(map.m_len); | 
 | 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, | 
 | 					    sizeof(lrange), (u8 *)&lrange, crc)) | 
 | 				return -ENOSPC; | 
 | 		} else { | 
 | 			unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? | 
 | 				EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; | 
 |  | 
 | 			/* Limit the number of blocks in one extent */ | 
 | 			map.m_len = min(max, map.m_len); | 
 |  | 
 | 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino); | 
 | 			ex = (struct ext4_extent *)&fc_ext.fc_ex; | 
 | 			ex->ee_block = cpu_to_le32(map.m_lblk); | 
 | 			ex->ee_len = cpu_to_le16(map.m_len); | 
 | 			ext4_ext_store_pblock(ex, map.m_pblk); | 
 | 			if (map.m_flags & EXT4_MAP_UNWRITTEN) | 
 | 				ext4_ext_mark_unwritten(ex); | 
 | 			else | 
 | 				ext4_ext_mark_initialized(ex); | 
 | 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, | 
 | 					    sizeof(fc_ext), (u8 *)&fc_ext, crc)) | 
 | 				return -ENOSPC; | 
 | 		} | 
 |  | 
 | 		cur_lblk_off += map.m_len; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* Submit data for all the fast commit inodes */ | 
 | static int ext4_fc_submit_inode_data_all(journal_t *journal) | 
 | { | 
 | 	struct super_block *sb = (struct super_block *)(journal->j_private); | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 	struct ext4_inode_info *ei; | 
 | 	struct list_head *pos; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock(&sbi->s_fc_lock); | 
 | 	ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING); | 
 | 	list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) { | 
 | 		ei = list_entry(pos, struct ext4_inode_info, i_fc_list); | 
 | 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING); | 
 | 		while (atomic_read(&ei->i_fc_updates)) { | 
 | 			DEFINE_WAIT(wait); | 
 |  | 
 | 			prepare_to_wait(&ei->i_fc_wait, &wait, | 
 | 						TASK_UNINTERRUPTIBLE); | 
 | 			if (atomic_read(&ei->i_fc_updates)) { | 
 | 				spin_unlock(&sbi->s_fc_lock); | 
 | 				schedule(); | 
 | 				spin_lock(&sbi->s_fc_lock); | 
 | 			} | 
 | 			finish_wait(&ei->i_fc_wait, &wait); | 
 | 		} | 
 | 		spin_unlock(&sbi->s_fc_lock); | 
 | 		ret = jbd2_submit_inode_data(ei->jinode); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		spin_lock(&sbi->s_fc_lock); | 
 | 	} | 
 | 	spin_unlock(&sbi->s_fc_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Wait for completion of data for all the fast commit inodes */ | 
 | static int ext4_fc_wait_inode_data_all(journal_t *journal) | 
 | { | 
 | 	struct super_block *sb = (struct super_block *)(journal->j_private); | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 	struct ext4_inode_info *pos, *n; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock(&sbi->s_fc_lock); | 
 | 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { | 
 | 		if (!ext4_test_inode_state(&pos->vfs_inode, | 
 | 					   EXT4_STATE_FC_COMMITTING)) | 
 | 			continue; | 
 | 		spin_unlock(&sbi->s_fc_lock); | 
 |  | 
 | 		ret = jbd2_wait_inode_data(journal, pos->jinode); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		spin_lock(&sbi->s_fc_lock); | 
 | 	} | 
 | 	spin_unlock(&sbi->s_fc_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Commit all the directory entry updates */ | 
 | static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) | 
 | __acquires(&sbi->s_fc_lock) | 
 | __releases(&sbi->s_fc_lock) | 
 | { | 
 | 	struct super_block *sb = (struct super_block *)(journal->j_private); | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 	struct ext4_fc_dentry_update *fc_dentry; | 
 | 	struct inode *inode; | 
 | 	struct list_head *pos, *n, *fcd_pos, *fcd_n; | 
 | 	struct ext4_inode_info *ei; | 
 | 	int ret; | 
 |  | 
 | 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) | 
 | 		return 0; | 
 | 	list_for_each_safe(fcd_pos, fcd_n, &sbi->s_fc_dentry_q[FC_Q_MAIN]) { | 
 | 		fc_dentry = list_entry(fcd_pos, struct ext4_fc_dentry_update, | 
 | 					fcd_list); | 
 | 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { | 
 | 			spin_unlock(&sbi->s_fc_lock); | 
 | 			if (!ext4_fc_add_dentry_tlv( | 
 | 				sb, fc_dentry->fcd_op, | 
 | 				fc_dentry->fcd_parent, fc_dentry->fcd_ino, | 
 | 				fc_dentry->fcd_name.len, | 
 | 				fc_dentry->fcd_name.name, crc)) { | 
 | 				ret = -ENOSPC; | 
 | 				goto lock_and_exit; | 
 | 			} | 
 | 			spin_lock(&sbi->s_fc_lock); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		inode = NULL; | 
 | 		list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) { | 
 | 			ei = list_entry(pos, struct ext4_inode_info, i_fc_list); | 
 | 			if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) { | 
 | 				inode = &ei->vfs_inode; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		/* | 
 | 		 * If we don't find inode in our list, then it was deleted, | 
 | 		 * in which case, we don't need to record it's create tag. | 
 | 		 */ | 
 | 		if (!inode) | 
 | 			continue; | 
 | 		spin_unlock(&sbi->s_fc_lock); | 
 |  | 
 | 		/* | 
 | 		 * We first write the inode and then the create dirent. This | 
 | 		 * allows the recovery code to create an unnamed inode first | 
 | 		 * and then link it to a directory entry. This allows us | 
 | 		 * to use namei.c routines almost as is and simplifies | 
 | 		 * the recovery code. | 
 | 		 */ | 
 | 		ret = ext4_fc_write_inode(inode, crc); | 
 | 		if (ret) | 
 | 			goto lock_and_exit; | 
 |  | 
 | 		ret = ext4_fc_write_inode_data(inode, crc); | 
 | 		if (ret) | 
 | 			goto lock_and_exit; | 
 |  | 
 | 		if (!ext4_fc_add_dentry_tlv( | 
 | 			sb, fc_dentry->fcd_op, | 
 | 			fc_dentry->fcd_parent, fc_dentry->fcd_ino, | 
 | 			fc_dentry->fcd_name.len, | 
 | 			fc_dentry->fcd_name.name, crc)) { | 
 | 			ret = -ENOSPC; | 
 | 			goto lock_and_exit; | 
 | 		} | 
 |  | 
 | 		spin_lock(&sbi->s_fc_lock); | 
 | 	} | 
 | 	return 0; | 
 | lock_and_exit: | 
 | 	spin_lock(&sbi->s_fc_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int ext4_fc_perform_commit(journal_t *journal) | 
 | { | 
 | 	struct super_block *sb = (struct super_block *)(journal->j_private); | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 	struct ext4_inode_info *iter; | 
 | 	struct ext4_fc_head head; | 
 | 	struct list_head *pos; | 
 | 	struct inode *inode; | 
 | 	struct blk_plug plug; | 
 | 	int ret = 0; | 
 | 	u32 crc = 0; | 
 |  | 
 | 	ret = ext4_fc_submit_inode_data_all(journal); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = ext4_fc_wait_inode_data_all(journal); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * If file system device is different from journal device, issue a cache | 
 | 	 * flush before we start writing fast commit blocks. | 
 | 	 */ | 
 | 	if (journal->j_fs_dev != journal->j_dev) | 
 | 		blkdev_issue_flush(journal->j_fs_dev, GFP_NOFS); | 
 |  | 
 | 	blk_start_plug(&plug); | 
 | 	if (sbi->s_fc_bytes == 0) { | 
 | 		/* | 
 | 		 * Add a head tag only if this is the first fast commit | 
 | 		 * in this TID. | 
 | 		 */ | 
 | 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); | 
 | 		head.fc_tid = cpu_to_le32( | 
 | 			sbi->s_journal->j_running_transaction->t_tid); | 
 | 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), | 
 | 			(u8 *)&head, &crc)) { | 
 | 			ret = -ENOSPC; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_lock(&sbi->s_fc_lock); | 
 | 	ret = ext4_fc_commit_dentry_updates(journal, &crc); | 
 | 	if (ret) { | 
 | 		spin_unlock(&sbi->s_fc_lock); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) { | 
 | 		iter = list_entry(pos, struct ext4_inode_info, i_fc_list); | 
 | 		inode = &iter->vfs_inode; | 
 | 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) | 
 | 			continue; | 
 |  | 
 | 		spin_unlock(&sbi->s_fc_lock); | 
 | 		ret = ext4_fc_write_inode_data(inode, &crc); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		ret = ext4_fc_write_inode(inode, &crc); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		spin_lock(&sbi->s_fc_lock); | 
 | 	} | 
 | 	spin_unlock(&sbi->s_fc_lock); | 
 |  | 
 | 	ret = ext4_fc_write_tail(sb, crc); | 
 |  | 
 | out: | 
 | 	blk_finish_plug(&plug); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * The main commit entry point. Performs a fast commit for transaction | 
 |  * commit_tid if needed. If it's not possible to perform a fast commit | 
 |  * due to various reasons, we fall back to full commit. Returns 0 | 
 |  * on success, error otherwise. | 
 |  */ | 
 | int ext4_fc_commit(journal_t *journal, tid_t commit_tid) | 
 | { | 
 | 	struct super_block *sb = (struct super_block *)(journal->j_private); | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 	int nblks = 0, ret, bsize = journal->j_blocksize; | 
 | 	int subtid = atomic_read(&sbi->s_fc_subtid); | 
 | 	int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0; | 
 | 	ktime_t start_time, commit_time; | 
 |  | 
 | 	trace_ext4_fc_commit_start(sb); | 
 |  | 
 | 	start_time = ktime_get(); | 
 |  | 
 | 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) || | 
 | 		(ext4_fc_is_ineligible(sb))) { | 
 | 		reason = EXT4_FC_REASON_INELIGIBLE; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | restart_fc: | 
 | 	ret = jbd2_fc_begin_commit(journal, commit_tid); | 
 | 	if (ret == -EALREADY) { | 
 | 		/* There was an ongoing commit, check if we need to restart */ | 
 | 		if (atomic_read(&sbi->s_fc_subtid) <= subtid && | 
 | 			commit_tid > journal->j_commit_sequence) | 
 | 			goto restart_fc; | 
 | 		reason = EXT4_FC_REASON_ALREADY_COMMITTED; | 
 | 		goto out; | 
 | 	} else if (ret) { | 
 | 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++; | 
 | 		reason = EXT4_FC_REASON_FC_START_FAILED; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; | 
 | 	ret = ext4_fc_perform_commit(journal); | 
 | 	if (ret < 0) { | 
 | 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++; | 
 | 		reason = EXT4_FC_REASON_FC_FAILED; | 
 | 		goto out; | 
 | 	} | 
 | 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; | 
 | 	ret = jbd2_fc_wait_bufs(journal, nblks); | 
 | 	if (ret < 0) { | 
 | 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++; | 
 | 		reason = EXT4_FC_REASON_FC_FAILED; | 
 | 		goto out; | 
 | 	} | 
 | 	atomic_inc(&sbi->s_fc_subtid); | 
 | 	jbd2_fc_end_commit(journal); | 
 | out: | 
 | 	/* Has any ineligible update happened since we started? */ | 
 | 	if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) { | 
 | 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++; | 
 | 		reason = EXT4_FC_REASON_INELIGIBLE; | 
 | 	} | 
 |  | 
 | 	spin_lock(&sbi->s_fc_lock); | 
 | 	if (reason != EXT4_FC_REASON_OK && | 
 | 		reason != EXT4_FC_REASON_ALREADY_COMMITTED) { | 
 | 		sbi->s_fc_stats.fc_ineligible_commits++; | 
 | 	} else { | 
 | 		sbi->s_fc_stats.fc_num_commits++; | 
 | 		sbi->s_fc_stats.fc_numblks += nblks; | 
 | 	} | 
 | 	spin_unlock(&sbi->s_fc_lock); | 
 | 	nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0; | 
 | 	trace_ext4_fc_commit_stop(sb, nblks, reason); | 
 | 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); | 
 | 	/* | 
 | 	 * weight the commit time higher than the average time so we don't | 
 | 	 * react too strongly to vast changes in the commit time | 
 | 	 */ | 
 | 	if (likely(sbi->s_fc_avg_commit_time)) | 
 | 		sbi->s_fc_avg_commit_time = (commit_time + | 
 | 				sbi->s_fc_avg_commit_time * 3) / 4; | 
 | 	else | 
 | 		sbi->s_fc_avg_commit_time = commit_time; | 
 | 	jbd_debug(1, | 
 | 		"Fast commit ended with blks = %d, reason = %d, subtid - %d", | 
 | 		nblks, reason, subtid); | 
 | 	if (reason == EXT4_FC_REASON_FC_FAILED) | 
 | 		return jbd2_fc_end_commit_fallback(journal); | 
 | 	if (reason == EXT4_FC_REASON_FC_START_FAILED || | 
 | 		reason == EXT4_FC_REASON_INELIGIBLE) | 
 | 		return jbd2_complete_transaction(journal, commit_tid); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Fast commit cleanup routine. This is called after every fast commit and | 
 |  * full commit. full is true if we are called after a full commit. | 
 |  */ | 
 | static void ext4_fc_cleanup(journal_t *journal, int full) | 
 | { | 
 | 	struct super_block *sb = journal->j_private; | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 	struct ext4_inode_info *iter; | 
 | 	struct ext4_fc_dentry_update *fc_dentry; | 
 | 	struct list_head *pos, *n; | 
 |  | 
 | 	if (full && sbi->s_fc_bh) | 
 | 		sbi->s_fc_bh = NULL; | 
 |  | 
 | 	jbd2_fc_release_bufs(journal); | 
 |  | 
 | 	spin_lock(&sbi->s_fc_lock); | 
 | 	list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) { | 
 | 		iter = list_entry(pos, struct ext4_inode_info, i_fc_list); | 
 | 		list_del_init(&iter->i_fc_list); | 
 | 		ext4_clear_inode_state(&iter->vfs_inode, | 
 | 				       EXT4_STATE_FC_COMMITTING); | 
 | 		ext4_fc_reset_inode(&iter->vfs_inode); | 
 | 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */ | 
 | 		smp_mb(); | 
 | #if (BITS_PER_LONG < 64) | 
 | 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING); | 
 | #else | 
 | 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { | 
 | 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], | 
 | 					     struct ext4_fc_dentry_update, | 
 | 					     fcd_list); | 
 | 		list_del_init(&fc_dentry->fcd_list); | 
 | 		spin_unlock(&sbi->s_fc_lock); | 
 |  | 
 | 		if (fc_dentry->fcd_name.name && | 
 | 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN) | 
 | 			kfree(fc_dentry->fcd_name.name); | 
 | 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); | 
 | 		spin_lock(&sbi->s_fc_lock); | 
 | 	} | 
 |  | 
 | 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], | 
 | 				&sbi->s_fc_dentry_q[FC_Q_MAIN]); | 
 | 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], | 
 | 				&sbi->s_fc_q[FC_Q_MAIN]); | 
 |  | 
 | 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING); | 
 | 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); | 
 |  | 
 | 	if (full) | 
 | 		sbi->s_fc_bytes = 0; | 
 | 	spin_unlock(&sbi->s_fc_lock); | 
 | 	trace_ext4_fc_stats(sb); | 
 | } | 
 |  | 
 | /* Ext4 Replay Path Routines */ | 
 |  | 
 | /* Helper struct for dentry replay routines */ | 
 | struct dentry_info_args { | 
 | 	int parent_ino, dname_len, ino, inode_len; | 
 | 	char *dname; | 
 | }; | 
 |  | 
 | static inline void tl_to_darg(struct dentry_info_args *darg, | 
 | 			      struct  ext4_fc_tl *tl, u8 *val) | 
 | { | 
 | 	struct ext4_fc_dentry_info fcd; | 
 |  | 
 | 	memcpy(&fcd, val, sizeof(fcd)); | 
 |  | 
 | 	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); | 
 | 	darg->ino = le32_to_cpu(fcd.fc_ino); | 
 | 	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); | 
 | 	darg->dname_len = le16_to_cpu(tl->fc_len) - | 
 | 		sizeof(struct ext4_fc_dentry_info); | 
 | } | 
 |  | 
 | /* Unlink replay function */ | 
 | static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl, | 
 | 				 u8 *val) | 
 | { | 
 | 	struct inode *inode, *old_parent; | 
 | 	struct qstr entry; | 
 | 	struct dentry_info_args darg; | 
 | 	int ret = 0; | 
 |  | 
 | 	tl_to_darg(&darg, tl, val); | 
 |  | 
 | 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, | 
 | 			darg.parent_ino, darg.dname_len); | 
 |  | 
 | 	entry.name = darg.dname; | 
 | 	entry.len = darg.dname_len; | 
 | 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); | 
 |  | 
 | 	if (IS_ERR(inode)) { | 
 | 		jbd_debug(1, "Inode %d not found", darg.ino); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	old_parent = ext4_iget(sb, darg.parent_ino, | 
 | 				EXT4_IGET_NORMAL); | 
 | 	if (IS_ERR(old_parent)) { | 
 | 		jbd_debug(1, "Dir with inode  %d not found", darg.parent_ino); | 
 | 		iput(inode); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret = __ext4_unlink(NULL, old_parent, &entry, inode); | 
 | 	/* -ENOENT ok coz it might not exist anymore. */ | 
 | 	if (ret == -ENOENT) | 
 | 		ret = 0; | 
 | 	iput(old_parent); | 
 | 	iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int ext4_fc_replay_link_internal(struct super_block *sb, | 
 | 				struct dentry_info_args *darg, | 
 | 				struct inode *inode) | 
 | { | 
 | 	struct inode *dir = NULL; | 
 | 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL; | 
 | 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); | 
 | 	int ret = 0; | 
 |  | 
 | 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); | 
 | 	if (IS_ERR(dir)) { | 
 | 		jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino); | 
 | 		dir = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dentry_dir = d_obtain_alias(dir); | 
 | 	if (IS_ERR(dentry_dir)) { | 
 | 		jbd_debug(1, "Failed to obtain dentry"); | 
 | 		dentry_dir = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dentry_inode = d_alloc(dentry_dir, &qstr_dname); | 
 | 	if (!dentry_inode) { | 
 | 		jbd_debug(1, "Inode dentry not created."); | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = __ext4_link(dir, inode, dentry_inode); | 
 | 	/* | 
 | 	 * It's possible that link already existed since data blocks | 
 | 	 * for the dir in question got persisted before we crashed OR | 
 | 	 * we replayed this tag and crashed before the entire replay | 
 | 	 * could complete. | 
 | 	 */ | 
 | 	if (ret && ret != -EEXIST) { | 
 | 		jbd_debug(1, "Failed to link\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 | out: | 
 | 	if (dentry_dir) { | 
 | 		d_drop(dentry_dir); | 
 | 		dput(dentry_dir); | 
 | 	} else if (dir) { | 
 | 		iput(dir); | 
 | 	} | 
 | 	if (dentry_inode) { | 
 | 		d_drop(dentry_inode); | 
 | 		dput(dentry_inode); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Link replay function */ | 
 | static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl, | 
 | 			       u8 *val) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct dentry_info_args darg; | 
 | 	int ret = 0; | 
 |  | 
 | 	tl_to_darg(&darg, tl, val); | 
 | 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, | 
 | 			darg.parent_ino, darg.dname_len); | 
 |  | 
 | 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); | 
 | 	if (IS_ERR(inode)) { | 
 | 		jbd_debug(1, "Inode not found."); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret = ext4_fc_replay_link_internal(sb, &darg, inode); | 
 | 	iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Record all the modified inodes during replay. We use this later to setup | 
 |  * block bitmaps correctly. | 
 |  */ | 
 | static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) | 
 | { | 
 | 	struct ext4_fc_replay_state *state; | 
 | 	int i; | 
 |  | 
 | 	state = &EXT4_SB(sb)->s_fc_replay_state; | 
 | 	for (i = 0; i < state->fc_modified_inodes_used; i++) | 
 | 		if (state->fc_modified_inodes[i] == ino) | 
 | 			return 0; | 
 | 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { | 
 | 		int *fc_modified_inodes; | 
 |  | 
 | 		fc_modified_inodes = krealloc(state->fc_modified_inodes, | 
 | 				sizeof(int) * (state->fc_modified_inodes_size + | 
 | 				EXT4_FC_REPLAY_REALLOC_INCREMENT), | 
 | 				GFP_KERNEL); | 
 | 		if (!fc_modified_inodes) | 
 | 			return -ENOMEM; | 
 | 		state->fc_modified_inodes = fc_modified_inodes; | 
 | 		state->fc_modified_inodes_size += | 
 | 			EXT4_FC_REPLAY_REALLOC_INCREMENT; | 
 | 	} | 
 | 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Inode replay function | 
 |  */ | 
 | static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl, | 
 | 				u8 *val) | 
 | { | 
 | 	struct ext4_fc_inode fc_inode; | 
 | 	struct ext4_inode *raw_inode; | 
 | 	struct ext4_inode *raw_fc_inode; | 
 | 	struct inode *inode = NULL; | 
 | 	struct ext4_iloc iloc; | 
 | 	int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag); | 
 | 	struct ext4_extent_header *eh; | 
 |  | 
 | 	memcpy(&fc_inode, val, sizeof(fc_inode)); | 
 |  | 
 | 	ino = le32_to_cpu(fc_inode.fc_ino); | 
 | 	trace_ext4_fc_replay(sb, tag, ino, 0, 0); | 
 |  | 
 | 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); | 
 | 	if (!IS_ERR(inode)) { | 
 | 		ext4_ext_clear_bb(inode); | 
 | 		iput(inode); | 
 | 	} | 
 | 	inode = NULL; | 
 |  | 
 | 	ret = ext4_fc_record_modified_inode(sb, ino); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	raw_fc_inode = (struct ext4_inode *) | 
 | 		(val + offsetof(struct ext4_fc_inode, fc_raw_inode)); | 
 | 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	inode_len = le16_to_cpu(tl->fc_len) - sizeof(struct ext4_fc_inode); | 
 | 	raw_inode = ext4_raw_inode(&iloc); | 
 |  | 
 | 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); | 
 | 	memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation, | 
 | 		inode_len - offsetof(struct ext4_inode, i_generation)); | 
 | 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { | 
 | 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); | 
 | 		if (eh->eh_magic != EXT4_EXT_MAGIC) { | 
 | 			memset(eh, 0, sizeof(*eh)); | 
 | 			eh->eh_magic = EXT4_EXT_MAGIC; | 
 | 			eh->eh_max = cpu_to_le16( | 
 | 				(sizeof(raw_inode->i_block) - | 
 | 				 sizeof(struct ext4_extent_header)) | 
 | 				 / sizeof(struct ext4_extent)); | 
 | 		} | 
 | 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { | 
 | 		memcpy(raw_inode->i_block, raw_fc_inode->i_block, | 
 | 			sizeof(raw_inode->i_block)); | 
 | 	} | 
 |  | 
 | 	/* Immediately update the inode on disk. */ | 
 | 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	ret = sync_dirty_buffer(iloc.bh); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	ret = ext4_mark_inode_used(sb, ino); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */ | 
 | 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); | 
 | 	if (IS_ERR(inode)) { | 
 | 		jbd_debug(1, "Inode not found."); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Our allocator could have made different decisions than before | 
 | 	 * crashing. This should be fixed but until then, we calculate | 
 | 	 * the number of blocks the inode. | 
 | 	 */ | 
 | 	ext4_ext_replay_set_iblocks(inode); | 
 |  | 
 | 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); | 
 | 	ext4_reset_inode_seed(inode); | 
 |  | 
 | 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); | 
 | 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); | 
 | 	sync_dirty_buffer(iloc.bh); | 
 | 	brelse(iloc.bh); | 
 | out: | 
 | 	iput(inode); | 
 | 	if (!ret) | 
 | 		blkdev_issue_flush(sb->s_bdev, GFP_KERNEL); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Dentry create replay function. | 
 |  * | 
 |  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the | 
 |  * inode for which we are trying to create a dentry here, should already have | 
 |  * been replayed before we start here. | 
 |  */ | 
 | static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl, | 
 | 				 u8 *val) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct inode *inode = NULL; | 
 | 	struct inode *dir = NULL; | 
 | 	struct dentry_info_args darg; | 
 |  | 
 | 	tl_to_darg(&darg, tl, val); | 
 |  | 
 | 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, | 
 | 			darg.parent_ino, darg.dname_len); | 
 |  | 
 | 	/* This takes care of update group descriptor and other metadata */ | 
 | 	ret = ext4_mark_inode_used(sb, darg.ino); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); | 
 | 	if (IS_ERR(inode)) { | 
 | 		jbd_debug(1, "inode %d not found.", darg.ino); | 
 | 		inode = NULL; | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (S_ISDIR(inode->i_mode)) { | 
 | 		/* | 
 | 		 * If we are creating a directory, we need to make sure that the | 
 | 		 * dot and dot dot dirents are setup properly. | 
 | 		 */ | 
 | 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); | 
 | 		if (IS_ERR(dir)) { | 
 | 			jbd_debug(1, "Dir %d not found.", darg.ino); | 
 | 			goto out; | 
 | 		} | 
 | 		ret = ext4_init_new_dir(NULL, dir, inode); | 
 | 		iput(dir); | 
 | 		if (ret) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	ret = ext4_fc_replay_link_internal(sb, &darg, inode); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	set_nlink(inode, 1); | 
 | 	ext4_mark_inode_dirty(NULL, inode); | 
 | out: | 
 | 	if (inode) | 
 | 		iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Record physical disk regions which are in use as per fast commit area, | 
 |  * and used by inodes during replay phase. Our simple replay phase | 
 |  * allocator excludes these regions from allocation. | 
 |  */ | 
 | int ext4_fc_record_regions(struct super_block *sb, int ino, | 
 | 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay) | 
 | { | 
 | 	struct ext4_fc_replay_state *state; | 
 | 	struct ext4_fc_alloc_region *region; | 
 |  | 
 | 	state = &EXT4_SB(sb)->s_fc_replay_state; | 
 | 	/* | 
 | 	 * during replay phase, the fc_regions_valid may not same as | 
 | 	 * fc_regions_used, update it when do new additions. | 
 | 	 */ | 
 | 	if (replay && state->fc_regions_used != state->fc_regions_valid) | 
 | 		state->fc_regions_used = state->fc_regions_valid; | 
 | 	if (state->fc_regions_used == state->fc_regions_size) { | 
 | 		struct ext4_fc_alloc_region *fc_regions; | 
 |  | 
 | 		fc_regions = krealloc(state->fc_regions, | 
 | 				      sizeof(struct ext4_fc_alloc_region) * | 
 | 				      (state->fc_regions_size + | 
 | 				       EXT4_FC_REPLAY_REALLOC_INCREMENT), | 
 | 				      GFP_KERNEL); | 
 | 		if (!fc_regions) | 
 | 			return -ENOMEM; | 
 | 		state->fc_regions_size += | 
 | 			EXT4_FC_REPLAY_REALLOC_INCREMENT; | 
 | 		state->fc_regions = fc_regions; | 
 | 	} | 
 | 	region = &state->fc_regions[state->fc_regions_used++]; | 
 | 	region->ino = ino; | 
 | 	region->lblk = lblk; | 
 | 	region->pblk = pblk; | 
 | 	region->len = len; | 
 |  | 
 | 	if (replay) | 
 | 		state->fc_regions_valid++; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Replay add range tag */ | 
 | static int ext4_fc_replay_add_range(struct super_block *sb, | 
 | 				    struct ext4_fc_tl *tl, u8 *val) | 
 | { | 
 | 	struct ext4_fc_add_range fc_add_ex; | 
 | 	struct ext4_extent newex, *ex; | 
 | 	struct inode *inode; | 
 | 	ext4_lblk_t start, cur; | 
 | 	int remaining, len; | 
 | 	ext4_fsblk_t start_pblk; | 
 | 	struct ext4_map_blocks map; | 
 | 	struct ext4_ext_path *path = NULL; | 
 | 	int ret; | 
 |  | 
 | 	memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); | 
 | 	ex = (struct ext4_extent *)&fc_add_ex.fc_ex; | 
 |  | 
 | 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, | 
 | 		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), | 
 | 		ext4_ext_get_actual_len(ex)); | 
 |  | 
 | 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); | 
 | 	if (IS_ERR(inode)) { | 
 | 		jbd_debug(1, "Inode not found."); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	start = le32_to_cpu(ex->ee_block); | 
 | 	start_pblk = ext4_ext_pblock(ex); | 
 | 	len = ext4_ext_get_actual_len(ex); | 
 |  | 
 | 	cur = start; | 
 | 	remaining = len; | 
 | 	jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", | 
 | 		  start, start_pblk, len, ext4_ext_is_unwritten(ex), | 
 | 		  inode->i_ino); | 
 |  | 
 | 	while (remaining > 0) { | 
 | 		map.m_lblk = cur; | 
 | 		map.m_len = remaining; | 
 | 		map.m_pblk = 0; | 
 | 		ret = ext4_map_blocks(NULL, inode, &map, 0); | 
 |  | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		if (ret == 0) { | 
 | 			/* Range is not mapped */ | 
 | 			path = ext4_find_extent(inode, cur, NULL, 0); | 
 | 			if (IS_ERR(path)) | 
 | 				goto out; | 
 | 			memset(&newex, 0, sizeof(newex)); | 
 | 			newex.ee_block = cpu_to_le32(cur); | 
 | 			ext4_ext_store_pblock( | 
 | 				&newex, start_pblk + cur - start); | 
 | 			newex.ee_len = cpu_to_le16(map.m_len); | 
 | 			if (ext4_ext_is_unwritten(ex)) | 
 | 				ext4_ext_mark_unwritten(&newex); | 
 | 			down_write(&EXT4_I(inode)->i_data_sem); | 
 | 			ret = ext4_ext_insert_extent( | 
 | 				NULL, inode, &path, &newex, 0); | 
 | 			up_write((&EXT4_I(inode)->i_data_sem)); | 
 | 			ext4_ext_drop_refs(path); | 
 | 			kfree(path); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		if (start_pblk + cur - start != map.m_pblk) { | 
 | 			/* | 
 | 			 * Logical to physical mapping changed. This can happen | 
 | 			 * if this range was removed and then reallocated to | 
 | 			 * map to new physical blocks during a fast commit. | 
 | 			 */ | 
 | 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, | 
 | 					ext4_ext_is_unwritten(ex), | 
 | 					start_pblk + cur - start); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			/* | 
 | 			 * Mark the old blocks as free since they aren't used | 
 | 			 * anymore. We maintain an array of all the modified | 
 | 			 * inodes. In case these blocks are still used at either | 
 | 			 * a different logical range in the same inode or in | 
 | 			 * some different inode, we will mark them as allocated | 
 | 			 * at the end of the FC replay using our array of | 
 | 			 * modified inodes. | 
 | 			 */ | 
 | 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		/* Range is mapped and needs a state change */ | 
 | 		jbd_debug(1, "Converting from %ld to %d %lld", | 
 | 				map.m_flags & EXT4_MAP_UNWRITTEN, | 
 | 			ext4_ext_is_unwritten(ex), map.m_pblk); | 
 | 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, | 
 | 					ext4_ext_is_unwritten(ex), map.m_pblk); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		/* | 
 | 		 * We may have split the extent tree while toggling the state. | 
 | 		 * Try to shrink the extent tree now. | 
 | 		 */ | 
 | 		ext4_ext_replay_shrink_inode(inode, start + len); | 
 | next: | 
 | 		cur += map.m_len; | 
 | 		remaining -= map.m_len; | 
 | 	} | 
 | 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> | 
 | 					sb->s_blocksize_bits); | 
 | out: | 
 | 	iput(inode); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Replay DEL_RANGE tag */ | 
 | static int | 
 | ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl, | 
 | 			 u8 *val) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct ext4_fc_del_range lrange; | 
 | 	struct ext4_map_blocks map; | 
 | 	ext4_lblk_t cur, remaining; | 
 | 	int ret; | 
 |  | 
 | 	memcpy(&lrange, val, sizeof(lrange)); | 
 | 	cur = le32_to_cpu(lrange.fc_lblk); | 
 | 	remaining = le32_to_cpu(lrange.fc_len); | 
 |  | 
 | 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, | 
 | 		le32_to_cpu(lrange.fc_ino), cur, remaining); | 
 |  | 
 | 	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); | 
 | 	if (IS_ERR(inode)) { | 
 | 		jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange.fc_ino)); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n", | 
 | 			inode->i_ino, le32_to_cpu(lrange.fc_lblk), | 
 | 			le32_to_cpu(lrange.fc_len)); | 
 | 	while (remaining > 0) { | 
 | 		map.m_lblk = cur; | 
 | 		map.m_len = remaining; | 
 |  | 
 | 		ret = ext4_map_blocks(NULL, inode, &map, 0); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (ret > 0) { | 
 | 			remaining -= ret; | 
 | 			cur += ret; | 
 | 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); | 
 | 		} else { | 
 | 			remaining -= map.m_len; | 
 | 			cur += map.m_len; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	down_write(&EXT4_I(inode)->i_data_sem); | 
 | 	ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk), | 
 | 				le32_to_cpu(lrange.fc_lblk) + | 
 | 				le32_to_cpu(lrange.fc_len) - 1); | 
 | 	up_write(&EXT4_I(inode)->i_data_sem); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	ext4_ext_replay_shrink_inode(inode, | 
 | 		i_size_read(inode) >> sb->s_blocksize_bits); | 
 | 	ext4_mark_inode_dirty(NULL, inode); | 
 | out: | 
 | 	iput(inode); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline const char *tag2str(u16 tag) | 
 | { | 
 | 	switch (tag) { | 
 | 	case EXT4_FC_TAG_LINK: | 
 | 		return "TAG_ADD_ENTRY"; | 
 | 	case EXT4_FC_TAG_UNLINK: | 
 | 		return "TAG_DEL_ENTRY"; | 
 | 	case EXT4_FC_TAG_ADD_RANGE: | 
 | 		return "TAG_ADD_RANGE"; | 
 | 	case EXT4_FC_TAG_CREAT: | 
 | 		return "TAG_CREAT_DENTRY"; | 
 | 	case EXT4_FC_TAG_DEL_RANGE: | 
 | 		return "TAG_DEL_RANGE"; | 
 | 	case EXT4_FC_TAG_INODE: | 
 | 		return "TAG_INODE"; | 
 | 	case EXT4_FC_TAG_PAD: | 
 | 		return "TAG_PAD"; | 
 | 	case EXT4_FC_TAG_TAIL: | 
 | 		return "TAG_TAIL"; | 
 | 	case EXT4_FC_TAG_HEAD: | 
 | 		return "TAG_HEAD"; | 
 | 	default: | 
 | 		return "TAG_ERROR"; | 
 | 	} | 
 | } | 
 |  | 
 | static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) | 
 | { | 
 | 	struct ext4_fc_replay_state *state; | 
 | 	struct inode *inode; | 
 | 	struct ext4_ext_path *path = NULL; | 
 | 	struct ext4_map_blocks map; | 
 | 	int i, ret, j; | 
 | 	ext4_lblk_t cur, end; | 
 |  | 
 | 	state = &EXT4_SB(sb)->s_fc_replay_state; | 
 | 	for (i = 0; i < state->fc_modified_inodes_used; i++) { | 
 | 		inode = ext4_iget(sb, state->fc_modified_inodes[i], | 
 | 			EXT4_IGET_NORMAL); | 
 | 		if (IS_ERR(inode)) { | 
 | 			jbd_debug(1, "Inode %d not found.", | 
 | 				state->fc_modified_inodes[i]); | 
 | 			continue; | 
 | 		} | 
 | 		cur = 0; | 
 | 		end = EXT_MAX_BLOCKS; | 
 | 		while (cur < end) { | 
 | 			map.m_lblk = cur; | 
 | 			map.m_len = end - cur; | 
 |  | 
 | 			ret = ext4_map_blocks(NULL, inode, &map, 0); | 
 | 			if (ret < 0) | 
 | 				break; | 
 |  | 
 | 			if (ret > 0) { | 
 | 				path = ext4_find_extent(inode, map.m_lblk, NULL, 0); | 
 | 				if (!IS_ERR(path)) { | 
 | 					for (j = 0; j < path->p_depth; j++) | 
 | 						ext4_mb_mark_bb(inode->i_sb, | 
 | 							path[j].p_block, 1, 1); | 
 | 					ext4_ext_drop_refs(path); | 
 | 					kfree(path); | 
 | 				} | 
 | 				cur += ret; | 
 | 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk, | 
 | 							map.m_len, 1); | 
 | 			} else { | 
 | 				cur = cur + (map.m_len ? map.m_len : 1); | 
 | 			} | 
 | 		} | 
 | 		iput(inode); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Check if block is in excluded regions for block allocation. The simple | 
 |  * allocator that runs during replay phase is calls this function to see | 
 |  * if it is okay to use a block. | 
 |  */ | 
 | bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) | 
 | { | 
 | 	int i; | 
 | 	struct ext4_fc_replay_state *state; | 
 |  | 
 | 	state = &EXT4_SB(sb)->s_fc_replay_state; | 
 | 	for (i = 0; i < state->fc_regions_valid; i++) { | 
 | 		if (state->fc_regions[i].ino == 0 || | 
 | 			state->fc_regions[i].len == 0) | 
 | 			continue; | 
 | 		if (blk >= state->fc_regions[i].pblk && | 
 | 		    blk < state->fc_regions[i].pblk + state->fc_regions[i].len) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Cleanup function called after replay */ | 
 | void ext4_fc_replay_cleanup(struct super_block *sb) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 |  | 
 | 	sbi->s_mount_state &= ~EXT4_FC_REPLAY; | 
 | 	kfree(sbi->s_fc_replay_state.fc_regions); | 
 | 	kfree(sbi->s_fc_replay_state.fc_modified_inodes); | 
 | } | 
 |  | 
 | /* | 
 |  * Recovery Scan phase handler | 
 |  * | 
 |  * This function is called during the scan phase and is responsible | 
 |  * for doing following things: | 
 |  * - Make sure the fast commit area has valid tags for replay | 
 |  * - Count number of tags that need to be replayed by the replay handler | 
 |  * - Verify CRC | 
 |  * - Create a list of excluded blocks for allocation during replay phase | 
 |  * | 
 |  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is | 
 |  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP | 
 |  * to indicate that scan has finished and JBD2 can now start replay phase. | 
 |  * It returns a negative error to indicate that there was an error. At the end | 
 |  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set | 
 |  * to indicate the number of tags that need to replayed during the replay phase. | 
 |  */ | 
 | static int ext4_fc_replay_scan(journal_t *journal, | 
 | 				struct buffer_head *bh, int off, | 
 | 				tid_t expected_tid) | 
 | { | 
 | 	struct super_block *sb = journal->j_private; | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 	struct ext4_fc_replay_state *state; | 
 | 	int ret = JBD2_FC_REPLAY_CONTINUE; | 
 | 	struct ext4_fc_add_range ext; | 
 | 	struct ext4_fc_tl tl; | 
 | 	struct ext4_fc_tail tail; | 
 | 	__u8 *start, *end, *cur, *val; | 
 | 	struct ext4_fc_head head; | 
 | 	struct ext4_extent *ex; | 
 |  | 
 | 	state = &sbi->s_fc_replay_state; | 
 |  | 
 | 	start = (u8 *)bh->b_data; | 
 | 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1; | 
 |  | 
 | 	if (state->fc_replay_expected_off == 0) { | 
 | 		state->fc_cur_tag = 0; | 
 | 		state->fc_replay_num_tags = 0; | 
 | 		state->fc_crc = 0; | 
 | 		state->fc_regions = NULL; | 
 | 		state->fc_regions_valid = state->fc_regions_used = | 
 | 			state->fc_regions_size = 0; | 
 | 		/* Check if we can stop early */ | 
 | 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) | 
 | 			!= EXT4_FC_TAG_HEAD) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	if (off != state->fc_replay_expected_off) { | 
 | 		ret = -EFSCORRUPTED; | 
 | 		goto out_err; | 
 | 	} | 
 |  | 
 | 	state->fc_replay_expected_off++; | 
 | 	for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) { | 
 | 		memcpy(&tl, cur, sizeof(tl)); | 
 | 		val = cur + sizeof(tl); | 
 | 		jbd_debug(3, "Scan phase, tag:%s, blk %lld\n", | 
 | 			  tag2str(le16_to_cpu(tl.fc_tag)), bh->b_blocknr); | 
 | 		switch (le16_to_cpu(tl.fc_tag)) { | 
 | 		case EXT4_FC_TAG_ADD_RANGE: | 
 | 			memcpy(&ext, val, sizeof(ext)); | 
 | 			ex = (struct ext4_extent *)&ext.fc_ex; | 
 | 			ret = ext4_fc_record_regions(sb, | 
 | 				le32_to_cpu(ext.fc_ino), | 
 | 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), | 
 | 				ext4_ext_get_actual_len(ex), 0); | 
 | 			if (ret < 0) | 
 | 				break; | 
 | 			ret = JBD2_FC_REPLAY_CONTINUE; | 
 | 			fallthrough; | 
 | 		case EXT4_FC_TAG_DEL_RANGE: | 
 | 		case EXT4_FC_TAG_LINK: | 
 | 		case EXT4_FC_TAG_UNLINK: | 
 | 		case EXT4_FC_TAG_CREAT: | 
 | 		case EXT4_FC_TAG_INODE: | 
 | 		case EXT4_FC_TAG_PAD: | 
 | 			state->fc_cur_tag++; | 
 | 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, | 
 | 					sizeof(tl) + le16_to_cpu(tl.fc_len)); | 
 | 			break; | 
 | 		case EXT4_FC_TAG_TAIL: | 
 | 			state->fc_cur_tag++; | 
 | 			memcpy(&tail, val, sizeof(tail)); | 
 | 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, | 
 | 						sizeof(tl) + | 
 | 						offsetof(struct ext4_fc_tail, | 
 | 						fc_crc)); | 
 | 			if (le32_to_cpu(tail.fc_tid) == expected_tid && | 
 | 				le32_to_cpu(tail.fc_crc) == state->fc_crc) { | 
 | 				state->fc_replay_num_tags = state->fc_cur_tag; | 
 | 				state->fc_regions_valid = | 
 | 					state->fc_regions_used; | 
 | 			} else { | 
 | 				ret = state->fc_replay_num_tags ? | 
 | 					JBD2_FC_REPLAY_STOP : -EFSBADCRC; | 
 | 			} | 
 | 			state->fc_crc = 0; | 
 | 			break; | 
 | 		case EXT4_FC_TAG_HEAD: | 
 | 			memcpy(&head, val, sizeof(head)); | 
 | 			if (le32_to_cpu(head.fc_features) & | 
 | 				~EXT4_FC_SUPPORTED_FEATURES) { | 
 | 				ret = -EOPNOTSUPP; | 
 | 				break; | 
 | 			} | 
 | 			if (le32_to_cpu(head.fc_tid) != expected_tid) { | 
 | 				ret = JBD2_FC_REPLAY_STOP; | 
 | 				break; | 
 | 			} | 
 | 			state->fc_cur_tag++; | 
 | 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, | 
 | 					    sizeof(tl) + le16_to_cpu(tl.fc_len)); | 
 | 			break; | 
 | 		default: | 
 | 			ret = state->fc_replay_num_tags ? | 
 | 				JBD2_FC_REPLAY_STOP : -ECANCELED; | 
 | 		} | 
 | 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) | 
 | 			break; | 
 | 	} | 
 |  | 
 | out_err: | 
 | 	trace_ext4_fc_replay_scan(sb, ret, off); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Main recovery path entry point. | 
 |  * The meaning of return codes is similar as above. | 
 |  */ | 
 | static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, | 
 | 				enum passtype pass, int off, tid_t expected_tid) | 
 | { | 
 | 	struct super_block *sb = journal->j_private; | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 	struct ext4_fc_tl tl; | 
 | 	__u8 *start, *end, *cur, *val; | 
 | 	int ret = JBD2_FC_REPLAY_CONTINUE; | 
 | 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; | 
 | 	struct ext4_fc_tail tail; | 
 |  | 
 | 	if (pass == PASS_SCAN) { | 
 | 		state->fc_current_pass = PASS_SCAN; | 
 | 		return ext4_fc_replay_scan(journal, bh, off, expected_tid); | 
 | 	} | 
 |  | 
 | 	if (state->fc_current_pass != pass) { | 
 | 		state->fc_current_pass = pass; | 
 | 		sbi->s_mount_state |= EXT4_FC_REPLAY; | 
 | 	} | 
 | 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) { | 
 | 		jbd_debug(1, "Replay stops\n"); | 
 | 		ext4_fc_set_bitmaps_and_counters(sb); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_EXT4_DEBUG | 
 | 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { | 
 | 		pr_warn("Dropping fc block %d because max_replay set\n", off); | 
 | 		return JBD2_FC_REPLAY_STOP; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	start = (u8 *)bh->b_data; | 
 | 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1; | 
 |  | 
 | 	for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) { | 
 | 		memcpy(&tl, cur, sizeof(tl)); | 
 | 		val = cur + sizeof(tl); | 
 |  | 
 | 		if (state->fc_replay_num_tags == 0) { | 
 | 			ret = JBD2_FC_REPLAY_STOP; | 
 | 			ext4_fc_set_bitmaps_and_counters(sb); | 
 | 			break; | 
 | 		} | 
 | 		jbd_debug(3, "Replay phase, tag:%s\n", | 
 | 				tag2str(le16_to_cpu(tl.fc_tag))); | 
 | 		state->fc_replay_num_tags--; | 
 | 		switch (le16_to_cpu(tl.fc_tag)) { | 
 | 		case EXT4_FC_TAG_LINK: | 
 | 			ret = ext4_fc_replay_link(sb, &tl, val); | 
 | 			break; | 
 | 		case EXT4_FC_TAG_UNLINK: | 
 | 			ret = ext4_fc_replay_unlink(sb, &tl, val); | 
 | 			break; | 
 | 		case EXT4_FC_TAG_ADD_RANGE: | 
 | 			ret = ext4_fc_replay_add_range(sb, &tl, val); | 
 | 			break; | 
 | 		case EXT4_FC_TAG_CREAT: | 
 | 			ret = ext4_fc_replay_create(sb, &tl, val); | 
 | 			break; | 
 | 		case EXT4_FC_TAG_DEL_RANGE: | 
 | 			ret = ext4_fc_replay_del_range(sb, &tl, val); | 
 | 			break; | 
 | 		case EXT4_FC_TAG_INODE: | 
 | 			ret = ext4_fc_replay_inode(sb, &tl, val); | 
 | 			break; | 
 | 		case EXT4_FC_TAG_PAD: | 
 | 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, | 
 | 					     le16_to_cpu(tl.fc_len), 0); | 
 | 			break; | 
 | 		case EXT4_FC_TAG_TAIL: | 
 | 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0, | 
 | 					     le16_to_cpu(tl.fc_len), 0); | 
 | 			memcpy(&tail, val, sizeof(tail)); | 
 | 			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); | 
 | 			break; | 
 | 		case EXT4_FC_TAG_HEAD: | 
 | 			break; | 
 | 		default: | 
 | 			trace_ext4_fc_replay(sb, le16_to_cpu(tl.fc_tag), 0, | 
 | 					     le16_to_cpu(tl.fc_len), 0); | 
 | 			ret = -ECANCELED; | 
 | 			break; | 
 | 		} | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		ret = JBD2_FC_REPLAY_CONTINUE; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | void ext4_fc_init(struct super_block *sb, journal_t *journal) | 
 | { | 
 | 	/* | 
 | 	 * We set replay callback even if fast commit disabled because we may | 
 | 	 * could still have fast commit blocks that need to be replayed even if | 
 | 	 * fast commit has now been turned off. | 
 | 	 */ | 
 | 	journal->j_fc_replay_callback = ext4_fc_replay; | 
 | 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) | 
 | 		return; | 
 | 	journal->j_fc_cleanup_callback = ext4_fc_cleanup; | 
 | } | 
 |  | 
 | static const char *fc_ineligible_reasons[] = { | 
 | 	"Extended attributes changed", | 
 | 	"Cross rename", | 
 | 	"Journal flag changed", | 
 | 	"Insufficient memory", | 
 | 	"Swap boot", | 
 | 	"Resize", | 
 | 	"Dir renamed", | 
 | 	"Falloc range op", | 
 | 	"Data journalling", | 
 | 	"FC Commit Failed" | 
 | }; | 
 |  | 
 | int ext4_fc_info_show(struct seq_file *seq, void *v) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); | 
 | 	struct ext4_fc_stats *stats = &sbi->s_fc_stats; | 
 | 	int i; | 
 |  | 
 | 	if (v != SEQ_START_TOKEN) | 
 | 		return 0; | 
 |  | 
 | 	seq_printf(seq, | 
 | 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", | 
 | 		   stats->fc_num_commits, stats->fc_ineligible_commits, | 
 | 		   stats->fc_numblks, | 
 | 		   div_u64(sbi->s_fc_avg_commit_time, 1000)); | 
 | 	seq_puts(seq, "Ineligible reasons:\n"); | 
 | 	for (i = 0; i < EXT4_FC_REASON_MAX; i++) | 
 | 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], | 
 | 			stats->fc_ineligible_reason_count[i]); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __init ext4_fc_init_dentry_cache(void) | 
 | { | 
 | 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, | 
 | 					   SLAB_RECLAIM_ACCOUNT); | 
 |  | 
 | 	if (ext4_fc_dentry_cachep == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void ext4_fc_destroy_dentry_cache(void) | 
 | { | 
 | 	kmem_cache_destroy(ext4_fc_dentry_cachep); | 
 | } |