blob: 7a81e4df955b9deb2967f5f3434b91055c33a522 [file] [log] [blame]
/*
* Linux cfg80211 Vendor Extension Code
*
* Copyright (C) 2022, Broadcom.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
*
* <<Broadcom-WL-IPTag/Dual:>>
*/
/*
* New vendor interface additon to nl80211/cfg80211 to allow vendors
* to implement proprietary features over the cfg80211 stack.
*/
#include <typedefs.h>
#include <linuxver.h>
#include <osl.h>
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <bcmutils.h>
#include <bcmwifi_channels.h>
#include <bcmendian.h>
#include <ethernet.h>
#include <802.11.h>
#include <linux/if_arp.h>
#include <asm/uaccess.h>
#if defined(BCMDONGLEHOST)
#include <dngl_stats.h>
#include "wifi_stats.h"
#include <dhd.h>
#include <dhd_debug.h>
#include <dhdioctl.h>
#include <wlioctl.h>
#include <wlioctl_utils.h>
#include <dhd_cfg80211.h>
#ifdef DHD_PKT_LOGGING
#include <dhd_pktlog.h>
#endif /* DHD_PKT_LOGGING */
#ifdef PNO_SUPPORT
#include <dhd_pno.h>
#endif /* PNO_SUPPORT */
#ifdef RTT_SUPPORT
#include <dhd_rtt.h>
#endif /* RTT_SUPPORT */
#endif /* defined(BCMDONGLEHOST) */
#include <ethernet.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/netdevice.h>
#include <linux/sched.h>
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <linux/ieee80211.h>
#include <linux/wait.h>
#include <linux/list_sort.h>
#include <net/cfg80211.h>
#include <net/rtnetlink.h>
#include <wlioctl.h>
#include <wldev_common.h>
#include <wl_cfg80211.h>
#include <wl_cfgp2p.h>
#include <wl_cfgscan.h>
#include <wl_cfgvif.h>
#ifdef WL_NAN
#include <wl_cfgnan.h>
#endif /* WL_NAN */
#include <wl_android.h>
#include <wl_cfgvendor.h>
#ifdef PROP_TXSTATUS
#include <dhd_wlfc.h>
#endif
#include <brcm_nl80211.h>
#ifdef WL_CELLULAR_CHAN_AVOID
#include <wl_cfg_cellavoid.h>
#endif /* WL_CELLULAR_CHAN_AVOID */
#ifdef WL_CFGVENDOR_CUST_ADVLOG
static void wl_cfgvendor_custom_advlog_scan_start(void *plog, uint32 armcycle);
static void wl_cfgvendor_custom_advlog_scan_cmpl(void *plog, uint32 armcycle);
static void wl_cfgvendor_custom_advlog_roam_cmpl(void *plog, uint32 armcycle);
static void wl_cfgvendor_custom_advlog_btm_req(void *plog, uint32 armcycle);
static void wl_cfgvendor_custom_advlog_btm_resp(void *plog, uint32 armcycle);
static void wl_cfgvendor_custom_advlog_btm_wtc(void *plog, uint32 armcycle);
static void wl_cfgvendor_custom_advlog_btm_query(void *plog, uint32 armcycle);
typedef void (*print_advlog_func)(void *log, uint32 armcycle);
typedef struct _pr_advlog_tbl {
uint8 id;
print_advlog_func advlog_func;
} pr_advlog_tbl_t;
typedef struct dhd_covt_roam_rsn {
uint roam_rsn;
uint cust_roam_rsn;
} dhd_covt_roam_rsn_t;
typedef enum {
WL_CUST_ROAM_REASON_UNKNOWN = 0,
WL_CUST_ROAM_REASON_LOW_RSSI,
WL_CUST_ROAM_REASON_LOW_RSSI_CU,
WL_CUST_ROAM_REASON_BCNS_LOST,
WL_CUST_ROAM_REASON_EMERG_ROAM,
WL_CUST_ROAM_REASON_BTM_REQ,
WL_CUST_ROAM_REASON_IDLE_ROAM,
WL_CUST_ROAM_REASON_WTC,
WL_CUST_ROAM_REASON_INACTIVITY,
WL_CUST_ROAM_REASON_SCAN_TIMEOUT,
WL_CUST_ROAM_REASON_BTCOEX,
WL_CUST_ROAM_REASON_MAX
} cust_roam_reason_t;
static dhd_covt_roam_rsn_t dhd_covt_roam_rsn_list[] =
{
{WLC_E_REASON_INITIAL_ASSOC, WL_CUST_ROAM_REASON_UNKNOWN},
{WLC_E_REASON_LOW_RSSI, WL_CUST_ROAM_REASON_LOW_RSSI},
{WLC_E_REASON_DEAUTH, WL_CUST_ROAM_REASON_EMERG_ROAM},
{WLC_E_REASON_DISASSOC, WL_CUST_ROAM_REASON_EMERG_ROAM},
{WLC_E_REASON_BCNS_LOST, WL_CUST_ROAM_REASON_BCNS_LOST},
{WLC_E_REASON_BSSTRANS_REQ, WL_CUST_ROAM_REASON_BTM_REQ},
{WLC_E_REASON_LOW_RSSI_CU, WL_CUST_ROAM_REASON_LOW_RSSI_CU},
{WLC_E_REASON_SILENT_ROAM, WL_CUST_ROAM_REASON_IDLE_ROAM},
{WLC_E_REASON_INACTIVITY, WL_CUST_ROAM_REASON_INACTIVITY},
{WLC_E_REASON_ROAM_SCAN_TIMEOUT, WL_CUST_ROAM_REASON_SCAN_TIMEOUT},
{WLC_E_REASON_BTCX_ROAM, WL_CUST_ROAM_REASON_BTCOEX}
};
static const pr_advlog_tbl_t advlog_print_tbl[] =
{
{ROAM_LOG_SCANSTART, wl_cfgvendor_custom_advlog_scan_start},
{ROAM_LOG_SCAN_CMPLT, wl_cfgvendor_custom_advlog_scan_cmpl},
{ROAM_LOG_ROAM_CMPLT, wl_cfgvendor_custom_advlog_roam_cmpl},
{ROAM_LOG_BTM_REP, wl_cfgvendor_custom_advlog_btm_resp},
{ROAM_LOG_WTC_BTM_REP, wl_cfgvendor_custom_advlog_btm_wtc},
{ROAM_LOG_BTM_QUERY, wl_cfgvendor_custom_advlog_btm_query},
{ROAM_LOG_BTM_REQ, wl_cfgvendor_custom_advlog_btm_req},
{PRSV_PERIODIC_ID_MAX, NULL}
};
#endif /* WL_CFGVENDOR_CUST_ADVLOG */
char*
wl_get_kernel_timestamp(void)
{
static char buf[32];
u64 ts_nsec;
unsigned long rem_nsec;
ts_nsec = local_clock();
rem_nsec = DIV_AND_MOD_U64_BY_U32(ts_nsec, NSEC_PER_SEC);
snprintf(buf, sizeof(buf), "%5lu.%06lu",
(unsigned long)ts_nsec, rem_nsec / NSEC_PER_USEC);
return buf;
}
#if (LINUX_VERSION_CODE > KERNEL_VERSION(3, 13, 0)) || defined(WL_VENDOR_EXT_SUPPORT)
#if defined(WL_SUPP_EVENT)
int
wl_cfgvendor_send_supp_eventstring(const char *func_name, const char *fmt, ...)
{
char buf[SUPP_LOG_LEN] = {0};
struct bcm_cfg80211 *cfg;
struct wiphy *wiphy;
va_list args;
int len;
int prefix_len;
int rem_len;
cfg = wl_cfg80211_get_bcmcfg();
if (!cfg || !cfg->wdev) {
WL_DBG(("supp evt invalid arg\n"));
return BCME_OK;
}
wiphy = cfg->wdev->wiphy;
prefix_len = snprintf(buf, SUPP_LOG_LEN, "[DHD]<%s> %s: ",
wl_get_kernel_timestamp(), __func__);
/* Remaining buffer len */
rem_len = SUPP_LOG_LEN - (prefix_len + 1);
/* Print the arg list on to the remaining part of the buffer */
va_start(args, fmt);
len = vsnprintf((buf + prefix_len), rem_len, fmt, args);
va_end(args);
if (len < 0) {
return -EINVAL;
}
if (len > rem_len) {
/* If return length is greater than buffer len,
* then its truncated buffer case.
*/
len = rem_len;
}
/* Ensure the buffer is null terminated */
len += prefix_len;
buf[len] = '\0';
len++;
return wl_cfgvendor_send_async_event(wiphy,
bcmcfg_to_prmry_ndev(cfg), BRCM_VENDOR_EVENT_PRIV_STR, buf, len);
}
int
wl_cfgvendor_notify_supp_event_str(const char *evt_name, const char *fmt, ...)
{
char buf[SUPP_LOG_LEN] = {0};
struct bcm_cfg80211 *cfg;
struct wiphy *wiphy;
va_list args;
int len;
int prefix_len;
int rem_len;
cfg = wl_cfg80211_get_bcmcfg();
if (!cfg || !cfg->wdev) {
WL_DBG(("supp evt invalid arg\n"));
return BCME_OK;
}
wiphy = cfg->wdev->wiphy;
prefix_len = snprintf(buf, SUPP_LOG_LEN, "%s ", evt_name);
/* Remaining buffer len */
rem_len = SUPP_LOG_LEN - (prefix_len + 1);
/* Print the arg list on to the remaining part of the buffer */
va_start(args, fmt);
len = vsnprintf((buf + prefix_len), rem_len, fmt, args);
va_end(args);
if (len < 0) {
return -EINVAL;
}
if (len > rem_len) {
/* If return length is greater than buffer len,
* then its truncated buffer case.
*/
len = rem_len;
}
/* Ensure the buffer is null terminated */
len += prefix_len;
buf[len] = '\0';
len++;
return wl_cfgvendor_send_async_event(wiphy,
bcmcfg_to_prmry_ndev(cfg), BRCM_VENDOR_EVENT_PRIV_STR, buf, len);
}
#ifdef WL_CFGVENDOR_CUST_ADVLOG
int
wl_cfgvendor_send_supp_advlog(const char *fmt, ...)
{
char buf[SUPP_LOG_LEN] = {0};
struct bcm_cfg80211 *cfg;
struct wiphy *wiphy;
va_list args;
int len;
int prefix_len;
int rem_len;
cfg = wl_cfg80211_get_bcmcfg();
if (!cfg || !cfg->wdev) {
WL_DBG(("supp evt invalid arg\n"));
return BCME_OK;
}
wiphy = cfg->wdev->wiphy;
prefix_len = snprintf(buf, SUPP_LOG_LEN, "[%s]",
wl_get_kernel_timestamp());
/* Remaining buffer len */
rem_len = SUPP_LOG_LEN - (prefix_len + 1);
/* Print the arg list on to the remaining part of the buffer */
va_start(args, fmt);
len = vsnprintf((buf + prefix_len), rem_len, fmt, args);
va_end(args);
if (len < 0) {
return -EINVAL;
}
if (len > rem_len) {
/* If return length is greater than buffer len,
* then its truncated buffer case.
*/
len = rem_len;
}
/* Ensure the buffer is null terminated */
len += prefix_len;
buf[len] = '\0';
len++;
return wl_cfgvendor_send_async_event(wiphy,
bcmcfg_to_prmry_ndev(cfg), BRCM_VENDOR_EVENT_CONNECTIVITY_LOG,
buf, len);
}
#endif /* WL_CFGVENDOR_CUST_ADVLOG */
#endif /* WL_SUPP_EVENT */
/*
* This API is to be used for asynchronous vendor events. This
* shouldn't be used in response to a vendor command from its
* do_it handler context (instead wl_cfgvendor_send_cmd_reply should
* be used).
*/
int wl_cfgvendor_send_async_event(struct wiphy *wiphy,
struct net_device *dev, int event_id, const void *data, int len)
{
gfp_t kflags;
struct sk_buff *skb;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, ndev_to_wdev(dev), len, event_id, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, len, event_id, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return -ENOMEM;
}
/* Push the data to the skb */
nla_put_nohdr(skb, len, data);
cfg80211_vendor_event(skb, kflags);
return 0;
}
static int
wl_cfgvendor_send_cmd_reply(struct wiphy *wiphy,
const void *data, int len)
{
struct sk_buff *skb;
int err;
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
err = -ENOMEM;
goto exit;
}
/* Push the data to the skb */
nla_put_nohdr(skb, len, data);
err = cfg80211_vendor_cmd_reply(skb);
exit:
WL_DBG(("wl_cfgvendor_send_cmd_reply status %d", err));
return err;
}
static int
wl_cfgvendor_get_feature_set(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int reply;
reply = dhd_dev_get_feature_set(bcmcfg_to_prmry_ndev(cfg));
err = wl_cfgvendor_send_cmd_reply(wiphy, &reply, sizeof(int));
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
return err;
}
static int
wl_cfgvendor_get_feature_set_matrix(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct sk_buff *skb;
int reply;
int mem_needed, i;
mem_needed = VENDOR_REPLY_OVERHEAD +
(ATTRIBUTE_U32_LEN * MAX_FEATURE_SET_CONCURRRENT_GROUPS) + ATTRIBUTE_U32_LEN;
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
err = -ENOMEM;
goto exit;
}
err = nla_put_u32(skb, ANDR_WIFI_ATTRIBUTE_NUM_FEATURE_SET,
MAX_FEATURE_SET_CONCURRRENT_GROUPS);
if (unlikely(err)) {
kfree_skb(skb);
goto exit;
}
for (i = 0; i < MAX_FEATURE_SET_CONCURRRENT_GROUPS; i++) {
reply = dhd_dev_get_feature_set_matrix(bcmcfg_to_prmry_ndev(cfg), i);
if (reply != WIFI_FEATURE_INVALID) {
err = nla_put_u32(skb, ANDR_WIFI_ATTRIBUTE_FEATURE_SET,
reply);
if (unlikely(err)) {
kfree_skb(skb);
goto exit;
}
}
}
err = cfg80211_vendor_cmd_reply(skb);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
}
exit:
return err;
}
static int
wl_cfgvendor_set_rand_mac_oui(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = -EINVAL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
if (!data) {
WL_ERR(("data is not available\n"));
goto exit;
}
if (len <= 0) {
WL_ERR(("invalid len %d\n", len));
goto exit;
}
type = nla_type(data);
if (type == ANDR_WIFI_ATTRIBUTE_RANDOM_MAC_OUI) {
if (nla_len(data) != DOT11_OUI_LEN) {
WL_ERR(("nla_len not matched.\n"));
goto exit;
}
err = dhd_dev_cfg_rand_mac_oui(bcmcfg_to_prmry_ndev(cfg), nla_data(data));
if (unlikely(err))
WL_ERR(("Bad OUI, could not set:%d \n", err));
}
exit:
return err;
}
#ifdef CUSTOM_FORCE_NODFS_FLAG
static int
wl_cfgvendor_set_nodfs_flag(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = -EINVAL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
u32 nodfs;
if (!data) {
WL_ERR(("data is not available\n"));
return -EINVAL;
}
if (len <= 0) {
WL_ERR(("invalid len %d\n", len));
return -EINVAL;
}
type = nla_type(data);
if (type == ANDR_WIFI_ATTRIBUTE_NODFS_SET) {
nodfs = nla_get_u32(data);
err = dhd_dev_set_nodfs(bcmcfg_to_prmry_ndev(cfg), nodfs);
}
return err;
}
#endif /* CUSTOM_FORCE_NODFS_FLAG */
#ifdef WL_AUTO_COUNTRY
static int
wl_config_autocountry(struct bcm_cfg80211 *cfg,
struct net_device *ndev, char *country_code)
{
bool val = FALSE;
s32 err;
if (!country_code) {
return -EINVAL;
}
if ((country_code[0] == '0') && (country_code[1] == '0')) {
/* Enable auto country for world domain (00) */
val = TRUE;
}
err = wldev_iovar_setint(ndev, "autocountry", val);
if (err) {
WL_ERR(("Failed to config auto country (%d) ret:%d\n", val, err));
return err;
}
return err;
}
#endif /* WL_AUTO_COUNTRY */
static int
wl_cfgvendor_set_country(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = BCME_ERROR, rem, type;
char country_code[WLC_CNTRY_BUF_SZ] = {0};
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct net_device *primary_ndev = bcmcfg_to_prmry_ndev(cfg);
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case ANDR_WIFI_ATTRIBUTE_COUNTRY:
err = memcpy_s(country_code, WLC_CNTRY_BUF_SZ,
nla_data(iter), nla_len(iter));
if (err) {
WL_ERR(("Failed to copy country code: %d\n", err));
return err;
}
break;
default:
WL_ERR(("Unknown type: %d\n", type));
return err;
}
}
#ifdef WL_AUTO_COUNTRY
err = wl_config_autocountry(cfg, primary_ndev, country_code);
if (err) {
return err;
}
#endif /* WL_AUTO_COUNTRY */
/* country code is unique for dongle..hence using primary interface. */
err = wl_cfg80211_set_country_code(primary_ndev, country_code, true, true, 0);
if (err < 0) {
WL_ERR(("Set country failed ret:%d\n", err));
goto exit;
}
#ifdef FCC_PWR_LIMIT_2G
err = wldev_iovar_setint(primary_ndev, "fccpwrlimit2g", FALSE);
if (err < 0) {
WL_ERR(("fccpwrlimit2g deactivation is failed\n"));
goto exit;
} else {
WL_ERR(("fccpwrlimit2g is deactivated\n"));
}
#endif /* FCC_PWR_LIMIT_2G */
exit:
return err;
}
#ifdef GSCAN_SUPPORT
int
wl_cfgvendor_send_hotlist_event(struct wiphy *wiphy,
struct net_device *dev, void *data, int len, wl_vendor_event_t event)
{
gfp_t kflags;
const void *ptr;
struct sk_buff *skb;
int malloc_len, total, iter_cnt_to_send, cnt;
gscan_results_cache_t *cache = (gscan_results_cache_t *)data;
total = len/sizeof(wifi_gscan_result_t);
while (total > 0) {
malloc_len = (total * sizeof(wifi_gscan_result_t)) + VENDOR_DATA_OVERHEAD;
if (malloc_len > NLMSG_DEFAULT_SIZE) {
malloc_len = NLMSG_DEFAULT_SIZE;
}
iter_cnt_to_send =
(malloc_len - VENDOR_DATA_OVERHEAD)/sizeof(wifi_gscan_result_t);
total = total - iter_cnt_to_send;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, ndev_to_wdev(dev),
malloc_len, event, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, malloc_len, event, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return -ENOMEM;
}
while (cache && iter_cnt_to_send) {
ptr = (const void *) &cache->results[cache->tot_consumed];
if (iter_cnt_to_send < (cache->tot_count - cache->tot_consumed)) {
cnt = iter_cnt_to_send;
} else {
cnt = (cache->tot_count - cache->tot_consumed);
}
iter_cnt_to_send -= cnt;
cache->tot_consumed += cnt;
/* Push the data to the skb */
nla_append(skb, cnt * sizeof(wifi_gscan_result_t), ptr);
if (cache->tot_consumed == cache->tot_count) {
cache = cache->next;
}
}
cfg80211_vendor_event(skb, kflags);
}
return 0;
}
static int
wl_cfgvendor_gscan_get_capabilities(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pno_gscan_capabilities_t *reply = NULL;
uint32 reply_len = 0;
reply = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_CAPABILITIES, NULL, &reply_len);
if (!reply) {
WL_ERR(("Could not get capabilities\n"));
err = -EINVAL;
return err;
}
err = wl_cfgvendor_send_cmd_reply(wiphy, reply, reply_len);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
}
MFREE(cfg->osh, reply, reply_len);
return err;
}
static int
wl_cfgvendor_gscan_get_batch_results(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_results_cache_t *results, *iter;
uint32 reply_len, is_done = 1;
int32 mem_needed, num_results_iter;
wifi_gscan_result_t *ptr;
uint16 num_scan_ids, num_results;
struct sk_buff *skb;
struct nlattr *scan_hdr, *complete_flag;
err = dhd_dev_wait_batch_results_complete(bcmcfg_to_prmry_ndev(cfg));
if (err != BCME_OK)
return -EBUSY;
err = dhd_dev_pno_lock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
if (err != BCME_OK) {
WL_ERR(("Can't obtain lock to access batch results %d\n", err));
return -EBUSY;
}
results = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_BATCH_RESULTS, NULL, &reply_len);
if (!results) {
WL_ERR(("No results to send %d\n", err));
err = wl_cfgvendor_send_cmd_reply(wiphy, results, 0);
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return err;
}
num_scan_ids = reply_len & 0xFFFF;
num_results = (reply_len & 0xFFFF0000) >> 16;
mem_needed = (num_results * sizeof(wifi_gscan_result_t)) +
(num_scan_ids * GSCAN_BATCH_RESULT_HDR_LEN) +
VENDOR_REPLY_OVERHEAD + SCAN_RESULTS_COMPLETE_FLAG_LEN;
if (mem_needed > (int32)NLMSG_DEFAULT_SIZE) {
mem_needed = (int32)NLMSG_DEFAULT_SIZE;
}
WL_TRACE(("is_done %d mem_needed %d max_mem %d\n", is_done, mem_needed,
(int)NLMSG_DEFAULT_SIZE));
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return -ENOMEM;
}
iter = results;
complete_flag = nla_reserve(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS_COMPLETE,
sizeof(is_done));
if (unlikely(!complete_flag)) {
WL_ERR(("complete_flag could not be reserved"));
kfree_skb(skb);
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return -ENOMEM;
}
mem_needed = mem_needed - (SCAN_RESULTS_COMPLETE_FLAG_LEN + VENDOR_REPLY_OVERHEAD);
while (iter) {
num_results_iter = (mem_needed - (int32)GSCAN_BATCH_RESULT_HDR_LEN);
num_results_iter /= (int32)sizeof(wifi_gscan_result_t);
if (num_results_iter <= 0 ||
((iter->tot_count - iter->tot_consumed) > num_results_iter)) {
break;
}
scan_hdr = nla_nest_start(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS);
/* no more room? we are done then (for now) */
if (scan_hdr == NULL) {
is_done = 0;
break;
}
err = nla_put_u32(skb, GSCAN_ATTRIBUTE_SCAN_ID, iter->scan_id);
if (unlikely(err)) {
goto fail;
}
err = nla_put_u8(skb, GSCAN_ATTRIBUTE_SCAN_FLAGS, iter->flag);
if (unlikely(err)) {
goto fail;
}
err = nla_put_u32(skb, GSCAN_ATTRIBUTE_CH_BUCKET_BITMASK, iter->scan_ch_bucket);
if (unlikely(err)) {
goto fail;
}
num_results_iter = iter->tot_count - iter->tot_consumed;
err = nla_put_u32(skb, GSCAN_ATTRIBUTE_NUM_OF_RESULTS, num_results_iter);
if (unlikely(err)) {
goto fail;
}
if (num_results_iter) {
ptr = &iter->results[iter->tot_consumed];
err = nla_put(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS,
num_results_iter * sizeof(wifi_gscan_result_t), ptr);
if (unlikely(err)) {
goto fail;
}
iter->tot_consumed += num_results_iter;
}
nla_nest_end(skb, scan_hdr);
mem_needed -= GSCAN_BATCH_RESULT_HDR_LEN +
(num_results_iter * sizeof(wifi_gscan_result_t));
iter = iter->next;
}
/* Cleans up consumed results and returns TRUE if all results are consumed */
is_done = dhd_dev_gscan_batch_cache_cleanup(bcmcfg_to_prmry_ndev(cfg));
memcpy(nla_data(complete_flag), &is_done, sizeof(is_done));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return cfg80211_vendor_cmd_reply(skb);
fail:
/* Free up consumed results which will now not be sent */
(void)dhd_dev_gscan_batch_cache_cleanup(bcmcfg_to_prmry_ndev(cfg));
kfree_skb(skb);
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return err;
}
static int
wl_cfgvendor_initiate_gscan(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type, tmp = len;
int run = 0xFF;
int flush = 0;
const struct nlattr *iter;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
if (type == GSCAN_ATTRIBUTE_ENABLE_FEATURE)
run = nla_get_u32(iter);
else if (type == GSCAN_ATTRIBUTE_FLUSH_FEATURE)
flush = nla_get_u32(iter);
}
if (run != 0xFF) {
err = dhd_dev_pno_run_gscan(bcmcfg_to_prmry_ndev(cfg), run, flush);
if (unlikely(err)) {
WL_ERR(("Could not run gscan:%d \n", err));
}
return err;
} else {
return -EINVAL;
}
}
static int
wl_cfgvendor_enable_full_scan_result(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
bool real_time = FALSE;
if (!data) {
WL_ERR(("data is not available\n"));
return -EINVAL;
}
if (len <= 0) {
WL_ERR(("invalid len %d\n", len));
return -EINVAL;
}
type = nla_type(data);
if (type == GSCAN_ATTRIBUTE_ENABLE_FULL_SCAN_RESULTS) {
real_time = nla_get_u32(data);
err = dhd_dev_pno_enable_full_scan_result(bcmcfg_to_prmry_ndev(cfg), real_time);
if (unlikely(err)) {
WL_ERR(("Could not run gscan:%d \n", err));
}
} else {
err = -EINVAL;
}
return err;
}
static int
wl_cfgvendor_set_scan_cfg_bucket(const struct nlattr *prev,
gscan_scan_params_t *scan_param, int num)
{
struct dhd_pno_gscan_channel_bucket *ch_bucket;
int k = 0;
int type, err = 0, rem;
const struct nlattr *cur, *next;
nla_for_each_nested(cur, prev, rem) {
type = nla_type(cur);
ch_bucket = scan_param->channel_bucket;
switch (type) {
case GSCAN_ATTRIBUTE_BUCKET_ID:
break;
case GSCAN_ATTRIBUTE_BUCKET_PERIOD:
if (nla_len(cur) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
ch_bucket[num].bucket_freq_multiple =
nla_get_u32(cur) / MSEC_PER_SEC;
break;
case GSCAN_ATTRIBUTE_BUCKET_NUM_CHANNELS:
if (nla_len(cur) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
ch_bucket[num].num_channels = nla_get_u32(cur);
if (ch_bucket[num].num_channels >
GSCAN_MAX_CHANNELS_IN_BUCKET) {
WL_ERR(("channel range:%d,bucket:%d\n",
ch_bucket[num].num_channels,
num));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_BUCKET_CHANNELS:
nla_for_each_nested(next, cur, rem) {
if (k >= GSCAN_MAX_CHANNELS_IN_BUCKET)
break;
if (nla_len(next) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
ch_bucket[num].chan_list[k] = nla_get_u32(next);
k++;
}
break;
case GSCAN_ATTRIBUTE_BUCKETS_BAND:
if (nla_len(cur) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
ch_bucket[num].band = (uint16)nla_get_u32(cur);
break;
case GSCAN_ATTRIBUTE_REPORT_EVENTS:
if (nla_len(cur) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
ch_bucket[num].report_flag = (uint8)nla_get_u32(cur);
break;
case GSCAN_ATTRIBUTE_BUCKET_STEP_COUNT:
if (nla_len(cur) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
ch_bucket[num].repeat = (uint16)nla_get_u32(cur);
break;
case GSCAN_ATTRIBUTE_BUCKET_MAX_PERIOD:
if (nla_len(cur) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
ch_bucket[num].bucket_max_multiple =
nla_get_u32(cur) / MSEC_PER_SEC;
break;
default:
WL_ERR(("unknown attr type:%d\n", type));
err = -EINVAL;
goto exit;
}
}
exit:
return err;
}
static int
wl_cfgvendor_set_scan_cfg(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_scan_params_t *scan_param;
int j = 0;
int type, tmp;
const struct nlattr *iter;
scan_param = (gscan_scan_params_t *)MALLOCZ(cfg->osh,
sizeof(gscan_scan_params_t));
if (!scan_param) {
WL_ERR(("Could not set GSCAN scan cfg, mem alloc failure\n"));
err = -EINVAL;
return err;
}
scan_param->scan_fr = PNO_SCAN_MIN_FW_SEC;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
if (j >= GSCAN_MAX_CH_BUCKETS) {
break;
}
switch (type) {
case GSCAN_ATTRIBUTE_BASE_PERIOD:
if (nla_len(iter) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
scan_param->scan_fr = nla_get_u32(iter) / MSEC_PER_SEC;
break;
case GSCAN_ATTRIBUTE_NUM_BUCKETS:
if (nla_len(iter) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
scan_param->nchannel_buckets = nla_get_u32(iter);
if (scan_param->nchannel_buckets >=
GSCAN_MAX_CH_BUCKETS) {
WL_ERR(("ncha_buck out of range %d\n",
scan_param->nchannel_buckets));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_CH_BUCKET_1:
case GSCAN_ATTRIBUTE_CH_BUCKET_2:
case GSCAN_ATTRIBUTE_CH_BUCKET_3:
case GSCAN_ATTRIBUTE_CH_BUCKET_4:
case GSCAN_ATTRIBUTE_CH_BUCKET_5:
case GSCAN_ATTRIBUTE_CH_BUCKET_6:
case GSCAN_ATTRIBUTE_CH_BUCKET_7:
err = wl_cfgvendor_set_scan_cfg_bucket(iter, scan_param, j);
if (err < 0) {
WL_ERR(("set_scan_cfg_buck error:%d\n", err));
goto exit;
}
j++;
break;
default:
WL_ERR(("Unknown type %d\n", type));
err = -EINVAL;
goto exit;
}
}
err = dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_SCAN_CFG_ID, scan_param, FALSE);
if (err < 0) {
WL_ERR(("Could not set GSCAN scan cfg\n"));
err = -EINVAL;
}
exit:
MFREE(cfg->osh, scan_param, sizeof(gscan_scan_params_t));
return err;
}
static int
wl_cfgvendor_hotlist_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_hotlist_scan_params_t *hotlist_params;
int tmp, tmp1, tmp2, type, j = 0, dummy;
const struct nlattr *outer, *inner = NULL, *iter;
bool flush = FALSE;
struct bssid_t *pbssid;
BCM_REFERENCE(dummy);
if (len < sizeof(*hotlist_params) || len >= WLC_IOCTL_MAXLEN) {
WL_ERR(("buffer length :%d wrong - bail out.\n", len));
return -EINVAL;
}
hotlist_params = (gscan_hotlist_scan_params_t *)MALLOCZ(cfg->osh,
sizeof(*hotlist_params)
+ (sizeof(struct bssid_t) * (PFN_SWC_MAX_NUM_APS - 1)));
if (!hotlist_params) {
WL_ERR(("Cannot Malloc memory.\n"));
return -ENOMEM;
}
hotlist_params->lost_ap_window = GSCAN_LOST_AP_WINDOW_DEFAULT;
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_HOTLIST_BSSID_COUNT:
if (nla_len(iter) != sizeof(uint32)) {
WL_DBG(("type:%d length:%d not matching.\n",
type, nla_len(iter)));
err = -EINVAL;
goto exit;
}
hotlist_params->nbssid = (uint16)nla_get_u32(iter);
if ((hotlist_params->nbssid == 0) ||
(hotlist_params->nbssid > PFN_SWC_MAX_NUM_APS)) {
WL_ERR(("nbssid:%d exceed limit.\n",
hotlist_params->nbssid));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_HOTLIST_BSSIDS:
if (hotlist_params->nbssid == 0) {
WL_ERR(("nbssid not retrieved.\n"));
err = -EINVAL;
goto exit;
}
pbssid = hotlist_params->bssid;
nla_for_each_nested(outer, iter, tmp) {
if (j >= hotlist_params->nbssid)
break;
nla_for_each_nested(inner, outer, tmp1) {
type = nla_type(inner);
switch (type) {
case GSCAN_ATTRIBUTE_BSSID:
if (nla_len(inner) != sizeof(pbssid[j].macaddr)) {
WL_ERR(("type:%d length:%d not matching.\n",
type, nla_len(inner)));
err = -EINVAL;
goto exit;
}
memcpy(
&(pbssid[j].macaddr),
nla_data(inner),
sizeof(pbssid[j].macaddr));
break;
case GSCAN_ATTRIBUTE_RSSI_LOW:
if (nla_len(inner) != sizeof(uint8)) {
WL_ERR(("type:%d length:%d not matching.\n",
type, nla_len(inner)));
err = -EINVAL;
goto exit;
}
pbssid[j].rssi_reporting_threshold =
(int8)nla_get_u8(inner);
break;
case GSCAN_ATTRIBUTE_RSSI_HIGH:
if (nla_len(inner) != sizeof(uint8)) {
WL_ERR(("type:%d length:%d not matching.\n",
type, nla_len(inner)));
err = -EINVAL;
goto exit;
}
dummy = (int8)nla_get_u8(inner);
WL_DBG(("dummy %d\n", dummy));
break;
default:
WL_ERR(("ATTR unknown %d\n", type));
err = -EINVAL;
goto exit;
}
}
j++;
}
if (j != hotlist_params->nbssid) {
WL_ERR(("bssid_cnt:%d != nbssid:%d.\n", j,
hotlist_params->nbssid));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_HOTLIST_FLUSH:
if (nla_len(iter) != sizeof(uint8)) {
WL_ERR(("type:%d length:%d not matching.\n",
type, nla_len(iter)));
err = -EINVAL;
goto exit;
}
flush = nla_get_u8(iter);
break;
case GSCAN_ATTRIBUTE_LOST_AP_SAMPLE_SIZE:
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("type:%d length:%d not matching.\n",
type, nla_len(iter)));
err = -EINVAL;
goto exit;
}
hotlist_params->lost_ap_window = (uint16)nla_get_u32(iter);
break;
default:
WL_ERR(("Unknown type %d\n", type));
err = -EINVAL;
goto exit;
}
}
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GEOFENCE_SCAN_CFG_ID, hotlist_params, flush) < 0) {
WL_ERR(("Could not set GSCAN HOTLIST cfg error: %d\n", err));
err = -EINVAL;
goto exit;
}
exit:
MFREE(cfg->osh, hotlist_params, sizeof(*hotlist_params)
+ (sizeof(struct bssid_t) * (PFN_SWC_MAX_NUM_APS - 1)));
return err;
}
static int wl_cfgvendor_epno_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pno_ssid_t *ssid_elem = NULL;
int tmp, tmp1, tmp2, type = 0, num = 0;
const struct nlattr *outer, *inner, *iter;
uint8 flush = FALSE, i = 0;
wl_ssid_ext_params_t params;
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_EPNO_SSID_LIST:
nla_for_each_nested(outer, iter, tmp) {
ssid_elem = (dhd_pno_ssid_t *)
dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_NEW_EPNO_SSID_ELEM,
NULL, &num);
if (!ssid_elem) {
WL_ERR(("Failed to get SSID LIST buffer\n"));
err = -ENOMEM;
goto exit;
}
i++;
nla_for_each_nested(inner, outer, tmp1) {
type = nla_type(inner);
switch (type) {
case GSCAN_ATTRIBUTE_EPNO_SSID:
memcpy(ssid_elem->SSID,
nla_data(inner),
DOT11_MAX_SSID_LEN);
break;
case GSCAN_ATTRIBUTE_EPNO_SSID_LEN:
ssid_elem->SSID_len =
nla_get_u32(inner);
if (ssid_elem->SSID_len >
DOT11_MAX_SSID_LEN) {
WL_ERR(("SSID too"
"long %d\n",
ssid_elem->SSID_len));
err = -EINVAL;
MFREE(cfg->osh, ssid_elem,
num);
goto exit;
}
break;
case GSCAN_ATTRIBUTE_EPNO_FLAGS:
ssid_elem->flags =
nla_get_u32(inner);
ssid_elem->hidden =
((ssid_elem->flags &
DHD_EPNO_HIDDEN_SSID) != 0);
break;
case GSCAN_ATTRIBUTE_EPNO_AUTH:
ssid_elem->wpa_auth =
nla_get_u32(inner);
break;
}
}
if (!ssid_elem->SSID_len) {
WL_ERR(("Broadcast SSID is illegal for ePNO\n"));
err = -EINVAL;
MFREE(cfg->osh, ssid_elem, num);
goto exit;
}
dhd_pno_translate_epno_fw_flags(&ssid_elem->flags);
dhd_pno_set_epno_auth_flag(&ssid_elem->wpa_auth);
MFREE(cfg->osh, ssid_elem, num);
}
break;
case GSCAN_ATTRIBUTE_EPNO_SSID_NUM:
num = nla_get_u8(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_FLUSH:
flush = (bool)nla_get_u32(iter);
/* Flush attribute is expected before any ssid attribute */
if (i && flush) {
WL_ERR(("Bad attributes\n"));
err = -EINVAL;
goto exit;
}
/* Need to flush driver and FW cfg */
dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_EPNO_CFG_ID, NULL, flush);
dhd_dev_flush_fw_epno(bcmcfg_to_prmry_ndev(cfg));
break;
case GSCAN_ATTRIBUTE_EPNO_5G_RSSI_THR:
params.min5G_rssi = nla_get_s8(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_2G_RSSI_THR:
params.min2G_rssi = nla_get_s8(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_INIT_SCORE_MAX:
params.init_score_max = nla_get_s16(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_CUR_CONN_BONUS:
params.cur_bssid_bonus = nla_get_s16(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_SAME_NETWORK_BONUS:
params.same_ssid_bonus = nla_get_s16(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_SECURE_BONUS:
params.secure_bonus = nla_get_s16(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_5G_BONUS:
params.band_5g_bonus = nla_get_s16(iter);
break;
default:
WL_ERR(("%s: No such attribute %d\n", __FUNCTION__, type));
err = -EINVAL;
goto exit;
}
}
if (i != num) {
WL_ERR(("%s: num_ssid %d does not match ssids sent %d\n", __FUNCTION__,
num, i));
err = -EINVAL;
}
exit:
/* Flush all configs if error condition */
if (err < 0) {
dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_EPNO_CFG_ID, NULL, TRUE);
dhd_dev_flush_fw_epno(bcmcfg_to_prmry_ndev(cfg));
} else if (type != GSCAN_ATTRIBUTE_EPNO_FLUSH) {
/* If the last attribute was FLUSH, nothing else to do */
dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_EPNO_PARAMS_ID, &params, FALSE);
err = dhd_dev_set_epno(bcmcfg_to_prmry_ndev(cfg));
}
return err;
}
static int
wl_cfgvendor_set_batch_scan_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, tmp, type;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_batch_params_t batch_param;
const struct nlattr *iter;
batch_param.mscan = batch_param.bestn = 0;
batch_param.buffer_threshold = GSCAN_BATCH_NO_THR_SET;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_NUM_AP_PER_SCAN:
batch_param.bestn = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_NUM_SCANS_TO_CACHE:
batch_param.mscan = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_REPORT_THRESHOLD:
batch_param.buffer_threshold = nla_get_u32(iter);
break;
default:
WL_ERR(("Unknown type %d\n", type));
break;
}
}
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_BATCH_SCAN_CFG_ID, &batch_param, FALSE) < 0) {
WL_ERR(("Could not set batch cfg\n"));
err = -EINVAL;
return err;
}
return err;
}
#endif /* GSCAN_SUPPORT */
#if defined(GSCAN_SUPPORT) || defined(DHD_GET_VALID_CHANNELS)
static int
wl_cfgvendor_gscan_get_channel_list(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, type, band;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
uint32 *reply = NULL;
uint32 reply_len = 0, num_channels, mem_needed;
struct sk_buff *skb;
dhd_pub_t *dhdp;
struct net_device *ndev = wdev->netdev;
if (!ndev) {
WL_ERR(("ndev null\n"));
return -EINVAL;
}
dhdp = wl_cfg80211_get_dhdp(ndev);
if (!dhdp) {
WL_ERR(("dhdp null\n"));
return -EINVAL;
}
if (!data) {
WL_ERR(("data is not available\n"));
return -EINVAL;
}
if (len <= 0) {
WL_ERR(("invalid len %d\n", len));
return -EINVAL;
}
type = nla_type(data);
if (type == GSCAN_ATTRIBUTE_BAND) {
band = nla_get_u32(data);
} else {
return -EINVAL;
}
reply = MALLOCZ(cfg->osh, CHANINFO_LIST_BUF_SIZE);
if (reply == NULL) {
WL_ERR(("failed to allocate chanspec buffer\n"));
return -ENOMEM;
}
err = wl_cfgscan_get_band_freq_list(cfg, wdev, band, reply, &num_channels);
if (err != BCME_OK && err != BCME_UNSUPPORTED) {
WL_ERR(("%s: failed to get valid channel list\n",
__FUNCTION__));
err = -EINVAL;
goto exit;
} else if (err == BCME_OK) {
reply_len = (num_channels * sizeof(uint32));
} else if (err == BCME_UNSUPPORTED) {
reply = dhd_pno_get_gscan(dhdp,
DHD_PNO_GET_CHANNEL_LIST, &band, &reply_len);
if (!reply) {
WL_ERR(("Could not get channel list\n"));
err = -EINVAL;
return err;
}
num_channels = reply_len/sizeof(uint32);
}
mem_needed = reply_len + VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * 2);
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
err = -ENOMEM;
goto exit;
}
nla_put_u32(skb, GSCAN_ATTRIBUTE_NUM_CHANNELS, num_channels);
nla_put(skb, GSCAN_ATTRIBUTE_CHANNEL_LIST, reply_len, reply);
err = cfg80211_vendor_cmd_reply(skb);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
}
exit:
MFREE(cfg->osh, reply, CHANINFO_LIST_BUF_SIZE);
return err;
}
#endif /* GSCAN_SUPPORT || DHD_GET_VALID_CHANNELS */
#ifdef RSSI_MONITOR_SUPPORT
static int wl_cfgvendor_set_rssi_monitor(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, tmp, type, start = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int8 max_rssi = 0, min_rssi = 0;
const struct nlattr *iter;
if (!wl_get_drv_status(cfg, CONNECTED, wdev_to_ndev(wdev))) {
WL_ERR(("Sta is not connected to an AP, rssi monitoring is not allowed\n"));
return -EINVAL;
}
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case RSSI_MONITOR_ATTRIBUTE_MAX_RSSI:
max_rssi = (int8) nla_get_u32(iter);
break;
case RSSI_MONITOR_ATTRIBUTE_MIN_RSSI:
min_rssi = (int8) nla_get_u32(iter);
break;
case RSSI_MONITOR_ATTRIBUTE_START:
start = nla_get_u32(iter);
}
}
if (dhd_dev_set_rssi_monitor_cfg(bcmcfg_to_prmry_ndev(cfg),
start, max_rssi, min_rssi) < 0) {
WL_ERR(("Could not set rssi monitor cfg\n"));
err = -EINVAL;
}
return err;
}
#endif /* RSSI_MONITOR_SUPPORT */
#ifdef DHD_WAKE_STATUS
static int
wl_cfgvendor_get_wake_reason_stats(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct net_device *ndev = wdev_to_ndev(wdev);
wake_counts_t *pwake_count_info;
int ret, mem_needed;
#if defined(DHD_DEBUG) && defined(DHD_WAKE_EVENT_STATUS)
int flowid;
#ifdef CUSTOM_WAKE_REASON_STATS
int tmp_rc_event[MAX_WAKE_REASON_STATS];
int rc_event_used_cnt = 0;
int front = 0;
#endif /* CUSTOM_WAKE_REASON_STATS */
#endif /* DHD_DEBUG && DHD_WAKE_EVENT_STATUS */
struct sk_buff *skb = NULL;
dhd_pub_t *dhdp = wl_cfg80211_get_dhdp(ndev);
WL_DBG(("Recv get wake status info cmd.\n"));
pwake_count_info = dhd_get_wakecount(dhdp);
mem_needed = VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * 20) +
(WLC_E_LAST * sizeof(uint));
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("%s: can't allocate %d bytes\n", __FUNCTION__, mem_needed));
ret = -ENOMEM;
goto exit;
}
#ifdef DHD_WAKE_EVENT_STATUS
WL_ERR(("pwake_count_info->rcwake %d\n", pwake_count_info->rcwake));
#ifdef CUSTOM_WAKE_REASON_STATS
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_TOTAL_DRIVER_FW, 0);
if (unlikely(ret)) {
WL_ERR(("Failed to put total count of driver fw\n"));
goto exit;
}
#endif /* CUSTOM_WAKE_REASON_STATS */
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_TOTAL_CMD_EVENT, pwake_count_info->rcwake);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total count of CMD event, ret=%d\n", ret));
goto exit;
}
#ifdef CUSTOM_WAKE_REASON_STATS
front = pwake_count_info->rc_event_idx - 1;
for (flowid = 0; flowid < MAX_WAKE_REASON_STATS; flowid++) {
/* Reorder the rc_event, the latest event in the header index */
if (front < 0) {
front = MAX_WAKE_REASON_STATS - 1;
}
if (pwake_count_info->rc_event[front] != -1) {
rc_event_used_cnt++;
}
tmp_rc_event[flowid] = pwake_count_info->rc_event[front];
front--;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_CMD_EVENT_COUNT_USED, rc_event_used_cnt);
#endif /* CUSTOM_WAKE_REASON_STATS */
if (unlikely(ret)) {
WL_ERR(("Failed to put Max count of event used, ret=%d\n", ret));
goto exit;
}
#ifdef CUSTOM_WAKE_REASON_STATS
ret = nla_put(skb, WAKE_STAT_ATTRIBUTE_CMD_EVENT_WAKE,
(MAX_WAKE_REASON_STATS * sizeof(int)), tmp_rc_event);
#else
ret = nla_put(skb, WAKE_STAT_ATTRIBUTE_CMD_EVENT_WAKE, (WLC_E_LAST * sizeof(uint)),
pwake_count_info->rc_event);
#endif /* CUSTOM_WAKE_REASON_STATS */
if (unlikely(ret)) {
WL_ERR(("Failed to put Event wake data, ret=%d\n", ret));
goto exit;
}
#ifdef DHD_DEBUG
#ifdef CUSTOM_WAKE_REASON_STATS
for (flowid = 0; flowid < MAX_WAKE_REASON_STATS; flowid++) {
if (pwake_count_info->rc_event[flowid] != -1) {
WL_INFORM(("Event ID %u = %s\n", pwake_count_info->rc_event[flowid],
bcmevent_get_name(pwake_count_info->rc_event[flowid])));
}
}
#else
for (flowid = 0; flowid < WLC_E_LAST; flowid++) {
if (pwake_count_info->rc_event[flowid] != 0) {
WL_ERR((" %s = %u\n", bcmevent_get_name(flowid),
pwake_count_info->rc_event[flowid]));
}
}
#endif /* CUSTOM_WAKE_REASON_STATS */
#endif /* DHD_DEBUG */
#endif /* DHD_WAKE_EVENT_STATUS */
#ifdef DHD_WAKE_RX_STATUS
WL_ERR(("pwake_count_info->rxwake %d\n", pwake_count_info->rxwake));
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_TOTAL_RX_DATA_WAKE, pwake_count_info->rxwake);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total Wake due RX data, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_UNICAST_COUNT, pwake_count_info->rx_ucast);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to RX unicast, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_MULTICAST_COUNT, pwake_count_info->rx_mcast);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due RX multicast, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_BROADCAST_COUNT, pwake_count_info->rx_bcast);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to RX broadcast, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_ICMP_PKT, pwake_count_info->rx_icmp);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to ICMP pkt, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_ICMP6_PKT, pwake_count_info->rx_icmpv6);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due ICMPV6 pkt, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_ICMP6_RA, pwake_count_info->rx_icmpv6_ra);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to ICMPV6_RA, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_ICMP6_NA, pwake_count_info->rx_icmpv6_na);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to ICMPV6_NA, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_ICMP6_NS, pwake_count_info->rx_icmpv6_ns);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to ICMPV6_NS, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_IPV4_RX_MULTICAST_ADD_CNT,
pwake_count_info->rx_multi_ipv4);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to RX IPV4 MULTICAST, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_IPV6_RX_MULTICAST_ADD_CNT,
pwake_count_info->rx_multi_ipv6);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to RX IPV6 MULTICAST, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_OTHER_RX_MULTICAST_ADD_CNT,
pwake_count_info->rx_multi_other);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to Other RX Multicast, ret=%d\n", ret));
goto exit;
}
#endif /* #ifdef DHD_WAKE_RX_STATUS */
ret = cfg80211_vendor_cmd_reply(skb);
if (unlikely(ret)) {
WL_ERR(("Vendor cmd reply for -get wake status failed:%d \n", ret));
}
/* On cfg80211_vendor_cmd_reply() skb is consumed and freed in case of success or failure */
return ret;
exit:
/* Free skb memory */
if (skb) {
kfree_skb(skb);
}
return ret;
}
#endif /* DHD_WAKE_STATUS */
#ifdef DHDTCPACK_SUPPRESS
static int
wl_cfgvendor_set_tcpack_sup_mode(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = BCME_OK, type;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct net_device *ndev = wdev_to_wlc_ndev(wdev, cfg);
uint8 enable = 0;
if (!data) {
WL_ERR(("data is not available\n"));
err = BCME_BADARG;
goto exit;
}
if (len <= 0) {
WL_ERR(("Length of the nlattr is not valid len : %d\n", len));
err = BCME_BADARG;
goto exit;
}
type = nla_type(data);
if (type == ANDR_WIFI_ATTRIBUTE_TCPACK_SUP_VALUE) {
enable = (uint8) nla_get_u32(data);
err = dhd_dev_set_tcpack_sup_mode_cfg(ndev, enable);
if (unlikely(err)) {
WL_ERR(("Could not set TCP Ack Suppress mode cfg: %d\n", err));
}
} else {
err = BCME_BADARG;
}
exit:
return err;
}
#endif /* DHDTCPACK_SUPPRESS */
#if defined(WL_CFG80211) && defined(DHD_FILE_DUMP_EVENT)
static int
wl_cfgvendor_notify_dump_completion(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
unsigned long flags = 0;
WL_INFORM(("%s, [DUMP] received file dump notification from HAL\n", __FUNCTION__));
DHD_GENERAL_LOCK(dhd_pub, flags);
/* call wmb() to synchronize with the previous memory operations */
OSL_SMP_WMB();
DHD_BUS_BUSY_CLEAR_IN_HALDUMP(dhd_pub);
dhd_set_dump_status(dhd_pub, DUMP_READY);
/* Call another wmb() to make sure wait_for_dump_completion value
* gets updated before waking up waiting context.
*/
OSL_SMP_WMB();
dhd_os_busbusy_wake(dhd_pub);
DHD_GENERAL_UNLOCK(dhd_pub, flags);
return BCME_OK;
}
#endif /* WL_CFG80211 && DHD_FILE_DUMP_EVENT */
#if defined(WL_CFG80211)
static int
wl_cfgvendor_set_hal_pid(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int ret = BCME_OK;
uint32 type;
if (!data) {
WL_DBG(("%s,data is not available\n", __FUNCTION__));
} else {
if (len > 0) {
type = nla_type(data);
if (type == SET_HAL_START_ATTRIBUTE_EVENT_SOCK_PID) {
if (nla_len(data)) {
WL_DBG(("HAL PID = %u\n", nla_get_u32(data)));
cfg->halpid = nla_get_u32(data);
}
}
} else {
WL_ERR(("invalid len %d\n", len));
ret = BCME_ERROR;
}
}
return ret;
}
static int
wl_cfgvendor_set_hal_started(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
#ifdef WL_STA_ASSOC_RAND
struct ether_addr primary_mac;
#endif /* WL_STA_ASSOC_RAND */
#if defined(WL_STA_ASSOC_RAND) || defined(DHD_FILE_DUMP_EVENT)
dhd_pub_t *dhd = (dhd_pub_t *)(cfg->pub);
#endif /* WL_STA_ASSOC_RAND || DHD_FILE_DUMP_EVENT */
int ret = BCME_OK;
#if defined(WIFI_TURNON_USE_HALINIT)
struct net_device *ndev = wdev_to_wlc_ndev(wdev, cfg);
uint32 type;
if (!data) {
WL_DBG(("%s,data is not available\n", __FUNCTION__));
} else {
if (len > 0) {
type = nla_type(data);
WL_INFORM(("%s,type: %xh\n", __FUNCTION__, type));
if (type == SET_HAL_START_ATTRIBUTE_PRE_INIT) {
if (nla_len(data)) {
WL_INFORM(("%s, HAL version: %s\n", __FUNCTION__,
(char*)nla_data(data)));
}
WL_INFORM(("%s, dhd_open start\n", __FUNCTION__));
ret = dhd_open(ndev);
if (ret != BCME_OK) {
WL_INFORM(("%s, dhd_open failed\n", __FUNCTION__));
return ret;
} else {
WL_INFORM(("%s, dhd_open succeeded\n", __FUNCTION__));
}
return ret;
}
} else {
WL_ERR(("invalid len %d\n", len));
}
}
#endif /* WIFI_TURNON_USE_HALINIT */
RETURN_EIO_IF_NOT_UP(cfg);
WL_INFORM(("%s,[DUMP] HAL STARTED\n", __FUNCTION__));
cfg->hal_started = true;
#ifdef DHD_FILE_DUMP_EVENT
dhd_set_dump_status(dhd, DUMP_READY);
#endif /* DHD_FILE_DUMP_EVENT */
#ifdef WL_STA_ASSOC_RAND
/* If mac randomization is enabled and primary macaddress is not
* randomized, randomize it from HAL init context
*/
get_primary_mac(cfg, &primary_mac);
if ((!ETHER_IS_LOCALADDR(&primary_mac)) &&
(!wl_get_drv_status(cfg, CONNECTED, wdev_to_ndev(wdev)))) {
WL_DBG_MEM(("%s, Local admin bit not set, randomize"
"STA MAC address \n", __FUNCTION__));
if ((ret = dhd_update_rand_mac_addr(dhd)) < 0) {
WL_ERR(("%s: failed to set macaddress, ret = %d\n", __FUNCTION__, ret));
return ret;
}
}
#endif /* WL_STA_ASSOC_RAND */
return ret;
}
static int
wl_cfgvendor_stop_hal(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
#ifdef DHD_FILE_DUMP_EVENT
dhd_pub_t *dhd = (dhd_pub_t *)(cfg->pub);
#endif /* DHD_FILE_DUMP_EVENT */
WL_INFORM(("%s,[DUMP] HAL STOPPED\n", __FUNCTION__));
cfg->hal_started = false;
#ifdef DHD_FILE_DUMP_EVENT
dhd_set_dump_status(dhd, DUMP_NOT_READY);
#endif /* DHD_FILE_DUMP_EVENT */
return BCME_OK;
}
#endif /* WL_CFG80211 */
#ifdef WL_LATENCY_MODE
static int
wl_cfgvendor_latency_mode_config(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = BCME_OK, rem, type;
u32 latency_mode;
const struct nlattr *iter;
#ifdef SUPPORT_LATENCY_CRITICAL_DATA
struct bcm_cfg80211 *cfg = wl_get_cfg(wdev->netdev);
u32 mode = LATENCY_CRT_DATA_MODE_OFF;
#endif /* SUPPORT_LATENCY_CRITICAL_DATA */
#if defined(WL_AUTO_QOS)
dhd_pub_t *dhdp = wl_cfg80211_get_dhdp(wdev->netdev);
#endif /* WL_AUTO_QOS */
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case ANDR_WIFI_ATTRIBUTE_LATENCY_MODE:
/* Intentional fall through to configure the latency mode for voip mode */
case ANDR_WIFI_ATTRIBUTE_VOIP_MODE:
latency_mode = nla_get_u32(iter);
WL_DBG(("%s,Setting latency mode %u\n", __FUNCTION__,
latency_mode));
#ifdef WL_AUTO_QOS
/* Enable/Disable qos monitoring */
dhd_wl_sock_qos_set_status(dhdp, latency_mode);
#endif /* WL_AUTO_QOS */
#ifdef SUPPORT_LATENCY_CRITICAL_DATA
if (latency_mode) {
mode = LATENCY_CRT_DATA_MODE_2;
}
err = wldev_iovar_setint(wdev->netdev,
"latency_critical_data", mode);
if (err != BCME_OK) {
WL_ERR(("failed to set latency_critical_data "
"mode %d, error = %d\n", mode, err));
/* Proceed with other optimizations possible */
err = BCME_OK;
} else {
WL_INFORM_MEM(("latency_mode:%d\n", mode));
cfg->latency_mode = latency_mode ? TRUE : FALSE;
}
#endif /* SUPPORT_LATENCY_CRITICAL_DATA */
break;
default:
WL_ERR(("Unknown type: %d\n", type));
return err;
}
}
return err;
}
#endif /* WL_LATENCY_MODE */
#ifdef RTT_SUPPORT
void
wl_cfgvendor_rtt_evt(void *ctx, void *rtt_data)
{
struct wireless_dev *wdev = (struct wireless_dev *)ctx;
struct wiphy *wiphy;
struct sk_buff *skb = NULL;
uint32 evt_complete = 0;
gfp_t kflags;
rtt_result_t *rtt_result;
rtt_results_header_t *rtt_header;
struct list_head *rtt_cache_list;
struct nlattr *rtt_nl_hdr;
int ret = BCME_OK;
wiphy = wdev->wiphy;
WL_DBG(("In\n"));
/* Push the data to the skb */
if (!rtt_data) {
WL_ERR(("rtt_data is NULL\n"));
return;
}
rtt_cache_list = (struct list_head *)rtt_data;
if (!wiphy) {
WL_ERR(("wiphy is NULL\n"));
return;
}
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
if (list_empty(rtt_cache_list)) {
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, NULL, 100,
GOOGLE_RTT_COMPLETE_EVENT, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, 100, GOOGLE_RTT_COMPLETE_EVENT, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return;
}
evt_complete = 1;
ret = nla_put_u32(skb, RTT_ATTRIBUTE_RESULTS_COMPLETE, evt_complete);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULTS_COMPLETE\n"));
goto free_mem;
}
cfg80211_vendor_event(skb, kflags);
return;
}
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
list_for_each_entry(rtt_header, rtt_cache_list, list) {
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, NULL, rtt_header->result_tot_len + 100,
GOOGLE_RTT_COMPLETE_EVENT, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, rtt_header->result_tot_len + 100,
GOOGLE_RTT_COMPLETE_EVENT, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return;
}
if (list_is_last(&rtt_header->list, rtt_cache_list)) {
evt_complete = 1;
}
ret = nla_put_u32(skb, RTT_ATTRIBUTE_RESULTS_COMPLETE, evt_complete);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULTS_COMPLETE\n"));
goto free_mem;
}
rtt_nl_hdr = nla_nest_start(skb, RTT_ATTRIBUTE_RESULTS_PER_TARGET);
if (!rtt_nl_hdr) {
WL_ERR(("rtt_nl_hdr is NULL\n"));
dev_kfree_skb_any(skb);
break;
}
ret = nla_put(skb, RTT_ATTRIBUTE_TARGET_MAC, ETHER_ADDR_LEN,
&rtt_header->peer_mac);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_TARGET_MAC, ret:%d\n", ret));
goto free_mem;
}
ret = nla_put_u32(skb, RTT_ATTRIBUTE_RESULT_CNT, rtt_header->result_cnt);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULT_CNT, ret:%d\n", ret));
goto free_mem;
}
list_for_each_entry(rtt_result, &rtt_header->result_list, list) {
#ifdef WL_RTT_LCI
WL_DBG(("rtt_result report len=%d(%lu)\n",
rtt_result->report_len, RTT_REPORT_SIZE));
if (rtt_result->report_len > RTT_REPORT_SIZE) {
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int msize = rtt_result->report_len;
char *mbuf;
int plen;
char *pdata;
mbuf = (char *)MALLOCZ(cfg->osh, msize);
if (!mbuf) {
WL_ERR(("Failed to malloc buf for LCI/LCR, len(%d)\n",
msize));
goto free_mem;
}
pdata = mbuf;
plen = msize;
(void) memcpy_s(pdata, plen, &rtt_result->report, RTT_REPORT_SIZE);
pdata += RTT_REPORT_SIZE;
plen -= RTT_REPORT_SIZE;
if (rtt_result->report.LCI) {
bcm_tlv_t *tlv = rtt_result->report.LCI;
int tlv_size = BCM_TLV_SIZE(tlv);
if (tlv_size > plen) {
WL_ERR(("LCI IE size error, len %d(%d)\n",
tlv_size, plen));
} else {
(void) memcpy_s(pdata, plen, (char*)tlv, tlv_size);
pdata += tlv_size;
plen -= tlv_size;
WL_INFORM_MEM(("copy LCI, len=%d\n", tlv_size));
}
}
if (rtt_result->report.LCR) {
bcm_tlv_t *tlv = rtt_result->report.LCR;
int tlv_size = BCM_TLV_SIZE(tlv);
if (tlv_size > plen) {
WL_ERR(("LCR IE size error, len %d(%d)\n",
tlv_size, plen));
} else {
(void) memcpy_s(pdata, plen, (char*)tlv, tlv_size);
pdata += tlv_size;
plen -= tlv_size;
WL_INFORM_MEM(("copy LCR, len=%d\n", tlv_size));
}
}
ret = nla_put(skb, RTT_ATTRIBUTE_RESULT, msize - plen, mbuf);
MFREE(cfg->osh, mbuf, msize);
} else
#endif /* WL_RTT_LCI */
{
ret = nla_put(skb, RTT_ATTRIBUTE_RESULT,
rtt_result->report_len, &rtt_result->report);
}
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULT, ret:%d\n", ret));
goto free_mem;
}
ret = nla_put(skb, RTT_ATTRIBUTE_RESULT_DETAIL,
rtt_result->detail_len, &rtt_result->rtt_detail);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULT_DETAIL, ret:%d\n",
ret));
goto free_mem;
}
}
nla_nest_end(skb, rtt_nl_hdr);
cfg80211_vendor_event(skb, kflags);
}
GCC_DIAGNOSTIC_POP();
return;
free_mem:
/* Free skb memory */
if (skb) {
kfree_skb(skb);
}
}
static int
wl_cfgvendor_rtt_set_config(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len) {
int err = 0, rem, rem1, rem2, type;
int target_cnt = 0;
rtt_config_params_t rtt_param;
rtt_target_info_t* rtt_target = NULL;
const struct nlattr *iter, *iter1, *iter2;
int8 eabuf[ETHER_ADDR_STR_LEN];
int8 chanbuf[CHANSPEC_STR_LEN];
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
rtt_capabilities_t capability;
bzero(&rtt_param, sizeof(rtt_param));
WL_DBG(("In\n"));
err = dhd_dev_rtt_register_noti_callback(wdev->netdev, wdev, wl_cfgvendor_rtt_evt);
if (err < 0) {
WL_ERR(("failed to register rtt_noti_callback\n"));
goto exit;
}
err = dhd_dev_rtt_capability(bcmcfg_to_prmry_ndev(cfg), &capability);
if (err < 0) {
WL_ERR(("failed to get the capability\n"));
goto exit;
}
if (len <= 0) {
WL_ERR(("Length of the nlattr is not valid len : %d\n", len));
err = BCME_ERROR;
goto exit;
}
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case RTT_ATTRIBUTE_TARGET_CNT:
if (target_cnt != 0) {
WL_ERR(("attempt to overwrite target_cnt"));
err = -EINVAL;
goto exit;
}
target_cnt = nla_get_u8(iter);
if ((target_cnt <= 0) || (target_cnt > RTT_MAX_TARGET_CNT)) {
WL_ERR(("target_cnt is not valid : %d\n",
target_cnt));
err = BCME_RANGE;
goto exit;
}
rtt_param.rtt_target_cnt = target_cnt;
rtt_param.target_info = (rtt_target_info_t *)MALLOCZ(cfg->osh,
TARGET_INFO_SIZE(target_cnt));
if (rtt_param.target_info == NULL) {
WL_ERR(("failed to allocate target info for (%d)\n", target_cnt));
err = BCME_NOMEM;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_INFO:
/* Added this variable for safe check to avoid crash
* incase the caller did not respect the order
*/
if (rtt_param.target_info == NULL) {
WL_ERR(("rtt_target_info is NULL\n"));
err = BCME_NOMEM;
goto exit;
}
rtt_target = rtt_param.target_info;
nla_for_each_nested(iter1, iter, rem1) {
if ((uint8 *)rtt_target >= ((uint8 *)rtt_param.target_info +
TARGET_INFO_SIZE(target_cnt))) {
WL_ERR(("rtt_target increased over its max size"));
err = -EINVAL;
goto exit;
}
nla_for_each_nested(iter2, iter1, rem2) {
type = nla_type(iter2);
switch (type) {
case RTT_ATTRIBUTE_TARGET_MAC:
if (nla_len(iter2) != ETHER_ADDR_LEN) {
WL_ERR(("mac_addr length not match\n"));
err = -EINVAL;
goto exit;
}
memcpy(&rtt_target->addr, nla_data(iter2),
ETHER_ADDR_LEN);
break;
case RTT_ATTRIBUTE_TARGET_TYPE:
rtt_target->type = nla_get_u8(iter2);
if (rtt_target->type == RTT_INVALID ||
(rtt_target->type == RTT_ONE_WAY &&
!capability.rtt_one_sided_supported)) {
WL_ERR(("doesn't support RTT type"
" : %d\n",
rtt_target->type));
err = -EINVAL;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_PEER:
rtt_target->peer = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_CHAN:
memcpy(&rtt_target->channel, nla_data(iter2),
sizeof(rtt_target->channel));
break;
case RTT_ATTRIBUTE_TARGET_PERIOD:
rtt_target->burst_period = nla_get_u32(iter2);
if (rtt_target->burst_period < 32) {
/* 100ms unit */
rtt_target->burst_period *= 100;
} else {
WL_ERR(("%d value must in (0-31)\n",
rtt_target->burst_period));
err = EINVAL;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_NUM_BURST:
rtt_target->num_burst = nla_get_u32(iter2);
if (rtt_target->num_burst > 16) {
WL_ERR(("%d value must in (0-15)\n",
rtt_target->num_burst));
err = -EINVAL;
goto exit;
}
rtt_target->num_burst = BIT(rtt_target->num_burst);
break;
case RTT_ATTRIBUTE_TARGET_NUM_FTM_BURST:
rtt_target->num_frames_per_burst =
nla_get_u32(iter2);
break;
case RTT_ATTRIBUTE_TARGET_NUM_RETRY_FTM:
rtt_target->num_retries_per_ftm =
nla_get_u32(iter2);
break;
case RTT_ATTRIBUTE_TARGET_NUM_RETRY_FTMR:
rtt_target->num_retries_per_ftmr =
nla_get_u32(iter2);
if (rtt_target->num_retries_per_ftmr > 3) {
WL_ERR(("%d value must in (0-3)\n",
rtt_target->num_retries_per_ftmr));
err = -EINVAL;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_LCI:
rtt_target->LCI_request = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_LCR:
rtt_target->LCR_request = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_BURST_DURATION:
if ((nla_get_u32(iter2) > 1 &&
nla_get_u32(iter2) < 12)) {
rtt_target->burst_duration =
dhd_rtt_idx_to_burst_duration(
nla_get_u32(iter2));
} else if (nla_get_u32(iter2) == 15) {
/* use default value */
rtt_target->burst_duration = 0;
} else {
WL_ERR(("%d value must in (2-11) or 15\n",
nla_get_u32(iter2)));
err = -EINVAL;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_BW:
rtt_target->bw = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_PREAMBLE:
rtt_target->preamble = nla_get_u8(iter2);
break;
}
}
/* convert to chanspec value */
rtt_target->chanspec =
dhd_rtt_convert_to_chspec(rtt_target->channel);
if (rtt_target->chanspec == INVCHANSPEC) {
WL_ERR(("Channel is not valid \n"));
err = -EINVAL;
goto exit;
}
WL_MEM(("Target addr %s, Channel : %s for RTT \n",
bcm_ether_ntoa((const struct ether_addr *)&rtt_target->addr,
eabuf),
wf_chspec_ntoa(rtt_target->chanspec, chanbuf)));
rtt_target++;
}
break;
}
}
WL_DBG(("leave :target_cnt : %d\n", rtt_param.rtt_target_cnt));
if (dhd_dev_rtt_set_cfg(bcmcfg_to_prmry_ndev(cfg), &rtt_param) < 0) {
WL_ERR(("Could not set RTT configuration\n"));
err = -EINVAL;
}
exit:
/* free the target info list */
if (rtt_param.target_info) {
MFREE(cfg->osh, rtt_param.target_info,
TARGET_INFO_SIZE(target_cnt));
}
return err;
}
static int
wl_cfgvendor_rtt_cancel_config(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0, rem, type, target_cnt = 0;
int target_idx = 0;
const struct nlattr *iter;
struct ether_addr *mac_list = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
if (len <= 0) {
WL_ERR(("Length of nlattr is not valid len : %d\n", len));
err = -EINVAL;
goto exit;
}
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case RTT_ATTRIBUTE_TARGET_CNT:
if (mac_list != NULL) {
WL_ERR(("mac_list is not NULL\n"));
err = -EINVAL;
goto exit;
}
target_cnt = nla_get_u8(iter);
if ((target_cnt > 0) && (target_cnt < RTT_MAX_TARGET_CNT)) {
mac_list = (struct ether_addr *)MALLOCZ(cfg->osh,
target_cnt * ETHER_ADDR_LEN);
if (mac_list == NULL) {
WL_ERR(("failed to allocate mem for mac list\n"));
err = -EINVAL;
goto exit;
}
} else {
/* cancel the current whole RTT process */
goto cancel;
}
break;
case RTT_ATTRIBUTE_TARGET_MAC:
if (mac_list == NULL) {
WL_ERR(("ATTRIBUTE_TARGET_CNT not found before "
" ATTRIBUTE_TARGET_MAC\n"));
err = -EINVAL;
goto exit;
}
if (target_idx >= target_cnt) {
WL_ERR(("More TARGET_MAC entries found, "
"expected TARGET_CNT:%d\n", target_cnt));
err = -EINVAL;
goto exit;
}
if (nla_len(iter) != ETHER_ADDR_LEN) {
WL_ERR(("Invalid TARGET_MAC ATTR len :%d\n", nla_len(iter)));
err = -EINVAL;
goto exit;
}
memcpy(&mac_list[target_idx], nla_data(iter), ETHER_ADDR_LEN);
target_idx++;
break;
default:
WL_ERR(("Uknown type : %d\n", type));
err = -EINVAL;
goto exit;
}
}
cancel:
if (mac_list && dhd_dev_rtt_cancel_cfg(
bcmcfg_to_prmry_ndev(cfg), mac_list, target_cnt) < 0) {
WL_ERR(("Could not cancel RTT configuration\n"));
err = -EINVAL;
}
exit:
if (mac_list) {
MFREE(cfg->osh, mac_list, target_cnt * ETHER_ADDR_LEN);
}
return err;
}
static int
wl_cfgvendor_rtt_get_capability(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
rtt_capabilities_t capability;
err = dhd_dev_rtt_capability(bcmcfg_to_prmry_ndev(cfg), &capability);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
goto exit;
}
err = wl_cfgvendor_send_cmd_reply(wiphy, &capability, sizeof(capability));
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
}
exit:
return err;
}
static int
get_responder_info(struct bcm_cfg80211 *cfg,
struct wifi_rtt_responder *responder_info)
{
int err = 0;
rtt_capabilities_t capability;
err = dhd_dev_rtt_capability(bcmcfg_to_prmry_ndev(cfg), &capability);
if (unlikely(err)) {
WL_ERR(("Could not get responder capability:%d \n", err));
return err;
}
if (capability.preamble_support & RTT_PREAMBLE_VHT) {
responder_info->preamble = RTT_PREAMBLE_VHT;
} else if (capability.preamble_support & RTT_PREAMBLE_HT) {
responder_info->preamble = RTT_PREAMBLE_HT;
} else {
responder_info->preamble = RTT_PREAMBLE_LEGACY;
}
err = dhd_dev_rtt_avail_channel(bcmcfg_to_prmry_ndev(cfg), &(responder_info->channel));
if (unlikely(err)) {
WL_ERR(("Could not get available channel:%d \n", err));
return err;
}
return err;
}
static int
wl_cfgvendor_rtt_get_responder_info(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
wifi_rtt_responder_t responder_info;
WL_DBG(("Recv -get_avail_ch command \n"));
bzero(&responder_info, sizeof(responder_info));
err = get_responder_info(cfg, &responder_info);
if (unlikely(err)) {
WL_ERR(("Failed to get responder info:%d \n", err));
return err;
}
err = wl_cfgvendor_send_cmd_reply(wiphy, &responder_info, sizeof(responder_info));
if (unlikely(err)) {
WL_ERR(("Vendor cmd reply for -get_avail_ch failed ret:%d \n", err));
}
return err;
}
static int
wl_cfgvendor_rtt_set_responder(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct net_device *ndev = wdev_to_wlc_ndev(wdev, cfg);
wifi_rtt_responder_t responder_info;
WL_DBG(("Recv rtt -enable_resp cmd.\n"));
bzero(&responder_info, sizeof(responder_info));
/*
*Passing channel as NULL until implementation
*to get chan info from upper layers is donex
*/
err = dhd_dev_rtt_enable_responder(ndev, NULL);
if (unlikely(err)) {
WL_ERR(("Could not enable responder ret:%d \n", err));
goto done;
}
err = get_responder_info(cfg, &responder_info);
if (unlikely(err)) {
WL_ERR(("Failed to get responder info:%d \n", err));
dhd_dev_rtt_cancel_responder(ndev);
goto done;
}
done:
err = wl_cfgvendor_send_cmd_reply(wiphy, &responder_info, sizeof(responder_info));
if (unlikely(err)) {
WL_ERR(("Vendor cmd reply for -enable_resp failed ret:%d \n", err));
}
return err;
}
static int
wl_cfgvendor_rtt_cancel_responder(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
WL_DBG(("Recv rtt -cancel_resp cmd \n"));
err = dhd_dev_rtt_cancel_responder(bcmcfg_to_prmry_ndev(cfg));
if (unlikely(err)) {
WL_ERR(("Vendor cmd -cancel_resp failed ret:%d \n", err));
}
return err;
}
#endif /* RTT_SUPPORT */
#ifdef GSCAN_SUPPORT
static int wl_cfgvendor_enable_lazy_roam(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = -EINVAL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
uint32 lazy_roam_enable_flag;
if (!data) {
WL_ERR(("data is not available\n"));
return -EINVAL;
}
if (len <= 0) {
WL_ERR(("invaild len %d\n", len));
return -EINVAL;
}
type = nla_type(data);
if (type == GSCAN_ATTRIBUTE_LAZY_ROAM_ENABLE) {
lazy_roam_enable_flag = nla_get_u32(data);
err = dhd_dev_lazy_roam_enable(bcmcfg_to_prmry_ndev(cfg),
lazy_roam_enable_flag);
if (unlikely(err))
WL_ERR(("Could not enable lazy roam:%d \n", err));
}
return err;
}
static int wl_cfgvendor_set_lazy_roam_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, tmp, type;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
wlc_roam_exp_params_t roam_param;
const struct nlattr *iter;
bzero(&roam_param, sizeof(roam_param));
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_A_BAND_BOOST_THRESHOLD:
roam_param.a_band_boost_threshold = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_A_BAND_PENALTY_THRESHOLD:
roam_param.a_band_penalty_threshold = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_A_BAND_BOOST_FACTOR:
roam_param.a_band_boost_factor = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_A_BAND_PENALTY_FACTOR:
roam_param.a_band_penalty_factor = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_A_BAND_MAX_BOOST:
roam_param.a_band_max_boost = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_LAZY_ROAM_HYSTERESIS:
roam_param.cur_bssid_boost = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_ALERT_ROAM_RSSI_TRIGGER:
roam_param.alert_roam_trigger_threshold = nla_get_u32(iter);
break;
}
}
if (dhd_dev_set_lazy_roam_cfg(bcmcfg_to_prmry_ndev(cfg), &roam_param) < 0) {
WL_ERR(("Could not set batch cfg\n"));
err = -EINVAL;
}
return err;
}
/* small helper function */
static wl_bssid_pref_cfg_t *
create_bssid_pref_cfg(struct bcm_cfg80211 *cfg, uint32 num, uint32 *buf_len)
{
wl_bssid_pref_cfg_t *bssid_pref;
*buf_len = sizeof(wl_bssid_pref_cfg_t);
if (num) {
*buf_len += (num - 1) * sizeof(wl_bssid_pref_list_t);
}
bssid_pref = (wl_bssid_pref_cfg_t *)MALLOC(cfg->osh, *buf_len);
return bssid_pref;
}
static int
wl_cfgvendor_set_bssid_pref(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
wl_bssid_pref_cfg_t *bssid_pref = NULL;
wl_bssid_pref_list_t *bssids;
int tmp, tmp1, tmp2, type;
const struct nlattr *outer, *inner, *iter;
uint32 flush = 0, num = 0, buf_len = 0;
uint8 bssid_found = 0, rssi_found = 0;
/* Assumption: NUM attribute must come first */
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_NUM_BSSID:
if (num) {
WL_ERR(("attempt override bssid num.\n"));
err = -EINVAL;
goto exit;
}
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("nla_len not match\n"));
err = -EINVAL;
goto exit;
}
num = nla_get_u32(iter);
if (num == 0 || num > MAX_BSSID_PREF_LIST_NUM) {
WL_ERR(("wrong BSSID num:%d\n", num));
err = -EINVAL;
goto exit;
}
if ((bssid_pref = create_bssid_pref_cfg(cfg, num, &buf_len))
== NULL) {
WL_ERR(("Can't malloc memory\n"));
err = -ENOMEM;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_BSSID_PREF_FLUSH:
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("nla_len not match\n"));
err = -EINVAL;
goto exit;
}
flush = nla_get_u32(iter);
if (flush != 1) {
WL_ERR(("wrong flush value\n"));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_BSSID_PREF_LIST:
if (!num || !bssid_pref) {
WL_ERR(("bssid list count not set\n"));
err = -EINVAL;
goto exit;
}
bssid_pref->count = 0;
bssids = bssid_pref->bssids;
nla_for_each_nested(outer, iter, tmp) {
if (bssid_pref->count >= num) {
WL_ERR(("too many bssid list\n"));
err = -EINVAL;
goto exit;
}
bssid_found = 0;
rssi_found = 0;
nla_for_each_nested(inner, outer, tmp1) {
type = nla_type(inner);
switch (type) {
case GSCAN_ATTRIBUTE_BSSID_PREF:
if (nla_len(inner) != ETHER_ADDR_LEN) {
WL_ERR(("nla_len not match.\n"));
err = -EINVAL;
goto exit;
}
memcpy(&(bssids[bssid_pref->count].bssid),
nla_data(inner), ETHER_ADDR_LEN);
/* not used for now */
bssids[bssid_pref->count].flags = 0;
bssid_found = 1;
break;
case GSCAN_ATTRIBUTE_RSSI_MODIFIER:
if (nla_len(inner) != sizeof(uint32)) {
WL_ERR(("nla_len not match.\n"));
err = -EINVAL;
goto exit;
}
bssids[bssid_pref->count].rssi_factor =
(int8) nla_get_u32(inner);
rssi_found = 1;
break;
default:
WL_ERR(("wrong type:%d\n", type));
err = -EINVAL;
goto exit;
}
if (bssid_found && rssi_found) {
break;
}
}
bssid_pref->count++;
}
break;
default:
WL_ERR(("%s: No such attribute %d\n", __FUNCTION__, type));
break;
}
}
if (!bssid_pref) {
/* What if only flush is desired? */
if (flush) {
if ((bssid_pref = create_bssid_pref_cfg(cfg, 0, &buf_len)) == NULL) {
WL_ERR(("%s: Can't malloc memory\n", __FUNCTION__));
err = -ENOMEM;
goto exit;
}
bssid_pref->count = 0;
} else {
err = -EINVAL;
goto exit;
}
}
err = dhd_dev_set_lazy_roam_bssid_pref(bcmcfg_to_prmry_ndev(cfg),
bssid_pref, flush);
exit:
if (bssid_pref) {
MFREE(cfg->osh, bssid_pref, buf_len);
}
return err;
}
#endif /* GSCAN_SUPPORT */
#if defined(GSCAN_SUPPORT) || defined(ROAMEXP_SUPPORT)
static int
wl_cfgvendor_set_bssid_blacklist(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
maclist_t *blacklist = NULL;
int err = 0;
int type, tmp;
const struct nlattr *iter;
uint32 mem_needed = 0, flush = 0, num = 0;
/* Assumption: NUM attribute must come first */
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_NUM_BSSID:
if (num != 0) {
WL_ERR(("attempt to change BSSID num\n"));
err = -EINVAL;
goto exit;
}
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("not matching nla_len.\n"));
err = -EINVAL;
goto exit;
}
num = nla_get_u32(iter);
if (num == 0 || num > MAX_BSSID_BLACKLIST_NUM) {
WL_ERR(("wrong BSSID count:%d\n", num));
err = -EINVAL;
goto exit;
}
if (!blacklist) {
mem_needed = (uint32) (OFFSETOF(maclist_t, ea) +
sizeof(struct ether_addr) * (num));
blacklist = (maclist_t *)
MALLOCZ(cfg->osh, mem_needed);
if (!blacklist) {
WL_ERR(("MALLOCZ failed.\n"));
err = -ENOMEM;
goto exit;
}
}
break;
case GSCAN_ATTRIBUTE_BSSID_BLACKLIST_FLUSH:
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("not matching nla_len.\n"));
err = -EINVAL;
goto exit;
}
flush = nla_get_u32(iter);
if (flush != 1) {
WL_ERR(("flush arg is worng:%d\n", flush));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_BLACKLIST_BSSID:
if (num == 0 || !blacklist) {
WL_ERR(("number of BSSIDs not received.\n"));
err = -EINVAL;
goto exit;
}
if (nla_len(iter) != ETHER_ADDR_LEN) {
WL_ERR(("not matching nla_len.\n"));
err = -EINVAL;
goto exit;
}
if (blacklist->count >= num) {
WL_ERR(("too many BSSIDs than expected:%d\n",
blacklist->count));
err = -EINVAL;
goto exit;
}
memcpy(&(blacklist->ea[blacklist->count]), nla_data(iter),
ETHER_ADDR_LEN);
blacklist->count++;
break;
default:
WL_ERR(("No such attribute:%d\n", type));
break;
}
}
if (blacklist && (blacklist->count != num)) {
WL_ERR(("not matching bssid count:%d to expected:%d\n",
blacklist->count, num));
err = -EINVAL;
goto exit;
}
err = dhd_dev_set_blacklist_bssid(bcmcfg_to_prmry_ndev(cfg),
blacklist, mem_needed, flush);
exit:
MFREE(cfg->osh, blacklist, mem_needed);
return err;
}
static int
wl_cfgvendor_set_ssid_whitelist(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
wl_ssid_whitelist_t *ssid_whitelist = NULL;
wlc_ssid_t *ssid_elem;
int tmp, tmp1, mem_needed = 0, type;
const struct nlattr *iter, *iter1;
uint32 flush = 0, num = 0;
int ssid_found = 0;
/* Assumption: NUM attribute must come first */
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_NUM_WL_SSID:
if (num != 0) {
WL_ERR(("try to change SSID num\n"));
err = -EINVAL;
goto exit;
}
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("not matching nla_len.\n"));
err = -EINVAL;
goto exit;
}
num = nla_get_u32(iter);
if (num == 0 || num > MAX_SSID_WHITELIST_NUM) {
WL_ERR(("wrong SSID count:%d\n", num));
err = -EINVAL;
goto exit;
}
mem_needed = sizeof(wl_ssid_whitelist_t) +
sizeof(wlc_ssid_t) * num;
ssid_whitelist = (wl_ssid_whitelist_t *)
MALLOCZ(cfg->osh, mem_needed);
if (ssid_whitelist == NULL) {
WL_ERR(("failed to alloc mem\n"));
err = -ENOMEM;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_WL_SSID_FLUSH:
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("not matching nla_len.\n"));
err = -EINVAL;
goto exit;
}
flush = nla_get_u32(iter);
if (flush != 1) {
WL_ERR(("flush arg worng:%d\n", flush));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_WHITELIST_SSID_ELEM:
if (!num || !ssid_whitelist) {
WL_ERR(("num ssid is not set!\n"));
err = -EINVAL;
goto exit;
}
if (ssid_whitelist->ssid_count >= num) {
WL_ERR(("too many SSIDs:%d\n",
ssid_whitelist->ssid_count));
err = -EINVAL;
goto exit;
}
ssid_elem = &ssid_whitelist->ssids[
ssid_whitelist->ssid_count];
ssid_found = 0;
nla_for_each_nested(iter1, iter, tmp1) {
type = nla_type(iter1);
switch (type) {
case GSCAN_ATTRIBUTE_WL_SSID_LEN:
if (nla_len(iter1) != sizeof(uint32)) {
WL_ERR(("not match nla_len\n"));
err = -EINVAL;
goto exit;
}
ssid_elem->SSID_len = nla_get_u32(iter1);
if (ssid_elem->SSID_len >
DOT11_MAX_SSID_LEN) {
WL_ERR(("wrong SSID len:%d\n",
ssid_elem->SSID_len));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_WHITELIST_SSID:
if (ssid_elem->SSID_len == 0) {
WL_ERR(("SSID_len not received\n"));
err = -EINVAL;
goto exit;
}
if (nla_len(iter1) != ssid_elem->SSID_len) {
WL_ERR(("not match nla_len\n"));
err = -EINVAL;
goto exit;
}
memcpy(ssid_elem->SSID, nla_data(iter1),
ssid_elem->SSID_len);
ssid_found = 1;
break;
}
if (ssid_found) {
ssid_whitelist->ssid_count++;
break;
}
}
break;
default:
WL_ERR(("No such attribute: %d\n", type));
break;
}
}
if (ssid_whitelist && (ssid_whitelist->ssid_count != num)) {
WL_ERR(("not matching ssid count:%d to expected:%d\n",
ssid_whitelist->ssid_count, num));
err = -EINVAL;
goto exit;
}
err = dhd_dev_set_whitelist_ssid(bcmcfg_to_prmry_ndev(cfg),
ssid_whitelist, mem_needed, flush);
if (err == BCME_UNSUPPORTED) {
/* If firmware doesn't support feature, ignore the error
* Android framework doesn't populate/use whitelist ssids
* as of now, but invokes whitelist as part of roam config
* API. so this handler cannot be compiled out. but its
* safe to ignore.
*/
WL_ERR(("whilelist ssid not supported. Ignore."));
err = BCME_OK;
}
exit:
MFREE(cfg->osh, ssid_whitelist, mem_needed);
return err;
}
#endif /* GSCAN_SUPPORT || ROAMEXP_SUPPORT */
#ifdef ROAMEXP_SUPPORT
typedef enum {
FW_ROAMING_DISABLE,
FW_ROAMING_ENABLE
} fw_roaming_state_t;
static int
wl_cfgvendor_set_fw_roaming_state(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
fw_roaming_state_t requested_roaming_state;
int type;
int err = 0;
wl_roam_conf_t roam_req;
struct bcm_cfg80211 *cfg = wl_get_cfg(wdev_to_ndev(wdev));
if (!data) {
WL_ERR(("data is not available\n"));
return -EINVAL;
}
if (len <= 0) {
WL_ERR(("invalid len %d\n", len));
return -EINVAL;
}
/* Get the requested fw roaming state */
type = nla_type(data);
if (type != GSCAN_ATTRIBUTE_ROAM_STATE_SET) {
WL_ERR(("%s: Invalid attribute %d\n", __FUNCTION__, type));
return -EINVAL;
}
requested_roaming_state = nla_get_u32(data);
WL_INFORM(("setting FW roaming state to %d\n", requested_roaming_state));
if (requested_roaming_state == FW_ROAMING_ENABLE) {
roam_req = ROAM_CONF_ROAM_ENAB_REQ;
} else if (requested_roaming_state == FW_ROAMING_DISABLE) {
roam_req = ROAM_CONF_ROAM_DISAB_REQ;
} else {
WL_ERR(("unexpected roam_state_request:%d\n", requested_roaming_state));
return -EINVAL;
}
wl_cfgvif_roam_config(cfg, wdev->netdev, roam_req);
ROAMOFF_DBG_SAVE(wdev_to_ndev(wdev), SET_ROAM_VNDR_POLICY, !cfg->disable_fw_roam);
return err;
}
static int
wl_cfgvendor_fw_roam_get_capability(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
wifi_roaming_capabilities_t roaming_capability;
/* Update max number of blacklist bssids supported */
roaming_capability.max_blacklist_size = MAX_BSSID_BLACKLIST_NUM;
roaming_capability.max_whitelist_size = MAX_SSID_WHITELIST_NUM;
err = wl_cfgvendor_send_cmd_reply(wiphy, &roaming_capability,
sizeof(roaming_capability));
if (unlikely(err)) {
WL_ERR(("Vendor cmd reply for fw roam capability failed ret:%d \n", err));
}
return err;
}
#endif /* ROAMEXP_SUPPORT */
static int
wl_cfgvendor_priv_string_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int ret = 0;
int ret_len = 0, payload = 0, msglen;
const struct bcm_nlmsg_hdr *nlioc = data;
void *buf = NULL, *cur;
int maxmsglen = PAGE_SIZE - 0x100;
struct sk_buff *reply;
dhd_pub_t *dhdp = wl_cfg80211_get_dhdp(wdev->netdev);
/* send to dongle only if we are not waiting for reload already */
if (dhdp && dhdp->hang_was_sent) {
WL_INFORM(("Bus down. HANG was sent up earlier\n"));
DHD_OS_WAKE_LOCK_CTRL_TIMEOUT_ENABLE(dhdp, DHD_EVENT_TIMEOUT_MS);
DHD_OS_WAKE_UNLOCK(dhdp);
return OSL_ERROR(BCME_DONGLE_DOWN);
}
if (!data) {
WL_ERR(("data is not available\n"));
return BCME_BADARG;
}
if (len <= sizeof(struct bcm_nlmsg_hdr)) {
WL_ERR(("invalid len %d\n", len));
return BCME_BADARG;
}
WL_DBG(("entry: cmd = %d\n", nlioc->cmd));
if (nlioc->offset != sizeof(struct bcm_nlmsg_hdr)) {
WL_ERR(("invalid offset %d\n", nlioc->offset));
return BCME_BADARG;
}
len -= sizeof(struct bcm_nlmsg_hdr);
ret_len = nlioc->len;
if (ret_len > 0 || len > 0) {
if (len >= DHD_IOCTL_MAXLEN) {
WL_ERR(("oversize input buffer %d\n", len));
len = DHD_IOCTL_MAXLEN - 1;
}
if (ret_len >= DHD_IOCTL_MAXLEN) {
WL_ERR(("oversize return buffer %d\n", ret_len));
ret_len = DHD_IOCTL_MAXLEN - 1;
}
payload = max(ret_len, len) + 1;
buf = vzalloc(payload);
if (!buf) {
return -ENOMEM;
}
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
memcpy(buf, (void *)((char *)nlioc + nlioc->offset), len);
GCC_DIAGNOSTIC_POP();
*((char *)buf + len) = '\0';
}
ret = dhd_cfgvendor_priv_string_handler(cfg, wdev, nlioc, buf);
if (ret) {
WL_ERR(("dhd_cfgvendor returned error %d", ret));
vfree(buf);
return ret;
}
cur = buf;
while (ret_len > 0) {
msglen = ret_len > maxmsglen ? maxmsglen : ret_len;
ret_len -= msglen;
payload = msglen + sizeof(msglen);
reply = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, payload);
if (!reply) {
WL_ERR(("Failed to allocate reply msg\n"));
ret = -ENOMEM;
break;
}
if (nla_put(reply, BCM_NLATTR_DATA, msglen, cur) ||
nla_put_u16(reply, BCM_NLATTR_LEN, msglen)) {
kfree_skb(reply);
ret = -ENOBUFS;
break;
}
ret = cfg80211_vendor_cmd_reply(reply);
if (ret) {
WL_ERR(("testmode reply failed:%d\n", ret));
break;
}
cur = (void *)((char *)cur + msglen);
}
return ret;
}
struct net_device *
wl_cfgvendor_get_ndev(struct bcm_cfg80211 *cfg, struct wireless_dev *wdev,
const char *data, unsigned long int *out_addr)
{
char *pos, *pos1;
char ifname[IFNAMSIZ + 1] = {0};
struct net_info *iter, *next;
struct net_device *ndev = NULL;
ulong ifname_len;
*out_addr = (unsigned long int) data; /* point to command str by default */
/* check whether ifname=<ifname> is provided in the command */
pos = strstr(data, "ifname=");
if (pos) {
pos += strlen("ifname=");
pos1 = strstr(pos, " ");
if (!pos1) {
WL_ERR(("command format error \n"));
return NULL;
}
ifname_len = pos1 - pos;
if (memcpy_s(ifname, (sizeof(ifname) - 1), pos, ifname_len) != BCME_OK) {
WL_ERR(("Failed to copy data. len: %ld\n", ifname_len));
return NULL;
}
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
for_each_ndev(cfg, iter, next) {
if (iter->ndev) {
if (strncmp(iter->ndev->name, ifname,
strlen(iter->ndev->name)) == 0) {
/* matching ifname found */
WL_DBG(("matching interface (%s) found ndev:%p \n",
iter->ndev->name, iter->ndev));
*out_addr = (unsigned long int)(pos1 + 1);
/* Returns the command portion after ifname=<name> */
return iter->ndev;
}
}
}
GCC_DIAGNOSTIC_POP();
WL_ERR(("Couldn't find ifname:%s in the netinfo list \n",
ifname));
return NULL;
}
/* If ifname=<name> arg is not provided, use default ndev */
ndev = wdev->netdev ? wdev->netdev : bcmcfg_to_prmry_ndev(cfg);
WL_DBG(("Using default ndev (%s) \n", ndev->name));
return ndev;
}
#ifdef WL_SAE
static int wl_cfgvendor_map_supp_sae_pwe_to_fw(u32 sup_value, u32 *sae_pwe)
{
s32 ret = BCME_OK;
switch (sup_value) {
case SUPP_SAE_PWE_LOOP:
*sae_pwe = SAE_PWE_LOOP;
break;
case SUPP_SAE_PWE_H2E:
*sae_pwe = SAE_PWE_H2E;
break;
case SUPP_SAE_PWE_TRANS:
*sae_pwe = SAE_PWE_LOOP | SAE_PWE_H2E;
break;
default:
ret = BCME_BADARG;
}
return ret;
}
#endif /* WL_SAE */
int
wl_cfgvendor_connect_params_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct net_device *net = wdev->netdev;
int ret = BCME_OK;
int attr_type;
int rem = len;
const struct nlattr *iter;
BCM_REFERENCE(net);
nla_for_each_attr(iter, data, len, rem) {
attr_type = nla_type(iter);
WL_DBG(("attr type: (%u)\n", attr_type));
switch (attr_type) {
#ifdef WL_SAE
case BRCM_ATTR_SAE_PWE: {
u32 sae_pwe = 0;
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("Invalid value of sae_pwe\n"));
ret = -EINVAL;
break;
}
ret = wl_cfgvendor_map_supp_sae_pwe_to_fw(nla_get_u32(iter), &sae_pwe);
if (unlikely(ret)) {
WL_ERR(("Invalid sae_pwe\n"));
break;
}
ret = wl_cfg80211_set_wsec_info(net, &sae_pwe,
sizeof(sae_pwe), WL_WSEC_INFO_BSS_SAE_PWE);
if (unlikely(ret)) {
WL_ERR(("set wsec_info_sae_pwe failed \n"));
}
break;
}
#endif /* WL_SAE */
/* Add new attributes here */
default:
WL_DBG(("%s: Unknown type, %d\n", __FUNCTION__, attr_type));
}
}
return ret;
}
int
wl_cfgvendor_start_ap_params_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct net_device *net = wdev->netdev;
int ret = BCME_OK;
int attr_type;
int rem = len;
const struct nlattr *iter;
BCM_REFERENCE(net);
nla_for_each_attr(iter, data, len, rem) {
attr_type = nla_type(iter);
WL_DBG(("attr type: (%u)\n", attr_type));
switch (attr_type) {
#ifdef WL_SAE
case BRCM_ATTR_SAE_PWE: {
u32 sae_pwe = 0;
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("Invalid value of sae_pwe\n"));
ret = -EINVAL;
break;
}
ret = wl_cfgvendor_map_supp_sae_pwe_to_fw(nla_get_u32(iter), &sae_pwe);
if (unlikely(ret)) {
WL_ERR(("Invalid sae_pwe\n"));
break;
}
ret = wl_cfg80211_set_wsec_info(net, &sae_pwe,
sizeof(sae_pwe), WL_WSEC_INFO_BSS_SAE_PWE);
if (unlikely(ret)) {
WL_ERR(("set wsec_info_sae_pwe failed \n"));
}
break;
}
#endif /* WL_SAE */
/* Add new attributes here */
default:
WL_DBG(("%s: Unknown type, %d\n", __FUNCTION__, attr_type));
}
}
return ret;
}
#if defined(WL_SAE) || defined(WL_CLIENT_SAE)
static int
wl_cfgvendor_set_sae_password(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = BCME_OK;
struct net_device *net = wdev->netdev;
struct bcm_cfg80211 *cfg = wl_get_cfg(net);
wsec_pmk_t pmk;
s32 bssidx;
BCM_REFERENCE(pmk);
/* This api not needed for wpa_supplicant based sae authentication */
#ifdef WL_CLIENT_SAE
WL_INFORM_MEM(("Ignore for external sae auth\n"));
return BCME_OK;
#endif /* WL_CLIENT_SAE */
/* clear the content of pmk structure before usage */
(void)memset_s(&pmk, sizeof(wsec_pmk_t), 0x0, sizeof(wsec_pmk_t));
if ((bssidx = wl_get_bssidx_by_wdev(cfg, net->ieee80211_ptr)) < 0) {
WL_ERR(("Find p2p index from wdev(%p) failed\n", net->ieee80211_ptr));
return BCME_ERROR;
}
if ((len < 1) || (len > WSEC_MAX_PASSPHRASE_LEN)) {
WL_ERR(("Invalid passphrase length %d..should be >= 1 and <= 256\n",
len));
err = BCME_BADLEN;
goto done;
}
/* Set AUTH to SAE */
err = wldev_iovar_setint_bsscfg(net, "wpa_auth", WPA3_AUTH_SAE_PSK, bssidx);
if (unlikely(err)) {
WL_ERR(("could not set wpa_auth (0x%x)\n", err));
goto done;
}
/* Update passphrase in net_info and will be used
* in connect/start_ap context
*/
err = wl_cfg80211_set_netinfo_passphrase(cfg, net, data, len);
if (err) {
WL_ERR(("\n failed to cache sae passphrase %d\n", err));
goto done;
} else {
WL_INFORM_MEM(("sae passphrase set successfully\n"));
}
done:
return err;
}
#endif /* WL_SAE || WL_CLIENT_SAE */
static int
wl_cfgvendor_set_td_policy(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct net_device *net = wdev->netdev;
int ret = BCME_OK;
int attr_type;
int rem = len;
const struct nlattr *iter;
BCM_REFERENCE(net);
nla_for_each_attr(iter, data, len, rem) {
attr_type = nla_type(iter);
WL_DBG(("attr type: (%u)\n", attr_type));
switch (attr_type) {
case BRCM_ATTR_TD_POLICY: {
u32 td_policy = nla_get_u32(iter);
WL_INFORM_MEM(("Setting TD policy %d\n", td_policy));
ret = wl_cfg80211_set_wsec_info(net, &td_policy,
sizeof(td_policy), WL_WSEC_INFO_BSS_TD_POLICY);
if (unlikely(ret)) {
WL_ERR(("set wsec_info for td_policy failed, error %d\n", ret));
/* Trigger disassoc, going ahead with connection is
* violation of TD policy
*/
wl_cfg80211_disassoc(net, WLAN_REASON_UNSPECIFIED);
}
break;
}
/* Add new attributes here */
default:
WL_ERR(("%s: Unknown type, %d\n", __FUNCTION__, attr_type));
}
}
return ret;
}
#ifdef BCM_PRIV_CMD_SUPPORT
/* strlen("ifname=") + IFNAMESIZE + strlen(" ") + '\0' */
#define ANDROID_PRIV_CMD_IF_PREFIX_LEN (7 + IFNAMSIZ + 2)
/* Max length for the reply buffer. For BRCM_ATTR_DRIVER_CMD, the reply
* would be a formatted string and reply buf would be the size of the
* string.
*/
#define WL_DRIVER_PRIV_CMD_LEN 512
static int
wl_cfgvendor_priv_bcm_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
const struct nlattr *iter;
int err = 0;
int data_len = 0, cmd_len = 0, tmp = 0, type = 0;
struct net_device *ndev = wdev->netdev;
char *cmd = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int bytes_written;
struct net_device *net = NULL;
unsigned long int cmd_out = 0;
#if defined(WL_ANDROID_PRIV_CMD_OVER_NL80211)
u32 cmd_buf_len = WL_DRIVER_PRIV_CMD_LEN;
char cmd_prefix[ANDROID_PRIV_CMD_IF_PREFIX_LEN + 1] = {0};
char *cmd_buf = NULL;
char *current_pos;
u32 cmd_offset;
#endif /* WL_ANDROID_PRIV_CMD_OVER_NL80211 && OEM_ANDROID */
WL_DBG(("%s: Enter \n", __func__));
/* hold wake lock */
net_os_wake_lock(ndev);
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
cmd = nla_data(iter);
cmd_len = nla_len(iter);
WL_DBG(("%s: type: %d cmd_len:%d cmd_ptr:%p \n", __func__, type, cmd_len, cmd));
if (!cmd || !cmd_len) {
WL_ERR(("Invalid cmd data \n"));
err = -EINVAL;
goto exit;
}
#if defined(WL_ANDROID_PRIV_CMD_OVER_NL80211)
if (type == BRCM_ATTR_DRIVER_CMD) {
if ((cmd_len >= WL_DRIVER_PRIV_CMD_LEN) ||
(cmd_len < ANDROID_PRIV_CMD_IF_PREFIX_LEN)) {
WL_ERR(("Unexpected command length (%u)."
"Ignore the command\n", cmd_len));
err = -EINVAL;
goto exit;
}
/* check whether there is any ifname prefix provided */
if (memcpy_s(cmd_prefix, (sizeof(cmd_prefix) - 1),
cmd, ANDROID_PRIV_CMD_IF_PREFIX_LEN) != BCME_OK) {
WL_ERR(("memcpy failed for cmd buffer. len:%d\n", cmd_len));
err = -ENOMEM;
goto exit;
}
net = wl_cfgvendor_get_ndev(cfg, wdev, cmd_prefix, &cmd_out);
if (!cmd_out || !net) {
WL_ERR(("ndev not found\n"));
err = -ENODEV;
goto exit;
}
/* find offset of the command */
current_pos = (char *)cmd_out;
cmd_offset = current_pos - cmd_prefix;
if (!current_pos || (cmd_offset) > ANDROID_PRIV_CMD_IF_PREFIX_LEN) {
WL_ERR(("Invalid len cmd_offset: %u \n", cmd_offset));
err = -EINVAL;
goto exit;
}
/* Private command data in expected to be in str format. To ensure that
* the data is null terminated, copy to a local buffer before use
*/
cmd_buf = (char *)MALLOCZ(cfg->osh, cmd_buf_len);
if (!cmd_buf) {
WL_ERR(("memory alloc failed for %u \n", cmd_buf_len));
err = -ENOMEM;
goto exit;
}
/* Point to the start of command */
if (memcpy_s(cmd_buf, (WL_DRIVER_PRIV_CMD_LEN - 1),
(const void *)(cmd + cmd_offset),
(cmd_len - cmd_offset - 1)) != BCME_OK) {
WL_ERR(("memcpy failed for cmd buffer. len:%d\n", cmd_len));
err = -ENOMEM;
goto exit;
}
cmd_buf[WL_DRIVER_PRIV_CMD_LEN - 1] = '\0';
WL_DBG(("vendor_command: %s len: %u \n", cmd_buf, cmd_buf_len));
bytes_written = wl_handle_private_cmd(net, cmd_buf, cmd_buf_len);
WL_DBG(("bytes_written: %d \n", bytes_written));
if (bytes_written == 0) {
snprintf(cmd_buf, cmd_buf_len, "%s", "OK");
data_len = sizeof("OK");
} else if (bytes_written > 0) {
if (bytes_written >= (cmd_buf_len - 1)) {
/* Not expected */
ASSERT(0);
err = -EINVAL;
goto exit;
}
data_len = bytes_written;
} else {
/* -ve return value. Propagate the error back */
err = bytes_written;
goto exit;
}
if ((data_len > 0) && (data_len < (cmd_buf_len - 1)) && cmd_buf) {
err = wl_cfgvendor_send_cmd_reply(wiphy, cmd_buf, data_len);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
} else {
WL_DBG(("Vendor Command reply sent successfully!\n"));
}
} else {
/* No data to be sent back as reply */
WL_ERR(("Vendor_cmd: No reply expected. data_len:%u cmd_buf %p \n",
data_len, cmd_buf));
}
break;
}
#endif /* WL_ANDROID_PRIV_CMD_OVER_NL80211 && OEM_ANDROID */
}
exit:
#if defined(WL_ANDROID_PRIV_CMD_OVER_NL80211)
if (cmd_buf) {
MFREE(cfg->osh, cmd_buf, cmd_buf_len);
}
#endif /* WL_ANDROID_PRIV_CMD_OVER_NL80211 && OEM_ANDROID */
net_os_wake_unlock(ndev);
return err;
}
#endif /* BCM_PRIV_CMD_SUPPORT */
#ifdef WL_NAN
static const char *
nan_attr_to_str(u16 cmd)
{
const char *id2str;
switch (cmd) {
C2S(NAN_ATTRIBUTE_HEADER);
break;
C2S(NAN_ATTRIBUTE_HANDLE);
break;
C2S(NAN_ATTRIBUTE_TRANSAC_ID);
break;
C2S(NAN_ATTRIBUTE_2G_SUPPORT);
break;
C2S(NAN_ATTRIBUTE_SDF_2G_SUPPORT);
break;
C2S(NAN_ATTRIBUTE_SDF_5G_SUPPORT);
break;
C2S(NAN_ATTRIBUTE_5G_SUPPORT);
break;
C2S(NAN_ATTRIBUTE_SYNC_DISC_2G_BEACON);
break;
C2S(NAN_ATTRIBUTE_SYNC_DISC_5G_BEACON);
break;
C2S(NAN_ATTRIBUTE_CLUSTER_LOW);
break;
C2S(NAN_ATTRIBUTE_CLUSTER_HIGH);
break;
C2S(NAN_ATTRIBUTE_SID_BEACON);
break;
C2S(NAN_ATTRIBUTE_RSSI_CLOSE);
break;
C2S(NAN_ATTRIBUTE_RSSI_MIDDLE);
break;
C2S(NAN_ATTRIBUTE_RSSI_PROXIMITY);
break;
C2S(NAN_ATTRIBUTE_RSSI_CLOSE_5G);
break;
C2S(NAN_ATTRIBUTE_RSSI_MIDDLE_5G);
break;
C2S(NAN_ATTRIBUTE_RSSI_PROXIMITY_5G);
break;
C2S(NAN_ATTRIBUTE_HOP_COUNT_LIMIT);
break;
C2S(NAN_ATTRIBUTE_RANDOM_TIME);
break;
C2S(NAN_ATTRIBUTE_MASTER_PREF);
break;
C2S(NAN_ATTRIBUTE_PERIODIC_SCAN_INTERVAL);
break;
C2S(NAN_ATTRIBUTE_PUBLISH_ID);
break;
C2S(NAN_ATTRIBUTE_TTL);
break;
C2S(NAN_ATTRIBUTE_PERIOD);
break;
C2S(NAN_ATTRIBUTE_REPLIED_EVENT_FLAG);
break;
C2S(NAN_ATTRIBUTE_PUBLISH_TYPE);
break;
C2S(NAN_ATTRIBUTE_TX_TYPE);
break;
C2S(NAN_ATTRIBUTE_PUBLISH_COUNT);
break;
C2S(NAN_ATTRIBUTE_SERVICE_NAME_LEN);
break;
C2S(NAN_ATTRIBUTE_SERVICE_NAME);
break;
C2S(NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO_LEN);
break;
C2S(NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO);
break;
C2S(NAN_ATTRIBUTE_RX_MATCH_FILTER_LEN);
break;
C2S(NAN_ATTRIBUTE_RX_MATCH_FILTER);
break;
C2S(NAN_ATTRIBUTE_TX_MATCH_FILTER_LEN);
break;
C2S(NAN_ATTRIBUTE_TX_MATCH_FILTER);
break;
C2S(NAN_ATTRIBUTE_SUBSCRIBE_ID);
break;
C2S(NAN_ATTRIBUTE_SUBSCRIBE_TYPE);
break;
C2S(NAN_ATTRIBUTE_SERVICERESPONSEFILTER);
break;
C2S(NAN_ATTRIBUTE_SERVICERESPONSEINCLUDE);
break;
C2S(NAN_ATTRIBUTE_USESERVICERESPONSEFILTER);
break;
C2S(NAN_ATTRIBUTE_SSIREQUIREDFORMATCHINDICATION);
break;
C2S(NAN_ATTRIBUTE_SUBSCRIBE_MATCH);
break;
C2S(NAN_ATTRIBUTE_SUBSCRIBE_COUNT);
break;
C2S(NAN_ATTRIBUTE_MAC_ADDR);
break;
C2S(NAN_ATTRIBUTE_MAC_ADDR_LIST);
break;
C2S(NAN_ATTRIBUTE_MAC_ADDR_LIST_NUM_ENTRIES);
break;
C2S(NAN_ATTRIBUTE_PUBLISH_MATCH);
break;
C2S(NAN_ATTRIBUTE_ENABLE_STATUS);
break;
C2S(NAN_ATTRIBUTE_JOIN_STATUS);
break;
C2S(NAN_ATTRIBUTE_ROLE);
break;
C2S(NAN_ATTRIBUTE_MASTER_RANK);
break;
C2S(NAN_ATTRIBUTE_ANCHOR_MASTER_RANK);
break;
C2S(NAN_ATTRIBUTE_CNT_PEND_TXFRM);
break;
C2S(NAN_ATTRIBUTE_CNT_BCN_TX);
break;
C2S(NAN_ATTRIBUTE_CNT_BCN_RX);
break;
C2S(NAN_ATTRIBUTE_CNT_SVC_DISC_TX);
break;
C2S(NAN_ATTRIBUTE_CNT_SVC_DISC_RX);
break;
C2S(NAN_ATTRIBUTE_AMBTT);
break;
C2S(NAN_ATTRIBUTE_CLUSTER_ID);
break;
C2S(NAN_ATTRIBUTE_INST_ID);
break;
C2S(NAN_ATTRIBUTE_OUI);
break;
C2S(NAN_ATTRIBUTE_STATUS);
break;
C2S(NAN_ATTRIBUTE_DE_EVENT_TYPE);
break;
C2S(NAN_ATTRIBUTE_MERGE);
break;
C2S(NAN_ATTRIBUTE_IFACE);
break;
C2S(NAN_ATTRIBUTE_CHANNEL);
break;
C2S(NAN_ATTRIBUTE_24G_CHANNEL);
break;
C2S(NAN_ATTRIBUTE_5G_CHANNEL);
break;
C2S(NAN_ATTRIBUTE_PEER_ID);
break;
C2S(NAN_ATTRIBUTE_NDP_ID);
break;
C2S(NAN_ATTRIBUTE_SECURITY);
break;
C2S(NAN_ATTRIBUTE_QOS);
break;
C2S(NAN_ATTRIBUTE_RSP_CODE);
break;
C2S(NAN_ATTRIBUTE_INST_COUNT);
break;
C2S(NAN_ATTRIBUTE_PEER_DISC_MAC_ADDR);
break;
C2S(NAN_ATTRIBUTE_PEER_NDI_MAC_ADDR);
break;
C2S(NAN_ATTRIBUTE_IF_ADDR);
break;
C2S(NAN_ATTRIBUTE_WARMUP_TIME);
break;
C2S(NAN_ATTRIBUTE_RECV_IND_CFG);
break;
C2S(NAN_ATTRIBUTE_CONNMAP);
break;
C2S(NAN_ATTRIBUTE_DWELL_TIME);
break;
C2S(NAN_ATTRIBUTE_SCAN_PERIOD);
break;
C2S(NAN_ATTRIBUTE_RSSI_WINDOW_SIZE);
break;
C2S(NAN_ATTRIBUTE_CONF_CLUSTER_VAL);
break;
C2S(NAN_ATTRIBUTE_CIPHER_SUITE_TYPE);
break;
C2S(NAN_ATTRIBUTE_KEY_TYPE);
break;
C2S(NAN_ATTRIBUTE_KEY_LEN);
break;
C2S(NAN_ATTRIBUTE_SCID);
break;
C2S(NAN_ATTRIBUTE_SCID_LEN);
break;
C2S(NAN_ATTRIBUTE_SDE_CONTROL_CONFIG_DP);
break;
C2S(NAN_ATTRIBUTE_SDE_CONTROL_SECURITY);
break;
C2S(NAN_ATTRIBUTE_SDE_CONTROL_DP_TYPE);
break;
C2S(NAN_ATTRIBUTE_SDE_CONTROL_RANGE_SUPPORT);
break;
C2S(NAN_ATTRIBUTE_NO_CONFIG_AVAIL);
break;
C2S(NAN_ATTRIBUTE_2G_AWAKE_DW);
break;
C2S(NAN_ATTRIBUTE_5G_AWAKE_DW);
break;
C2S(NAN_ATTRIBUTE_RSSI_THRESHOLD_FLAG);
break;
C2S(NAN_ATTRIBUTE_KEY_DATA);
break;
C2S(NAN_ATTRIBUTE_SDEA_SERVICE_SPECIFIC_INFO_LEN);
break;
C2S(NAN_ATTRIBUTE_SDEA_SERVICE_SPECIFIC_INFO);
break;
C2S(NAN_ATTRIBUTE_REASON);
break;
C2S(NAN_ATTRIBUTE_DISC_IND_CFG);
break;
C2S(NAN_ATTRIBUTE_DWELL_TIME_5G);
break;
C2S(NAN_ATTRIBUTE_SCAN_PERIOD_5G);
break;
C2S(NAN_ATTRIBUTE_SVC_RESPONDER_POLICY);
break;
C2S(NAN_ATTRIBUTE_EVENT_MASK);
break;
C2S(NAN_ATTRIBUTE_SUB_SID_BEACON);
break;
C2S(NAN_ATTRIBUTE_RANDOMIZATION_INTERVAL);
break;
C2S(NAN_ATTRIBUTE_CMD_RESP_DATA);
break;
C2S(NAN_ATTRIBUTE_CMD_USE_NDPE);
break;
C2S(NAN_ATTRIBUTE_ENABLE_MERGE);
break;
C2S(NAN_ATTRIBUTE_DISCOVERY_BEACON_INTERVAL);
break;
C2S(NAN_ATTRIBUTE_NSS);
break;
C2S(NAN_ATTRIBUTE_ENABLE_RANGING);
break;
C2S(NAN_ATTRIBUTE_DW_EARLY_TERM);
break;
C2S(NAN_ATTRIBUTE_CHANNEL_INFO);
break;
C2S(NAN_ATTRIBUTE_NUM_CHANNELS);
break;
C2S(NAN_ATTRIBUTE_INSTANT_MODE_ENABLE);
break;
C2S(NAN_ATTRIBUTE_INSTANT_COMM_CHAN);
break;
default:
id2str = "NAN_ATTRIBUTE_UNKNOWN";
}
return id2str;
}
nan_hal_status_t nan_status_reasonstr_map[] = {
{NAN_STATUS_SUCCESS, "NAN status success"},
{NAN_STATUS_INTERNAL_FAILURE, "NAN Discovery engine failure"},
{NAN_STATUS_PROTOCOL_FAILURE, "protocol failure"},
{NAN_STATUS_INVALID_PUBLISH_SUBSCRIBE_ID, "invalid pub_sub ID"},
{NAN_STATUS_NO_RESOURCE_AVAILABLE, "No space available"},
{NAN_STATUS_INVALID_PARAM, "invalid param"},
{NAN_STATUS_INVALID_REQUESTOR_INSTANCE_ID, "invalid req inst id"},
{NAN_STATUS_INVALID_NDP_ID, "invalid ndp id"},
{NAN_STATUS_NAN_NOT_ALLOWED, "Nan not allowed"},
{NAN_STATUS_NO_OTA_ACK, "No OTA ack"},
{NAN_STATUS_ALREADY_ENABLED, "NAN is Already enabled"},
{NAN_STATUS_FOLLOWUP_QUEUE_FULL, "Follow-up queue full"},
{NAN_STATUS_UNSUPPORTED_CONCURRENCY_NAN_DISABLED, "unsupported concurrency"},
};
void
wl_cfgvendor_add_nan_reason_str(nan_status_type_t status, nan_hal_resp_t *nan_req_resp)
{
int i = 0;
int num = (int)(sizeof(nan_status_reasonstr_map)/sizeof(nan_status_reasonstr_map[0]));
for (i = 0; i < num; i++) {
if (nan_status_reasonstr_map[i].status == status) {
strlcpy(nan_req_resp->nan_reason, nan_status_reasonstr_map[i].nan_reason,
sizeof(nan_status_reasonstr_map[i].nan_reason));
break;
}
}
}
nan_status_type_t
wl_cfgvendor_brcm_to_nanhal_status(int32 vendor_status)
{
nan_status_type_t hal_status;
switch (vendor_status) {
case BCME_OK:
hal_status = NAN_STATUS_SUCCESS;
break;
case BCME_BUSY:
case BCME_NOTREADY:
hal_status = NAN_STATUS_NAN_NOT_ALLOWED;
break;
case BCME_BADLEN:
case BCME_BADBAND:
case BCME_UNSUPPORTED:
case BCME_USAGE_ERROR:
case BCME_BADARG:
case BCME_NOTENABLED:
hal_status = NAN_STATUS_INVALID_PARAM;
break;
case BCME_NOMEM:
case BCME_NORESOURCE:
case WL_NAN_E_SVC_SUB_LIST_FULL:
hal_status = NAN_STATUS_NO_RESOURCE_AVAILABLE;
break;
case WL_NAN_E_SD_TX_LIST_FULL:
hal_status = NAN_STATUS_FOLLOWUP_QUEUE_FULL;
break;
case WL_NAN_E_BAD_INSTANCE:
hal_status = NAN_STATUS_INVALID_PUBLISH_SUBSCRIBE_ID;
break;
default:
WL_ERR(("%s Unknown vendor status, status = %d\n",
__func__, vendor_status));
/* Generic error */
hal_status = NAN_STATUS_INTERNAL_FAILURE;
}
return hal_status;
}
static int
wl_cfgvendor_nan_cmd_reply(struct wiphy *wiphy, int nan_cmd,
nan_hal_resp_t *nan_req_resp, int ret, int nan_cmd_status)
{
int err;
int nan_reply;
nan_req_resp->subcmd = nan_cmd;
if (ret == BCME_OK) {
nan_reply = nan_cmd_status;
} else {
nan_reply = ret;
}
nan_req_resp->status = wl_cfgvendor_brcm_to_nanhal_status(nan_reply);
nan_req_resp->value = ret;
err = wl_cfgvendor_send_cmd_reply(wiphy, nan_req_resp,
sizeof(*nan_req_resp));
/* giving more prio to ret than err */
return (ret == 0) ? err : ret;
}
static void
wl_cfgvendor_free_disc_cmd_data(struct bcm_cfg80211 *cfg,
nan_discover_cmd_data_t *cmd_data)
{
if (!cmd_data) {
WL_ERR(("Cmd_data is null\n"));
return;
}
if (cmd_data->svc_info.data) {
MFREE(cfg->osh, cmd_data->svc_info.data, cmd_data->svc_info.dlen);
}
if (cmd_data->svc_hash.data) {
MFREE(cfg->osh, cmd_data->svc_hash.data, cmd_data->svc_hash.dlen);
}
if (cmd_data->rx_match.data) {
MFREE(cfg->osh, cmd_data->rx_match.data, cmd_data->rx_match.dlen);
}
if (cmd_data->tx_match.data) {
MFREE(cfg->osh, cmd_data->tx_match.data, cmd_data->tx_match.dlen);
}
if (cmd_data->mac_list.list) {
MFREE(cfg->osh, cmd_data->mac_list.list,
cmd_data->mac_list.num_mac_addr * ETHER_ADDR_LEN);
}
if (cmd_data->key.data) {
MFREE(cfg->osh, cmd_data->key.data, NAN_MAX_PMK_LEN);
}
if (cmd_data->scid.data) {
MFREE(cfg->osh, cmd_data->scid.data, cmd_data->scid.dlen);
}
if (cmd_data->sde_svc_info.data) {
MFREE(cfg->osh, cmd_data->sde_svc_info.data, cmd_data->sde_svc_info.dlen);
}
MFREE(cfg->osh, cmd_data, sizeof(*cmd_data));
}
static void
wl_cfgvendor_free_dp_cmd_data(struct bcm_cfg80211 *cfg,
nan_datapath_cmd_data_t *cmd_data)
{
if (!cmd_data) {
WL_ERR(("Cmd_data is null\n"));
return;
}
if (cmd_data->svc_hash.data) {
MFREE(cfg->osh, cmd_data->svc_hash.data, cmd_data->svc_hash.dlen);
}
if (cmd_data->svc_info.data) {
MFREE(cfg->osh, cmd_data->svc_info.data, cmd_data->svc_info.dlen);
}
if (cmd_data->key.data) {
MFREE(cfg->osh, cmd_data->key.data, NAN_MAX_PMK_LEN);
}
if (cmd_data->scid.data) {
MFREE(cfg->osh, cmd_data->scid.data, cmd_data->scid.dlen);
}
MFREE(cfg->osh, cmd_data, sizeof(*cmd_data));
}
#define WL_NAN_EVENT_MAX_BUF 256
#ifdef WL_NAN_DISC_CACHE
static int
wl_cfgvendor_nan_parse_dp_sec_info_args(struct wiphy *wiphy,
const void *buf, int len, nan_datapath_sec_info_cmd_data_t *cmd_data)
{
int ret = BCME_OK;
int attr_type;
int rem = len;
const struct nlattr *iter;
NAN_DBG_ENTER();
nla_for_each_attr(iter, buf, len, rem) {
attr_type = nla_type(iter);
WL_TRACE(("attr: %s (%u)\n", nan_attr_to_str(attr_type), attr_type));
switch (attr_type) {
case NAN_ATTRIBUTE_MAC_ADDR:
ret = memcpy_s((char*)&cmd_data->mac_addr, ETHER_ADDR_LEN,
(char*)nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy mac addr\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_PUBLISH_ID:
cmd_data->pub_id = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_NDP_ID:
cmd_data->ndp_instance_id = nla_get_u32(iter);
break;
default:
WL_ERR(("%s: Unknown type, %d\n", __FUNCTION__, attr_type));
ret = BCME_BADARG;
break;
}
}
/* We need to call set_config_handler b/f calling start enable TBD */
NAN_DBG_EXIT();
return ret;
}
#endif /* WL_NAN_DISC_CACHE */
static int
wl_cfgvendor_nan_parse_scid_params(struct bcm_cfg80211 *cfg, nan_str_data_t *scid,
const struct nlattr *iter, int attr_type)
{
int ret = BCME_OK;
switch (attr_type) {
case NAN_ATTRIBUTE_SCID_LEN:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
if (scid->dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
scid->dlen = nla_get_u32(iter);
if ((!scid->dlen) || scid->dlen >= NAN_MAX_SCID_BUF_LEN) {
ret = -EINVAL;
WL_ERR(("scid len %d invalid\n", scid->dlen));
goto exit;
}
WL_TRACE(("valid scid length = %u\n", scid->dlen));
break;
case NAN_ATTRIBUTE_SCID:
if (!scid->dlen || (nla_len(iter) != scid->dlen)) {
WL_ERR(("wrong scid len:%d,%d\n", scid->dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (scid->data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
scid->data = MALLOCZ(cfg->osh, scid->dlen);
if (scid->data == NULL) {
WL_ERR(("failed to allocate scid, len=%d\n", scid->dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(scid->data, scid->dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy scid data\n"));
return ret;
}
break;
default:
WL_ERR(("Unknown type, %d\n", attr_type));
ret = -EINVAL;
break;
}
exit:
return ret;
}
int8 chanbuf[CHANSPEC_STR_LEN];
static int
wl_cfgvendor_nan_parse_datapath_args(struct wiphy *wiphy,
const void *buf, int len, nan_datapath_cmd_data_t *cmd_data)
{
int ret = BCME_OK;
int attr_type;
int rem = len;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int chan;
NAN_DBG_ENTER();
nla_for_each_attr(iter, buf, len, rem) {
attr_type = nla_type(iter);
WL_TRACE(("attr: %s (%u)\n", nan_attr_to_str(attr_type), attr_type));
switch (attr_type) {
case NAN_ATTRIBUTE_NDP_ID:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ndp_instance_id = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_IFACE:
if (nla_len(iter) >= sizeof(cmd_data->ndp_iface)) {
WL_ERR(("iface_name len wrong:%d\n", nla_len(iter)));
ret = -EINVAL;
goto exit;
}
strlcpy((char *)cmd_data->ndp_iface, (char *)nla_data(iter),
nla_len(iter));
break;
case NAN_ATTRIBUTE_SECURITY:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ndp_cfg.security_cfg = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_QOS:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ndp_cfg.qos_cfg = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_RSP_CODE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rsp_code = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_INST_COUNT:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->num_ndp_instances = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_PEER_DISC_MAC_ADDR:
if (nla_len(iter) != ETHER_ADDR_LEN) {
ret = -EINVAL;
goto exit;
}
ret = memcpy_s((char*)&cmd_data->peer_disc_mac_addr,
ETHER_ADDR_LEN, (char*)nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy peer_disc_mac_addr\n"));
goto exit;
}
break;
case NAN_ATTRIBUTE_PEER_NDI_MAC_ADDR:
if (nla_len(iter) != ETHER_ADDR_LEN) {
ret = -EINVAL;
goto exit;
}
ret = memcpy_s((char*)&cmd_data->peer_ndi_mac_addr,
ETHER_ADDR_LEN, (char*)nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy peer_ndi_mac_addr\n"));
goto exit;
}
break;
case NAN_ATTRIBUTE_MAC_ADDR:
if (nla_len(iter) != ETHER_ADDR_LEN) {
ret = -EINVAL;
goto exit;
}
ret = memcpy_s((char*)&cmd_data->mac_addr, ETHER_ADDR_LEN,
(char*)nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy mac_addr\n"));
goto exit;
}
break;
case NAN_ATTRIBUTE_IF_ADDR:
if (nla_len(iter) != ETHER_ADDR_LEN) {
ret = -EINVAL;
goto exit;
}
ret = memcpy_s((char*)&cmd_data->if_addr, ETHER_ADDR_LEN,
(char*)nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy if_addr\n"));
goto exit;
}
break;
case NAN_ATTRIBUTE_ENTRY_CONTROL:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->avail_params.duration = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_AVAIL_BIT_MAP:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->avail_params.bmap = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_CHANNEL: {
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
/* take the default channel start_factor frequency */
chan = wf_mhz2channel((uint)nla_get_u32(iter), 0);
if (chan <= CH_MAX_2G_CHANNEL) {
cmd_data->avail_params.chanspec[0] =
wf_channel2chspec(chan, WL_CHANSPEC_BW_20);
} else {
cmd_data->avail_params.chanspec[0] =
wf_channel2chspec(chan, WL_CHANSPEC_BW_80);
}
if (cmd_data->avail_params.chanspec[0] == 0) {
WL_ERR(("Channel is not valid \n"));
ret = -EINVAL;
goto exit;
}
WL_TRACE(("valid chanspec, chanspec = 0x%04x \n",
cmd_data->avail_params.chanspec[0]));
break;
}
case NAN_ATTRIBUTE_NO_CONFIG_AVAIL:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->avail_params.no_config_avail = (bool)nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_SERVICE_NAME_LEN: {
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_hash.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_hash.dlen = nla_get_u16(iter);
if (cmd_data->svc_hash.dlen != WL_NAN_SVC_HASH_LEN) {
WL_ERR(("invalid svc_hash length = %u\n", cmd_data->svc_hash.dlen));
ret = -EINVAL;
goto exit;
}
break;
}
case NAN_ATTRIBUTE_SERVICE_NAME:
if ((!cmd_data->svc_hash.dlen) ||
(nla_len(iter) != cmd_data->svc_hash.dlen)) {
WL_ERR(("invalid svc_hash length = %d,%d\n",
cmd_data->svc_hash.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_hash.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_hash.data =
MALLOCZ(cfg->osh, cmd_data->svc_hash.dlen);
if (!cmd_data->svc_hash.data) {
WL_ERR(("failed to allocate svc_hash data, len=%d\n",
cmd_data->svc_hash.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->svc_hash.data, cmd_data->svc_hash.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy svc hash data\n"));
goto exit;
}
break;
case NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO_LEN:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_info.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_info.dlen = nla_get_u16(iter);
if (cmd_data->svc_info.dlen > MAX_APP_INFO_LEN) {
WL_ERR_RLMT(("Not allowed beyond :%d\n", MAX_APP_INFO_LEN));
ret = -EINVAL;
goto exit;
}
break;
case NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO:
if ((!cmd_data->svc_info.dlen) ||
(nla_len(iter) != cmd_data->svc_info.dlen)) {
WL_ERR(("failed to allocate svc info by invalid len=%d,%d\n",
cmd_data->svc_info.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_info.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_info.data = MALLOCZ(cfg->osh, cmd_data->svc_info.dlen);
if (cmd_data->svc_info.data == NULL) {
WL_ERR(("failed to allocate svc info data, len=%d\n",
cmd_data->svc_info.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->svc_info.data, cmd_data->svc_info.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy svc info\n"));
goto exit;
}
break;
case NAN_ATTRIBUTE_PUBLISH_ID:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->pub_id = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_CIPHER_SUITE_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->csid = nla_get_u8(iter);
WL_TRACE(("CSID = %u\n", cmd_data->csid));
break;
case NAN_ATTRIBUTE_KEY_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->key_type = nla_get_u8(iter);
WL_TRACE(("Key Type = %u\n", cmd_data->key_type));
break;
case NAN_ATTRIBUTE_KEY_LEN:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->key.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->key.dlen = nla_get_u32(iter);
if ((!cmd_data->key.dlen) || (cmd_data->key.dlen > WL_NAN_NCS_SK_PMK_LEN)) {
WL_ERR(("invalid key length = %u\n", cmd_data->key.dlen));
ret = -EINVAL;
goto exit;
}
WL_TRACE(("valid key length = %u\n", cmd_data->key.dlen));
break;
case NAN_ATTRIBUTE_KEY_DATA:
if ((!cmd_data->key.dlen) ||
(nla_len(iter) != cmd_data->key.dlen)) {
WL_ERR(("failed to allocate key data by invalid len=%d,%d\n",
cmd_data->key.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->key.data) {
WL_ERR(("trying to overwrite key data.\n"));
ret = -EINVAL;
goto exit;
}
cmd_data->key.data = MALLOCZ(cfg->osh, NAN_MAX_PMK_LEN);
if (cmd_data->key.data == NULL) {
WL_ERR(("failed to allocate key data, len=%d\n",
cmd_data->key.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->key.data, NAN_MAX_PMK_LEN,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to key data\n"));
goto exit;
}
break;
case NAN_ATTRIBUTE_SCID_LEN:
/* Fall through */
case NAN_ATTRIBUTE_SCID:
ret = wl_cfgvendor_nan_parse_scid_params(cfg, &cmd_data->scid,
iter, attr_type);
if (ret != BCME_OK) {
WL_ERR(("Failed to scid data\n"));
return ret;
}
break;
default:
WL_ERR(("Unknown type, %d\n", attr_type));
ret = -EINVAL;
goto exit;
}
}
exit:
/* We need to call set_config_handler b/f calling start enable TBD */
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_parse_discover_args(struct wiphy *wiphy,
const void *buf, int len, nan_discover_cmd_data_t *cmd_data)
{
int ret = BCME_OK;
int attr_type;
int rem = len;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
u8 val_u8;
u32 bit_flag;
u8 flag_match;
NAN_DBG_ENTER();
nla_for_each_attr(iter, buf, len, rem) {
attr_type = nla_type(iter);
WL_TRACE(("attr: %s (%u)\n", nan_attr_to_str(attr_type), attr_type));
switch (attr_type) {
case NAN_ATTRIBUTE_TRANSAC_ID:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->token = nla_get_u16(iter);
break;
case NAN_ATTRIBUTE_PERIODIC_SCAN_INTERVAL:
break;
/* Nan Publish/Subscribe request Attributes */
case NAN_ATTRIBUTE_PUBLISH_ID:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->pub_id = nla_get_u32(iter);
cmd_data->local_id = cmd_data->pub_id;
break;
case NAN_ATTRIBUTE_MAC_ADDR:
if (nla_len(iter) != ETHER_ADDR_LEN) {
ret = -EINVAL;
goto exit;
}
ret = memcpy_s((char*)&cmd_data->mac_addr, ETHER_ADDR_LEN,
(char*)nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy mac addr\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO_LEN:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_info.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_info.dlen = nla_get_u16(iter);
if (cmd_data->svc_info.dlen > NAN_MAX_SERVICE_SPECIFIC_INFO_LEN) {
WL_ERR_RLMT(("Not allowed beyond :%d\n",
NAN_MAX_SERVICE_SPECIFIC_INFO_LEN));
ret = -EINVAL;
goto exit;
}
break;
case NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO:
if ((!cmd_data->svc_info.dlen) ||
(nla_len(iter) != cmd_data->svc_info.dlen)) {
WL_ERR(("failed to allocate svc info by invalid len=%d,%d\n",
cmd_data->svc_info.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_info.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_info.data = MALLOCZ(cfg->osh, cmd_data->svc_info.dlen);
if (cmd_data->svc_info.data == NULL) {
WL_ERR(("failed to allocate svc info data, len=%d\n",
cmd_data->svc_info.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->svc_info.data, cmd_data->svc_info.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy svc info\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_SUBSCRIBE_ID:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->sub_id = nla_get_u16(iter);
cmd_data->local_id = cmd_data->sub_id;
break;
case NAN_ATTRIBUTE_SUBSCRIBE_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->flags |= nla_get_u8(iter) ? WL_NAN_SUB_ACTIVE : 0;
break;
case NAN_ATTRIBUTE_PUBLISH_COUNT:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->life_count = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_PUBLISH_TYPE: {
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
val_u8 = nla_get_u8(iter);
if (val_u8 == 0) {
cmd_data->flags |= WL_NAN_PUB_UNSOLICIT;
} else if (val_u8 == 1) {
cmd_data->flags |= WL_NAN_PUB_SOLICIT;
} else {
cmd_data->flags |= WL_NAN_PUB_BOTH;
}
break;
}
case NAN_ATTRIBUTE_PERIOD: {
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (nla_get_u16(iter) > NAN_MAX_AWAKE_DW_INTERVAL) {
WL_ERR(("Invalid/Out of bound value = %u\n", nla_get_u16(iter)));
ret = BCME_BADARG;
break;
}
if (nla_get_u16(iter)) {
cmd_data->period = 1 << (nla_get_u16(iter)-1);
}
break;
}
case NAN_ATTRIBUTE_REPLIED_EVENT_FLAG:
break;
case NAN_ATTRIBUTE_TTL:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ttl = nla_get_u16(iter);
break;
case NAN_ATTRIBUTE_SERVICE_NAME_LEN: {
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_hash.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_hash.dlen = nla_get_u16(iter);
if (cmd_data->svc_hash.dlen != WL_NAN_SVC_HASH_LEN) {
WL_ERR(("invalid svc_hash length = %u\n", cmd_data->svc_hash.dlen));
ret = -EINVAL;
goto exit;
}
break;
}
case NAN_ATTRIBUTE_SERVICE_NAME:
if ((!cmd_data->svc_hash.dlen) ||
(nla_len(iter) != cmd_data->svc_hash.dlen)) {
WL_ERR(("invalid svc_hash length = %d,%d\n",
cmd_data->svc_hash.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_hash.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_hash.data =
MALLOCZ(cfg->osh, cmd_data->svc_hash.dlen);
if (!cmd_data->svc_hash.data) {
WL_ERR(("failed to allocate svc_hash data, len=%d\n",
cmd_data->svc_hash.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->svc_hash.data, cmd_data->svc_hash.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy svc hash data\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_PEER_ID:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->remote_id = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_INST_ID:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->local_id = nla_get_u16(iter);
break;
case NAN_ATTRIBUTE_SUBSCRIBE_COUNT:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->life_count = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_SSIREQUIREDFORMATCHINDICATION: {
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
bit_flag = (u32)nla_get_u8(iter);
cmd_data->flags |=
bit_flag ? WL_NAN_SUB_MATCH_IF_SVC_INFO : 0;
break;
}
case NAN_ATTRIBUTE_SUBSCRIBE_MATCH:
case NAN_ATTRIBUTE_PUBLISH_MATCH: {
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
flag_match = nla_get_u8(iter);
switch (flag_match) {
case NAN_MATCH_ALG_MATCH_CONTINUOUS:
/* Default fw behaviour, no need to set explicitly */
break;
case NAN_MATCH_ALG_MATCH_ONCE:
cmd_data->flags |= WL_NAN_MATCH_ONCE;
break;
case NAN_MATCH_ALG_MATCH_NEVER:
cmd_data->flags |= WL_NAN_MATCH_NEVER;
break;
default:
WL_ERR(("invalid nan match alg = %u\n", flag_match));
ret = -EINVAL;
goto exit;
}
break;
}
case NAN_ATTRIBUTE_SERVICERESPONSEFILTER:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->srf_type = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_SERVICERESPONSEINCLUDE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->srf_include = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_USESERVICERESPONSEFILTER:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->use_srf = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_RX_MATCH_FILTER_LEN:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->rx_match.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->rx_match.dlen = nla_get_u16(iter);
if (cmd_data->rx_match.dlen > MAX_MATCH_FILTER_LEN) {
ret = -EINVAL;
WL_ERR_RLMT(("Not allowed beyond %d\n", MAX_MATCH_FILTER_LEN));
goto exit;
}
break;
case NAN_ATTRIBUTE_RX_MATCH_FILTER:
if ((!cmd_data->rx_match.dlen) ||
(nla_len(iter) != cmd_data->rx_match.dlen)) {
WL_ERR(("RX match filter len wrong:%d,%d\n",
cmd_data->rx_match.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->rx_match.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->rx_match.data =
MALLOCZ(cfg->osh, cmd_data->rx_match.dlen);
if (cmd_data->rx_match.data == NULL) {
WL_ERR(("failed to allocate LEN=[%u]\n",
cmd_data->rx_match.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->rx_match.data, cmd_data->rx_match.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy rx match data\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_TX_MATCH_FILTER_LEN:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->tx_match.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->tx_match.dlen = nla_get_u16(iter);
if (cmd_data->tx_match.dlen > MAX_MATCH_FILTER_LEN) {
ret = -EINVAL;
WL_ERR_RLMT(("Not allowed beyond %d\n", MAX_MATCH_FILTER_LEN));
goto exit;
}
break;
case NAN_ATTRIBUTE_TX_MATCH_FILTER:
if ((!cmd_data->tx_match.dlen) ||
(nla_len(iter) != cmd_data->tx_match.dlen)) {
WL_ERR(("TX match filter len wrong:%d,%d\n",
cmd_data->tx_match.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->tx_match.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->tx_match.data =
MALLOCZ(cfg->osh, cmd_data->tx_match.dlen);
if (cmd_data->tx_match.data == NULL) {
WL_ERR(("failed to allocate LEN=[%u]\n",
cmd_data->tx_match.dlen));
ret = -EINVAL;
goto exit;
}
ret = memcpy_s(cmd_data->tx_match.data, cmd_data->tx_match.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy tx match data\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_MAC_ADDR_LIST_NUM_ENTRIES:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->mac_list.num_mac_addr) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->mac_list.num_mac_addr = nla_get_u16(iter);
if (cmd_data->mac_list.num_mac_addr >= NAN_SRF_MAX_MAC) {
WL_ERR(("trying to overflow num :%d\n",
cmd_data->mac_list.num_mac_addr));
cmd_data->mac_list.num_mac_addr = 0;
ret = -EINVAL;
goto exit;
}
break;
case NAN_ATTRIBUTE_MAC_ADDR_LIST:
if ((!cmd_data->mac_list.num_mac_addr) ||
(nla_len(iter) != (cmd_data->mac_list.num_mac_addr * ETHER_ADDR_LEN))) {
WL_ERR(("wrong mac list len:%d,%d\n",
cmd_data->mac_list.num_mac_addr, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->mac_list.list) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->mac_list.list =
MALLOCZ(cfg->osh, (cmd_data->mac_list.num_mac_addr
* ETHER_ADDR_LEN));
if (cmd_data->mac_list.list == NULL) {
WL_ERR(("failed to allocate LEN=[%u]\n",
(cmd_data->mac_list.num_mac_addr * ETHER_ADDR_LEN)));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->mac_list.list,
(cmd_data->mac_list.num_mac_addr * ETHER_ADDR_LEN),
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy list of mac addresses\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_TX_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
val_u8 = nla_get_u8(iter);
if (val_u8 == 0) {
cmd_data->flags |= WL_NAN_PUB_BCAST;
WL_TRACE(("NAN_ATTRIBUTE_TX_TYPE: flags=NAN_PUB_BCAST\n"));
}
break;
case NAN_ATTRIBUTE_SDE_CONTROL_CONFIG_DP:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
if (nla_get_u8(iter) == 1) {
cmd_data->sde_control_flag
|= NAN_SDE_CF_DP_REQUIRED;
break;
}
break;
case NAN_ATTRIBUTE_SDE_CONTROL_RANGE_SUPPORT:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->sde_control_config = TRUE;
if (nla_get_u8(iter) == 1) {
cmd_data->sde_control_flag
|= NAN_SDE_CF_RANGING_REQUIRED;
break;
}
break;
case NAN_ATTRIBUTE_SDE_CONTROL_DP_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
if (nla_get_u8(iter) == 1) {
cmd_data->sde_control_flag
|= NAN_SDE_CF_MULTICAST_TYPE;
break;
}
break;
case NAN_ATTRIBUTE_SDE_CONTROL_SECURITY:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
if (nla_get_u8(iter) == 1) {
cmd_data->sde_control_flag
|= NAN_SDE_CF_SECURITY_REQUIRED;
break;
}
break;
case NAN_ATTRIBUTE_RECV_IND_CFG:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->recv_ind_flag = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_CIPHER_SUITE_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->csid = nla_get_u8(iter);
WL_TRACE(("CSID = %u\n", cmd_data->csid));
break;
case NAN_ATTRIBUTE_KEY_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->key_type = nla_get_u8(iter);
WL_TRACE(("Key Type = %u\n", cmd_data->key_type));
break;
case NAN_ATTRIBUTE_KEY_LEN:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->key.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->key.dlen = nla_get_u32(iter);
if ((!cmd_data->key.dlen) || (cmd_data->key.dlen > WL_NAN_NCS_SK_PMK_LEN)) {
WL_ERR(("invalid key length = %u\n",
cmd_data->key.dlen));
break;
}
WL_TRACE(("valid key length = %u\n", cmd_data->key.dlen));
break;
case NAN_ATTRIBUTE_KEY_DATA:
if (!cmd_data->key.dlen ||
(nla_len(iter) != cmd_data->key.dlen)) {
WL_ERR(("failed to allocate key data by invalid len=%d,%d\n",
cmd_data->key.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->key.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->key.data = MALLOCZ(cfg->osh, NAN_MAX_PMK_LEN);
if (cmd_data->key.data == NULL) {
WL_ERR(("failed to allocate key data, len=%d\n",
cmd_data->key.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->key.data, NAN_MAX_PMK_LEN,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to key data\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_SCID_LEN:
/* Fall through */
case NAN_ATTRIBUTE_SCID:
ret = wl_cfgvendor_nan_parse_scid_params(cfg, &cmd_data->scid,
iter, attr_type);
if (ret != BCME_OK) {
WL_ERR(("Failed to scid data\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_RSSI_THRESHOLD_FLAG:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
if (nla_get_u8(iter) == 1) {
cmd_data->flags |=
WL_NAN_RANGE_LIMITED;
break;
}
break;
case NAN_ATTRIBUTE_DISC_IND_CFG:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->disc_ind_cfg = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_SDEA_SERVICE_SPECIFIC_INFO_LEN:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->sde_svc_info.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->sde_svc_info.dlen = nla_get_u16(iter);
if (cmd_data->sde_svc_info.dlen > MAX_SDEA_SVC_INFO_LEN) {
ret = -EINVAL;
WL_ERR_RLMT(("Not allowed beyond %d\n", MAX_SDEA_SVC_INFO_LEN));
goto exit;
}
break;
case NAN_ATTRIBUTE_SDEA_SERVICE_SPECIFIC_INFO:
if ((!cmd_data->sde_svc_info.dlen) ||
(nla_len(iter) != cmd_data->sde_svc_info.dlen)) {
WL_ERR(("wrong sdea info len:%d,%d\n",
cmd_data->sde_svc_info.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->sde_svc_info.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->sde_svc_info.data = MALLOCZ(cfg->osh,
cmd_data->sde_svc_info.dlen);
if (cmd_data->sde_svc_info.data == NULL) {
WL_ERR(("failed to allocate svc info data, len=%d\n",
cmd_data->sde_svc_info.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->sde_svc_info.data,
cmd_data->sde_svc_info.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to sdea info data\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_SECURITY:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ndp_cfg.security_cfg = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_RANGING_INTERVAL:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ranging_intvl_msec = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_RANGING_INGRESS_LIMIT:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ingress_limit = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_RANGING_EGRESS_LIMIT:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->egress_limit = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_RANGING_INDICATION:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ranging_indication = nla_get_u32(iter);
break;
/* Nan accept policy: Per service basis policy
* Based on this policy(ALL/NONE), responder side
* will send ACCEPT/REJECT
*/
case NAN_ATTRIBUTE_SVC_RESPONDER_POLICY:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->service_responder_policy = nla_get_u8(iter);
break;
default:
WL_ERR(("Unknown type, %d\n", attr_type));
ret = -EINVAL;
goto exit;
}
}
exit:
/* We need to call set_config_handler b/f calling start enable TBD */
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_parse_args(struct wiphy *wiphy, const void *buf,
int len, nan_config_cmd_data_t *cmd_data, uint32 *nan_attr_mask)
{
int ret = BCME_OK;
int attr_type;
int rem = len;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int chan;
u8 sid_beacon = 0, sub_sid_beacon = 0;
NAN_DBG_ENTER();
nla_for_each_attr(iter, buf, len, rem) {
attr_type = nla_type(iter);
WL_TRACE(("attr: %s (%u)\n", nan_attr_to_str(attr_type), attr_type));
switch (attr_type) {
/* NAN Enable request attributes */
case NAN_ATTRIBUTE_2G_SUPPORT:{
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->support_2g = nla_get_u8(iter);
if (cmd_data->support_2g == 0) {
WL_ERR((" 2.4GHz support is not set \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
*nan_attr_mask |= NAN_ATTR_SUPPORT_2G_CONFIG;
break;
}
case NAN_ATTRIBUTE_5G_SUPPORT:{
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->support_5g = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_SUPPORT_5G_CONFIG;
break;
}
case NAN_ATTRIBUTE_CLUSTER_LOW: {
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->cluster_low = nla_get_u16(iter);
break;
}
case NAN_ATTRIBUTE_CLUSTER_HIGH: {
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->cluster_high = nla_get_u16(iter);
break;
}
case NAN_ATTRIBUTE_SID_BEACON: {
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
sid_beacon = nla_get_u8(iter);
cmd_data->sid_beacon.sid_enable = (sid_beacon & 0x01);
if (cmd_data->sid_beacon.sid_enable) {
cmd_data->sid_beacon.sid_count = (sid_beacon >> 1);
*nan_attr_mask |= NAN_ATTR_SID_BEACON_CONFIG;
} else {
WL_ERR((" sid beacon is not valid \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
break;
}
case NAN_ATTRIBUTE_SUB_SID_BEACON: {
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
sub_sid_beacon = nla_get_u8(iter);
cmd_data->sid_beacon.sub_sid_enable = (sub_sid_beacon & 0x01);
if (cmd_data->sid_beacon.sub_sid_enable) {
cmd_data->sid_beacon.sub_sid_count = (sub_sid_beacon >> 1);
*nan_attr_mask |= NAN_ATTR_SUB_SID_BEACON_CONFIG;
} else {
WL_ERR((" sub sid beacon is not valid \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
break;
}
case NAN_ATTRIBUTE_SYNC_DISC_2G_BEACON:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->beacon_2g_val = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_SYNC_DISC_2G_BEACON_CONFIG;
break;
case NAN_ATTRIBUTE_SYNC_DISC_5G_BEACON:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->beacon_5g_val = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_SYNC_DISC_5G_BEACON_CONFIG;
break;
case NAN_ATTRIBUTE_SDF_2G_SUPPORT:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->sdf_2g_val = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_SDF_2G_SUPPORT_CONFIG;
break;
case NAN_ATTRIBUTE_SDF_5G_SUPPORT:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->sdf_5g_val = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_SDF_5G_SUPPORT_CONFIG;
break;
case NAN_ATTRIBUTE_HOP_COUNT_LIMIT:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->hop_count_limit = nla_get_u8(iter);
if (cmd_data->hop_count_limit == 0) {
WL_ERR((" hop count limit is not valid \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
*nan_attr_mask |= NAN_ATTR_HOP_COUNT_LIMIT_CONFIG;
break;
case NAN_ATTRIBUTE_RANDOM_TIME:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->metrics.random_factor = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_RAND_FACTOR_CONFIG;
break;
case NAN_ATTRIBUTE_MASTER_PREF:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->metrics.master_pref = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_OUI:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->nan_oui = nla_get_u32(iter);
*nan_attr_mask |= NAN_ATTR_OUI_CONFIG;
WL_TRACE(("nan_oui=%d\n", cmd_data->nan_oui));
break;
case NAN_ATTRIBUTE_WARMUP_TIME:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->warmup_time = nla_get_u16(iter);
break;
case NAN_ATTRIBUTE_AMBTT:
case NAN_ATTRIBUTE_MASTER_RANK:
WL_DBG(("Unhandled attribute, %d\n", attr_type));
break;
case NAN_ATTRIBUTE_CHANNEL: {
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
/* take the default channel start_factor frequency */
chan = wf_mhz2channel((uint)nla_get_u32(iter), 0);
if (chan <= CH_MAX_2G_CHANNEL) {
cmd_data->chanspec[0] = wf_channel2chspec(chan, WL_CHANSPEC_BW_20);
} else {
cmd_data->chanspec[0] = wf_channel2chspec(chan, WL_CHANSPEC_BW_80);
}
if (cmd_data->chanspec[0] == 0) {
WL_ERR(("Channel is not valid \n"));
ret = -EINVAL;
goto exit;
}
WL_TRACE(("valid chanspec, chanspec = 0x%04x \n",
cmd_data->chanspec[0]));
break;
}
case NAN_ATTRIBUTE_24G_CHANNEL: {
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
/* take the default channel start_factor frequency */
chan = wf_mhz2channel((uint)nla_get_u32(iter), 0);
/* 20MHz as BW */
cmd_data->chanspec[1] = wf_channel2chspec(chan, WL_CHANSPEC_BW_20);
if (cmd_data->chanspec[1] == 0) {
WL_ERR((" 2.4GHz Channel is not valid \n"));
ret = -EINVAL;
break;
}
*nan_attr_mask |= NAN_ATTR_2G_CHAN_CONFIG;
WL_TRACE(("valid 2.4GHz chanspec, chanspec = 0x%04x \n",
cmd_data->chanspec[1]));
break;
}
case NAN_ATTRIBUTE_5G_CHANNEL: {
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
/* take the default channel start_factor frequency */
chan = wf_mhz2channel((uint)nla_get_u32(iter), 0);
/* 20MHz as BW */
cmd_data->chanspec[2] = wf_channel2chspec(chan, WL_CHANSPEC_BW_20);
if (cmd_data->chanspec[2] == 0) {
WL_ERR((" 5GHz Channel is not valid \n"));
ret = -EINVAL;
break;
}
*nan_attr_mask |= NAN_ATTR_5G_CHAN_CONFIG;
WL_TRACE(("valid 5GHz chanspec, chanspec = 0x%04x \n",
cmd_data->chanspec[2]));
break;
}
case NAN_ATTRIBUTE_CONF_CLUSTER_VAL:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->config_cluster_val = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_CLUSTER_VAL_CONFIG;
break;
case NAN_ATTRIBUTE_DWELL_TIME:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->dwell_time[0] = nla_get_u8(iter);
if (cmd_data->dwell_time[0] == 0) {
WL_ERR((" 2.4GHz dwell time is not valid \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
*nan_attr_mask |= NAN_ATTR_2G_DWELL_TIME_CONFIG;
break;
case NAN_ATTRIBUTE_SCAN_PERIOD:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->scan_period[0] = nla_get_u16(iter);
if (cmd_data->scan_period[0] == 0) {
WL_ERR((" 2.4GHz scan period is not valid \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
*nan_attr_mask |= NAN_ATTR_2G_SCAN_PERIOD_CONFIG;
break;
case NAN_ATTRIBUTE_DWELL_TIME_5G:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->dwell_time[1] = nla_get_u8(iter);
if (cmd_data->dwell_time[1] == 0) {
WL_ERR((" 5GHz dwell time is not valid \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
*nan_attr_mask |= NAN_ATTR_5G_DWELL_TIME_CONFIG;
break;
case NAN_ATTRIBUTE_SCAN_PERIOD_5G:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->scan_period[1] = nla_get_u16(iter);
if (cmd_data->scan_period[1] == 0) {
WL_ERR((" 5GHz scan period is not valid \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
*nan_attr_mask |= NAN_ATTR_5G_SCAN_PERIOD_CONFIG;
break;
case NAN_ATTRIBUTE_AVAIL_BIT_MAP:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->bmap = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_ENTRY_CONTROL:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->avail_params.duration = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_RSSI_CLOSE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rssi_attr.rssi_close_2dot4g_val = nla_get_s8(iter);
if (cmd_data->rssi_attr.rssi_close_2dot4g_val == 0) {
WL_ERR((" 2.4GHz rssi close is not valid \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
*nan_attr_mask |= NAN_ATTR_RSSI_CLOSE_CONFIG;
break;
case NAN_ATTRIBUTE_RSSI_MIDDLE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rssi_attr.rssi_middle_2dot4g_val = nla_get_s8(iter);
if (cmd_data->rssi_attr.rssi_middle_2dot4g_val == 0) {
WL_ERR((" 2.4GHz rssi middle is not valid \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
*nan_attr_mask |= NAN_ATTR_RSSI_MIDDLE_2G_CONFIG;
break;
case NAN_ATTRIBUTE_RSSI_PROXIMITY:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rssi_attr.rssi_proximity_2dot4g_val = nla_get_s8(iter);
if (cmd_data->rssi_attr.rssi_proximity_2dot4g_val == 0) {
WL_ERR((" 2.4GHz rssi proximity is not valid \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
*nan_attr_mask |= NAN_ATTR_RSSI_PROXIMITY_2G_CONFIG;
break;
case NAN_ATTRIBUTE_RSSI_CLOSE_5G:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rssi_attr.rssi_close_5g_val = nla_get_s8(iter);
if (cmd_data->rssi_attr.rssi_close_5g_val == 0) {
WL_ERR((" 5GHz rssi close is not valid \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
*nan_attr_mask |= NAN_ATTR_RSSI_CLOSE_5G_CONFIG;
break;
case NAN_ATTRIBUTE_RSSI_MIDDLE_5G:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rssi_attr.rssi_middle_5g_val = nla_get_s8(iter);
if (cmd_data->rssi_attr.rssi_middle_5g_val == 0) {
WL_ERR((" 5Hz rssi middle is not valid \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
*nan_attr_mask |= NAN_ATTR_RSSI_MIDDLE_5G_CONFIG;
break;
case NAN_ATTRIBUTE_RSSI_PROXIMITY_5G:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rssi_attr.rssi_proximity_5g_val = nla_get_s8(iter);
if (cmd_data->rssi_attr.rssi_proximity_5g_val == 0) {
WL_ERR((" 5GHz rssi proximity is not valid \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
*nan_attr_mask |= NAN_ATTR_RSSI_PROXIMITY_5G_CONFIG;
break;
case NAN_ATTRIBUTE_RSSI_WINDOW_SIZE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rssi_attr.rssi_window_size = nla_get_u8(iter);
if (cmd_data->rssi_attr.rssi_window_size == 0) {
WL_ERR((" rssi window size is not valid \n"));
cmd_data->status = BCME_BADARG;
goto exit;
}
*nan_attr_mask |= NAN_ATTR_RSSI_WINDOW_SIZE_CONFIG;
break;
case NAN_ATTRIBUTE_CIPHER_SUITE_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->csid = nla_get_u8(iter);
WL_TRACE(("CSID = %u\n", cmd_data->csid));
break;
case NAN_ATTRIBUTE_SCID_LEN:
/* Fall through */
case NAN_ATTRIBUTE_SCID:
ret = wl_cfgvendor_nan_parse_scid_params(cfg, &cmd_data->scid,
iter, attr_type);
if (ret != BCME_OK) {
WL_ERR(("Failed to scid data\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_2G_AWAKE_DW:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
if (nla_get_u32(iter) > NAN_MAX_AWAKE_DW_INTERVAL) {
WL_ERR(("%s: Invalid/Out of bound value = %u\n",
__FUNCTION__, nla_get_u32(iter)));
ret = -EINVAL;
goto exit;
}
if (nla_get_u32(iter)) {
cmd_data->awake_dws.dw_interval_2g =
1 << (nla_get_u32(iter)-1);
}
*nan_attr_mask |= NAN_ATTR_2G_DW_CONFIG;
break;
case NAN_ATTRIBUTE_5G_AWAKE_DW:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
if (nla_get_u32(iter) > NAN_MAX_AWAKE_DW_INTERVAL) {
WL_ERR(("%s: Invalid/Out of bound value = %u\n",
__FUNCTION__, nla_get_u32(iter)));
ret = BCME_BADARG;
break;
}
if (nla_get_u32(iter)) {
cmd_data->awake_dws.dw_interval_5g =
1 << (nla_get_u32(iter)-1);
}
*nan_attr_mask |= NAN_ATTR_5G_DW_CONFIG;
break;
case NAN_ATTRIBUTE_DISC_IND_CFG:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->disc_ind_cfg = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_MAC_ADDR:
if (nla_len(iter) != ETHER_ADDR_LEN) {
ret = -EINVAL;
goto exit;
}
ret = memcpy_s((char*)&cmd_data->mac_addr, ETHER_ADDR_LEN,
(char*)nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy mac addr\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_RANDOMIZATION_INTERVAL:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
/* run time nmi rand not supported as of now.
* Only during nan enable/iface-create rand mac is used
*/
cmd_data->nmi_rand_intvl = nla_get_u32(iter);
if (cmd_data->nmi_rand_intvl > 0) {
cfg->nancfg->mac_rand = true;
} else {
cfg->nancfg->mac_rand = false;
}
break;
case NAN_ATTRIBUTE_CMD_USE_NDPE:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->use_ndpe_attr = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_INSTANT_MODE_ENABLE:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->instant_mode_en = nla_get_u32(iter);
*nan_attr_mask |= NAN_ATTR_INSTANT_MODE_CONFIG;
break;
case NAN_ATTRIBUTE_INSTANT_COMM_CHAN:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
chan = wf_mhz2channel((uint)nla_get_u32(iter), 0);
if (chan < 0) {
WL_ERR((" Instant mode Channel is not valid %d chan %d \n",
(uint)nla_get_u32(iter), chan));
ret = -EINVAL;
break;
}
/* 20MHz as BW */
cmd_data->instant_chan = wf_channel2chspec(chan, WL_CHANSPEC_BW_20);
if (cmd_data->instant_chan <= 0) {
WL_ERR((" Instant mode Channel is not valid \n"));
ret = -EINVAL;
break;
}
WL_DBG(("valid instant mode chanspec, chanspec = 0x%04x \n",
cmd_data->instant_chan));
break;
case NAN_ATTRIBUTE_ENABLE_MERGE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->enable_merge = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_DISCOVERY_BEACON_INTERVAL:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->disc_bcn_interval = nla_get_u32(iter);
*nan_attr_mask |= NAN_ATTR_DISC_BEACON_INTERVAL;
break;
case NAN_ATTRIBUTE_NSS:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
/* FW handles it internally,
* nothing to do as per the value rxed from framework, ignore.
*/
break;
case NAN_ATTRIBUTE_ENABLE_RANGING:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cfg->nancfg->ranging_enable = nla_get_u32(iter) != 0 ? TRUE : FALSE;
break;
case NAN_ATTRIBUTE_DW_EARLY_TERM:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->dw_early_termination = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_CHRE_REQUEST:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->chre_req = nla_get_u8(iter);
break;
default:
WL_ERR(("%s: Unknown type, %d\n", __FUNCTION__, attr_type));
ret = -EINVAL;
goto exit;
}
}
exit:
/* We need to call set_config_handler b/f calling start enable TBD */
NAN_DBG_EXIT();
if (ret) {
WL_ERR(("%s: Failed to parse attribute %d ret %d",
__FUNCTION__, attr_type, ret));
}
return ret;
}
static int
wl_cfgvendor_nan_dp_estb_event_data_filler(struct sk_buff *msg,
nan_event_data_t *event_data) {
int ret = BCME_OK;
nan_ndl_sched_info_t *nan_sched_info = &event_data->ndl_sched_info;
ret = nla_put_u32(msg, NAN_ATTRIBUTE_NDP_ID, event_data->ndp_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put NDP ID, ret=%d\n", ret));
goto fail;
}
/*
* NDI mac address of the peer
* (required to derive target ipv6 address)
*/
ret = nla_put(msg, NAN_ATTRIBUTE_PEER_NDI_MAC_ADDR, ETH_ALEN,
event_data->responder_ndi.octet);
if (unlikely(ret)) {
WL_ERR(("Failed to put resp ndi, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u8(msg, NAN_ATTRIBUTE_RSP_CODE, event_data->status);
if (unlikely(ret)) {
WL_ERR(("Failed to put response code, ret=%d\n", ret));
goto fail;
}
if (event_data->svc_info.dlen && event_data->svc_info.data) {
ret = nla_put_u16(msg, NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO_LEN,
event_data->svc_info.dlen);
if (unlikely(ret)) {
WL_ERR(("Failed to put svc info len, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO,
event_data->svc_info.dlen, event_data->svc_info.data);
if (unlikely(ret)) {
WL_ERR(("Failed to put svc info, ret=%d\n", ret));
goto fail;
}
}
if (nan_sched_info->num_channels > 0) {
if (nan_sched_info->num_channels > NAN_MAX_CHANNEL_INFO_SUPPORTED) {
WL_ERR(("Failed to put more num channels: %d than supported\n",
nan_sched_info->num_channels));
ret = BCME_BADLEN;
goto fail;
}
ret = nla_put_u32(msg, NAN_ATTRIBUTE_NUM_CHANNELS, nan_sched_info->num_channels);
if (unlikely(ret)) {
WL_ERR(("Failed to put num channels, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_CHANNEL_INFO,
(nan_sched_info->num_channels * sizeof(nan_channel_info_t)),
&nan_sched_info->channel_info[0]);
if (unlikely(ret)) {
WL_ERR(("Failed to put nan channel info, ret=%d\n", ret));
goto fail;
}
}
fail:
return ret;
}
static int
wl_cfgvendor_nan_dp_ind_event_data_filler(struct sk_buff *msg,
nan_event_data_t *event_data)
{
int ret = BCME_OK;
ret = nla_put_u32(msg, NAN_ATTRIBUTE_PUBLISH_ID,
event_data->pub_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put pub ID, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u32(msg, NAN_ATTRIBUTE_NDP_ID, event_data->ndp_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put NDP ID, ret=%d\n", ret));
goto fail;
}
/* Discovery MAC addr of the peer/initiator */
ret = nla_put(msg, NAN_ATTRIBUTE_MAC_ADDR, ETH_ALEN,
event_data->remote_nmi.octet);
if (unlikely(ret)) {
WL_ERR(("Failed to put remote NMI, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u8(msg, NAN_ATTRIBUTE_SECURITY, event_data->security);
if (unlikely(ret)) {
WL_ERR(("Failed to put security, ret=%d\n", ret));
goto fail;
}
if (event_data->svc_info.dlen && event_data->svc_info.data) {
ret = nla_put_u16(msg, NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO_LEN,
event_data->svc_info.dlen);
if (unlikely(ret)) {
WL_ERR(("Failed to put svc info len, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO,
event_data->svc_info.dlen, event_data->svc_info.data);
if (unlikely(ret)) {
WL_ERR(("Failed to put svc info, ret=%d\n", ret));
goto fail;
}
}
#ifdef WL_NAN_INSTANT_MODE
/* PMKID(scid) info */
if (event_data->scid.dlen && event_data->scid.data) {
ret = nla_put_u32(msg, NAN_ATTRIBUTE_SCID_LEN, event_data->scid.dlen);
if (unlikely(ret)) {
WL_ERR(("Failed to put scid info len, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_SCID,
event_data->scid.dlen, event_data->scid.data);
if (unlikely(ret)) {
WL_ERR(("Failed to put scid info, ret=%d\n", ret));
goto fail;
}
WL_TRACE(("scid info len = %d\n", event_data->scid.dlen));
}
#endif /* WL_NAN_INSTANT_MODE */
fail:
return ret;
}
static int
wl_cfgvendor_nan_tx_followup_ind_event_data_filler(struct sk_buff *msg,
nan_event_data_t *event_data) {
int ret = BCME_OK;
ret = nla_put_u16(msg, NAN_ATTRIBUTE_TRANSAC_ID, event_data->token);
if (unlikely(ret)) {
WL_ERR(("Failed to put transaction id, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u8(msg, NAN_ATTRIBUTE_HANDLE, event_data->local_inst_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put handle, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u16(msg, NAN_ATTRIBUTE_STATUS, event_data->status);
if (unlikely(ret)) {
WL_ERR(("Failed to put nan status, ret=%d\n", ret));
goto fail;
}
if (event_data->status == NAN_STATUS_SUCCESS) {
ret = nla_put(msg, NAN_ATTRIBUTE_REASON,
strlen("NAN_STATUS_SUCCESS"), event_data->nan_reason);
if (unlikely(ret)) {
WL_ERR(("Failed to put nan reason, ret=%d\n", ret));
goto fail;
}
} else {
ret = nla_put(msg, NAN_ATTRIBUTE_REASON,
strlen("NAN_STATUS_NO_OTA_ACK"), event_data->nan_reason);
if (unlikely(ret)) {
WL_ERR(("Failed to put nan reason, ret=%d\n", ret));
goto fail;
}
}
fail:
return ret;
}
static int
wl_cfgvendor_nan_svc_terminate_event_filler(struct sk_buff *msg,
struct bcm_cfg80211 *cfg, int event_id, nan_event_data_t *event_data) {
int ret = BCME_OK;
ret = nla_put_u8(msg, NAN_ATTRIBUTE_HANDLE, event_data->local_inst_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put handle, ret=%d\n", ret));
goto fail;
}
if (event_id == GOOGLE_NAN_EVENT_SUBSCRIBE_TERMINATED) {
ret = nla_put_u16(msg, NAN_ATTRIBUTE_SUBSCRIBE_ID,
event_data->local_inst_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put local inst id, ret=%d\n", ret));
goto fail;
}
} else {
ret = nla_put_u32(msg, NAN_ATTRIBUTE_PUBLISH_ID,
event_data->local_inst_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put local inst id, ret=%d\n", ret));
goto fail;
}
}
ret = nla_put_u16(msg, NAN_ATTRIBUTE_STATUS, event_data->status);
if (unlikely(ret)) {
WL_ERR(("Failed to put status, ret=%d\n", ret));
goto fail;
}
if (event_data->status == NAN_STATUS_SUCCESS) {
ret = nla_put(msg, NAN_ATTRIBUTE_REASON,
strlen("NAN_STATUS_SUCCESS"), event_data->nan_reason);
if (unlikely(ret)) {
WL_ERR(("Failed to put nan reason, ret=%d\n", ret));
goto fail;
}
} else {
ret = nla_put(msg, NAN_ATTRIBUTE_REASON,
strlen("NAN_STATUS_INTERNAL_FAILURE"), event_data->nan_reason);
if (unlikely(ret)) {
WL_ERR(("Failed to put nan reason, ret=%d\n", ret));
goto fail;
}
}
ret = wl_cfgnan_remove_inst_id(cfg, event_data->local_inst_id);
if (ret) {
WL_ERR(("failed to free svc instance-id[%d], ret=%d, event_id = %d\n",
event_data->local_inst_id, ret, event_id));
goto fail;
}
fail:
return ret;
}
static int
wl_cfgvendor_nan_opt_params_filler(struct sk_buff *msg,
nan_event_data_t *event_data) {
int ret = BCME_OK;
/* service specific info data */
if (event_data->svc_info.dlen && event_data->svc_info.data) {
ret = nla_put_u16(msg, NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO_LEN,
event_data->svc_info.dlen);
if (unlikely(ret)) {
WL_ERR(("Failed to put svc info len, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO,
event_data->svc_info.dlen, event_data->svc_info.data);
if (unlikely(ret)) {
WL_ERR(("Failed to put svc info, ret=%d\n", ret));
goto fail;
}
WL_TRACE(("svc info len = %d\n", event_data->svc_info.dlen));
}
/* sdea service specific info data */
if (event_data->sde_svc_info.dlen && event_data->sde_svc_info.data) {
ret = nla_put_u16(msg, NAN_ATTRIBUTE_SDEA_SERVICE_SPECIFIC_INFO_LEN,
event_data->sde_svc_info.dlen);
if (unlikely(ret)) {
WL_ERR(("Failed to put sdea svc info len, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_SDEA_SERVICE_SPECIFIC_INFO,
event_data->sde_svc_info.dlen,
event_data->sde_svc_info.data);
if (unlikely(ret)) {
WL_ERR(("Failed to put sdea svc info, ret=%d\n", ret));
goto fail;
}
WL_TRACE(("sdea svc info len = %d\n", event_data->sde_svc_info.dlen));
}
/* service control discovery range limit */
/* TODO: */
/* service control binding bitmap */
/* TODO: */
fail:
return ret;
}
static int
wl_cfgvendor_nan_match_expiry_event_filler(struct sk_buff *msg,
nan_event_data_t *event_data) {
int ret = BCME_OK;
WL_DBG(("sub id (local id)=%d, pub id (remote id)=%d\n",
event_data->sub_id, event_data->pub_id));
ret = nla_put_u16(msg, NAN_ATTRIBUTE_SUBSCRIBE_ID, event_data->sub_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put Sub Id, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u32(msg, NAN_ATTRIBUTE_PUBLISH_ID, event_data->pub_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put pub id, ret=%d\n", ret));
goto fail;
}
fail:
return ret;
}
static int
wl_cfgvendor_nan_tx_followup_event_filler(struct sk_buff *msg,
nan_event_data_t *event_data) {
int ret = BCME_OK;
/* In followup pkt, instance id and requestor instance id are configured
* from the transmitter perspective. As the event is processed with the
* role of receiver, the local handle should use requestor instance
* id (peer_inst_id)
*/
WL_TRACE(("handle=%d\n", event_data->requestor_id));
WL_TRACE(("inst id (local id)=%d\n", event_data->local_inst_id));
WL_TRACE(("peer id (remote id)=%d\n", event_data->requestor_id));
WL_TRACE(("peer mac addr=" MACDBG "\n",
MAC2STRDBG(event_data->remote_nmi.octet)));
WL_TRACE(("peer rssi: %d\n", event_data->fup_rssi));
WL_TRACE(("attribute no: %d\n", event_data->attr_num));
WL_TRACE(("attribute len: %d\n", event_data->attr_list_len));
ret = nla_put_u8(msg, NAN_ATTRIBUTE_HANDLE, event_data->requestor_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put handle, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u32(msg, NAN_ATTRIBUTE_INST_ID, event_data->local_inst_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put local inst id, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u16(msg, NAN_ATTRIBUTE_PEER_ID, event_data->requestor_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put requestor inst id, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_MAC_ADDR, ETHER_ADDR_LEN,
event_data->remote_nmi.octet);
if (unlikely(ret)) {
WL_ERR(("Failed to put remote nmi, ret=%d\n", ret));
goto fail;
}
ret = nla_put_s8(msg, NAN_ATTRIBUTE_RSSI_PROXIMITY,
event_data->fup_rssi);
if (unlikely(ret)) {
WL_ERR(("Failed to put fup rssi, ret=%d\n", ret));
goto fail;
}
fail:
return ret;
}
static int
wl_cfgvendor_nan_sub_match_event_filler(struct sk_buff *msg,
nan_event_data_t *event_data) {
int ret = BCME_OK;
WL_TRACE(("handle (sub_id)=%d\n", event_data->sub_id));
WL_TRACE(("pub id=%d\n", event_data->pub_id));
WL_TRACE(("sub id=%d\n", event_data->sub_id));
WL_TRACE(("pub mac addr=" MACDBG "\n",
MAC2STRDBG(event_data->remote_nmi.octet)));
WL_TRACE(("attr no: %d\n", event_data->attr_num));
WL_TRACE(("attr len: %d\n", event_data->attr_list_len));
ret = nla_put_u8(msg, NAN_ATTRIBUTE_HANDLE, event_data->sub_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put handle, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u32(msg, NAN_ATTRIBUTE_PUBLISH_ID, event_data->pub_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put pub id, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u16(msg, NAN_ATTRIBUTE_SUBSCRIBE_ID, event_data->sub_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put Sub Id, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_MAC_ADDR, ETHER_ADDR_LEN,
event_data->remote_nmi.octet);
if (unlikely(ret)) {
WL_ERR(("Failed to put remote NMI, ret=%d\n", ret));
goto fail;
}
#ifdef WL_NAN_INSTANT_MODE
ret = nla_put_u8(msg, NAN_ATTRIBUTE_CIPHER_SUITE_TYPE, event_data->peer_cipher_suite);
if (unlikely(ret)) {
WL_ERR(("Failed to put CSID, ret=%d\n", ret));
goto fail;
}
#endif /* WL_NAN_INSTANT_MODE */
if (event_data->publish_rssi) {
event_data->publish_rssi = -event_data->publish_rssi;
ret = nla_put_u8(msg, NAN_ATTRIBUTE_RSSI_PROXIMITY,
event_data->publish_rssi);
if (unlikely(ret)) {
WL_ERR(("Failed to put publish rssi, ret=%d\n", ret));
goto fail;
}
}
if (event_data->ranging_result_present) {
ret = nla_put_u32(msg, NAN_ATTRIBUTE_RANGING_INDICATION,
event_data->ranging_ind);
if (unlikely(ret)) {
WL_ERR(("Failed to put ranging ind, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u32(msg, NAN_ATTRIBUTE_RANGING_RESULT,
event_data->range_measurement_cm);
if (unlikely(ret)) {
WL_ERR(("Failed to put range measurement cm, ret=%d\n",
ret));
goto fail;
}
}
/*
* handling optional service control, service response filter
*/
if (event_data->tx_match_filter.dlen && event_data->tx_match_filter.data) {
ret = nla_put_u16(msg, NAN_ATTRIBUTE_TX_MATCH_FILTER_LEN,
event_data->tx_match_filter.dlen);
if (unlikely(ret)) {
WL_ERR(("Failed to put tx match filter len, ret=%d\n",
ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_TX_MATCH_FILTER,
event_data->tx_match_filter.dlen,
event_data->tx_match_filter.data);
if (unlikely(ret)) {
WL_ERR(("Failed to put tx match filter data, ret=%d\n",
ret));
goto fail;
}
WL_TRACE(("tx matching filter (%d):\n",
event_data->tx_match_filter.dlen));
}
#ifdef WL_NAN_INSTANT_MODE
/* PMKID(scid) info */
if (event_data->scid.dlen && event_data->scid.data) {
ret = nla_put_u32(msg, NAN_ATTRIBUTE_SCID_LEN, event_data->scid.dlen);
if (unlikely(ret)) {
WL_ERR(("Failed to put scid info len, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_SCID,
event_data->scid.dlen, event_data->scid.data);
if (unlikely(ret)) {
WL_ERR(("Failed to put scid info, ret=%d\n", ret));
goto fail;
}
WL_TRACE(("scid info len = %d\n", event_data->scid.dlen));
}
#endif /* WL_NAN_INSTANT_MODE */
fail:
return ret;
}
static int
wl_cfgvendor_nan_de_event_filler(struct sk_buff *msg, nan_event_data_t *event_data)
{
int ret = BCME_OK;
ret = nla_put_u8(msg, NAN_ATTRIBUTE_ENABLE_STATUS, event_data->enabled);
if (unlikely(ret)) {
WL_ERR(("Failed to put event_data->enabled, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u8(msg, NAN_ATTRIBUTE_DE_EVENT_TYPE,
event_data->nan_de_evt_type);
if (unlikely(ret)) {
WL_ERR(("Failed to put nan_de_evt_type, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_CLUSTER_ID, ETH_ALEN,
event_data->clus_id.octet);
if (unlikely(ret)) {
WL_ERR(("Failed to put clust id, ret=%d\n", ret));
goto fail;
}
/* OOB tests requires local nmi */
ret = nla_put(msg, NAN_ATTRIBUTE_MAC_ADDR, ETH_ALEN,
event_data->local_nmi.octet);
if (unlikely(ret)) {
WL_ERR(("Failed to put NMI, ret=%d\n", ret));
goto fail;
}
fail:
return ret;
}
#ifdef RTT_SUPPORT
s32
wl_cfgvendor_send_as_rtt_legacy_event(struct wiphy *wiphy, struct net_device *dev,
wl_nan_ev_rng_rpt_ind_t *range_res, uint32 status)
{
s32 ret = BCME_OK;
gfp_t kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
rtt_report_t *report = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct sk_buff *msg = NULL;
struct nlattr *rtt_nl_hdr;
NAN_DBG_ENTER();
report = MALLOCZ(cfg->osh, sizeof(*report));
if (!report) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
if (range_res) {
report->distance = range_res->dist_mm/10;
ret = memcpy_s(&report->addr, ETHER_ADDR_LEN,
&range_res->peer_m_addr, ETHER_ADDR_LEN);
if (ret != BCME_OK) {
WL_ERR(("Failed to copy peer_m_addr\n"));
goto exit;
}
}
report->status = (rtt_reason_t)status;
report->type = RTT_TWO_WAY;
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
msg = cfg80211_vendor_event_alloc(wiphy, NULL, 100,
GOOGLE_RTT_COMPLETE_EVENT, kflags);
#else
msg = cfg80211_vendor_event_alloc(wiphy, 100, GOOGLE_RTT_COMPLETE_EVENT, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!msg) {
WL_ERR(("%s: fail to allocate skb for vendor event\n", __FUNCTION__));
ret = BCME_NOMEM;
goto exit;
}
ret = nla_put_u32(msg, RTT_ATTRIBUTE_RESULTS_COMPLETE, 1);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULTS_COMPLETE\n"));
goto exit;
}
rtt_nl_hdr = nla_nest_start(msg, RTT_ATTRIBUTE_RESULTS_PER_TARGET);
if (!rtt_nl_hdr) {
WL_ERR(("rtt_nl_hdr is NULL\n"));
ret = BCME_NOMEM;
goto exit;
}
ret = nla_put(msg, RTT_ATTRIBUTE_TARGET_MAC, ETHER_ADDR_LEN, &report->addr);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_TARGET_MAC\n"));
goto exit;
}
ret = nla_put_u32(msg, RTT_ATTRIBUTE_RESULT_CNT, 1);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULT_CNT\n"));
goto exit;
}
ret = nla_put(msg, RTT_ATTRIBUTE_RESULT,
sizeof(*report), report);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULTS\n"));
goto exit;
}
nla_nest_end(msg, rtt_nl_hdr);
cfg80211_vendor_event(msg, kflags);
if (report) {
MFREE(cfg->osh, report, sizeof(*report));
}
return ret;
exit:
if (msg)
dev_kfree_skb_any(msg);
WL_ERR(("Failed to send event GOOGLE_RTT_COMPLETE_EVENT,"
" -- Free skb, ret = %d\n", ret));
if (report)
MFREE(cfg->osh, report, sizeof(*report));
NAN_DBG_EXIT();
return ret;
}
#endif /* RTT_SUPPORT */
static int
wl_cfgvendor_send_nan_async_resp(struct wiphy *wiphy, struct wireless_dev *wdev,
int event_id, u8* nan_req_resp, u16 len)
{
int ret = BCME_OK;
int buf_len = NAN_EVENT_BUFFER_SIZE_LARGE;
gfp_t kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
struct bcm_cfg80211 *cfg = (struct bcm_cfg80211 *)wiphy_priv(wiphy);
struct sk_buff *msg;
NAN_DBG_ENTER();
wdev = bcmcfg_to_nmi_wdev(cfg);
/* Allocate the skb for vendor event */
msg = CFG80211_VENDOR_EVENT_ALLOC(wiphy, wdev, buf_len,
event_id, kflags);
if (!msg) {
WL_ERR(("%s: fail to allocate skb for vendor event\n", __FUNCTION__));
return -ENOMEM;
}
ret = nla_put(msg, NAN_ATTRIBUTE_CMD_RESP_DATA,
len, (u8*)nan_req_resp);
if (unlikely(ret)) {
WL_ERR(("Failed to put resp data, ret=%d\n",
ret));
goto fail;
}
WL_DBG(("Event sent up to hal, event_id = %d, ret = %d\n",
event_id, ret));
cfg80211_vendor_event(msg, kflags);
NAN_DBG_EXIT();
return ret;
fail:
dev_kfree_skb_any(msg);
WL_ERR(("%s: Event not implemented or unknown -- Free skb, event_id = %d, ret = %d\n",
__func__, event_id, ret));
NAN_DBG_EXIT();
return ret;
}
int
wl_cfgvendor_nan_send_async_disable_resp(struct wireless_dev *wdev)
{
int ret = BCME_OK;
struct wiphy *wiphy = wdev->wiphy;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
bzero(&nan_req_resp, sizeof(nan_req_resp));
nan_req_resp.status = NAN_STATUS_SUCCESS;
nan_req_resp.value = BCME_OK;
nan_req_resp.subcmd = NAN_WIFI_SUBCMD_DISABLE;
WL_INFORM_MEM(("Send NAN_ASYNC_RESPONSE_DISABLED\n"));
ret = wl_cfgvendor_send_nan_async_resp(wiphy, wdev,
NAN_ASYNC_RESPONSE_DISABLED, (u8*)&nan_req_resp, sizeof(nan_req_resp));
cfg->nancfg->notify_user = false;
return ret;
}
int
wl_cfgvendor_send_nan_event(struct wiphy *wiphy, struct net_device *dev,
int event_id, nan_event_data_t *event_data)
{
int ret = BCME_OK;
int buf_len = NAN_EVENT_BUFFER_SIZE_LARGE;
gfp_t kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct sk_buff *msg;
NAN_DBG_ENTER();
dev = bcmcfg_to_nmi_ndev(cfg);
/* Allocate the skb for vendor event */
msg = CFG80211_VENDOR_EVENT_ALLOC(wiphy, ndev_to_wdev(dev), buf_len,
event_id, kflags);
if (!msg) {
WL_ERR(("%s: fail to allocate skb for vendor event\n", __FUNCTION__));
return -ENOMEM;
}
switch (event_id) {
case GOOGLE_NAN_EVENT_DE_EVENT: {
if (event_data->nan_de_evt_type == WL_NAN_EVENT_NMI_ADDR) {
WL_INFORM_MEM(("[NAN] GOOGLE_NAN_DE_EVENT nmi= " MACDBG "\n",
MAC2STRDBG(event_data->local_nmi.octet)));
ret = nla_put(msg, NAN_ATTRIBUTE_MAC_ADDR, ETH_ALEN,
event_data->local_nmi.octet);
if (unlikely(ret)) {
WL_ERR(("Failed to put NMI, ret=%d\n", ret));
goto fail;
}
} else {
WL_DBG(("[NAN] GOOGLE_NAN_DE_EVENT cluster id=" MACDBG "nmi= " MACDBG "\n",
MAC2STRDBG(event_data->clus_id.octet),
MAC2STRDBG(event_data->local_nmi.octet)));
ret = wl_cfgvendor_nan_de_event_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill de event data, ret=%d\n", ret));
goto fail;
}
}
break;
}
case GOOGLE_NAN_EVENT_SUBSCRIBE_MATCH:
case GOOGLE_NAN_EVENT_MATCH_EXPIRY:
case GOOGLE_NAN_EVENT_FOLLOWUP: {
if (event_id == GOOGLE_NAN_EVENT_SUBSCRIBE_MATCH) {
WL_DBG(("GOOGLE_NAN_EVENT_SUBSCRIBE_MATCH\n"));
ret = wl_cfgvendor_nan_sub_match_event_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill sub match event data, ret=%d\n", ret));
goto fail;
}
} else if (event_id == GOOGLE_NAN_EVENT_FOLLOWUP) {
WL_DBG(("GOOGLE_NAN_EVENT_FOLLOWUP\n"));
ret = wl_cfgvendor_nan_tx_followup_event_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill tx follow up event data, ret=%d\n", ret));
goto fail;
}
} else if (event_id == GOOGLE_NAN_EVENT_MATCH_EXPIRY) {
WL_DBG(("GOOGLE_NAN_EVENT_MATCH_EXPIRY\n"));
ret = wl_cfgvendor_nan_match_expiry_event_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill match expiry event data, ret=%d\n", ret));
goto fail;
}
}
ret = wl_cfgvendor_nan_opt_params_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill sub match event data, ret=%d\n", ret));
goto fail;
}
break;
}
case GOOGLE_NAN_EVENT_DISABLED: {
WL_INFORM_MEM(("[NAN] GOOGLE_NAN_EVENT_DISABLED\n"));
ret = nla_put_u8(msg, NAN_ATTRIBUTE_HANDLE, 0);
if (unlikely(ret)) {
WL_ERR(("Failed to put handle, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u16(msg, NAN_ATTRIBUTE_STATUS, event_data->status);
if (unlikely(ret)) {
WL_ERR(("Failed to put status, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_REASON,
strlen("NAN_STATUS_SUCCESS"), event_data->nan_reason);
if (unlikely(ret)) {
WL_ERR(("Failed to put reason code, ret=%d\n", ret));
goto fail;
}
break;
}
case GOOGLE_NAN_EVENT_SUBSCRIBE_TERMINATED:
case GOOGLE_NAN_EVENT_PUBLISH_TERMINATED: {
WL_DBG(("GOOGLE_NAN_SVC_TERMINATED, %d\n", event_id));
ret = wl_cfgvendor_nan_svc_terminate_event_filler(msg, cfg, event_id, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill svc terminate event data, ret=%d\n", ret));
goto fail;
}
break;
}
case GOOGLE_NAN_EVENT_TRANSMIT_FOLLOWUP_IND: {
WL_DBG(("GOOGLE_NAN_EVENT_TRANSMIT_FOLLOWUP_IND %d\n",
GOOGLE_NAN_EVENT_TRANSMIT_FOLLOWUP_IND));
ret = wl_cfgvendor_nan_tx_followup_ind_event_data_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill tx follow up ind event data, ret=%d\n", ret));
goto fail;
}
break;
}
case GOOGLE_NAN_EVENT_DATA_REQUEST: {
WL_INFORM_MEM(("[NAN] GOOGLE_NAN_EVENT_DATA_REQUEST\n"));
ret = wl_cfgvendor_nan_dp_ind_event_data_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill dp ind event data, ret=%d\n", ret));
goto fail;
}
break;
}
case GOOGLE_NAN_EVENT_DATA_CONFIRMATION: {
WL_INFORM_MEM(("[NAN] GOOGLE_NAN_EVENT_DATA_CONFIRMATION\n"));
ret = wl_cfgvendor_nan_dp_estb_event_data_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill dp estb event data, ret=%d\n", ret));
goto fail;
}
break;
}
case GOOGLE_NAN_EVENT_DATA_END: {
WL_INFORM_MEM(("[NAN] GOOGLE_NAN_EVENT_DATA_END\n"));
ret = nla_put_u8(msg, NAN_ATTRIBUTE_INST_COUNT, 1);
if (unlikely(ret)) {
WL_ERR(("Failed to put inst count, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u32(msg, NAN_ATTRIBUTE_NDP_ID, event_data->ndp_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put ndp id, ret=%d\n", ret));
goto fail;
}
break;
}
default:
goto fail;
}
cfg80211_vendor_event(msg, kflags);
NAN_DBG_EXIT();
return ret;
fail:
dev_kfree_skb_any(msg);
WL_ERR(("%s: Event not implemented or unknown -- Free skb, event_id = %d, ret = %d\n",
__func__, event_id, ret));
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_req_subscribe(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_discover_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
NAN_DBG_ENTER();
wdev = bcmcfg_to_prmry_wdev(cfg);
/* Blocking Subscribe if NAN is not enable */
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled, subscribe blocked\n"));
ret = BCME_ERROR;
goto exit;
}
cmd_data = (nan_discover_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_discover_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan disc vendor args, ret = %d\n", ret));
goto exit;
}
if (cmd_data->sub_id == 0) {
ret = wl_cfgnan_generate_inst_id(cfg, &cmd_data->sub_id);
if (ret) {
WL_ERR(("failed to generate instance-id for subscribe\n"));
goto exit;
}
} else {
cmd_data->svc_update = true;
}
ret = wl_cfgnan_subscribe_handler(wdev->netdev, cfg, cmd_data);
if (unlikely(ret) || unlikely(cmd_data->status)) {
WL_ERR(("failed to subscribe error[%d], status = [%d]\n",
ret, cmd_data->status));
wl_cfgnan_remove_inst_id(cfg, cmd_data->sub_id);
goto exit;
}
WL_DBG(("subscriber instance id=%d\n", cmd_data->sub_id));
if (cmd_data->status == WL_NAN_E_OK) {
nan_req_resp.instance_id = cmd_data->sub_id;
} else {
nan_req_resp.instance_id = 0;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_REQUEST_SUBSCRIBE,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_disc_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_req_publish(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_discover_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
NAN_DBG_ENTER();
wdev = bcmcfg_to_prmry_wdev(cfg);
/* Blocking Publish if NAN is not enable */
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled publish blocked\n"));
ret = BCME_ERROR;
goto exit;
}
cmd_data = (nan_discover_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_discover_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan disc vendor args, ret = %d\n", ret));
goto exit;
}
if (cmd_data->pub_id == 0) {
ret = wl_cfgnan_generate_inst_id(cfg, &cmd_data->pub_id);
if (ret) {
WL_ERR(("failed to generate instance-id for publisher\n"));
goto exit;
}
} else {
cmd_data->svc_update = true;
}
ret = wl_cfgnan_publish_handler(wdev->netdev, cfg, cmd_data);
if (unlikely(ret) || unlikely(cmd_data->status)) {
WL_ERR(("failed to publish error[%d], status[%d]\n",
ret, cmd_data->status));
wl_cfgnan_remove_inst_id(cfg, cmd_data->pub_id);
goto exit;
}
WL_DBG(("publisher instance id=%d\n", cmd_data->pub_id));
if (cmd_data->status == WL_NAN_E_OK) {
nan_req_resp.instance_id = cmd_data->pub_id;
} else {
nan_req_resp.instance_id = 0;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_REQUEST_PUBLISH,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_disc_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_start_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = 0;
nan_config_cmd_data_t *cmd_data;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
uint32 nan_attr_mask = 0;
wl_nancfg_t *nancfg = cfg->nancfg;
wdev = bcmcfg_to_prmry_wdev(cfg);
cmd_data = (nan_config_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
NAN_DBG_ENTER();
ret = wl_cfgnan_check_nan_disable_pending(cfg, false, true);
if (ret != BCME_OK) {
WL_ERR(("failed to disable nan, error[%d]\n", ret));
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
cmd_data->sid_beacon.sid_enable = NAN_SID_ENABLE_FLAG_INVALID; /* Setting to some default */
cmd_data->sid_beacon.sid_count = NAN_SID_BEACON_COUNT_INVALID; /* Setting to some default */
cfg->nancfg->ranging_enable = TRUE; /* by default enable ranging */
ret = wl_cfgvendor_nan_parse_args(wiphy, data, len, cmd_data, &nan_attr_mask);
if (ret) {
WL_ERR(("failed to parse nan vendor args, ret %d\n", ret));
goto exit;
}
if (cmd_data->status == BCME_BADARG) {
WL_ERR(("nan vendor args is invalid\n"));
goto exit;
}
if (nancfg->nan_enable) {
if (cmd_data->chre_req) {
if (cfg->nancfg->enab_reason == ENABLE_FOR_CHRE) {
/* Already enabled for CHRE */
ret = BCME_OK;
goto exit;
} else {
/* enabled for APP .. return busy for CHRE req */
ret = BCME_BUSY;
goto exit;
}
} else {
if (cfg->nancfg->enab_reason == ENABLE_FOR_CHRE) {
/* TODO : Disable Nan and enable again for APP
* For now return busy
*/
ret = BCME_BUSY;
goto exit;
} else {
/* already enabled for APP */
ret = BCME_OK;
goto exit;
}
}
}
ret = wl_cfgnan_start_handler(wdev->netdev, cfg, cmd_data, nan_attr_mask);
if (ret) {
WL_ERR(("failed to start nan error[%d]\n", ret));
goto exit;
}
/* Initializing Instance Id List */
bzero(cfg->nancfg->nan_inst_ctrl, NAN_ID_CTRL_SIZE * sizeof(nan_svc_inst_t));
exit:
if (ret == BCME_OK) {
nancfg->enab_reason = cmd_data->chre_req ?
ENABLE_FOR_CHRE : ENABLE_FOR_APP;
WL_INFORM_MEM(("Enabled successful for reason %d\n", nancfg->enab_reason));
}
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_ENABLE,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
if (cmd_data) {
if (cmd_data->scid.data) {
MFREE(cfg->osh, cmd_data->scid.data, cmd_data->scid.dlen);
cmd_data->scid.dlen = 0;
}
MFREE(cfg->osh, cmd_data, sizeof(*cmd_data));
}
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_terminate_dp_rng_sessions(struct bcm_cfg80211 *cfg,
struct wireless_dev *wdev, bool *ssn_exists)
{
int ret = 0;
uint8 i = 0;
int status = BCME_ERROR;
wl_nancfg_t *nancfg = cfg->nancfg;
dhd_pub_t *dhdp;
#ifdef RTT_SUPPORT
nan_ranging_inst_t *ranging_inst = NULL;
#endif /* RTT_SUPPORT */
wdev = bcmcfg_to_prmry_wdev(cfg);
*ssn_exists = false;
dhdp = wl_cfg80211_get_dhdp(wdev->netdev);
/* Cleanup active Data Paths If any */
for (i = 0; i < NAN_MAX_NDP_PEER; i++) {
if (nancfg->ndp_id[i]) {
WL_DBG(("Found entry of ndp id = [%d], end dp associated to it\n",
nancfg->ndp_id[i]));
ret = wl_cfgnan_data_path_end_handler(wdev->netdev, cfg,
nancfg->ndp_id[i], &status);
if ((ret == BCME_OK) && cfg->nancfg->nan_enable &&
dhdp->up) {
*ssn_exists = true;
}
}
}
#ifdef RTT_SUPPORT
/* Cancel ranging sessiosns */
for (i = 0; i < NAN_MAX_RANGING_INST; i++) {
ranging_inst = &nancfg->nan_ranging_info[i];
if (ranging_inst->in_use &&
(NAN_RANGING_IS_IN_PROG(ranging_inst->range_status))) {
ret = wl_cfgnan_cancel_ranging(bcmcfg_to_prmry_ndev(cfg), cfg,
&ranging_inst->range_id,
NAN_RNG_TERM_FLAG_IMMEDIATE, &status);
if (unlikely(ret) || unlikely(status)) {
WL_ERR(("nan range cancel failed ret = %d status = %d\n",
ret, status));
} else {
*ssn_exists = true;
}
}
}
#endif /* RTT_SUPPORT */
return ret;
}
static int
wl_cfgvendor_nan_stop_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = BCME_OK;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
bool ssn_exists = false;
uint32 delay_ms = 0;
wl_nancfg_t *nancfg = cfg->nancfg;
nan_config_cmd_data_t *cmd_data;
uint32 nan_attr_mask = 0;
NAN_DBG_ENTER();
mutex_lock(&cfg->if_sync);
wdev = bcmcfg_to_prmry_wdev(cfg);
cmd_data = (nan_config_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
ret = wl_cfgvendor_nan_parse_args(wiphy, data, len, cmd_data, &nan_attr_mask);
if (ret) {
WL_ERR(("failed to parse nan vendor args, ret %d\n", ret));
goto exit;
}
if (cmd_data->status == BCME_BADARG) {
WL_ERR(("nan vendor args is invalid\n"));
goto exit;
}
if (nancfg->nan_init_state == false) {
WL_INFORM_MEM(("nan is not initialized/nmi doesnt exists\n"));
goto exit;
}
if (nancfg->nan_enable == false) {
WL_INFORM_MEM(("nan is in disabled state\n"));
} else {
if (cmd_data->chre_req) {
if (nancfg->enab_reason != ENABLE_FOR_CHRE) {
/* Not enabled for CHRE.. ignore disable req */
WL_INFORM_MEM(("nan not enabled for CHRE..ignore disab\n"));
goto exit;
}
} else {
if (nancfg->enab_reason != ENABLE_FOR_APP) {
/* Not enabled for APP.. ignore disable req */
WL_INFORM_MEM(("nan not enabled for APP..ignore disab\n"));
goto exit;
}
}
nancfg->notify_user = true;
wl_cfgvendor_terminate_dp_rng_sessions(cfg, wdev, &ssn_exists);
if (ssn_exists == true) {
/*
* Schedule nan disable with NAN_DISABLE_CMD_DELAY
* delay to make sure
* fw cleans any active Data paths and
* notifies the peer about the dp session terminations
*/
WL_INFORM_MEM(("Schedule Nan Disable Req with NAN_DISABLE_CMD_DELAY\n"));
delay_ms = NAN_DISABLE_CMD_DELAY;
DHD_NAN_WAKE_LOCK_TIMEOUT(cfg->pub, NAN_WAKELOCK_TIMEOUT);
} else {
delay_ms = 0;
}
schedule_delayed_work(&nancfg->nan_disable,
msecs_to_jiffies(delay_ms));
}
exit:
mutex_unlock(&cfg->if_sync);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_config_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = 0;
nan_config_cmd_data_t *cmd_data;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
uint32 nan_attr_mask = 0;
cmd_data = MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
NAN_DBG_ENTER();
wdev = bcmcfg_to_prmry_wdev(cfg);
bzero(&nan_req_resp, sizeof(nan_req_resp));
cmd_data->avail_params.duration = NAN_BAND_INVALID; /* Setting to some default */
cmd_data->sid_beacon.sid_enable = NAN_SID_ENABLE_FLAG_INVALID; /* Setting to some default */
cmd_data->sid_beacon.sid_count = NAN_SID_BEACON_COUNT_INVALID; /* Setting to some default */
ret = wl_cfgvendor_nan_parse_args(wiphy, data, len, cmd_data, &nan_attr_mask);
if (ret) {
WL_ERR(("failed to parse nan vendor args, ret = %d\n", ret));
goto exit;
}
if (cmd_data->status == BCME_BADARG) {
WL_ERR(("nan vendor args is invalid\n"));
goto exit;
}
ret = wl_cfgnan_config_handler(wdev->netdev, cfg, cmd_data, nan_attr_mask);
if (ret) {
WL_ERR(("failed in config request, nan error[%d]\n", ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_CONFIG,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
if (cmd_data) {
if (cmd_data->scid.data) {
MFREE(cfg->osh, cmd_data->scid.data, cmd_data->scid.dlen);
cmd_data->scid.dlen = 0;
}
MFREE(cfg->osh, cmd_data, sizeof(*cmd_data));
}
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_cancel_publish(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_discover_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
wdev = bcmcfg_to_prmry_wdev(cfg);
/* Blocking Cancel_Publish if NAN is not enable */
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled, cancel publish blocked\n"));
ret = BCME_ERROR;
goto exit;
}
cmd_data = (nan_discover_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
NAN_DBG_ENTER();
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_discover_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan disc vendor args, ret= %d\n", ret));
goto exit;
}
nan_req_resp.instance_id = cmd_data->pub_id;
WL_INFORM_MEM(("[NAN] cancel publish instance_id=%d\n", cmd_data->pub_id));
ret = wl_cfgnan_cancel_pub_handler(wdev->netdev, cfg, cmd_data);
if (ret) {
WL_ERR(("failed to cancel publish nan instance-id[%d] error[%d]\n",
cmd_data->pub_id, ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_CANCEL_PUBLISH,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_disc_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_cancel_subscribe(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_discover_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
wdev = bcmcfg_to_prmry_wdev(cfg);
/* Blocking Cancel_Subscribe if NAN is not enableb */
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled, cancel subscribe blocked\n"));
ret = BCME_ERROR;
goto exit;
}
cmd_data = MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
NAN_DBG_ENTER();
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_discover_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan disc vendor args, ret= %d\n", ret));
goto exit;
}
nan_req_resp.instance_id = cmd_data->sub_id;
WL_INFORM_MEM(("[NAN] cancel subscribe instance_id=%d\n", cmd_data->sub_id));
ret = wl_cfgnan_cancel_sub_handler(wdev->netdev, cfg, cmd_data);
if (ret) {
WL_ERR(("failed to cancel subscribe nan instance-id[%d] error[%d]\n",
cmd_data->sub_id, ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_CANCEL_SUBSCRIBE,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_disc_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_transmit(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_discover_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
wdev = bcmcfg_to_prmry_wdev(cfg);
/* Blocking Transmit if NAN is not enable */
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled, transmit blocked\n"));
ret = BCME_ERROR;
goto exit;
}
cmd_data = (nan_discover_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
NAN_DBG_ENTER();
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_discover_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan disc vendor args, ret= %d\n", ret));
goto exit;
}
nan_req_resp.instance_id = cmd_data->local_id;
ret = wl_cfgnan_transmit_handler(wdev->netdev, cfg, cmd_data);
if (ret) {
WL_ERR(("failed to transmit-followup nan error[%d]\n", ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_TRANSMIT,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_disc_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_get_capablities(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
NAN_DBG_ENTER();
wdev = bcmcfg_to_prmry_wdev(cfg);
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgnan_get_capablities_handler(wdev->netdev, cfg, &nan_req_resp.capabilities);
if (ret) {
WL_ERR(("Could not get capabilities\n"));
ret = -EINVAL;
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_GET_CAPABILITIES,
&nan_req_resp, ret, BCME_OK);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_data_path_iface_create(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_datapath_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
dhd_pub_t *dhdp = wl_cfg80211_get_dhdp(wdev->netdev);
wdev = bcmcfg_to_prmry_wdev(cfg);
if (!cfg->nancfg->nan_init_state) {
WL_ERR(("%s: NAN is not inited or Device doesn't support NAN \n", __func__));
ret = -ENODEV;
goto exit;
}
cmd_data = (nan_datapath_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
NAN_DBG_ENTER();
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_datapath_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan datapath vendor args, ret = %d\n", ret));
goto exit;
}
if (cfg->nancfg->nan_enable) { /* new framework Impl, iface create called after nan enab */
ret = wl_cfgnan_data_path_iface_create_delete_handler(wdev->netdev,
cfg, cmd_data->ndp_iface,
NAN_WIFI_SUBCMD_DATA_PATH_IFACE_CREATE, dhdp->up);
if (ret != BCME_OK) {
WL_ERR(("failed to create iface, ret = %d\n", ret));
goto exit;
}
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_DATA_PATH_IFACE_CREATE,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_dp_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_data_path_iface_delete(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_datapath_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
dhd_pub_t *dhdp = wl_cfg80211_get_dhdp(wdev->netdev);
if (cfg->nancfg->nan_init_state == false) {
WL_ERR(("%s: NAN is not inited or Device doesn't support NAN \n", __func__));
/* Deinit has taken care of cleaing the virtual iface */
ret = BCME_OK;
goto exit;
}
NAN_DBG_ENTER();
wdev = bcmcfg_to_prmry_wdev(cfg);
cmd_data = (nan_datapath_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_datapath_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan datapath vendor args, ret = %d\n", ret));
goto exit;
}
ret = wl_cfgnan_data_path_iface_create_delete_handler(wdev->netdev, cfg,
(char*)cmd_data->ndp_iface,
NAN_WIFI_SUBCMD_DATA_PATH_IFACE_DELETE, dhdp->up);
if (ret) {
WL_ERR(("failed to delete ndp iface [%d]\n", ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_DATA_PATH_IFACE_DELETE,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_dp_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_data_path_request(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_datapath_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
uint8 ndp_instance_id = 0;
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled, nan data path request blocked\n"));
ret = BCME_ERROR;
goto exit;
}
wdev = bcmcfg_to_prmry_wdev(cfg);
NAN_DBG_ENTER();
cmd_data = (nan_datapath_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_datapath_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan datapath vendor args, ret = %d\n", ret));
goto exit;
}
ret = wl_cfgnan_data_path_request_handler(wdev->netdev, cfg,
cmd_data, &ndp_instance_id);
if (ret) {
WL_ERR(("failed to request nan data path [%d]\n", ret));
goto exit;
}
if (cmd_data->status == BCME_OK) {
nan_req_resp.ndp_instance_id = cmd_data->ndp_instance_id;
} else {
nan_req_resp.ndp_instance_id = 0;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_DATA_PATH_REQUEST,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_dp_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_data_path_response(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_datapath_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled, nan data path response blocked\n"));
ret = BCME_ERROR;
goto exit;
}
NAN_DBG_ENTER();
wdev = bcmcfg_to_prmry_wdev(cfg);
cmd_data = (nan_datapath_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_datapath_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan datapath vendor args, ret = %d\n", ret));
goto exit;
}
ret = wl_cfgnan_data_path_response_handler(wdev->netdev, cfg, cmd_data);
if (ret) {
WL_ERR(("failed to response nan data path [%d]\n", ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_DATA_PATH_RESPONSE,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_dp_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_data_path_end(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_datapath_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
int status = BCME_ERROR;
NAN_DBG_ENTER();
wdev = bcmcfg_to_prmry_wdev(cfg);
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled, nan data path end blocked\n"));
ret = BCME_OK;
goto exit;
}
cmd_data = (nan_datapath_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_datapath_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan datapath vendor args, ret = %d\n", ret));
goto exit;
}
ret = wl_cfgnan_data_path_end_handler(wdev->netdev, cfg,
cmd_data->ndp_instance_id, &status);
if (ret) {
WL_ERR(("failed to end nan data path [%d]\n", ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_DATA_PATH_END,
&nan_req_resp, ret, cmd_data ? status : BCME_OK);
wl_cfgvendor_free_dp_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
#ifdef WL_NAN_DISC_CACHE
static int
wl_cfgvendor_nan_data_path_sec_info(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
nan_datapath_sec_info_cmd_data_t *cmd_data = NULL;
dhd_pub_t *dhdp = wl_cfg80211_get_dhdp(wdev->netdev);
NAN_DBG_ENTER();
wdev = bcmcfg_to_prmry_wdev(cfg);
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled\n"));
ret = BCME_UNSUPPORTED;
goto exit;
}
cmd_data = MALLOCZ(dhdp->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
ret = wl_cfgvendor_nan_parse_dp_sec_info_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse sec info args\n"));
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgnan_sec_info_handler(cfg, cmd_data, &nan_req_resp);
if (ret) {
WL_ERR(("failed to retrieve svc hash/pub nmi error[%d]\n", ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_DATA_PATH_SEC_INFO,
&nan_req_resp, ret, BCME_OK);
if (cmd_data) {
MFREE(dhdp->osh, cmd_data, sizeof(*cmd_data));
}
NAN_DBG_EXIT();
return ret;
}
#endif /* WL_NAN_DISC_CACHE */
static int
wl_cfgvendor_nan_version_info(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
uint32 version = NAN_HAL_VERSION_1;
BCM_REFERENCE(cfg);
WL_DBG(("Enter %s version %d\n", __FUNCTION__, version));
ret = wl_cfgvendor_send_cmd_reply(wiphy, &version, sizeof(version));
return ret;
}
static int
wl_cfgvendor_nan_enable_merge(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_config_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int status = BCME_OK;
uint32 nan_attr_mask = 0;
BCM_REFERENCE(nan_attr_mask);
NAN_DBG_ENTER();
cmd_data = (nan_config_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
wdev = bcmcfg_to_prmry_wdev(cfg);
ret = wl_cfgvendor_nan_parse_args(wiphy, data, len, cmd_data, &nan_attr_mask);
if (ret) {
WL_ERR((" Enable merge: failed to parse nan config vendor args, ret = %d\n", ret));
goto exit;
}
ret = wl_cfgnan_set_enable_merge(wdev->netdev, cfg, cmd_data->enable_merge, &status);
if (unlikely(ret) || unlikely(status)) {
WL_ERR(("Enable merge: failed to set config request [%d]\n", ret));
/* As there is no cmd_reply, return status if error is in status else return ret */
if (status) {
ret = status;
}
goto exit;
}
exit:
if (cmd_data) {
if (cmd_data->scid.data) {
MFREE(cfg->osh, cmd_data->scid.data, cmd_data->scid.dlen);
cmd_data->scid.dlen = 0;
}
MFREE(cfg->osh, cmd_data, sizeof(*cmd_data));
}
NAN_DBG_EXIT();
return ret;
}
#endif /* WL_NAN */
#ifdef LINKSTAT_SUPPORT
/* 11n/HT: OFDM(12) + HT(16) rates = 28 (MCS0 ~ MCS15)
* 11ac/VHT: OFDM(12) + VHT(12) x 2 nss = 36 (MCS0 ~ MCS11)
* 11ax/HE: OFDM(12) + HE(12) x 2 nss = 36 (MCS0 ~ MCS11)
*/
#define NUM_RATE 36
#define NUM_PEER 1
#define NUM_CHAN 11
#define HEADER_SIZE sizeof(ver_len)
#define NUM_PNO_SCANS 8
#define NUM_CCA_SAMPLING_SECS 1
static int wl_cfgvendor_send_stats_info(struct wiphy *wiphy,
const void *data, int len)
{
int ret = 0;
struct sk_buff *skb;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int mem_needed;
mem_needed = VENDOR_REPLY_OVERHEAD + len + ATTRIBUTE_U32_LEN;
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
return -ENOMEM;
}
ret = nla_put_u32(skb, ANDR_LSTAT_ATTRIBUTE_NUM_RADIO, cfg->num_radios);
if (unlikely(ret)) {
WL_ERR(("Failed to put number of radios, ret=%d\n", ret));
goto fail;
}
ret = nla_put(skb, ANDR_LSTAT_ATTRIBUTE_STATS_INFO, len, data);
if (unlikely(ret)) {
WL_ERR(("Failed to put stats info , ret=%d\n", ret));
goto fail;
}
ret = cfg80211_vendor_cmd_reply(skb);
if (unlikely(ret)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", ret));
}
return ret;
fail:
/* Free skb memory */
if (skb) {
kfree_skb(skb);
}
return ret;
}
static void fill_chanspec_to_channel_info(chanspec_t cur_chanspec,
wifi_channel_info *channel, int *cur_band)
{
int band;
channel->width = WIFI_CHAN_WIDTH_INVALID;
if (CHSPEC_IS20(cur_chanspec)) {
channel->width = WIFI_CHAN_WIDTH_20;
} else if (CHSPEC_IS40(cur_chanspec)) {
channel->width = WIFI_CHAN_WIDTH_40;
} else if (CHSPEC_IS80(cur_chanspec)) {
channel->width = WIFI_CHAN_WIDTH_80;
} else if (CHSPEC_IS160(cur_chanspec)) {
channel->width = WIFI_CHAN_WIDTH_160;
} else if (CHSPEC_IS8080(cur_chanspec)) {
channel->width = WIFI_CHAN_WIDTH_80P80;
}
band = *cur_band = CHSPEC_BAND(cur_chanspec);
channel->center_freq =
wl_channel_to_frequency(wf_chspec_primary20_chan(cur_chanspec),
band);
if (CHSPEC_IS160(cur_chanspec) || CHSPEC_IS8080(cur_chanspec)) {
channel->center_freq0 =
wl_channel_to_frequency(wf_chspec_primary80_channel(cur_chanspec),
band);
channel->center_freq1 =
wl_channel_to_frequency(wf_chspec_secondary80_channel(cur_chanspec),
band);
} else {
channel->center_freq0 =
wl_channel_to_frequency(CHSPEC_CHANNEL(cur_chanspec),
band);
channel->center_freq1 = 0;
}
}
static s32
wl_cfgvendor_get_radio_stats(struct bcm_cfg80211 *cfg, struct net_device *ndev,
wifi_channel_stat *chan_stats, int num_channels, char **output, uint *total_len)
{
s32 err = 0;
uint radio_stats_size = 0, chan_stats_size = 0, avail_radio_stat_len = 0;
char *radio_stat_ptr = NULL, *out_radio_stat = NULL;
wifi_radio_stat_h_v2 radio_h_v2[WL_RADIOSTAT_SLICE_INDEX_MAX];
wifi_radio_stat_h radio_h;
wifi_radio_stat_v1_t *radio_v1;
wifi_radio_stat_v2_t radio_req_v2;
wifi_radio_stat_v2_t *radio_v2;
static char iovar_buf[WLC_IOCTL_MAXLEN];
int i = 0;
chan_stats_size = sizeof(wifi_channel_stat) * num_channels;
/* Radio stat field */
radio_stats_size = WL_RADIOSTAT_SLICE_INDEX_MAX*(offsetof(wifi_radio_stat, channels)) +
chan_stats_size;
radio_stat_ptr = (char*)MALLOCZ(cfg->osh, radio_stats_size);
if (radio_stat_ptr == NULL) {
WL_ERR(("radio_stat_ptr alloc failed\n"));
err = BCME_NOMEM;
goto exit;
}
bzero(radio_stat_ptr, radio_stats_size);
avail_radio_stat_len = radio_stats_size;
bzero(&radio_h, sizeof(radio_h));
bzero(&radio_h_v2, sizeof(radio_h_v2));
out_radio_stat = radio_stat_ptr;
for (i = 0; i < cfg->num_radios; i++) {
/* Try the VERSION_2 first */
radio_req_v2.version = WIFI_RADIO_STAT_VERSION_2;
radio_req_v2.length = sizeof(radio_req_v2);
radio_req_v2.radio = i;
err = wldev_iovar_getbuf(ndev, "radiostat", &radio_req_v2,
sizeof(radio_req_v2), iovar_buf, sizeof(iovar_buf), NULL);
if (err != BCME_OK && err != BCME_UNSUPPORTED && err != BCME_VERSION) {
WL_ERR(("error (%d) - size = %zu\n",
err, sizeof(wifi_radio_stat_v2_t)));
goto exit;
}
radio_v2 = (wifi_radio_stat_v2_t *)iovar_buf;
if ((err == BCME_OK) &&
(dtoh16(radio_v2->version) == WIFI_RADIO_STAT_VERSION_2)) {
if (i != radio_v2->radio) {
WL_ERR(("Fw version is unsupported\n"));
err = BCME_UNSUPPORTED;
goto exit;
}
radio_h_v2[i].radio = radio_v2->radio;
if (radio_v2->radio != WL_RADIOSTAT_SLICE_INDEX_SCAN) {
radio_h_v2[i].on_time = radio_v2->on_time;
} else {
radio_h_v2[i].on_time = 0;
}
radio_h_v2[i].tx_time = radio_v2->tx_time;
radio_h_v2[i].num_tx_levels = 0;
radio_h_v2[i].tx_time_per_levels = NULL;
#ifdef LINKSTAT_EXT_SUPPORT
radio_h_v2[i].rx_time = radio_v2->myrx_time;
#else
radio_h_v2[i].rx_time = radio_v2->rx_time;
#endif /* LINKSTAT_EXT_SUPPORT */
if (radio_v2->radio != WL_RADIOSTAT_SLICE_INDEX_SCAN) {
radio_h_v2[i].on_time_scan =
(uint32)(radio_v2->on_time_scan / 1000);
} else {
radio_h_v2[i].on_time_scan = 0;
}
radio_h_v2[i].on_time_nbd = (uint32)(radio_v2->on_time_nbd / 1000);
radio_h_v2[i].on_time_gscan = (uint32)(radio_v2->on_time_gscan / 1000);
radio_h_v2[i].on_time_roam_scan = radio_v2->on_time_roam_scan;
radio_h_v2[i].on_time_pno_scan =
(uint32)(radio_v2->on_time_pno_scan / 1000);
radio_h_v2[i].on_time_hs20 = radio_v2->on_time_hs20;
if (i == WL_RADIOSTAT_SLICE_INDEX_MAIN) {
radio_h_v2[i].num_channels = 0;
} else if (i == WL_RADIOSTAT_SLICE_INDEX_AUX) {
radio_h_v2[i].num_channels = 0;
} else {
radio_h_v2[i].num_channels = num_channels;
}
err = memcpy_s(out_radio_stat, avail_radio_stat_len,
&radio_h_v2[i], offsetof(wifi_radio_stat, channels));
if (err) {
WL_ERR(("failed to copy radio_stat_h : %d\n", err));
goto exit;
}
out_radio_stat += offsetof(wifi_radio_stat, channels);
avail_radio_stat_len -= offsetof(wifi_radio_stat, channels);
} else {
/* Retry the VERSION_1 */
err = wldev_iovar_getbuf(ndev, "radiostat", NULL, 0,
iovar_buf, sizeof(iovar_buf), NULL);
if (err != BCME_OK && err != BCME_UNSUPPORTED) {
WL_ERR(("error (%d) - size = %zu\n",
err, sizeof(wifi_radio_stat_v1_t)));
goto exit;
}
radio_v1 = (wifi_radio_stat_v1_t *)iovar_buf;
radio_h.rx_time = radio_v1->rx_time;
if (radio_v1->radio != WL_RADIOSTAT_SLICE_INDEX_SCAN) {
radio_h.on_time = radio_v1->on_time;
} else {
radio_h.on_time = 0;
}
radio_h.tx_time = radio_v1->tx_time;
radio_h.on_time_nbd = radio_v1->on_time_nbd;
radio_h.on_time_gscan = radio_v1->on_time_gscan;
radio_h.on_time_hs20 = radio_v1->on_time_hs20;
err = memcpy_s(out_radio_stat, avail_radio_stat_len,
&radio_h, sizeof(wifi_radio_stat_h));
if (err) {
WL_ERR(("failed to copy VERSION_1 radio_stat_h : %d\n", err));
goto exit;
}
out_radio_stat += sizeof(wifi_radio_stat_h);
avail_radio_stat_len -= sizeof(wifi_radio_stat_h);
}
}
/* Update all channels */
err = memcpy_s(out_radio_stat, avail_radio_stat_len,
chan_stats, chan_stats_size);
if (err) {
WL_ERR(("failed to copy all channel_stat: %d\n", err));
goto exit;
}
out_radio_stat += chan_stats_size;
avail_radio_stat_len -= chan_stats_size;
err = memcpy_s(*output, WLC_IOCTL_MAXLEN, radio_stat_ptr, radio_stats_size);
if (err) {
WL_ERR(("Failed to copy wifi_radio_stat_h: %d\n", err));
goto exit;
}
*output += radio_stats_size;
*total_len += radio_stats_size;
exit:
if (radio_stat_ptr) {
MFREE(cfg->osh, radio_stat_ptr, radio_stats_size);
}
return err;
}
static int wl_cfgvendor_lstats_get_info(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
static char iovar_buf[WLC_IOCTL_MAXLEN];
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct net_device *inet_ndev = wdev_to_ndev(wdev);
int err = 0, i;
wifi_radio_stat_h radio_h;
wifi_channel_stat *chan_stats = NULL;
int num_channels = 0;
uint chan_stats_size = 0;
#ifdef LINKSTAT_EXT_SUPPORT
wifi_channel_stat *all_chan_stats = NULL;
cca_congest_ext_channel_req_v2_t *per_chspec_stats = NULL;
uint per_chspec_stats_size = 0;
cca_congest_ext_channel_req_v3_t *all_chan_results;
cca_congest_ext_channel_req_v3_t all_chan_req;
wl_bssload_t *bssload;
#else
/* cca_get_stats_ext iovar for Wifi channel statics */
cca_congest_ext_channel_req_v2_t *cca_v2_results = NULL;
cca_congest_ext_channel_req_v3_t cca_v3_req;
cca_congest_ext_channel_req_v2_t cca_v2_req;
uint16 cca_ver;
#endif /* LINKSTAT_EXT_SUPPORT */
const wl_cnt_wlc_t *wlc_cnt;
scb_val_t scbval;
char *output = NULL;
char *outdata = NULL;
wifi_rate_stat_v1 *p_wifi_rate_stat_v1 = NULL;
wifi_rate_stat *p_wifi_rate_stat = NULL;
uint total_len = 0;
uint32 rxbeaconmbss = 0;
wlc_rev_info_t revinfo;
wl_if_stats_t *if_stats = NULL;
wl_if_infra_enh_stats_v2_t *if_infra_enh_stats = NULL;
dhd_pub_t *dhdp = (dhd_pub_t *)(cfg->pub);
wifi_channel_stat cur_channel_stat;
cca_congest_channel_req_t *cca_result;
cca_congest_channel_req_t cca_req;
uint32 cca_busy_time = 0;
int cur_chansp, cur_band;
chanspec_t cur_chanspec;
COMPAT_STRUCT_IFACE(wifi_iface_stat, iface);
WL_TRACE(("%s: Enter \n", __func__));
RETURN_EIO_IF_NOT_UP(cfg);
BCM_REFERENCE(if_stats);
BCM_REFERENCE(if_infra_enh_stats);
BCM_REFERENCE(dhdp);
BCM_REFERENCE(chan_stats_size);
/* Limit link stats query only on primary interface */
if (!IS_INET_LINK_NDEV(cfg, inet_ndev)) {
WL_ERR(("link stats query requested on non primary interface\n"));
return BCME_UNSUPPORTED;
}
/* Get the device rev info */
bzero(&revinfo, sizeof(revinfo));
err = wldev_ioctl_get(bcmcfg_to_prmry_ndev(cfg), WLC_GET_REVINFO, &revinfo,
sizeof(revinfo));
if (err != BCME_OK) {
goto exit;
}
outdata = (void *)MALLOCZ(cfg->osh, WLC_IOCTL_MAXLEN);
if (outdata == NULL) {
WL_ERR(("outdata alloc failed\n"));
return BCME_NOMEM;
}
bzero(&scbval, sizeof(scb_val_t));
bzero(outdata, WLC_IOCTL_MAXLEN);
output = outdata;
bzero(&radio_h, sizeof(wifi_radio_stat_h));
err = wldev_iovar_getint(inet_ndev, "chanspec", (int*)&cur_chansp);
if (err != BCME_OK) {
WL_ERR(("error (%d) \n", err));
goto exit;
}
cur_chanspec = wl_chspec_driver_to_host(cur_chansp);
if (!wf_chspec_valid(cur_chanspec)) {
WL_ERR(("Invalid chanspec : %x\n", cur_chanspec));
err = BCME_ERROR;
goto exit;
}
fill_chanspec_to_channel_info(cur_chanspec, &cur_channel_stat.channel, &cur_band);
WL_TRACE(("chanspec : %x, BW : %d, Cur Band : %x, freq : %d, freq0 :%d, freq1 : %d\n",
cur_chanspec,
cur_channel_stat.channel.width,
cur_band,
cur_channel_stat.channel.center_freq,
cur_channel_stat.channel.center_freq0,
cur_channel_stat.channel.center_freq1));
#ifdef LINKSTAT_EXT_SUPPORT
/* Option to get all channel statistics */
all_chan_req.num_of_entries = 0;
all_chan_req.ver = WL_CCA_EXT_REQ_VER_V3;
err = wldev_iovar_getbuf(inet_ndev, "cca_get_stats_ext",
&all_chan_req, sizeof(all_chan_req), iovar_buf, WLC_IOCTL_MAXLEN, NULL);
if (err != BCME_OK && err != BCME_UNSUPPORTED) {
WL_ERR(("cca_get_stats_ext iovar err = %d\n", err));
goto exit;
}
all_chan_results = (cca_congest_ext_channel_req_v3_t *) iovar_buf;
if ((err == BCME_OK) &&
(dtoh16(all_chan_results->ver) == WL_CCA_EXT_REQ_VER_V3)) {
int i = 0;
num_channels = dtoh16(all_chan_results->num_of_entries);
chan_stats_size = sizeof(wifi_channel_stat) * num_channels;
chan_stats = (wifi_channel_stat*)MALLOCZ(cfg->osh, chan_stats_size);
if (chan_stats == NULL) {
WL_ERR(("chan_stats alloc failed\n"));
err = BCME_NOMEM;
goto exit;
}
bzero(chan_stats, chan_stats_size);
all_chan_stats = chan_stats;
per_chspec_stats_size =
sizeof(cca_congest_ext_channel_req_v2_t) * num_channels;
per_chspec_stats = (cca_congest_ext_channel_req_v2_t *)
MALLOCZ(cfg->osh, per_chspec_stats_size);
if (per_chspec_stats == NULL) {
WL_ERR(("per_chspec_stats alloc failed\n"));
err = BCME_NOMEM;
goto exit;
}
(void) memcpy_s(per_chspec_stats, per_chspec_stats_size,
&all_chan_results->per_chan_stats, per_chspec_stats_size);
WL_TRACE(("** Per channel CCA entries ** \n"));
for (i = 0; i < num_channels; i++, all_chan_stats++) {
if (per_chspec_stats[i].num_secs != 1) {
WL_ERR(("Bogus num of seconds returned %d\n",
per_chspec_stats[i].num_secs));
goto exit;
}
fill_chanspec_to_channel_info(per_chspec_stats[i].chanspec,
&all_chan_stats->channel, &cur_band);
all_chan_stats->on_time =
per_chspec_stats[i].secs[0].radio_on_time;
all_chan_stats->cca_busy_time =
per_chspec_stats[i].secs[0].cca_busy_time;
WL_TRACE(("chanspec %x num_sec %d radio_on_time %d cca_busytime %d \n",
per_chspec_stats[i].chanspec, per_chspec_stats[i].num_secs,
per_chspec_stats[i].secs[0].radio_on_time,
per_chspec_stats[i].secs[0].cca_busy_time));
}
all_chan_stats = chan_stats;
#else
chan_stats_size = sizeof(wifi_channel_stat);
chan_stats = &cur_channel_stat;
cca_v3_req.num_of_entries = 1;
cca_v3_req.ver = WL_CCA_EXT_REQ_VER_V3;
cca_v3_req.per_chan_stats->chanspec =
wl_chspec_host_to_driver(wf_chspec_primary20_chspec(cur_chanspec));
err = wldev_iovar_getbuf(inet_ndev, "cca_get_stats_ext", &cca_v3_req,
sizeof(cca_v3_req), iovar_buf, WLC_IOCTL_MAXLEN, NULL);
if (err != BCME_OK && err != BCME_UNSUPPORTED) {
WL_ERR(("cca_get_stats_ext iovar err = %d\n", err));
goto exit;
}
cca_ver = ((cca_congest_ext_channel_req_v3_t *)iovar_buf)->ver;
/* Check the verison for cca_get_stats_ext iovar */
if ((err == BCME_OK) &&
(dtoh16(cca_ver) == WL_CCA_EXT_REQ_VER_V3)) {
cca_v2_results =
((cca_congest_ext_channel_req_v3_t *)iovar_buf)->per_chan_stats;
/* the accumulated time for the current channel */
cur_channel_stat.on_time = dtoh32(cca_v2_results->secs[0].radio_on_time);
cur_channel_stat.cca_busy_time = dtoh32(cca_v2_results->secs[0].cca_busy_time);
WL_TRACE(("wifi chan statics ver.3 - on_time : %u, cca_busy_time : %u\n",
cur_channel_stat.on_time, cur_channel_stat.cca_busy_time));
} else if ((err == BCME_OK) &&
(dtoh16(cca_ver) == WL_CCA_EXT_REQ_VER_V2)) {
cca_v2_req.chanspec =
wl_chspec_host_to_driver(wf_chspec_primary20_chspec(cur_chanspec));
err = wldev_iovar_getbuf(inet_ndev, "cca_get_stats_ext",
&cca_v2_req, sizeof(cca_v2_req), iovar_buf, WLC_IOCTL_MAXLEN, NULL);
if (err != BCME_OK) {
WL_ERR(("cca_get_stats_ext iovar err = %d\n", err));
goto exit;
}
cca_v2_results = (cca_congest_ext_channel_req_v2_t *) iovar_buf;
/* the accumulated time for the current channel */
cur_channel_stat.on_time = dtoh32(cca_v2_results->secs[0].radio_on_time);
cur_channel_stat.cca_busy_time = dtoh32(cca_v2_results->secs[0].cca_busy_time);
WL_TRACE(("wifi chan statics ver.2 - on_time : %u, cca_busy_time : %u\n",
cur_channel_stat.on_time, cur_channel_stat.cca_busy_time));
#endif /* LINKSTAT_EXT_SUPPORT */
} else {
/* To get fine-grained cca result,
* you can increase num_secs because num_secs is the time to get samples.
* Also if the time is increased,
* it is necessary to use a loop to add the times of cca_result->sec[].
* For simplicity, the sampling time is set to 1sec.
*/
WL_TRACE(("cca_get_stats_ext unsupported or version mismatch\n"));
cca_req.num_secs = NUM_CCA_SAMPLING_SECS;
cca_req.chanspec = wl_chspec_host_to_driver(cur_chanspec);
err = wldev_iovar_getbuf(inet_ndev, "cca_get_stats", &cca_req,
sizeof(cca_req), iovar_buf, WLC_IOCTL_MAXLEN, NULL);
if (err != BCME_OK && err != BCME_UNSUPPORTED) {
WL_ERR(("error (%d) - size = %zu\n",
err, sizeof(cca_congest_channel_req_t)));
goto exit;
}
cur_channel_stat.on_time = radio_h.on_time;
if (err == BCME_OK) {
cca_result = (cca_congest_channel_req_t *) iovar_buf;
cca_busy_time = dtoh32(cca_result->secs[0].congest_ibss) +
dtoh32(cca_result->secs[0].congest_obss) +
dtoh32(cca_result->secs[0].interference);
WL_TRACE(("wifi stats : %u, %u, %u, %u, %u\n", cur_channel_stat.on_time,
cca_busy_time,
dtoh32(cca_result->secs[0].congest_ibss),
dtoh32(cca_result->secs[0].congest_obss),
dtoh32(cca_result->secs[0].interference)));
} else {
WL_ERR(("cca_get_stats is unsupported \n"));
}
/* If cca_get_stats is unsupported, cca_busy_time has zero value as initial value */
cur_channel_stat.cca_busy_time = cca_busy_time;
}
err = wl_cfgvendor_get_radio_stats(cfg, inet_ndev, chan_stats,
num_channels, &output, &total_len);
if (unlikely(err)) {
WL_ERR(("Failed to get radio_stat (%d)\n", err));
goto exit;
}
COMPAT_BZERO_IFACE(wifi_iface_stat, iface);
#ifdef LINKSTAT_EXT_SUPPORT
/* Update duty cycle info based on RSDB/VSDB */
if (wl_cfg80211_determine_rsdb_scc_mode(cfg)) {
COMPAT_ASSIGN_VALUE(iface, info.time_slicing_duty_cycle_percent,
WIFI_RSDB_TIMESLICE_DUTY_CYCLE);
} else {
COMPAT_ASSIGN_VALUE(iface, info.time_slicing_duty_cycle_percent,
WIFI_VSDB_TIMESLICE_DUTY_CYCLE);
}
#endif /* LINKSTAT_EXT_SUPPORT */
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_VO].ac, WIFI_AC_VO);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_VI].ac, WIFI_AC_VI);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].ac, WIFI_AC_BE);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BK].ac, WIFI_AC_BK);
err = wldev_iovar_getbuf(inet_ndev, "counters", NULL, 0,
iovar_buf, WLC_IOCTL_MAXLEN, NULL);
if (unlikely(err)) {
WL_ERR(("error (%d) - size = %zu\n", err, sizeof(wl_cnt_wlc_t)));
goto exit;
}
CHK_CNTBUF_DATALEN(iovar_buf, WLC_IOCTL_MAXLEN);
/* Translate traditional (ver <= 10) counters struct to new xtlv type struct */
/* traditional(ver<=10)counters will use WL_CNT_XTLV_CNTV_LE10_UCODE.
* Other cases will use its xtlv type accroding to corerev
*/
err = wl_cntbuf_to_xtlv_format(NULL, iovar_buf, WLC_IOCTL_MAXLEN, revinfo.corerev);
if (err != BCME_OK) {
WL_ERR(("wl_cntbuf_to_xtlv_format ERR %d\n", err));
goto exit;
}
if (!(wlc_cnt = GET_WLCCNT_FROM_CNTBUF(iovar_buf))) {
WL_ERR(("wlc_cnt NULL!\n"));
err = BCME_ERROR;
goto exit;
}
#ifndef DISABLE_IF_COUNTERS
if_stats = (wl_if_stats_t *)MALLOCZ(cfg->osh, sizeof(wl_if_stats_t));
if (!if_stats) {
WL_ERR(("%s: memory allocation for if_stats failed\n", __func__));
err = BCME_NOMEM;
goto exit;
}
if_infra_enh_stats = (wl_if_infra_enh_stats_v2_t *)MALLOCZ(cfg->osh,
sizeof(wl_if_infra_enh_stats_v2_t));
if (!if_infra_enh_stats) {
WL_ERR(("MALLOCZ failed\n"));
err = BCME_NOMEM;
goto exit;
}
if (FW_SUPPORTED(dhdp, ifst)) {
err = wl_cfg80211_if_infra_enh_ifstats_counters(inet_ndev,
if_infra_enh_stats);
if (!err) {
rxbeaconmbss = if_infra_enh_stats->rxbeaconmbss;
}
}
if (FW_SUPPORTED(dhdp, ifst)) {
err = wl_cfg80211_ifstats_counters(inet_ndev, if_stats);
} else {
err = wldev_iovar_getbuf(inet_ndev, "if_counters",
NULL, 0, (char *)if_stats, sizeof(*if_stats), NULL);
}
if (!err) {
/* Populate from if_stats */
if (dtoh16(if_stats->version) > WL_IF_STATS_T_VERSION_1) {
WL_ERR(("incorrect version of wl_if_stats_t,"
" expected=%u got=%u\n", WL_IF_STATS_T_VERSION_1,
if_stats->version));
goto exit;
}
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].tx_mpdu, (uint32)if_stats->txframe);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].rx_mpdu,
(uint32)(if_stats->rxframe - if_stats->rxmulti));
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].mpdu_lost,
(uint32)if_stats->txfail + wlc_cnt->tx_toss_cnt);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].retries, (uint32)if_stats->txretrans);
} else
#endif /* !DISABLE_IF_COUNTERS */
{
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].tx_mpdu,
(wlc_cnt->txfrmsnt - wlc_cnt->txmulti));
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].rx_mpdu, wlc_cnt->rxframe);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].mpdu_lost,
wlc_cnt->txfail + wlc_cnt->tx_toss_cnt);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].retries, wlc_cnt->txretrans);
}
err = wldev_get_rssi(inet_ndev, &scbval);
if (unlikely(err)) {
WL_ERR(("get_rssi error (%d)\n", err));
goto exit;
}
COMPAT_ASSIGN_VALUE(iface, beacon_rx, rxbeaconmbss);
COMPAT_ASSIGN_VALUE(iface, rssi_mgmt, scbval.val);
COMPAT_ASSIGN_VALUE(iface, num_peers, NUM_PEER);
COMPAT_ASSIGN_VALUE(iface, peer_info->num_rate, NUM_RATE);
#ifdef LINKSTAT_EXT_SUPPORT
err = wldev_iovar_getbuf(inet_ndev, "bssload_report", NULL,
0, iovar_buf, WLC_IOCTL_MAXLEN, NULL);
if (err == BCME_OK) {
bssload = (wl_bssload_t *)iovar_buf;
COMPAT_ASSIGN_VALUE(iface, peer_info->bssload.sta_count, bssload->sta_count);
COMPAT_ASSIGN_VALUE(iface, peer_info->bssload.chan_util, bssload->chan_util);
} else if (err == BCME_UNSUPPORTED) {
WL_ERR(("bssload_report is unsupported \n"));
} else if (err == BCME_NOTASSOCIATED) {
WL_ERR(("bssload_report IOVAR failed. STA is not associated.\n"));
} else {
WL_ERR(("error (%d) - size = %zu\n", err, sizeof(wl_bssload_t)));
goto exit;
}
#endif /* LINKSTAT_EXT_SUPPORT */
COMPAT_MEMCOPY_IFACE(output, total_len, wifi_iface_stat, iface, wifi_rate_stat);
err = wldev_iovar_getbuf(inet_ndev, "ratestat", NULL, 0,
iovar_buf, WLC_IOCTL_MAXLEN, NULL);
if (err != BCME_OK && err != BCME_UNSUPPORTED) {
WL_ERR(("error (%d) - size = %zu\n", err, NUM_RATE*sizeof(wifi_rate_stat)));
goto exit;
}
for (i = 0; i < NUM_RATE; i++) {
p_wifi_rate_stat =
(wifi_rate_stat *)(iovar_buf + i*sizeof(wifi_rate_stat));
p_wifi_rate_stat_v1 = (wifi_rate_stat_v1 *)output;
p_wifi_rate_stat_v1->rate.preamble = p_wifi_rate_stat->rate.preamble;
p_wifi_rate_stat_v1->rate.nss = p_wifi_rate_stat->rate.nss;
p_wifi_rate_stat_v1->rate.bw = p_wifi_rate_stat->rate.bw;
p_wifi_rate_stat_v1->rate.rateMcsIdx = p_wifi_rate_stat->rate.rateMcsIdx;
p_wifi_rate_stat_v1->rate.reserved = p_wifi_rate_stat->rate.reserved;
p_wifi_rate_stat_v1->rate.bitrate = p_wifi_rate_stat->rate.bitrate;
p_wifi_rate_stat_v1->tx_mpdu = p_wifi_rate_stat->tx_mpdu;
p_wifi_rate_stat_v1->rx_mpdu = p_wifi_rate_stat->rx_mpdu;
p_wifi_rate_stat_v1->mpdu_lost = p_wifi_rate_stat->mpdu_lost;
p_wifi_rate_stat_v1->retries = p_wifi_rate_stat->retries;
p_wifi_rate_stat_v1->retries_short = p_wifi_rate_stat->retries_short;
p_wifi_rate_stat_v1->retries_long = p_wifi_rate_stat->retries_long;
output = (char *) &(p_wifi_rate_stat_v1->retries_long);
output += sizeof(p_wifi_rate_stat_v1->retries_long);
}
/* Due to flexible array member, '-' operation is required.
* Remove redundant wifi_peer_info[1] size from 'wifi_iface_stat'
* Remove redundant wifi_rate_stat[1] size from 'wifi_peer_info'
*/
total_len = total_len -
sizeof(wifi_peer_info) +
NUM_PEER * (sizeof(wifi_peer_info) -
sizeof(wifi_rate_stat) +
NUM_RATE * sizeof(wifi_rate_stat_v1));
if (total_len > WLC_IOCTL_MAXLEN) {
WL_ERR(("Error! total_len:%d is unexpected value\n", total_len));
err = BCME_BADLEN;
goto exit;
}
err = wl_cfgvendor_send_stats_info(wiphy, outdata, total_len);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
}
exit:
if (outdata) {
MFREE(cfg->osh, outdata, WLC_IOCTL_MAXLEN);
}
#ifndef DISABLE_IF_COUNTERS
if (if_stats) {
MFREE(cfg->osh, if_stats, sizeof(wl_if_stats_t));
}
if (if_infra_enh_stats) {
MFREE(cfg->osh, if_infra_enh_stats, sizeof(wl_if_infra_enh_stats_v2_t));
}
#endif /* !DISABLE_IF_COUNTERS */
#ifdef LINKSTAT_EXT_SUPPORT
if (chan_stats) {
MFREE(cfg->osh, chan_stats, chan_stats_size);
}
if (per_chspec_stats) {
MFREE(cfg->osh, per_chspec_stats, per_chspec_stats_size);
}
#endif /* LINKSTAT_EXT_SUPPORT */
#ifdef RPM_FAST_TRIGGER
WL_INFORM(("Trgger RPM Fast\n"));
dhd_trigger_rpm_fast(cfg);
#endif /* RPM_FAST_TRIGGER */
return err;
}
#endif /* LINKSTAT_SUPPORT */
#ifdef DHD_LOG_DUMP
static int
wl_cfgvendor_get_buf_data(const struct nlattr *iter, struct buf_data *buf)
{
int ret = BCME_OK;
#ifdef CONFIG_COMPAT
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0))
if (in_compat_syscall()) {
#else
if (is_compat_task()) {
#endif /* LINUX_VER >= 4.6 */
struct compat_buf_data *compat_buf = (struct compat_buf_data *)nla_data(iter);
if (nla_len(iter) != sizeof(struct compat_buf_data)) {
WL_ERR(("Invalid len : %d\n", nla_len(iter)));
ret = BCME_BADLEN;
}
buf->ver = compat_buf->ver;
buf->len = compat_buf->len;
buf->buf_threshold = compat_buf->buf_threshold;
buf->data_buf[0] = (const void *)compat_ptr(compat_buf->data_buf);
}
else
#endif /* CONFIG_COMPAT */
{
if (nla_len(iter) != sizeof(struct buf_data)) {
WL_ERR(("Invalid len : %d\n", nla_len(iter)));
ret = BCME_BADLEN;
}
ret = memcpy_s(buf, sizeof(struct buf_data), (void *)nla_data(iter), nla_len(iter));
if (ret) {
WL_ERR(("Can't get buf data\n"));
goto exit;
}
}
if ((buf->len <= 0) || !buf->data_buf[0]) {
WL_ERR(("Invalid buffer\n"));
ret = BCME_ERROR;
}
exit:
return ret;
}
static int
wl_cfgvendor_dbg_file_dump(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK, rem, type = 0;
const struct nlattr *iter;
char *mem_buf = NULL;
struct sk_buff *skb = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct buf_data *buf;
struct buf_data data_from_hal;
int pos = 0;
RETURN_EIO_IF_NOT_UP(cfg);
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, CFG80211_VENDOR_CMD_REPLY_SKB_SZ);
if (!skb) {
WL_ERR(("skb allocation is failed\n"));
ret = BCME_NOMEM;
goto exit;
}
memset_s(&data_from_hal, sizeof(data_from_hal), 0, sizeof(data_from_hal));
buf = &data_from_hal;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
ret = wl_cfgvendor_get_buf_data(iter, buf);
if (ret)
goto exit;
WL_DBG_MEM(("%s: type %d\n", __FUNCTION__, type));
switch (type) {
case DUMP_BUF_ATTR_MEMDUMP:
ret = dhd_os_get_socram_dump(bcmcfg_to_prmry_ndev(cfg), &mem_buf,
(uint32 *)(&(buf->len)));
if (ret) {
WL_ERR(("failed to get_socram_dump : %d\n", ret));
goto exit;
}
ret = dhd_export_debug_data(mem_buf, NULL, buf->data_buf[0],
(int)buf->len, &pos);
break;
case DUMP_BUF_ATTR_TIMESTAMP :
ret = dhd_print_time_str(buf->data_buf[0], NULL,
(uint32)buf->len, &pos);
break;
#ifdef EWP_ECNTRS_LOGGING
case DUMP_BUF_ATTR_ECNTRS :
ret = dhd_print_ecntrs_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#endif /* EWP_ECNTRS_LOGGING */
#ifdef EWP_DACS
case DUMP_BUF_ATTR_EWP_HW_INIT_LOG:
ret = dhd_print_init_dump_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos,
LOG_DUMP_SECTION_EWP_HW_INIT_LOG);
break;
case DUMP_BUF_ATTR_EWP_HW_MOD_DUMP:
ret = dhd_print_init_dump_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos,
LOG_DUMP_SECTION_EWP_HW_MOD_DUMP);
break;
case DUMP_BUF_ATTR_EWP_HW_REG_DUMP:
ret = dhd_print_init_dump_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos,
LOG_DUMP_SECTION_EWP_HW_REG_DUMP);
break;
#endif /* EWP_DACS */
#ifdef DHD_STATUS_LOGGING
case DUMP_BUF_ATTR_STATUS_LOG :
ret = dhd_print_status_log_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#endif /* DHD_STATUS_LOGGING */
#ifdef EWP_RTT_LOGGING
case DUMP_BUF_ATTR_RTT_LOG :
ret = dhd_print_rtt_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#endif /* EWP_RTT_LOGGING */
case DUMP_BUF_ATTR_DHD_DUMP :
ret = dhd_print_dump_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#if defined(BCMPCIE)
case DUMP_BUF_ATTR_EXT_TRAP :
ret = dhd_print_ext_trap_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#endif /* BCMPCIE */
#if defined(DHD_FW_COREDUMP) && defined(DNGL_EVENT_SUPPORT)
case DUMP_BUF_ATTR_HEALTH_CHK :
ret = dhd_print_health_chk_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#endif
case DUMP_BUF_ATTR_COOKIE :
ret = dhd_print_cookie_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#ifdef DHD_DUMP_PCIE_RINGS
case DUMP_BUF_ATTR_FLOWRING_DUMP :
ret = dhd_print_flowring_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#endif
case DUMP_BUF_ATTR_GENERAL_LOG :
ret = dhd_get_dld_log_dump(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len,
DLD_BUF_TYPE_GENERAL, &pos);
break;
case DUMP_BUF_ATTR_PRESERVE_LOG :
ret = dhd_get_dld_log_dump(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len,
DLD_BUF_TYPE_PRESERVE, &pos);
break;
case DUMP_BUF_ATTR_SPECIAL_LOG :
ret = dhd_get_dld_log_dump(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len,
DLD_BUF_TYPE_SPECIAL, &pos);
break;
#ifdef DHD_SDTC_ETB_DUMP
case DUMP_BUF_ATTR_SDTC_ETB_DUMP:
ret = dhd_sdtc_etb_hal_file_dump(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len);
break;
#endif /* DHD_SDTC_ETB_DUMP */
#ifdef DHD_MAP_PKTID_LOGGING
case DUMP_BUF_ATTR_PKTID_MAP_LOG:
ret = dhd_print_pktid_map_log_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos, TRUE);
break;
case DUMP_BUF_ATTR_PKTID_UNMAP_LOG:
ret = dhd_print_pktid_map_log_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos, FALSE);
break;
#endif /* DHD_MAP_PKTID_LOGGIN */
#ifdef DHD_SSSR_DUMP
#ifdef DHD_SSSR_DUMP_BEFORE_SR
case DUMP_BUF_ATTR_SSSR_C0_D11_BEFORE :
ret = dhd_sssr_dump_d11_buf_before(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len, 0);
break;
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
case DUMP_BUF_ATTR_SSSR_C0_D11_AFTER :
ret = dhd_sssr_dump_d11_buf_after(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len, 0);
break;
#ifdef DHD_SSSR_DUMP_BEFORE_SR
case DUMP_BUF_ATTR_SSSR_C1_D11_BEFORE :
ret = dhd_sssr_dump_d11_buf_before(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len, 1);
break;
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
case DUMP_BUF_ATTR_SSSR_C1_D11_AFTER :
ret = dhd_sssr_dump_d11_buf_after(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len, 1);
break;
#ifdef DHD_SSSR_DUMP_BEFORE_SR
case DUMP_BUF_ATTR_SSSR_C2_D11_BEFORE :
ret = dhd_sssr_dump_d11_buf_before(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len, 2);
break;
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
case DUMP_BUF_ATTR_SSSR_C2_D11_AFTER :
ret = dhd_sssr_dump_d11_buf_after(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len, 2);
break;
#ifdef DHD_SSSR_DUMP_BEFORE_SR
case DUMP_BUF_ATTR_SSSR_DIG_BEFORE :
ret = dhd_sssr_dump_dig_buf_before(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len);
break;
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
case DUMP_BUF_ATTR_SSSR_DIG_AFTER :
ret = dhd_sssr_dump_dig_buf_after(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len);
break;
#endif /* DHD_SSSR_DUMP */
#ifdef DHD_PKT_LOGGING
case DUMP_BUF_ATTR_PKTLOG:
ret = dhd_os_get_pktlog_dump(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len);
break;
case DUMP_BUF_ATTR_PKTLOG_DEBUG:
ret = dhd_os_get_pktlog_dump(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len);
break;
#endif /* DHD_PKT_LOGGING */
#if defined(DNGL_AXI_ERROR_LOGGING) && defined(REPORT_AXI_ERROR)
case DUMP_BUF_ATTR_AXI_ERROR:
ret = dhd_os_get_axi_error_dump(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len);
break;
#endif /* DNGL_AXI_ERROR_LOGGING && REPORT_AXI_ERROR */
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_ERROR;
goto exit;
}
}
if (ret)
goto exit;
ret = nla_put_u32(skb, type, (uint32)(ret));
if (ret < 0) {
WL_ERR(("Failed to put type, ret:%d\n", ret));
goto exit;
}
ret = cfg80211_vendor_cmd_reply(skb);
if (ret) {
WL_ERR(("Vendor Command reply failed ret:%d \n", ret));
}
return ret;
exit:
if (skb) {
/* Free skb memory */
kfree_skb(skb);
}
return ret;
}
#endif /* DHD_LOG_DUMP */
#ifdef DEBUGABILITY
#ifndef DEBUGABILITY_DISABLE_MEMDUMP
static int
wl_cfgvendor_dbg_trigger_mem_dump(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
uint32 alloc_len;
struct sk_buff *skb = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhdp = (dhd_pub_t *)(cfg->pub);
WL_ERR(("wl_cfgvendor_dbg_trigger_mem_dump %d\n", __LINE__));
dhdp->memdump_type = DUMP_TYPE_CFG_VENDOR_TRIGGERED;
ret = dhd_os_socram_dump(bcmcfg_to_prmry_ndev(cfg), &alloc_len);
if (ret) {
WL_ERR(("failed to call dhd_os_socram_dump : %d\n", ret));
goto exit;
}
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, CFG80211_VENDOR_CMD_REPLY_SKB_SZ);
if (!skb) {
WL_ERR(("skb allocation is failed\n"));
ret = BCME_NOMEM;
goto exit;
}
ret = nla_put_u32(skb, DEBUG_ATTRIBUTE_FW_DUMP_LEN, alloc_len);
if (unlikely(ret)) {
WL_ERR(("Failed to put fw dump length, ret=%d\n", ret));
goto exit;
}
ret = cfg80211_vendor_cmd_reply(skb);
if (ret) {
WL_ERR(("Vendor Command reply failed ret:%d \n", ret));
goto exit;
}
return ret;
exit:
/* Free skb memory */
if (skb) {
kfree_skb(skb);
}
return ret;
}
static int
wl_cfgvendor_dbg_get_mem_dump(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK, rem, type;
int buf_len = 0;
uintptr_t user_buf = (uintptr_t)NULL;
const struct nlattr *iter;
char *mem_buf = NULL;
struct sk_buff *skb = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case DEBUG_ATTRIBUTE_FW_DUMP_LEN:
/* Check if the iter is valid and
* buffer length is not already initialized.
*/
if ((nla_len(iter) == sizeof(uint32)) &&
!buf_len) {
buf_len = nla_get_u32(iter);
if (buf_len <= 0) {
ret = BCME_ERROR;
goto exit;
}
} else {
ret = BCME_ERROR;
goto exit;
}
break;
case DEBUG_ATTRIBUTE_FW_DUMP_DATA:
if (nla_len(iter) != sizeof(uint64)) {
WL_ERR(("Invalid len\n"));
ret = BCME_ERROR;
goto exit;
}
user_buf = (uintptr_t)nla_get_u64(iter);
if (!user_buf) {
ret = BCME_ERROR;
goto exit;
}
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_ERROR;
goto exit;
}
}
if (buf_len > 0 && user_buf) {
mem_buf = vmalloc(buf_len);
if (!mem_buf) {
WL_ERR(("failed to allocate mem_buf with size : %d\n", buf_len));
ret = BCME_NOMEM;
goto exit;
}
ret = dhd_os_get_socram_dump(bcmcfg_to_prmry_ndev(cfg), &mem_buf, &buf_len);
if (ret) {
WL_ERR(("failed to get_socram_dump : %d\n", ret));
goto free_mem;
}
#ifdef CONFIG_COMPAT
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0))
if (in_compat_syscall()) {
#else
if (is_compat_task()) {
#endif /* LINUX_VER >= 4.6 */
void * usr_ptr = compat_ptr((uintptr_t) user_buf);
ret = copy_to_user(usr_ptr, mem_buf, buf_len);
if (ret) {
WL_ERR(("failed to copy memdump into user buffer : %d\n", ret));
goto free_mem;
}
}
else
#endif /* CONFIG_COMPAT */
{
ret = copy_to_user((void*)user_buf, mem_buf, buf_len);
if (ret) {
WL_ERR(("failed to copy memdump into user buffer : %d\n", ret));
goto free_mem;
}
}
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, CFG80211_VENDOR_CMD_REPLY_SKB_SZ);
if (!skb) {
WL_ERR(("skb allocation is failed\n"));
ret = BCME_NOMEM;
goto free_mem;
}
/* Indicate the memdump is succesfully copied */
ret = nla_put(skb, DEBUG_ATTRIBUTE_FW_DUMP_DATA, sizeof(ret), &ret);
if (ret < 0) {
WL_ERR(("Failed to put DEBUG_ATTRIBUTE_FW_DUMP_DATA, ret:%d\n", ret));
goto free_mem;
}
ret = cfg80211_vendor_cmd_reply(skb);
if (ret) {
WL_ERR(("Vendor Command reply failed ret:%d \n", ret));
}
skb = NULL;
}
free_mem:
vfree(mem_buf);
/* Free skb memory */
if (skb) {
kfree_skb(skb);
}
exit:
return ret;
}
#else
static int
wl_cfgvendor_dbg_trigger_mem_dump(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
return -EOPNOTSUPP;
}
static int
wl_cfgvendor_dbg_get_mem_dump(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
return -EOPNOTSUPP;
}
#endif /* !DEBUGABILITY_DISABLE_MEMDUMP */
static int wl_cfgvendor_dbg_start_logging(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK, rem, type;
char ring_name[DBGRING_NAME_MAX] = {0};
int log_level = 0, flags = 0, time_intval = 0, threshold = 0;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case DEBUG_ATTRIBUTE_RING_NAME:
strncpy(ring_name, nla_data(iter),
MIN(sizeof(ring_name) -1, nla_len(iter)));
break;
case DEBUG_ATTRIBUTE_LOG_LEVEL:
log_level = nla_get_u32(iter);
break;
case DEBUG_ATTRIBUTE_RING_FLAGS:
flags = nla_get_u32(iter);
break;
case DEBUG_ATTRIBUTE_LOG_TIME_INTVAL:
time_intval = nla_get_u32(iter);
break;
case DEBUG_ATTRIBUTE_LOG_MIN_DATA_SIZE:
threshold = nla_get_u32(iter);
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_BADADDR;
goto exit;
}
}
ret = dhd_os_start_logging(dhd_pub, ring_name, log_level, flags, time_intval, threshold);
if (ret < 0) {
WL_ERR(("start_logging is failed ret: %d\n", ret));
}
exit:
return ret;
}
static int wl_cfgvendor_dbg_reset_logging(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
ret = dhd_os_reset_logging(dhd_pub);
if (ret < 0) {
WL_ERR(("reset logging is failed ret: %d\n", ret));
}
return ret;
}
static int wl_cfgvendor_dbg_get_ring_status(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
int ring_id, i;
int ring_cnt;
struct sk_buff *skb;
dhd_dbg_ring_status_t dbg_ring_status[DEBUG_RING_ID_MAX];
dhd_dbg_ring_status_t ring_status;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
bzero(dbg_ring_status, DBG_RING_STATUS_SIZE * DEBUG_RING_ID_MAX);
ring_cnt = 0;
for (ring_id = DEBUG_RING_ID_INVALID + 1; ring_id < DEBUG_RING_ID_MAX; ring_id++) {
ret = dhd_os_get_ring_status(dhd_pub, ring_id, &ring_status);
if (ret == BCME_NOTFOUND) {
WL_DBG(("The ring (%d) is not found \n", ring_id));
} else if (ret == BCME_OK) {
dbg_ring_status[ring_cnt++] = ring_status;
}
}
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy,
nla_total_size(DBG_RING_STATUS_SIZE) * ring_cnt + nla_total_size(sizeof(ring_cnt)));
if (!skb) {
WL_ERR(("skb allocation is failed\n"));
ret = BCME_NOMEM;
goto exit;
}
/* Ignore return of nla_put_u32 and nla_put since the skb allocated
* above has a requested size for all payload
*/
(void)nla_put_u32(skb, DEBUG_ATTRIBUTE_RING_NUM, ring_cnt);
for (i = 0; i < ring_cnt; i++) {
(void)nla_put(skb, DEBUG_ATTRIBUTE_RING_STATUS, DBG_RING_STATUS_SIZE,
&dbg_ring_status[i]);
}
ret = cfg80211_vendor_cmd_reply(skb);
if (ret) {
WL_ERR(("Vendor Command reply failed ret:%d \n", ret));
}
exit:
return ret;
}
static int wl_cfgvendor_dbg_get_ring_data(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK, rem, type;
char ring_name[DBGRING_NAME_MAX] = {0};
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case DEBUG_ATTRIBUTE_RING_NAME:
strlcpy(ring_name, nla_data(iter), sizeof(ring_name));
break;
default:
WL_ERR(("Unknown type: %d\n", type));
return ret;
}
}
WL_MEM(("Received GET_RING_DATA ring:%s\n", ring_name));
ret = dhd_os_trigger_get_ring_data(dhd_pub, ring_name);
if (ret < 0) {
WL_ERR(("trigger_get_data failed ret:%d\n", ret));
}
return ret;
}
#ifdef DHD_HAL_RING_DUMP
static int wl_cfgvendor_dbg_get_buf_ring_map(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
struct sk_buff *skb = NULL;
int map_cnt = ARRAYSIZE(dhd_buf_ring_map);
int entry_size = sizeof(dhd_buf_ring_map_entry_t);
int i;
WL_MEM(("map_cnt:%d\n", map_cnt));
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy,
nla_total_size(sizeof(dhd_buf_ring_map)) + nla_total_size(sizeof(map_cnt)));
if (!skb) {
WL_ERR(("skb allocation is failed\n"));
ret = BCME_NOMEM;
goto fail;
}
ret = nla_put_u32(skb, DEBUG_ATTRIBUTE_BUF_RING_NUM, map_cnt);
if (unlikely(ret)) {
goto fail;
}
for (i = 0; i < map_cnt; i++) {
ret = nla_put(skb, DEBUG_ATTRIBUTE_BUF_RING_MAP, entry_size,
&dhd_buf_ring_map[i]);
if (unlikely(ret)) {
goto fail;
}
}
ret = cfg80211_vendor_cmd_reply(skb);
if (ret) {
/* kfree_skb is called if it is failed */
WL_ERR(("Vendor Command reply failed ret:%d \n", ret));
}
return ret;
fail:
if (skb) {
kfree_skb(skb);
}
return ret;
}
#endif /* DHD_HAL_RING_DUMP */
#endif /* DEBUGABILITY */
static int wl_cfgvendor_dbg_get_feature(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
u32 supported_features = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
ret = dhd_os_dbg_get_feature(dhd_pub, &supported_features);
if (ret < 0) {
WL_ERR(("dbg_get_feature failed ret:%d\n", ret));
goto exit;
}
ret = wl_cfgvendor_send_cmd_reply(wiphy, &supported_features,
sizeof(supported_features));
exit:
return ret;
}
#ifdef DEBUGABILITY
static void wl_cfgvendor_dbg_ring_send_evt(void *ctx,
const int ring_id, const void *data, const uint32 len,
const dhd_dbg_ring_status_t ring_status)
{
struct net_device *ndev = ctx;
struct wiphy *wiphy;
gfp_t kflags;
struct sk_buff *skb;
struct nlmsghdr *nlh;
struct bcm_cfg80211 *cfg;
if (ndev == NULL || ndev->ieee80211_ptr == NULL) {
WL_ERR(("no device for debug ring\n"));
return;
}
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
wiphy = ndev->ieee80211_ptr->wiphy;
cfg = wiphy_priv(wiphy);
/* If wifi hal is not start, don't send event to wifi hal */
if (!cfg->hal_started) {
WL_ERR(("Hal is not started\n"));
return;
}
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, NULL, len + CFG80211_VENDOR_EVT_SKB_SZ,
GOOGLE_DEBUG_RING_EVENT, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, len + CFG80211_VENDOR_EVT_SKB_SZ,
GOOGLE_DEBUG_RING_EVENT, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed\n"));
return;
}
/* Set halpid for sending unicast event to wifi hal */
nlh = (struct nlmsghdr*)skb->data;
nlh->nlmsg_pid = cfg->halpid;
nla_put(skb, DEBUG_ATTRIBUTE_RING_STATUS, sizeof(ring_status), &ring_status);
nla_put(skb, DEBUG_ATTRIBUTE_RING_DATA, len, data);
cfg80211_vendor_event(skb, kflags);
}
#endif /* DEBUGABILITY */
#ifdef DHD_LOG_DUMP
#ifndef DHD_HAL_RING_DUMP
#ifdef DHD_SSSR_DUMP
#define DUMP_SSSR_DUMP_MAX_COUNT 8
static int wl_cfgvendor_nla_put_sssr_dump_data(struct sk_buff *skb,
struct net_device *ndev)
{
int ret = BCME_OK;
#ifdef DHD_SSSR_DUMP
uint32 arr_len[DUMP_SSSR_DUMP_MAX_COUNT];
#endif /* DHD_SSSR_DUMP */
char memdump_path[MEMDUMP_PATH_LEN];
dhd_pub_t *dhdp = wl_cfg80211_get_dhdp(ndev);
#ifdef DHD_SSSR_DUMP_BEFORE_SR
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_core_0_before_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_CORE_0_BEFORE_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr core 0 before dump path, ret=%d\n", ret));
goto exit;
}
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_core_0_after_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_CORE_0_AFTER_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr core 1 after dump path, ret=%d\n", ret));
goto exit;
}
#ifdef DHD_SSSR_DUMP_BEFORE_SR
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_core_1_before_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_CORE_1_BEFORE_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr core 1 before dump path, ret=%d\n", ret));
goto exit;
}
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_core_1_after_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_CORE_1_AFTER_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr core 1 after dump path, ret=%d\n", ret));
goto exit;
}
if (dhdp->sssr_d11_outofreset[2]) {
#ifdef DHD_SSSR_DUMP_BEFORE_SR
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_core_2_before_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_CORE_2_BEFORE_DUMP,
memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr core 2 before dump path, ret=%d\n",
ret));
goto exit;
}
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_core_2_after_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_CORE_2_AFTER_DUMP,
memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr core 2 after dump path, ret=%d\n",
ret));
goto exit;
}
}
#ifdef DHD_SSSR_DUMP_BEFORE_SR
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_dig_before_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_DIG_BEFORE_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr dig before dump path, ret=%d\n", ret));
goto exit;
}
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_dig_after_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_DIG_AFTER_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr dig after dump path, ret=%d\n", ret));
goto exit;
}
#ifdef DHD_SSSR_DUMP
memset(arr_len, 0, sizeof(arr_len));
dhd_nla_put_sssr_dump_len(ndev, arr_len);
#ifdef DHD_SSSR_DUMP_BEFORE_SR
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_C0_D11_BEFORE, arr_len[0]);
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_C1_D11_BEFORE, arr_len[2]);
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_C2_D11_BEFORE, arr_len[4]);
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_DIG_BEFORE, arr_len[6]);
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_C0_D11_AFTER, arr_len[1]);
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_C1_D11_AFTER, arr_len[3]);
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_C2_D11_AFTER, arr_len[5]);
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_DIG_AFTER, arr_len[7]);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr dump len, ret=%d\n", ret));
goto exit;
}
#endif /* DHD_SSSR_DUMP */
exit:
return ret;
}
#else
static int wl_cfgvendor_nla_put_sssr_dump_data(struct sk_buff *skb,
struct net_device *ndev)
{
return BCME_OK;
}
#endif /* DHD_SSSR_DUMP */
#endif /* DHD_HAL_RING_DUMP */
static int wl_cfgvendor_nla_put_debug_dump_data(struct sk_buff *skb,
struct net_device *ndev)
{
int ret = BCME_OK;
uint32 len = 0;
#ifdef EWP_DACS
int i = 0, j = 0;
#endif
#ifndef DHD_HAL_RING_DUMP
char dump_path[128];
ret = dhd_get_debug_dump_file_name(ndev, NULL, dump_path, sizeof(dump_path));
if (ret < 0) {
WL_ERR(("%s: Failed to get debug dump filename\n", __FUNCTION__));
goto exit;
}
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_DEBUG_DUMP, dump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put debug dump path, ret=%d\n", ret));
goto exit;
}
WL_ERR(("debug_dump path = %s%s\n", dump_path, FILE_NAME_HAL_TAG));
wl_print_verinfo(wl_get_cfg(ndev));
#endif /* DHD_HAL_RING_DUMP */
len = dhd_get_time_str_len();
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_TIMESTAMP, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put time stamp length, ret=%d\n", ret));
goto exit;
}
}
#ifndef DHD_HAL_RING_DUMP
len = dhd_get_dld_len(DLD_BUF_TYPE_GENERAL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_GENERAL_LOG, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put general log length, ret=%d\n", ret));
goto exit;
}
}
#endif /* DHD_HAL_RING_DUMP */
#ifdef EWP_ECNTRS_LOGGING
len = dhd_get_ecntrs_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_ECNTRS, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put ecntrs length, ret=%d\n", ret));
goto exit;
}
}
#endif /* EWP_ECNTRS_LOGGING */
#ifdef EWP_DACS
j = DUMP_LEN_ATTR_EWP_HW_INIT_LOG;
for (i = LOG_DUMP_SECTION_EWP_HW_INIT_LOG; i <= LOG_DUMP_SECTION_EWP_HW_REG_DUMP; ++i) {
len = dhd_get_init_dump_len(ndev, NULL, i);
if (len) {
ret = nla_put_u32(skb, j, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put init dump length, ret=%d\n", ret));
goto exit;
}
}
++j;
}
#endif /* EWP_DACS */
#ifndef DHD_HAL_RING_DUMP
len = dhd_get_dld_len(DLD_BUF_TYPE_SPECIAL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_SPECIAL_LOG, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put special log length, ret=%d\n", ret));
goto exit;
}
}
#endif /* DHD_HAL_RING_DUMP */
len = dhd_get_dhd_dump_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_DHD_DUMP, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put dhd dump length, ret=%d\n", ret));
goto exit;
}
}
#if defined(BCMPCIE)
len = dhd_get_ext_trap_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_EXT_TRAP, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put ext trap length, ret=%d\n", ret));
goto exit;
}
}
#endif /* BCMPCIE */
#if defined(DHD_FW_COREDUMP) && defined(DNGL_EVENT_SUPPORT)
len = dhd_get_health_chk_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_HEALTH_CHK, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put health check length, ret=%d\n", ret));
goto exit;
}
}
#endif
#ifndef DHD_HAL_RING_DUMP
len = dhd_get_dld_len(DLD_BUF_TYPE_PRESERVE);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_PRESERVE_LOG, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put preserve log length, ret=%d\n", ret));
goto exit;
}
}
#endif /* DHD_HAL_RING_DUMP */
len = dhd_get_cookie_log_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_COOKIE, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put cookie length, ret=%d\n", ret));
goto exit;
}
}
#ifdef DHD_DUMP_PCIE_RINGS
len = dhd_get_flowring_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_FLOWRING_DUMP, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put flowring dump length, ret=%d\n", ret));
goto exit;
}
}
#endif
#ifdef DHD_STATUS_LOGGING
len = dhd_get_status_log_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_STATUS_LOG, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put status log length, ret=%d\n", ret));
goto exit;
}
}
#endif /* DHD_STATUS_LOGGING */
#ifdef EWP_RTT_LOGGING
len = dhd_get_rtt_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_RTT_LOG, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put rtt log length, ret=%d\n", ret));
goto exit;
}
}
#endif /* EWP_RTT_LOGGING */
#ifdef DHD_MAP_PKTID_LOGGING
len = dhd_get_pktid_map_logging_len(ndev, NULL, TRUE);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_PKTID_MAP_LOG, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put pktid log length, ret=%d", ret));
goto exit;
}
}
len = dhd_get_pktid_map_logging_len(ndev, NULL, FALSE);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_PKTID_UNMAP_LOG, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put pktid log length, ret=%d", ret));
goto exit;
}
}
#endif /* DHD_MAP_PKTID_LOGGING */
exit:
return ret;
}
#if defined(DNGL_AXI_ERROR_LOGGING) && defined(REPORT_AXI_ERROR)
static void wl_cfgvendor_nla_put_axi_error_data(struct sk_buff *skb,
struct net_device *ndev)
{
int ret = 0;
char axierrordump_path[MEMDUMP_PATH_LEN];
int dumpsize = dhd_os_get_axi_error_dump_size(ndev);
if (dumpsize <= 0) {
WL_ERR(("Failed to calcuate axi error dump len\n"));
return;
}
dhd_os_get_axi_error_filename(ndev, axierrordump_path, MEMDUMP_PATH_LEN);
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_AXI_ERROR_DUMP, axierrordump_path);
if (ret) {
WL_ERR(("Failed to put filename\n"));
return;
}
ret = nla_put_u32(skb, DUMP_LEN_ATTR_AXI_ERROR, dumpsize);
if (ret) {
WL_ERR(("Failed to put filesize\n"));
return;
}
}
#endif /* DNGL_AXI_ERROR_LOGGING && REPORT_AXI_ERROR */
#ifdef DHD_PKT_LOGGING
static int wl_cfgvendor_nla_put_pktlogdump_data(struct sk_buff *skb,
struct net_device *ndev, bool pktlogdbg)
{
int ret = BCME_OK;
char pktlogdump_path[MEMDUMP_PATH_LEN];
uint32 pktlog_dumpsize = dhd_os_get_pktlog_dump_size(ndev);
if (pktlog_dumpsize == 0) {
#ifdef DHD_PKT_LOGGING_DBGRING
/* dump size can be zero. do not fail dump process */
return BCME_OK;
#else
WL_ERR(("Failed to calcuate pktlog len\n"));
return BCME_ERROR;
#endif /* DHD_PKT_LOGGING_DBGRING */
}
dhd_os_get_pktlogdump_filename(ndev, pktlogdump_path, MEMDUMP_PATH_LEN);
if (pktlogdbg) {
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_PKTLOG_DEBUG_DUMP, pktlogdump_path);
if (ret) {
WL_ERR(("Failed to put filename\n"));
return ret;
}
ret = nla_put_u32(skb, DUMP_LEN_ATTR_PKTLOG_DEBUG, pktlog_dumpsize);
if (ret) {
WL_ERR(("Failed to put filesize\n"));
return ret;
}
} else {
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_PKTLOG_DUMP, pktlogdump_path);
if (ret) {
WL_ERR(("Failed to put filename\n"));
return ret;
}
ret = nla_put_u32(skb, DUMP_LEN_ATTR_PKTLOG, pktlog_dumpsize);
if (ret) {
WL_ERR(("Failed to put filesize\n"));
return ret;
}
}
return ret;
}
#endif /* DHD_PKT_LOGGING */
#ifndef DHD_HAL_RING_DUMP
/* There is no appropriate ringbuffer to push etbdump data in google build.
* Disable it until negotiated with Google and the etb data is required.
*/
#ifdef DHD_SDTC_ETB_DUMP
static int wl_cfgvendor_nla_put_sdtc_etb_dump_data(struct sk_buff *skb, struct net_device *ndev)
{
dhd_pub_t *dhdp = wl_cfg80211_get_dhdp(ndev);
char memdump_path[MEMDUMP_PATH_LEN];
int ret = BCME_OK;
if (!dhdp->sdtc_etb_inited) {
WL_ERR(("sdtc not inited, hence donot collect SDTC dump through HAL\n"));
goto exit;
}
if (dhdp->sdtc_etb_dump_len <= sizeof(etb_info_t)) {
WL_ERR(("ETB is of zero size. Hence donot collect SDTC ETB\n"));
goto exit;
}
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN, "sdtc_etb_dump");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SDTC_ETB_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put stdc etb dump path, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, DUMP_LEN_ATTR_SDTC_ETB_DUMP, DHD_SDTC_ETB_MEMPOOL_SIZE);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put stdc etb length, ret=%d\n", ret));
goto exit;
}
exit:
return ret;
}
#else
static int wl_cfgvendor_nla_put_sdtc_etb_dump_data(struct sk_buff *skb, struct net_device *ndev)
{
return BCME_OK;
}
#endif /* DHD_SDTC_ETB_DUMP */
#endif /* DHD_HAL_RING_DUMP */
static int wl_cfgvendor_nla_put_memdump_data(struct sk_buff *skb,
struct net_device *ndev, const uint32 fw_len)
{
int ret = BCME_OK;
#ifndef DHD_HAL_RING_DUMP
char memdump_path[MEMDUMP_PATH_LEN];
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN, "mem_dump");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_MEM_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put mem dump path, ret=%d\n", ret));
goto exit;
}
#endif /* DHD_HAL_RING_DUMP */
ret = nla_put_u32(skb, DUMP_LEN_ATTR_MEMDUMP, fw_len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put mem dump length, ret=%d\n", ret));
goto exit;
}
exit:
return ret;
}
static int wl_cfgvendor_nla_put_dump_data(dhd_pub_t *dhd_pub, struct sk_buff *skb,
struct net_device *ndev, const uint32 fw_len)
{
int ret = BCME_OK;
#if defined(DNGL_AXI_ERROR_LOGGING) && defined(REPORT_AXI_ERROR)
if (dhd_pub->smmu_fault_occurred) {
wl_cfgvendor_nla_put_axi_error_data(skb, ndev);
}
#endif /* DNGL_AXI_ERROR_LOGGING && REPORT_AXI_ERROR */
if (dhd_pub->memdump_enabled || (dhd_pub->memdump_type == DUMP_TYPE_BY_SYSDUMP)) {
if (((ret = wl_cfgvendor_nla_put_debug_dump_data(skb, ndev)) < 0) ||
((ret = wl_cfgvendor_nla_put_memdump_data(skb, ndev, fw_len)) < 0)) {
goto done;
}
#ifndef DHD_HAL_RING_DUMP
if ((ret = wl_cfgvendor_nla_put_sssr_dump_data(skb, ndev)) < 0) {
goto done;
}
if ((ret = wl_cfgvendor_nla_put_sdtc_etb_dump_data(skb, ndev)) < 0) {
goto done;
}
#ifdef DHD_PKT_LOGGING
if ((ret = wl_cfgvendor_nla_put_pktlogdump_data(skb, ndev, FALSE)) < 0) {
goto done;
}
#endif /* DHD_PKT_LOGGING */
#endif /* DHD_HAL_RING_DUMP */
}
done:
return ret;
}
static void wl_cfgvendor_dbg_send_file_dump_evt(void *ctx, const void *data,
const uint32 len, const uint32 fw_len)
{
struct net_device *ndev = ctx;
struct wiphy *wiphy;
gfp_t kflags;
struct sk_buff *skb = NULL;
struct bcm_cfg80211 *cfg;
dhd_pub_t *dhd_pub;
int ret = BCME_OK;
if (!ndev) {
WL_ERR(("ndev is NULL\n"));
return;
}
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
wiphy = ndev->ieee80211_ptr->wiphy;
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, NULL, len + CFG80211_VENDOR_EVT_SKB_SZ,
GOOGLE_FILE_DUMP_EVENT, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, len + CFG80211_VENDOR_EVT_SKB_SZ,
GOOGLE_FILE_DUMP_EVENT, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return;
}
cfg = wiphy_priv(wiphy);
dhd_pub = cfg->pub;
#ifdef DHD_PKT_LOGGING
if (dhd_pub->pktlog_debug) {
if ((ret = wl_cfgvendor_nla_put_pktlogdump_data(skb, ndev, TRUE)) < 0) {
WL_ERR(("nla put failed\n"));
goto done;
}
dhd_pub->pktlog_debug = FALSE;
} else
#endif /* DHD_PKT_LOGGING */
{
if ((ret = wl_cfgvendor_nla_put_dump_data(dhd_pub, skb, ndev, fw_len)) < 0) {
WL_ERR(("nla put failed\n"));
goto done;
}
}
/* TODO : Similar to above function add for debug_dump, sssr_dump, and pktlog also. */
cfg80211_vendor_event(skb, kflags);
return;
done:
if (skb) {
dev_kfree_skb_any(skb);
}
}
#endif /* DHD_LOG_DUMP */
static int wl_cfgvendor_dbg_get_version(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK, rem, type;
int buf_len = 1024;
bool dhd_ver = FALSE;
char *buf_ptr, *ver, *p;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
buf_ptr = (char *)MALLOCZ(cfg->osh, buf_len);
if (!buf_ptr) {
WL_ERR(("failed to allocate the buffer for version n"));
ret = BCME_NOMEM;
goto exit;
}
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case DEBUG_ATTRIBUTE_GET_DRIVER:
dhd_ver = TRUE;
break;
case DEBUG_ATTRIBUTE_GET_FW:
dhd_ver = FALSE;
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_ERROR;
goto exit;
}
}
ret = dhd_os_get_version(bcmcfg_to_prmry_ndev(cfg), dhd_ver, &buf_ptr, buf_len);
if (ret < 0) {
WL_ERR(("failed to get the version %d\n", ret));
goto exit;
}
ver = strstr(buf_ptr, "version ");
if (!ver) {
WL_ERR(("failed to locate the version\n"));
goto exit;
}
ver += strlen("version ");
/* Adjust version format to fit in android sys property */
for (p = ver; (*p != ' ') && (*p != '\n') && (*p != 0); p++) {
;
}
ret = wl_cfgvendor_send_cmd_reply(wiphy, ver, p - ver);
exit:
MFREE(cfg->osh, buf_ptr, buf_len);
return ret;
}
#ifdef DBG_PKT_MON
static int wl_cfgvendor_dbg_start_pkt_fate_monitoring(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
int ret;
ret = dhd_os_dbg_attach_pkt_monitor(dhd_pub);
if (unlikely(ret)) {
WL_ERR(("failed to start pkt fate monitoring, ret=%d", ret));
}
return ret;
}
typedef int (*dbg_mon_get_pkts_t) (dhd_pub_t *dhdp, void __user *user_buf,
uint16 req_count, uint16 *resp_count);
static int __wl_cfgvendor_dbg_get_pkt_fates(struct wiphy *wiphy,
const void *data, int len, dbg_mon_get_pkts_t dbg_mon_get_pkts)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
struct sk_buff *skb = NULL;
const struct nlattr *iter;
void __user *user_buf = NULL;
uint16 req_count = 0, resp_count = 0;
int ret, tmp, type, mem_needed;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case DEBUG_ATTRIBUTE_PKT_FATE_NUM:
req_count = nla_get_u32(iter);
break;
case DEBUG_ATTRIBUTE_PKT_FATE_DATA:
user_buf = (void __user *)(unsigned long) nla_get_u64(iter);
break;
default:
WL_ERR(("%s: no such attribute %d\n", __FUNCTION__, type));
ret = -EINVAL;
goto exit;
}
}
if (!req_count || !user_buf) {
WL_ERR(("%s: invalid request, user_buf=%p, req_count=%u\n",
__FUNCTION__, user_buf, req_count));
ret = -EINVAL;
goto exit;
}
ret = dbg_mon_get_pkts(dhd_pub, user_buf, req_count, &resp_count);
if (unlikely(ret)) {
WL_ERR(("failed to get packets, ret:%d \n", ret));
goto exit;
}
mem_needed = VENDOR_REPLY_OVERHEAD + ATTRIBUTE_U32_LEN;
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
ret = -ENOMEM;
goto exit;
}
ret = nla_put_u32(skb, DEBUG_ATTRIBUTE_PKT_FATE_NUM, resp_count);
if (ret < 0) {
WL_ERR(("Failed to put DEBUG_ATTRIBUTE_PKT_FATE_NUM, ret:%d\n", ret));
goto exit;
}
ret = cfg80211_vendor_cmd_reply(skb);
if (unlikely(ret)) {
WL_ERR(("vendor Command reply failed ret:%d \n", ret));
}
return ret;
exit:
/* Free skb memory */
if (skb) {
kfree_skb(skb);
}
return ret;
}
static int wl_cfgvendor_dbg_get_tx_pkt_fates(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret;
ret = __wl_cfgvendor_dbg_get_pkt_fates(wiphy, data, len,
dhd_os_dbg_monitor_get_tx_pkts);
if (unlikely(ret)) {
WL_ERR(("failed to get tx packets, ret:%d \n", ret));
}
return ret;
}
static int wl_cfgvendor_dbg_get_rx_pkt_fates(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret;
ret = __wl_cfgvendor_dbg_get_pkt_fates(wiphy, data, len,
dhd_os_dbg_monitor_get_rx_pkts);
if (unlikely(ret)) {
WL_ERR(("failed to get rx packets, ret:%d \n", ret));
}
return ret;
}
#endif /* DBG_PKT_MON */
#ifdef KEEP_ALIVE
/* max size of IP packet for keep alive */
#define MKEEP_ALIVE_IP_PKT_MAX 256
static int wl_cfgvendor_start_mkeep_alive(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int ret = BCME_OK, rem, type;
uint8 mkeep_alive_id = 0;
uint8 *ip_pkt = NULL;
uint16 ip_pkt_len = 0;
uint16 ether_type = ETHERTYPE_IP;
uint8 src_mac[ETHER_ADDR_LEN];
uint8 dst_mac[ETHER_ADDR_LEN];
uint32 period_msec = 0;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case MKEEP_ALIVE_ATTRIBUTE_ID:
mkeep_alive_id = nla_get_u8(iter);
break;
case MKEEP_ALIVE_ATTRIBUTE_IP_PKT_LEN:
ip_pkt_len = nla_get_u16(iter);
if (ip_pkt_len > MKEEP_ALIVE_IP_PKT_MAX) {
ret = BCME_BADARG;
goto exit;
}
break;
case MKEEP_ALIVE_ATTRIBUTE_IP_PKT:
if (ip_pkt) {
ret = BCME_BADARG;
WL_ERR(("ip_pkt already allocated\n"));
goto exit;
}
if (!ip_pkt_len) {
ret = BCME_BADARG;
WL_ERR(("ip packet length is 0\n"));
goto exit;
}
ip_pkt = (u8 *)MALLOCZ(cfg->osh, ip_pkt_len);
if (ip_pkt == NULL) {
ret = BCME_NOMEM;
WL_ERR(("Failed to allocate mem for ip packet\n"));
goto exit;
}
memcpy(ip_pkt, (u8*)nla_data(iter), ip_pkt_len);
break;
case MKEEP_ALIVE_ATTRIBUTE_SRC_MAC_ADDR:
memcpy(src_mac, nla_data(iter), ETHER_ADDR_LEN);
break;
case MKEEP_ALIVE_ATTRIBUTE_DST_MAC_ADDR:
memcpy(dst_mac, nla_data(iter), ETHER_ADDR_LEN);
break;
case MKEEP_ALIVE_ATTRIBUTE_PERIOD_MSEC:
period_msec = nla_get_u32(iter);
break;
case MKEEP_ALIVE_ATTRIBUTE_ETHER_TYPE:
ether_type = nla_get_u16(iter);
if (!((ether_type == ETHERTYPE_IP) ||
(ether_type == ETHERTYPE_IPV6))) {
WL_ERR(("Invalid ether type, %2x\n", ether_type));
ret = BCME_BADARG;
goto exit;
}
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_BADARG;
goto exit;
}
}
if (ip_pkt == NULL) {
ret = BCME_BADARG;
WL_ERR(("ip packet is NULL\n"));
goto exit;
}
ret = wl_cfg80211_start_mkeep_alive(cfg, mkeep_alive_id,
ether_type, ip_pkt, ip_pkt_len, src_mac, dst_mac, period_msec);
if (ret < 0) {
WL_ERR(("start_mkeep_alive is failed ret: %d\n", ret));
}
#ifdef DHD_CLEANUP_KEEP_ALIVE
else if (ret == BCME_OK) {
setbit(&cfg->mkeep_alive_avail, mkeep_alive_id);
}
#endif /* DHD_CLEANUP_KEEP_ALIVE */
exit:
if (ip_pkt) {
MFREE(cfg->osh, ip_pkt, ip_pkt_len);
}
return ret;
}
static int wl_cfgvendor_stop_mkeep_alive(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int ret = BCME_OK, rem, type;
uint8 mkeep_alive_id = 0;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case MKEEP_ALIVE_ATTRIBUTE_ID:
mkeep_alive_id = nla_get_u8(iter);
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_BADARG;
break;
}
}
ret = wl_cfg80211_stop_mkeep_alive(cfg, mkeep_alive_id);
if (ret < 0) {
WL_ERR(("stop_mkeep_alive is failed ret: %d\n", ret));
}
#ifdef DHD_CLEANUP_KEEP_ALIVE
else if (ret == BCME_OK) {
clrbit(&cfg->mkeep_alive_avail, mkeep_alive_id);
}
#endif /* DHD_CLEANUP_KEEP_ALIVE */
return ret;
}
#endif /* KEEP_ALIVE */
#if defined(APF)
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
const struct nla_policy apf_atrribute_policy[APF_ATTRIBUTE_MAX] = {
[APF_ATTRIBUTE_VERSION] = { .type = NLA_U32 },
[APF_ATTRIBUTE_MAX_LEN] = { .type = NLA_U32 },
[APF_ATTRIBUTE_PROGRAM] = { .type = NLA_BINARY },
[APF_ATTRIBUTE_PROGRAM_LEN] = { .type = NLA_U32 },
};
#endif /* LINUX_VERSION >= 5.3 */
static int
wl_cfgvendor_apf_get_capabilities(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct net_device *ndev = wdev_to_ndev(wdev);
struct sk_buff *skb = NULL;
int ret, ver, max_len, mem_needed;
/* APF version */
ver = 0;
ret = dhd_dev_apf_get_version(ndev, &ver);
if (unlikely(ret)) {
WL_ERR(("APF get version failed, ret=%d\n", ret));
goto fail;
}
/* APF memory size limit */
max_len = 0;
ret = dhd_dev_apf_get_max_len(ndev, &max_len);
if (unlikely(ret)) {
WL_ERR(("APF get maximum length failed, ret=%d\n", ret));
goto fail;
}
mem_needed = VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * 2);
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("%s: can't allocate %d bytes\n", __FUNCTION__, mem_needed));
ret = -ENOMEM;
goto fail;
}
ret = nla_put_u32(skb, APF_ATTRIBUTE_VERSION, ver);
if (ret < 0) {
WL_ERR(("Failed to put APF_ATTRIBUTE_VERSION, ret:%d\n", ret));
goto fail;
}
ret = nla_put_u32(skb, APF_ATTRIBUTE_MAX_LEN, max_len);
if (ret < 0) {
WL_ERR(("Failed to put APF_ATTRIBUTE_MAX_LEN, ret:%d\n", ret));
goto fail;
}
ret = cfg80211_vendor_cmd_reply(skb);
if (unlikely(ret)) {
WL_ERR(("vendor command reply failed, ret=%d\n", ret));
}
return ret;
fail:
if (skb) {
/* Free skb memory */
kfree_skb(skb);
}
return ret;
}
static int
wl_cfgvendor_apf_set_filter(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct net_device *ndev = wdev_to_ndev(wdev);
const struct nlattr *iter;
u8 *program = NULL;
u32 program_len = 0;
int ret, tmp, type, max_len;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
if (len <= 0) {
WL_ERR(("Invalid len: %d\n", len));
ret = -EINVAL;
goto exit;
}
/* APF memory size limit */
max_len = 0;
ret = dhd_dev_apf_get_max_len(ndev, &max_len);
if (unlikely(ret)) {
WL_ERR(("APF get maximum length failed, ret=%d\n", ret));
return ret;
}
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case APF_ATTRIBUTE_PROGRAM_LEN:
/* check if the iter value is valid and program_len
* is not already initialized.
*/
if (nla_len(iter) == sizeof(uint32) && !program_len) {
program_len = nla_get_u32(iter);
} else {
ret = -EINVAL;
goto exit;
}
if (program_len > max_len) {
WL_ERR(("program len is more than expected len\n"));
ret = -EINVAL;
goto exit;
}
if (unlikely(!program_len)) {
WL_ERR(("zero program length\n"));
ret = -EINVAL;
goto exit;
}
break;
case APF_ATTRIBUTE_PROGRAM:
if (unlikely(program)) {
WL_ERR(("program already allocated\n"));
ret = -EINVAL;
goto exit;
}
if (unlikely(!program_len)) {
WL_ERR(("program len is not set\n"));
ret = -EINVAL;
goto exit;
}
if (nla_len(iter) != program_len) {
WL_ERR(("program_len is not same\n"));
ret = -EINVAL;
goto exit;
}
program = MALLOCZ(cfg->osh, program_len);
if (unlikely(!program)) {
WL_ERR(("%s: can't allocate %d bytes\n",
__FUNCTION__, program_len));
ret = -ENOMEM;
goto exit;
}
memcpy(program, (u8*)nla_data(iter), program_len);
break;
default:
WL_ERR(("%s: no such attribute %d\n", __FUNCTION__, type));
ret = -EINVAL;
goto exit;
}
}
ret = dhd_dev_apf_add_filter(ndev, program, program_len);
exit:
if (program) {
MFREE(cfg->osh, program, program_len);
}
return ret;
}
static int
wl_cfgvendor_apf_read_filter_data(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct net_device *ndev = wdev_to_ndev(wdev);
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct sk_buff *skb = NULL;
uint8 *buf = NULL;
int ret, buf_len, max_len, mem_needed;
/* Get APF memory size limit */
max_len = 0;
ret = dhd_dev_apf_get_max_len(ndev, &max_len);
if (unlikely(ret)) {
WL_ERR(("APF get maximum length failed, ret=%d\n", ret));
goto fail;
}
/* As the IOVar returns the data in 'wl_apf_program_t' structure format, account for this
* also along with the queried APF buffer size for the IOvar buffer.
*/
buf_len = WL_APF_PROGRAM_FIXED_LEN + max_len;
/* Get APF filter data */
buf = MALLOCZ(cfg->osh, buf_len);
if (unlikely(!buf)) {
WL_ERR(("%s: can't allocate %d bytes\n", __FUNCTION__, buf_len));
ret = -ENOMEM;
goto fail;
}
ret = dhd_dev_apf_read_filter_data(ndev, buf, buf_len);
if (unlikely(ret)) {
WL_ERR(("APF get filter data failed, ret=%d\n", ret));
goto fail;
}
mem_needed = VENDOR_REPLY_OVERHEAD + ATTRIBUTE_U32_LEN + max_len;
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("%s: can't allocate %d bytes\n", __FUNCTION__, mem_needed));
ret = -ENOMEM;
goto fail;
}
ret = nla_put_u32(skb, APF_ATTRIBUTE_PROGRAM_LEN, max_len);
if (ret < 0) {
WL_ERR(("Failed to put APF_ATTRIBUTE_MAX_LEN, ret=%d\n", ret));
goto fail;
}
/* Skip the initial fixed portion of 'wl_apf_program_t' and copy only the data portion */
ret = nla_put(skb, APF_ATTRIBUTE_PROGRAM, max_len, (buf + WL_APF_PROGRAM_FIXED_LEN));
if (ret < 0) {
WL_ERR(("Failed to put APF_ATTRIBUTE_MAX_LEN, ret=%d\n", ret));
goto fail;
}
ret = cfg80211_vendor_cmd_reply(skb);
if (unlikely(ret)) {
WL_ERR(("vendor command reply failed, ret=%d\n", ret));
}
if (buf) {
MFREE(cfg->osh, buf, buf_len);
}
return ret;
fail:
if (buf) {
MFREE(cfg->osh, buf, buf_len);
}
if (skb) {
/* Free skb memory */
kfree_skb(skb);
}
return ret;
}
#endif /* APF */
#ifdef NDO_CONFIG_SUPPORT
static int wl_cfgvendor_configure_nd_offload(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
const struct nlattr *iter;
int ret = BCME_OK, rem, type;
u8 enable = 0;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case ANDR_WIFI_ATTRIBUTE_ND_OFFLOAD_VALUE:
enable = nla_get_u8(iter);
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_BADARG;
goto exit;
}
}
ret = dhd_dev_ndo_cfg(bcmcfg_to_prmry_ndev(cfg), enable);
if (ret < 0) {
WL_ERR(("dhd_dev_ndo_cfg() failed: %d\n", ret));
}
exit:
return ret;
}
#endif /* NDO_CONFIG_SUPPORT */
#if !defined(BCMSUP_4WAY_HANDSHAKE) || (LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0))
static int wl_cfgvendor_set_pmk(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = 0;
wsec_pmk_t pmk;
const struct nlattr *iter;
int rem, type;
struct net_device *ndev = wdev_to_ndev(wdev);
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
bzero(&pmk, sizeof(pmk));
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case BRCM_ATTR_DRIVER_KEY_PMK:
pmk.flags = 0;
pmk.key_len = htod16(nla_len(iter));
ret = memcpy_s(pmk.key, sizeof(pmk.key),
(uint8 *)nla_data(iter), nla_len(iter));
if (ret) {
WL_ERR(("Failed to copy pmk: %d\n", ret));
ret = -EINVAL;
goto exit;
}
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_BADARG;
goto exit;
}
}
wl_cfg80211_set_okc_pmkinfo(cfg, ndev, pmk, TRUE);
ret = wldev_ioctl_set(ndev, WLC_SET_WSEC_PMK, &pmk, sizeof(pmk));
WL_INFORM_MEM(("IOVAR set_pmk ret:%d", ret));
exit:
return ret;
}
#endif /* !BCMSUP_4WAY_HANDSHAKE || LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0) */
static int wl_cfgvendor_get_driver_feature(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
u8 supported[(BRCM_WLAN_VENDOR_FEATURES_MAX / 8) + 1] = {0};
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
struct sk_buff *skb;
int32 mem_needed;
mem_needed = VENDOR_REPLY_OVERHEAD + NLA_HDRLEN + sizeof(supported);
BCM_REFERENCE(dhd_pub);
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0))
if (FW_SUPPORTED(dhd_pub, idsup)) {
ret = wl_features_set(supported, sizeof(supported),
BRCM_WLAN_VENDOR_FEATURE_KEY_MGMT_OFFLOAD);
}
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0) */
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
ret = BCME_NOMEM;
goto exit;
}
ret = nla_put(skb, BRCM_ATTR_DRIVER_FEATURE_FLAGS, sizeof(supported), supported);
if (ret) {
kfree_skb(skb);
goto exit;
}
ret = cfg80211_vendor_cmd_reply(skb);
exit:
return ret;
}
#ifdef WL_P2P_RAND
static int
wl_cfgvendor_set_p2p_rand_mac(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
WL_DBG(("%s, wdev->iftype = %d\n", __FUNCTION__, wdev->iftype));
WL_INFORM_MEM(("randomized p2p_dev_addr - "MACDBG"\n", MAC2STRDBG(nla_data(data))));
BCM_REFERENCE(cfg);
type = nla_type(data);
if (type == BRCM_ATTR_DRIVER_RAND_MAC) {
if (nla_len(data) != ETHER_ADDR_LEN) {
WL_ERR(("nla_len not matched.\n"));
err = -EINVAL;
goto exit;
}
if (wdev->iftype != NL80211_IFTYPE_P2P_DEVICE) {
WL_ERR(("wrong interface type , wdev->iftype=%d\n", wdev->iftype));
err = -EINVAL;
goto exit;
}
(void)memcpy_s(wl_to_p2p_bss_macaddr(cfg, P2PAPI_BSSCFG_DEVICE), ETHER_ADDR_LEN,
nla_data(data), ETHER_ADDR_LEN);
(void)memcpy_s(wdev->address, ETHER_ADDR_LEN, nla_data(data), ETHER_ADDR_LEN);
err = wl_cfgp2p_disable_discovery(cfg);
if (unlikely(err < 0)) {
WL_ERR(("P2P disable discovery failed, ret=%d\n", err));
goto exit;
}
err = wl_cfgp2p_set_firm_p2p(cfg);
if (unlikely(err < 0)) {
WL_ERR(("Set P2P address in firmware failed, ret=%d\n", err));
goto exit;
}
err = wl_cfgp2p_enable_discovery(cfg, bcmcfg_to_prmry_ndev(cfg), NULL, 0);
if (unlikely(err < 0)) {
WL_ERR(("P2P enable discovery failed, ret=%d\n", err));
goto exit;
}
} else {
WL_ERR(("unexpected attrib type:%d\n", type));
err = -EINVAL;
}
exit:
return err;
}
#endif /* WL_P2P_RAND */
#ifdef WL_THERMAL_MITIGATION
static int
wl_cfgvendor_thermal_mitigation(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = BCME_ERROR, rem, type;
wifi_thermal_mode set_thermal_mode = WIFI_MITIGATION_NONE;
struct net_device *net = wdev->netdev;
struct bcm_cfg80211 *cfg = wl_get_cfg(net);
const struct nlattr *iter;
wl_tvpm_req_t* tvpm_req = NULL;
size_t reqlen = sizeof(wl_tvpm_req_t) + sizeof(wl_tvpm_status_t);
s32 bssidx;
u32 duty_cycle = DUTY_CYCLE_NONE;
/* delay_win
* Deadline (in milliseconds) to complete this request, value 0 implies apply
* immediately. Deadline is basically a relaxed limit and allows
* vendors to apply the mitigation within the window (if it cannot
* apply immediately)
* current chip can apply immediately, so will not use this value currently
*/
u32 delay_win = 0;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
if (type == ANDR_WIFI_ATTRIBUTE_THERMAL_MITIGATION) {
set_thermal_mode = nla_get_u32(iter);
WL_INFORM_MEM(("got thermal mode = %d\n", set_thermal_mode));
} else if (type == ANDR_WIFI_ATTRIBUTE_THERMAL_COMPLETION_WINDOW) {
delay_win = nla_get_u32(iter);
WL_INFORM_MEM(("got delay_win = %d\n", delay_win));
} else {
WL_ERR(("Unknown attr type: %d\n", type));
err = -EINVAL;
goto exit;
}
}
/* If thermal mode is already configured, no need to set it again */
if (cfg->thermal_mode == set_thermal_mode) {
WL_INFORM_MEM(("%s, thermal_mode %d is already set\n",
__FUNCTION__, set_thermal_mode));
err = BCME_OK;
goto exit;
}
/* Map Android TX power modes to internal power mode */
switch (set_thermal_mode) {
case WIFI_MITIGATION_LIGHT:
duty_cycle = DUTY_CYCLE_LIGHT;
break;
case WIFI_MITIGATION_MODERATE:
duty_cycle = DUTY_CYCLE_MODERATE;
break;
case WIFI_MITIGATION_SEVERE:
duty_cycle = DUTY_CYCLE_SEVERE;
break;
case WIFI_MITIGATION_CRITICAL:
duty_cycle = DUTY_CYCLE_CRITICAL;
break;
case WIFI_MITIGATION_EMERGENCY:
duty_cycle = DUTY_CYCLE_EMERGENCY;
break;
case WIFI_MITIGATION_NONE:
/* intentional fall-through */
default:
duty_cycle = DUTY_CYCLE_NONE;
break;
}
WL_DBG(("%s, duty_cycle %d thermal_mode %d\n", __FUNCTION__,
duty_cycle, set_thermal_mode));
tvpm_req = MALLOCZ(cfg->osh, reqlen);
if (tvpm_req == NULL) {
WL_ERR(("%s: can't allocate %ld bytes\n",
__FUNCTION__, reqlen));
err = -ENOMEM;
goto exit;
}
tvpm_req->version = TVPM_REQ_VERSION_1;
tvpm_req->length = reqlen;
tvpm_req->req_type = WL_TVPM_REQ_CLTM_INDEX;
*(int32*)(tvpm_req->value) = duty_cycle;
if ((bssidx = wl_get_bssidx_by_wdev(cfg, net->ieee80211_ptr)) < 0) {
WL_ERR(("Find index failed\n"));
err = BCME_ERROR;
goto exit;
}
err = wldev_iovar_setbuf_bsscfg(net, "tvpm",
tvpm_req, reqlen, cfg->ioctl_buf,
WLC_IOCTL_MEDLEN, bssidx, &cfg->ioctl_buf_sync);
if (unlikely(err)) {
WL_ERR(("tvpm duty cycle failed with error %d\n", err));
goto exit;
}
/* Cache the thermal mode sent by the hal */
cfg->thermal_mode = set_thermal_mode;
exit:
if (tvpm_req) {
MFREE(cfg->osh, tvpm_req, reqlen);
}
return err;
}
#endif /* WL_THERMAL_MITIGATION */
#ifdef WL_SAR_TX_POWER
static int
wl_cfgvendor_tx_power_scenario(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = BCME_ERROR, rem, type;
int8 wifi_tx_power_mode = WIFI_POWER_SCENARIO_INVALID;
struct bcm_cfg80211 *cfg = wl_get_cfg(wdev_to_ndev(wdev));
const struct nlattr *iter;
sar_advance_modes sar_tx_power_val = SAR_DISABLE;
int airplane_mode = 0;
#if defined(WL_SAR_TX_POWER_CONFIG)
int i = 0;
bool found = FALSE;
#endif /* WL_SAR_TX_POWER_CONFIG */
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
if (type == ANDR_WIFI_ATTRIBUTE_TX_POWER_SCENARIO) {
wifi_tx_power_mode = nla_get_s8(iter);
} else {
WL_ERR(("SAR: Unknown attr type: %d\n", type));
err = -EINVAL;
goto exit;
}
}
/* If sar tx power is already configured, no need to set it again */
if (cfg->wifi_tx_power_mode == wifi_tx_power_mode) {
WL_INFORM_MEM(("SAR: tx_power_mode %d is already set\n",
wifi_tx_power_mode));
err = BCME_OK;
goto exit;
}
#if defined(WL_SAR_TX_POWER_CONFIG)
for (i = 0; i < cfg->sar_config_info_cnt; i++) {
if ((wifi_tx_power_mode != WIFI_POWER_SCENARIO_INVALID) &&
(cfg->sar_config_info[i].scenario == wifi_tx_power_mode)) {
found = TRUE;
sar_tx_power_val = cfg->sar_config_info[i].sar_tx_power_val;
airplane_mode = cfg->sar_config_info[i].airplane_mode;
WL_DBG(("found scenario with new config\n"));
break;
}
}
if (!found)
#endif /* WL_SAR_TX_POWER_CONFIG */
{
/* Map Android TX power modes to Brcm power mode */
switch (wifi_tx_power_mode) {
case WIFI_POWER_SCENARIO_VOICE_CALL:
case WIFI_POWER_SCENARIO_DEFAULT:
/* SAR disabled */
sar_tx_power_val = SAR_DISABLE;
airplane_mode = 0;
break;
case WIFI_POWER_SCENARIO_ON_HEAD_CELL_OFF:
/* HEAD mode, Airplane */
sar_tx_power_val = SAR_HEAD;
airplane_mode = 1;
break;
case WIFI_POWER_SCENARIO_ON_BODY_CELL_OFF:
/* GRIP mode, Airplane */
sar_tx_power_val = SAR_GRIP;
airplane_mode = 1;
break;
case WIFI_POWER_SCENARIO_ON_BODY_BT:
/* BT mode, Airplane */
sar_tx_power_val = SAR_BT;
airplane_mode = 1;
break;
case WIFI_POWER_SCENARIO_ON_HEAD_CELL_ON:
/* HEAD mode, Normal */
sar_tx_power_val = SAR_HEAD;
airplane_mode = 0;
break;
case WIFI_POWER_SCENARIO_ON_BODY_CELL_ON:
/* GRIP mode, Normal */
sar_tx_power_val = SAR_GRIP;
airplane_mode = 0;
break;
default:
WL_ERR(("SAR: invalid wifi tx power scenario = %d\n",
sar_tx_power_val));
err = -EINVAL;
goto exit;
}
}
WL_DBG(("SAR: sar_mode %d airplane_mode %d\n", sar_tx_power_val, airplane_mode));
err = wldev_iovar_setint(wdev_to_ndev(wdev), "fccpwrlimit2g", airplane_mode);
if (unlikely(err)) {
WL_ERR(("SAR: Failed to set airplane_mode - error (%d)\n", err));
goto exit;
}
err = wldev_iovar_setint(wdev_to_ndev(wdev), "sar_enable", sar_tx_power_val);
if (unlikely(err)) {
WL_ERR(("SAR: Failed to set sar_enable - error (%d)\n", err));
goto exit;
}
/* Cache the tx power mode sent by the hal */
cfg->wifi_tx_power_mode = wifi_tx_power_mode;
WL_INFORM_MEM(("SAR: tx_power_mode %d SUCCESS\n", wifi_tx_power_mode));
exit:
return err;
}
#endif /* WL_SAR_TX_POWER */
#ifdef WL_CUSTOM_MAPPING_OF_DSCP
#define UNUSED_PRIO 0xffu
enum andr_user_ac {
BEST_EFFORT = 0,
BACKGROUND = 1,
VIDEO = 2,
VOICE = 3
};
const uint8 default_dscp_mapping_table[UP_TABLE_MAX] =
{
PRIO_8021D_BE, UNUSED_PRIO, UNUSED_PRIO, UNUSED_PRIO, /* 00 ~ 03 */
UNUSED_PRIO, UNUSED_PRIO, UNUSED_PRIO, UNUSED_PRIO, /* 04 ~ 07 */
PRIO_8021D_BK, UNUSED_PRIO, PRIO_8021D_BE, UNUSED_PRIO, /* 08 ~ 11 */
PRIO_8021D_BE, UNUSED_PRIO, PRIO_8021D_BE, UNUSED_PRIO, /* 12 ~ 15 */
PRIO_8021D_BE, UNUSED_PRIO, PRIO_8021D_EE, UNUSED_PRIO, /* 16 ~ 19 */
PRIO_8021D_EE, UNUSED_PRIO, PRIO_8021D_EE, UNUSED_PRIO, /* 20 ~ 23 */
PRIO_8021D_CL, UNUSED_PRIO, PRIO_8021D_CL, UNUSED_PRIO, /* 24 ~ 27 */
PRIO_8021D_CL, UNUSED_PRIO, PRIO_8021D_CL, UNUSED_PRIO, /* 28 ~ 31 */
PRIO_8021D_CL, UNUSED_PRIO, PRIO_8021D_CL, UNUSED_PRIO, /* 32 ~ 35 */
PRIO_8021D_CL, UNUSED_PRIO, PRIO_8021D_CL, UNUSED_PRIO, /* 36 ~ 39 */
PRIO_8021D_VI, UNUSED_PRIO, UNUSED_PRIO, UNUSED_PRIO, /* 40 ~ 43 */
PRIO_8021D_VO, UNUSED_PRIO, PRIO_8021D_VO, UNUSED_PRIO, /* 44 ~ 47 */
PRIO_8021D_NC, UNUSED_PRIO, UNUSED_PRIO, UNUSED_PRIO, /* 48 ~ 51 */
UNUSED_PRIO, UNUSED_PRIO, UNUSED_PRIO, UNUSED_PRIO, /* 52 ~ 55 */
PRIO_8021D_NC, UNUSED_PRIO, UNUSED_PRIO, UNUSED_PRIO, /* 56 ~ 59 */
UNUSED_PRIO, UNUSED_PRIO, UNUSED_PRIO, UNUSED_PRIO /* 60 ~ 63 */
};
static uint8 custom_dscp2priomap[UP_TABLE_MAX];
static int
wl_set_dscp_deafult_priority(uint8* table)
{
int err = BCME_ERROR;
err = memcpy_s(table, UP_TABLE_MAX, default_dscp_mapping_table,
sizeof(default_dscp_mapping_table));
if (unlikely(err)) {
WL_ERR(("Fail to set the defalut dscp.\n"));
}
return err;
}
static int
wl_cfgvendor_custom_mapping_of_dscp(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg;
int err = BCME_OK, rem, type;
const struct nlattr *iter;
uint32 dscp_start = 0;
uint32 dscp_end = 0;
uint32 access_category = 0;
uint32 priority = 0;
uint32 dscp;
int32 def_dscp_pri;
cfg = wl_cfg80211_get_bcmcfg();
if (!cfg || !cfg->wdev) {
err = BCME_NOTUP;
goto exit;
}
if (!cfg->up_table) {
cfg->up_table = (uint8 *) custom_dscp2priomap;
}
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
if (type == CUSTOM_SETTING_ATTRIBUTE_DSCP_START) {
dscp_start = nla_get_u32(iter);
WL_INFORM(("got to dscp_stat value [%d]\n", dscp_start));
if (dscp_start >= UP_TABLE_MAX) {
err = -EINVAL;
goto exit;
}
} else if (type == CUSTOM_SETTING_ATTRIBUTE_DSCP_END) {
dscp_end = nla_get_u32(iter);
WL_INFORM(("got to dscp_end value [%d]\n", dscp_end));
if (dscp_end >= UP_TABLE_MAX) {
err = -EINVAL;
goto exit;
}
} else if (type == CUSTOM_SETTING_ATTRIBUTE_ACCESS_CATEGORY) {
access_category = nla_get_u32(iter);
WL_INFORM(("got to access_category value [%d]\n", access_category));
switch (access_category) {
case BEST_EFFORT:
priority = PRIO_8021D_BE;
break;
case BACKGROUND:
priority = PRIO_8021D_BK;
break;
case VIDEO:
priority = PRIO_8021D_VI;
break;
case VOICE:
priority = PRIO_8021D_VO;
break;
default:
err = -EINVAL;
goto exit;
break;
}
} else {
WL_ERR(("Unknown attr type: %d\n", type));
err = -EINVAL;
goto exit;
}
}
if (dscp_end < dscp_start) {
WL_ERR(("dscp_end is lower than dscp_start.\n"));
return -EINVAL;
}
/* Verify to set DSCP of user priority. */
for (dscp = dscp_start; dscp <= dscp_end; dscp++) {
def_dscp_pri = default_dscp_mapping_table[dscp];
if ((def_dscp_pri != 0xff) && (def_dscp_pri != priority)) {
err = -EINVAL;
WL_ERR(("Request priority is %d from %d to %d.\n",
priority, dscp_start, dscp_end));
WL_ERR(("But conflict with defalut priority of DSCP %d and priority %d.\n",
dscp, def_dscp_pri));
goto exit;
}
}
/* Set the custom DSCP of user priority. */
err = memset_s(cfg->up_table + dscp_start, UP_TABLE_MAX - dscp_start, priority,
dscp_end - dscp_start + 1);
if (unlikely(err)) {
WL_ERR(("Fail to set table\n"));
}
exit:
return err;
}
static int
wl_cfgvendor_custom_mapping_of_dscp_reset(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg;
cfg = wl_cfg80211_get_bcmcfg();
if (!cfg || !cfg->wdev) {
return BCME_NOTUP;
}
if (!cfg->up_table) {
WL_INFORM(("Custom table not set yet.\n"));
return BCME_NOTREADY;
}
return wl_set_dscp_deafult_priority(cfg->up_table);
}
#endif /* WL_CUSTOM_MAPPING_OF_DSCP */
int
wl_cfgvendor_multista_set_primary_connection(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = BCME_OK;
struct bcm_cfg80211 *cfg = NULL;
struct net_device *dev = NULL;
if (wdev == NULL) {
WL_ERR(("Invalid wireless device, NULL\n"));
return -EINVAL;
}
dev = wdev_to_ndev(wdev);
if (dev == NULL) {
WL_ERR(("Invalid net device, NULL\n"));
return -EINVAL;
}
cfg = wl_get_cfg(dev);
if (cfg == NULL) {
WL_ERR(("Invalid cfg, NULL\n"));
return -EINVAL;
}
if (dev != cfg->inet_ndev) {
WL_INFORM_MEM(("primary iface changed from (%s) to %s\n",
cfg->inet_ndev->name, dev->name));
cfg->inet_ndev = dev;
wl_cfg80211_handle_primary_ifchange(cfg, cfg->inet_ndev);
} else {
WL_INFORM_MEM(("primary iface:%s\n", cfg->inet_ndev->name));
}
return err;
}
static int
wl_cfgvendor_multista_set_use_case(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = BCME_OK;
int rem, type;
const struct nlattr *iter;
wifi_multi_sta_use_case sta_use_case;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
if (type == MULTISTA_ATTRIBUTE_USE_CASE) {
sta_use_case = nla_get_u32(iter);
WL_INFORM_MEM(("Multista requested usecase = %d\n", sta_use_case));
} else {
WL_ERR(("Unknown attr type: %d\n", type));
err = -EINVAL;
return err;
}
}
return err;
}
#if !defined(WL_TWT) && defined(WL_TWT_HAL_IF)
static int
wl_cfgvendor_twt_setup(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
wl_twt_config_t val;
s32 bw;
s32 type, rem_attr;
u8 mybuf[WLC_IOCTL_SMLEN] = {0};
u8 resp_buf[WLC_IOCTL_SMLEN] = {0};
const struct nlattr *iter;
uint8 *rem = mybuf;
uint16 rem_len = sizeof(mybuf);
bzero(&val, sizeof(val));
val.version = WL_TWT_SETUP_VER;
val.length = sizeof(val.version) + sizeof(val.length);
/* Default values, Override Below */
val.desc.flow_flags = 0;
val.desc.wake_time_h = 0xFFFFFFFF;
val.desc.wake_time_l = 0xFFFFFFFF;
val.desc.wake_int_min = 0xFFFFFFFF;
val.desc.wake_int_max = 0xFFFFFFFF;
val.desc.wake_dur_min = 0xFFFFFFFF;
val.desc.wake_dur_max = 0xFFFFFFFF;
val.desc.avg_pkt_num = 0xFFFFFFFF;
val.desc.avg_pkt_size = 0xFFFFFFFF;
nla_for_each_attr(iter, data, len, rem_attr) {
type = nla_type(iter);
switch (type) {
case ANDR_TWT_ATTR_CONFIG_ID:
/* Config ID */
val.desc.configID = nla_get_u8(iter);
break;
case ANDR_TWT_ATTR_NEGOTIATION_TYPE:
/* negotiation_type */
val.desc.negotiation_type = nla_get_u8(iter);
break;
case ANDR_TWT_ATTR_TRIGGER_TYPE:
/* Trigger Type */
if (nla_get_u8(iter) == 1) {
val.desc.flow_flags |= WL_TWT_FLOW_FLAG_TRIGGER;
}
case ANDR_TWT_ATTR_WAKE_DURATION:
/* Wake Duration */
val.desc.wake_dur = nla_get_u32(iter);
break;
case ANDR_TWT_ATTR_WAKE_INTERVAL:
/* Wake interval */
val.desc.wake_int = nla_get_u32(iter);
break;
case ANDR_TWT_ATTR_WAKETIME_OFFSET:
/* Wake Time parameter */
val.desc.wake_time_h = 0;
val.desc.wake_time_l = nla_get_u32(iter);
break;
case ANDR_TWT_ATTR_WAKE_INTERVAL_MIN:
/* Minimum allowed Wake interval */
val.desc.wake_int_min = nla_get_u32(iter);
break;
case ANDR_TWT_ATTR_WAKE_INTERVAL_MAX:
/* Max Allowed Wake interval */
val.desc.wake_int_max = nla_get_u32(iter);
break;
case ANDR_TWT_ATTR_WAKE_DURATION_MIN:
/* Minimum allowed Wake duration */
val.desc.wake_dur_min = nla_get_u32(iter);
break;
case ANDR_TWT_ATTR_WAKE_DURATION_MAX:
/* Maximum allowed Wake duration */
val.desc.wake_dur_max = nla_get_u32(iter);
break;
case ANDR_TWT_ATTR_AVG_PKT_NUM:
/* Average number of packets */
val.desc.avg_pkt_num = nla_get_u32(iter);
break;
case ANDR_TWT_ATTR_AVG_PKT_SIZE:
/* Average packets size */
val.desc.avg_pkt_size = nla_get_u32(iter);
break;
default:
WL_ERR(("Invalid setup attribute type %d\n", type));
break;
}
}
bw = bcm_pack_xtlv_entry(&rem, &rem_len, WL_TWT_CMD_CONFIG,
sizeof(val), (uint8 *)&val, BCM_XTLV_OPTION_ALIGN32);
if (bw != BCME_OK) {
goto exit;
}
bw = wldev_iovar_setbuf(wdev_to_ndev(wdev), "twt",
mybuf, sizeof(mybuf) - rem_len, resp_buf, WLC_IOCTL_SMLEN, NULL);
if (bw < 0) {
WL_ERR(("twt config set failed. ret:%d\n", bw));
} else {
WL_INFORM(("twt config setup succeeded, config ID %d "
"Negotiation type %d flow flags %d\n", val.desc.configID,
val.desc.negotiation_type, val.desc.flow_flags));
}
exit:
return bw;
}
static int
wl_cfgvendor_twt_teardown(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
wl_twt_teardown_t val;
s32 bw;
s32 type, rem_attr;
u8 mybuf[WLC_IOCTL_SMLEN] = {0};
u8 res_buf[WLC_IOCTL_SMLEN] = {0};
const struct nlattr *iter;
uint8 *rem = mybuf;
uint16 rem_len = sizeof(mybuf);
bzero(&val, sizeof(val));
val.version = WL_TWT_TEARDOWN_VER;
val.length = sizeof(val.version) + sizeof(val.length);
/* Default values, Override Below */
val.teardesc.flow_id = 0xFF;
val.teardesc.bid = 0xFF;
nla_for_each_attr(iter, data, len, rem_attr) {
type = nla_type(iter);
switch (type) {
case ANDR_TWT_ATTR_CONFIG_ID:
/* Config ID */
val.configID = nla_get_u8(iter);
break;
case ANDR_TWT_ATTR_NEGOTIATION_TYPE:
/* negotiation_type */
val.teardesc.negotiation_type = nla_get_u8(iter);
break;
case ANDR_TWT_ATTR_ALL_TWT:
/* all twt */
val.teardesc.alltwt = nla_get_u8(iter);
break;
default:
WL_ERR(("Invalid teardown attribute type %d\n", type));
break;
}
}
bw = bcm_pack_xtlv_entry(&rem, &rem_len, WL_TWT_CMD_TEARDOWN,
sizeof(val), (uint8 *)&val, BCM_XTLV_OPTION_ALIGN32);
if (bw != BCME_OK) {
goto exit;
}
bw = wldev_iovar_setbuf(wdev_to_ndev(wdev), "twt",
mybuf, sizeof(mybuf) - rem_len, res_buf, WLC_IOCTL_SMLEN, NULL);
if (bw < 0) {
WL_ERR(("twt teardown failed. ret:%d\n", bw));
} else {
WL_INFORM(("twt teardown succeeded, config ID %d "
"Negotiation type %d alltwt %d\n", val.configID,
val.teardesc.negotiation_type, val.teardesc.alltwt));
}
exit:
return bw;
}
static int
wl_cfgvendor_twt_info_frame(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
wl_twt_info_t val;
int bw;
s32 type, rem_attr;
const struct nlattr *iter;
u8 mybuf[WLC_IOCTL_SMLEN] = {0};
u8 res_buf[WLC_IOCTL_SMLEN] = {0};
uint8 *rem = mybuf;
uint16 rem_len = sizeof(mybuf);
uint32 val32 = 0;
bzero(&val, sizeof(val));
val.version = WL_TWT_INFO_VER;
val.length = sizeof(val.version) + sizeof(val.length);
/* Default values, Override Below */
val.infodesc.flow_id = 0xFF;
val.desc.next_twt_h = 0xFFFFFFFF;
val.desc.next_twt_l = 0xFFFFFFFF;
nla_for_each_attr(iter, data, len, rem_attr) {
type = nla_type(iter);
if (type == ANDR_TWT_ATTR_CONFIG_ID) {
/* Config ID */
val.configID = nla_get_u8(iter);
} else if (type == ANDR_TWT_ATTR_RESUME_TIME) {
/* Resume offset */
val32 = nla_get_u32(iter);
if (!((val32 == 0) || (val32 == -1))) {
val.infodesc.next_twt_h = 0;
val.infodesc.next_twt_l = val32;
val.infodesc.flow_flags |= WL_TWT_INFO_FLAG_RESUME;
}
} else if (type == ANDR_TWT_ATTR_ALL_TWT) {
/* all twt */
val32 = (uint32)nla_get_u8(iter);
if (val32) {
val.infodesc.flow_flags |= WL_TWT_INFO_FLAG_ALL_TWT;
}
} else {
WL_ERR(("Invalid info frame attribute type %d\n", type));
}
}
bw = bcm_pack_xtlv_entry(&rem, &rem_len, WL_TWT_CMD_INFO,
sizeof(val), (uint8 *)&val, BCM_XTLV_OPTION_ALIGN32);
if (bw != BCME_OK) {
goto exit;
}
bw = wldev_iovar_setbuf(wdev_to_ndev(wdev), "twt",
mybuf, sizeof(mybuf) - rem_len, res_buf, WLC_IOCTL_SMLEN, NULL);
if (bw < 0) {
WL_ERR(("twt info frame failed. ret:%d\n", bw));
} else {
WL_INFORM(("twt info frame succeeded, config ID %d\n", val.configID));
}
exit:
return bw;
}
static int
wl_cfgvendor_twt_stats_update_v2(struct wiphy *wiphy, wl_twt_stats_v2_t *stats)
{
u32 i;
wl_twt_peer_stats_v2_t *peer_stats;
struct sk_buff *skb;
int32 mem_needed;
int ret = BCME_OK;
mem_needed = BRCM_TWT_HAL_VENDOR_EVENT_BUF_LEN;
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("%s: can't allocate %d bytes\n", __FUNCTION__, mem_needed));
ret = -ENOMEM;
goto fail;
}
ret = nla_put_u32(skb, ANDR_TWT_ATTR_NUM_PEER_STATS, stats->num_stats);
if (ret < 0) {
WL_ERR(("Failed to put ANDR_TWT_ATTR_DEVICE_CAP, ret:%d\n", ret));
goto fail;
}
for (i = 0; i < stats->num_stats; i++) {
peer_stats = &stats->peer_stats_list[i];
WL_INFORM_MEM(("%u %u %u %u %u",
peer_stats->eosp_dur_avg, peer_stats->tx_pkts_avg, peer_stats->rx_pkts_avg,
peer_stats->tx_pkt_sz_avg, peer_stats->rx_pkt_sz_avg));
ret = nla_put_u8(skb, ANDR_TWT_ATTR_CONFIG_ID, peer_stats->configID);
if (ret < 0) {
WL_ERR(("Failed to put ANDR_TWT_ATTR_CONFIG_ID, ret:%d\n", ret));
goto fail;
}
ret = nla_put_u32(skb, ANDR_TWT_ATTR_AVG_PKT_NUM_TX, peer_stats->tx_pkts_avg);
if (ret < 0) {
WL_ERR(("Failed to put ANDR_TWT_ATTR_AVG_PKT_NUM_TX, ret:%d\n", ret));
goto fail;
}
ret = nla_put_u32(skb, ANDR_TWT_ATTR_AVG_PKT_SIZE_TX, peer_stats->tx_pkt_sz_avg);
if (ret < 0) {
WL_ERR(("Failed to put ANDR_TWT_ATTR_AVG_PKT_SIZE_TX, ret:%d\n", ret));
goto fail;
}
ret = nla_put_u32(skb, ANDR_TWT_ATTR_AVG_PKT_NUM_RX, peer_stats->rx_pkts_avg);
if (ret < 0) {
WL_ERR(("Failed to put ANDR_TWT_ATTR_AVG_PKT_NUM_RX, ret:%d\n", ret));
goto fail;
}
ret = nla_put_u32(skb, ANDR_TWT_ATTR_AVG_PKT_SIZE_RX, peer_stats->rx_pkt_sz_avg);
if (ret < 0) {
WL_ERR(("Failed to put ANDR_TWT_ATTR_AVG_PKT_SIZE_RX, ret:%d\n", ret));
goto fail;
}
ret = nla_put_u32(skb, ANDR_TWT_ATTR_AVG_EOSP_DUR, peer_stats->eosp_dur_avg);
if (ret < 0) {
WL_ERR(("Failed to put ANDR_TWT_ATTR_AVG_EOSP_DUR, ret:%d\n", ret));
goto fail;
}
ret = nla_put_u32(skb, ANDR_TWT_ATTR_EOSP_CNT, peer_stats->eosp_count);
if (ret < 0) {
WL_ERR(("Failed to put ANDR_TWT_ATTR_EOSP_CNT, ret:%d\n", ret));
goto fail;
}
ret = nla_put_u32(skb, ANDR_TWT_ATTR_NUM_SP, peer_stats->sp_seq);
if (ret < 0) {
WL_ERR(("Failed to put ANDR_TWT_ATTR_NUM_SP, ret:%d\n", ret));
goto fail;
}
}
ret = cfg80211_vendor_cmd_reply(skb);
if (unlikely(ret)) {
WL_ERR(("vendor command reply failed, ret=%d\n", ret));
}
return ret;
fail:
/* Free skb for failure cases */
if (skb) {
kfree_skb(skb);
}
return ret;
}
static int
wl_cfgvendor_twt_stats(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len, bool clear_stats)
{
wl_twt_stats_cmd_v1_t query;
wl_twt_stats_v2_t stats_v2;
s32 type, rem_attr;
const struct nlattr *iter;
int ret = BCME_OK;
char iovbuf[WLC_IOCTL_SMLEN] = {0, };
uint8 *pxtlv = NULL;
uint8 *iovresp = NULL;
uint16 buflen = 0, bufstart = 0;
struct bcm_cfg80211 *cfg = wl_get_cfg(wdev_to_ndev(wdev));
bzero(&query, sizeof(query));
query.version = WL_TWT_STATS_CMD_VERSION_1;
query.length = sizeof(query) - OFFSETOF(wl_twt_stats_cmd_v1_t, peer);
/* Default values, Override Below */
query.num_bid = 0xFF;
query.num_fid = 0xFF;
if (clear_stats) {
query.flags |= WL_TWT_STATS_CMD_FLAGS_RESET;
}
nla_for_each_attr(iter, data, len, rem_attr) {
type = nla_type(iter);
if (type == ANDR_TWT_ATTR_CONFIG_ID) {
/* Config ID */
query.configID = nla_get_u8(iter);
} else {
WL_ERR(("Invalid TWT stats attribute type %d\n", type));
}
}
iovresp = (uint8 *)MALLOCZ(cfg->osh, WLC_IOCTL_MEDLEN);
if (iovresp == NULL) {
WL_ERR(("%s: iov resp memory alloc exited\n", __FUNCTION__));
goto exit;
}
buflen = bufstart = WLC_IOCTL_SMLEN;
pxtlv = (uint8 *)iovbuf;
ret = bcm_pack_xtlv_entry(&pxtlv, &buflen, WL_TWT_CMD_STATS,
sizeof(query), (uint8 *)&query, BCM_XTLV_OPTION_ALIGN32);
if (ret != BCME_OK) {
WL_ERR(("%s : Error return during pack xtlv :%d\n", __FUNCTION__, ret));
goto exit;
}
if ((ret = wldev_iovar_getbuf(wdev_to_ndev(wdev), "twt", iovbuf, bufstart-buflen,
iovresp, WLC_IOCTL_MEDLEN, NULL))) {
WL_ERR(("twt status failed with err=%d \n", ret));
goto exit;
}
(void)memcpy_s(&stats_v2, sizeof(stats_v2), iovresp, sizeof(stats_v2));
if (dtoh16(stats_v2.version) == WL_TWT_STATS_VERSION_2) {
if (!clear_stats) {
WL_ERR(("stats query ver %d, \n", dtoh16(stats_v2.version)));
ret = wl_cfgvendor_twt_stats_update_v2(wiphy, (wl_twt_stats_v2_t*)iovresp);
}
} else {
ret = BCME_UNSUPPORTED;
WL_ERR(("Version 1 unsupported. ver %d, \n", dtoh16(stats_v2.version)));
goto exit;
}
exit:
if (iovresp) {
MFREE(cfg->osh, iovresp, WLC_IOCTL_MEDLEN);
}
return ret;
}
static int
wl_cfgvendor_twt_get_stats(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
return wl_cfgvendor_twt_stats(wiphy, wdev, data, len, false);
}
static int
wl_cfgvendor_twt_clear_stats(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
return wl_cfgvendor_twt_stats(wiphy, wdev, data, len, true);
}
static int
wl_cfgvendor_twt_update_cap(struct wiphy *wiphy, wl_twt_cap_t *result)
{
struct sk_buff *skb;
int32 mem_needed;
int ret = BCME_OK;
WL_INFORM_MEM(("TWT Capabilites Device,Peer 0x%04x 0x%04x\n",
result->device_cap, result->peer_cap));
mem_needed = VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * 2);
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("%s: can't allocate %d bytes\n", __FUNCTION__, mem_needed));
ret = -ENOMEM;
goto fail;
}
ret = nla_put_u32(skb, ANDR_TWT_ATTR_DEVICE_CAP, result->device_cap);
if (ret < 0) {
WL_ERR(("Failed to put ANDR_TWT_ATTR_DEVICE_CAP, ret:%d\n", ret));
goto fail;
}
ret = nla_put_u32(skb, ANDR_TWT_ATTR_PEER_CAP, result->peer_cap);
if (ret < 0) {
WL_ERR(("Failed to put ANDR_TWT_ATTR_PEER_CAP, ret:%d\n", ret));
goto fail;
}
ret = cfg80211_vendor_cmd_reply(skb);
if (unlikely(ret)) {
WL_ERR(("vendor command reply failed, ret=%d\n", ret));
}
return ret;
fail:
/* Free skb for failure cases */
if (skb) {
kfree_skb(skb);
}
return ret;
}
static int
wl_cfgvendor_twt_cap(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
char iovbuf[WLC_IOCTL_SMLEN] = {0, };
uint8 *pxtlv = NULL;
uint8 *iovresp = NULL;
wl_twt_cap_cmd_t cmd_cap;
wl_twt_cap_t result;
uint16 buflen = 0, bufstart = 0;
struct bcm_cfg80211 *cfg = wl_get_cfg(wdev_to_ndev(wdev));
bzero(&cmd_cap, sizeof(cmd_cap));
cmd_cap.version = WL_TWT_CAP_CMD_VERSION_1;
cmd_cap.length = sizeof(cmd_cap) - OFFSETOF(wl_twt_cap_cmd_t, peer);
iovresp = (uint8 *)MALLOCZ(cfg->osh, WLC_IOCTL_MEDLEN);
if (iovresp == NULL) {
WL_ERR(("%s: iov resp memory alloc exited\n", __FUNCTION__));
goto exit;
}
buflen = bufstart = WLC_IOCTL_SMLEN;
pxtlv = (uint8 *)iovbuf;
ret = bcm_pack_xtlv_entry(&pxtlv, &buflen, WL_TWT_CMD_CAP,
sizeof(cmd_cap), (uint8 *)&cmd_cap, BCM_XTLV_OPTION_ALIGN32);
if (ret != BCME_OK) {
WL_ERR(("%s : Error return during pack xtlv :%d\n", __FUNCTION__, ret));
goto exit;
}
if ((ret = wldev_iovar_getbuf(wdev_to_ndev(wdev), "twt", iovbuf, bufstart-buflen,
iovresp, WLC_IOCTL_MEDLEN, NULL))) {
WL_ERR(("Getting twt status failed with err=%d \n", ret));
goto exit;
}
(void)memcpy_s(&result, sizeof(result), iovresp, sizeof(result));
if (dtoh16(result.version) == WL_TWT_CAP_CMD_VERSION_1) {
WL_ERR(("capability ver %d, \n", dtoh16(result.version)));
ret = wl_cfgvendor_twt_update_cap(wiphy, &result);
return ret;
} else {
ret = BCME_UNSUPPORTED;
WL_ERR(("Version 1 unsupported. ver %d, \n", dtoh16(result.version)));
goto exit;
}
exit:
if (iovresp) {
MFREE(cfg->osh, iovresp, WLC_IOCTL_MEDLEN);
}
return ret;
}
static int
wl_cfgvendor_twt_update_setup_response(struct sk_buff *skb, void *event_data)
{
s32 err = BCME_OK;
const wl_twt_setup_cplt_t *setup_cplt = (wl_twt_setup_cplt_t *)event_data;
const wl_twt_sdesc_v0_t *sdesc = (const wl_twt_sdesc_v0_t *)&setup_cplt[1];
WL_DBG(("TWT_SETUP: status %d, reason %d, configID %d, setup_cmd %d, flow_flags 0x%x,"
" flow_id %d, channel %d, negotiation_type %d, wake_time_h %u, wake_time_l %u,"
" wake_dur %u, wake_int %u\n",
(int)setup_cplt->status, (int)setup_cplt->reason_code, (int)setup_cplt->configID,
(int)sdesc->setup_cmd, sdesc->flow_flags, (int)sdesc->flow_id, (int)sdesc->channel,
(int)sdesc->negotiation_type, sdesc->wake_time_h, sdesc->wake_time_l,
sdesc->wake_dur, sdesc->wake_int));
err = nla_put_u8(skb, ANDR_TWT_ATTR_SUB_EVENT, ANDR_TWT_EVENT_SETUP);
if (unlikely(err)) {
WL_ERR(("nla_put_u8 WIFI_TWT_ATTR_SUB_EVENT failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_CONFIG_ID, setup_cplt->configID);
if (unlikely(err)) {
WL_ERR(("nla_put_u8 WIFI_TWT_ATTR_CONFIG_ID failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_REASON_CODE, setup_cplt->reason_code);
if (unlikely(err)) {
WL_ERR(("nla_put_u8 WIFI_TWT_ATTR_REASON_CODE failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_STATUS, !!(setup_cplt->status));
if (unlikely(err)) {
WL_ERR(("nla_put_u8 WIFI_TWT_ATTR_STATUS failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_NEGOTIATION_TYPE, sdesc->negotiation_type);
if (unlikely(err)) {
WL_ERR(("nla_put_u8 WIFI_TWT_ATTR_NEGOTIATION_TYPE failed\n"));
goto fail;
}
err = nla_put_u32(skb, ANDR_TWT_ATTR_WAKE_DURATION, sdesc->wake_dur);
if (unlikely(err)) {
WL_ERR(("nla_put_u32 WIFI_TWT_ATTR_WAKE_DURATION failed\n"));
goto fail;
}
err = nla_put_u32(skb, ANDR_TWT_ATTR_WAKE_INTERVAL, sdesc->wake_int);
if (unlikely(err)) {
WL_ERR(("nla_put_u32 WIFI_TWT_ATTR_WAKE_INTERVAL failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_TRIGGER_TYPE,
!!(sdesc->flow_flags & WL_TWT_FLOW_FLAG_TRIGGER));
if (unlikely(err)) {
WL_ERR(("nla_put_u8 WIFI_TWT_ATTR_TRIGGER_TYPE failed\n"));
goto fail;
}
fail:
return err;
}
static int
wl_cfgvendor_twt_update_teardown_response(struct sk_buff *skb, void *event_data)
{
s32 err = BCME_OK;
const wl_twt_teardown_cplt_t *td_cplt = (wl_twt_teardown_cplt_t *)event_data;
const wl_twt_teardesc_t *teardesc = (const wl_twt_teardesc_t *)&td_cplt[1];
WL_DBG(("TWT_TEARDOWN: status %d, reason %d, configID %d, flow_id %d, negotiation_type %d,"
" bid %d, alltwt %d\n", (int)td_cplt->status, (int)td_cplt->reason_code,
(int)td_cplt->configID, (int)teardesc->flow_id, (int)teardesc->negotiation_type,
(int)teardesc->bid, (int)teardesc->alltwt));
err = nla_put_u8(skb, ANDR_TWT_ATTR_SUB_EVENT, ANDR_TWT_EVENT_TEARDOWN);
if (unlikely(err)) {
WL_ERR(("nla_put_u8 WIFI_TWT_ATTR_SUB_EVENT failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_REASON_CODE, td_cplt->reason_code);
if (unlikely(err)) {
WL_ERR(("nla_put_u8 ANDR_TWT_ATTR_REASON_CODE failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_STATUS, !!(td_cplt->status));
if (unlikely(err)) {
WL_ERR(("nla_put_u8 ANDR_TWT_ATTR_STATUS failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_CONFIG_ID, td_cplt->configID);
if (unlikely(err)) {
WL_ERR(("nla_put_u8 ANDR_TWT_ATTR_CONFIG_ID failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_ALL_TWT, teardesc->alltwt);
if (unlikely(err)) {
WL_ERR(("nla_put_u8 ANDR_TWT_ATTR_ALL_TWT failed\n"));
goto fail;
}
fail:
return err;
}
static int
wl_cfgvendor_twt_update_infoframe_response(struct sk_buff *skb, void *event_data)
{
s32 err = BCME_OK;
const wl_twt_info_cplt_t *info_cplt = (wl_twt_info_cplt_t *)event_data;
const wl_twt_infodesc_t *infodesc = (const wl_twt_infodesc_t *)&info_cplt[1];
WL_DBG(("TWT_INFOFRM: status %d, reason %d, configID %d, flow_flags 0x%x, flow_id %d,"
" next_twt_h %u, next_twt_l %u\n", (int)info_cplt->status,
(int)info_cplt->reason_code, (int)info_cplt->configID, infodesc->flow_flags,
(int)infodesc->flow_id, infodesc->next_twt_h, infodesc->next_twt_l));
err = nla_put_u8(skb, ANDR_TWT_ATTR_SUB_EVENT, ANDR_TWT_EVENT_INFO_FRM);
if (unlikely(err)) {
WL_ERR(("nla_put_u8 WIFI_TWT_ATTR_SUB_EVENT failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_REASON_CODE, info_cplt->reason_code);
if (unlikely(err)) {
WL_ERR(("nla_put_u8 WIFI_TWT_ATTR_REASON_CODE failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_STATUS, !!(info_cplt->status));
if (unlikely(err)) {
WL_ERR(("nla_put_u8 WIFI_TWT_ATTR_STATUS failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_CONFIG_ID, info_cplt->configID);
if (unlikely(err)) {
WL_ERR(("nla_put_u8 WIFI_TWT_ATTR_CONFIG_ID failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_ALL_TWT,
!!(infodesc->flow_flags & WL_TWT_INFO_FLAG_ALL_TWT));
if (unlikely(err)) {
WL_ERR(("nla_put_u8 ANDR_TWT_ATTR_TWT_RESUMED failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_TWT_RESUMED,
!!(infodesc->flow_flags & WL_TWT_INFO_FLAG_RESUME));
if (unlikely(err)) {
WL_ERR(("nla_put_u8 ANDR_TWT_ATTR_TWT_RESUMED failed\n"));
goto fail;
}
fail:
return err;
}
static int
wl_cfgvendor_twt_update_notify_response(struct sk_buff *skb, void *event_data)
{
s32 err = BCME_OK;
const wl_twt_notify_t *notif_cplt = (wl_twt_notify_t *)event_data;
WL_DBG(("TWT_NOTIFY: notification %d\n", (int)notif_cplt->notification));
err = nla_put_u8(skb, ANDR_TWT_ATTR_SUB_EVENT, ANDR_TWT_EVENT_NOTIFY);
if (unlikely(err)) {
WL_ERR(("nla_put_u8 WIFI_TWT_ATTR_SUB_EVENT failed\n"));
goto fail;
}
err = nla_put_u8(skb, ANDR_TWT_ATTR_TWT_NOTIFICATION, notif_cplt->notification);
if (unlikely(err)) {
WL_ERR(("nla_put_u8 WIFI_TWT_ATTR_NOTIFICATION failed\n"));
goto fail;
}
fail:
return err;
}
s32
wl_cfgvendor_notify_twt_event(struct bcm_cfg80211 *cfg,
bcm_struct_cfgdev *cfgdev, const wl_event_msg_t *e, void *data)
{
struct sk_buff *skb = NULL;
gfp_t kflags;
struct wiphy *wiphy = bcmcfg_to_wiphy(cfg);
int err = BCME_OK;
struct net_device *ndev = bcmcfg_to_prmry_ndev(cfg);
const wl_twt_event_t *twt_event = (wl_twt_event_t *)data;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
skb = CFG80211_VENDOR_EVENT_ALLOC(wiphy, ndev_to_wdev(ndev),
BRCM_TWT_HAL_VENDOR_EVENT_BUF_LEN, BRCM_VENDOR_EVENT_TWT, kflags);
if (!skb) {
WL_ERR(("skb alloc failed"));
err = BCME_NOMEM;
goto fail;
}
switch (twt_event->event_type) {
case WL_TWT_EVENT_SETUP:
err = wl_cfgvendor_twt_update_setup_response(skb,
(void*)twt_event->event_info);
break;
case WL_TWT_EVENT_TEARDOWN:
err = wl_cfgvendor_twt_update_teardown_response(skb,
(void*)twt_event->event_info);
break;
case WL_TWT_EVENT_INFOFRM:
err = wl_cfgvendor_twt_update_infoframe_response(skb,
(void*)twt_event->event_info);
break;
case WL_TWT_EVENT_NOTIFY:
err = wl_cfgvendor_twt_update_notify_response(skb,
(void*)twt_event->event_info);
break;
default:
WL_ERR(("Invalid TWT sub event type %d", twt_event->event_type));
err = BCME_UNSUPPORTED;
break;
}
if (err) {
goto fail;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0))
cfg80211_vendor_event(skb, kflags);
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0) */
WL_INFORM(("Successfully sent TWT vendor event type %d\n", twt_event->event_type));
return BCME_OK;
fail:
/* Free skb for failure cases */
if (skb) {
kfree_skb(skb);
}
return err;
}
#endif /* !WL_TWT && WL_TWT_HAL_IF */
#ifdef SUPPORT_OTA_UPDATE
static void
wl_set_ota_nvram_ext(dhd_pub_t *dhd)
{
#if defined(USE_CID_CHECK)
naming_info_t *info = NULL;
bool is_murata_fem = FALSE;
ota_update_info_t *ota_info = &dhd->ota_update_info;
info = dhd_find_naming_info_by_chip_rev(dhd, &is_murata_fem);
if (info) {
WL_INFORM(("Nvram extension prefix is [%s].\n", info->nvram_ext));
strlcpy(ota_info->nvram_ext, info->nvram_ext, MAX_EXT_INFO_LEN);
}
else {
WL_ERR(("info is null\n"));
}
#endif /* USE_CID_CHECK */
return;
}
static int
wl_cfgvendor_get_ota_current_info(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret, mem_needed;
struct sk_buff *skb = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
ota_update_info_t *ota_info = &dhd_pub->ota_update_info;
WL_DBG(("Recv get ota current info cmd.\n"));
mem_needed = VENDOR_REPLY_OVERHEAD + MAX_EXT_INFO_LEN;
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("%s: can't allocate %d bytes\n", __FUNCTION__, mem_needed));
ret = -ENOMEM;
goto exit;
}
ret = nla_put_string(skb, OTA_CUR_NVRAM_EXT_ATTR, ota_info->nvram_ext);
if (unlikely(ret)) {
WL_ERR(("Failed to put ota_nvram_ext string, ret=%d\n", ret));
goto exit;
}
ret = cfg80211_vendor_cmd_reply(skb);
if (unlikely(ret)) {
WL_ERR(("Vendor cmd reply for -get wake status failed:%d \n", ret));
}
/* On cfg80211_vendor_cmd_reply() skb is consumed and freed in case of success or failure */
return ret;
exit:
/* Free skb memory */
if (skb) {
kfree_skb(skb);
}
return ret;
}
static int
wl_cfgvendor_ota_download(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = BCME_OK;
int rem, type;
const struct nlattr *iter;
char* buf[1];
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhdp = cfg->pub;
#if defined(WLAN_ACCEL_BOOT)
struct net_device *net = wdev->netdev;
#endif /* WLAN_ACCEL_BOOT */
ota_update_info_t *ota_info = &dhdp->ota_update_info;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case OTA_DOWNLOAD_CLM_LENGTH_ATTR:
ota_info->clm_len = nla_get_u32(iter);
WL_INFORM_MEM(("Set to OTA clm length to [%d].\n",
ota_info->clm_len));
break;
case OTA_DOWNLOAD_CLM_ATTR:
if (!ota_info->clm_len) {
err = -EINVAL;
WL_ERR(("clm length is invalid\n"));
goto exit;
}
memcpy_s(buf, sizeof(*buf),
(void *)nla_data(iter), nla_len(iter));
ota_info->clm_buf = MALLOCZ(cfg->osh, ota_info->clm_len);
if (ota_info->clm_buf == NULL) {
err = -ENOMEM;
WL_ERR(("Allocte fail size [%d]\n", ota_info->clm_len));
goto exit;
}
err = copy_from_user(ota_info->clm_buf, buf[0],
ota_info->clm_len);
if (err) {
WL_ERR(("Failed copy_from_user for ota_clm_buf.\n"));
goto exit;
}
break;
case OTA_DOWNLOAD_NVRAM_LENGTH_ATTR:
ota_info->nvram_len = nla_get_u32(iter);
WL_INFORM_MEM(("Set the OTA nvram length to [%d]\n",
ota_info->nvram_len));
break;
case OTA_DOWNLOAD_NVRAM_ATTR:
if (!ota_info->nvram_len) {
err = -EINVAL;
WL_ERR(("clm length is invalid\n"));
goto exit;
}
memcpy_s(buf, sizeof(*buf),
(void *)nla_data(iter), nla_len(iter));
ota_info->nvram_buf = MALLOCZ(cfg->osh, ota_info->nvram_len);
if (ota_info->nvram_buf == NULL) {
err = -ENOMEM;
WL_ERR(("Allocte fail size [%d]\n", ota_info->nvram_len));
goto exit;
}
err = copy_from_user(ota_info->nvram_buf, buf[0],
ota_info->nvram_len);
if (err) {
WL_ERR(("Failed copy_from_user for ota_nvram_buf.\n"));
goto exit;
}
break;
case OTA_SET_FORCE_REG_ON:
{
uint force_reg_on = nla_get_u32(iter);
#if defined(WLAN_ACCEL_BOOT)
if (force_reg_on == TRUE) {
dhd_dev_set_accel_force_reg_on(net);
}
#endif /* WLAN_ACCEL_BOOT */
}
break;
default:
WL_ERR(("Unknown attr type: %d\n", type));
err = -EINVAL;
goto exit;
break;
}
}
return err;
exit:
if (ota_info->clm_buf) {
MFREE(cfg->osh, ota_info->clm_buf, ota_info->clm_len);
}
if (ota_info->nvram_buf) {
MFREE(cfg->osh, ota_info->nvram_buf, ota_info->nvram_len);
}
ota_info->clm_len = 0;
ota_info->nvram_len = 0;
return err;
}
#endif /* SUPPORT_OTA_UPDATE */
static int
wl_cfgvendor_set_dtim_config(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = BCME_OK, rem, type;
const struct nlattr *iter;
uint32 dtim_multiplier;
int set = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct net_device *net = wdev->netdev;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case ANDR_WIFI_ATTRIBUTE_DTIM_MULTIPLIER:
dtim_multiplier = nla_get_u32(iter);
WL_INFORM_MEM(("dtim multiplier %d\n", dtim_multiplier));
set = (dtim_multiplier > 0) ? FALSE : TRUE;
cfg->suspend_bcn_li_dtim = dtim_multiplier;
cfg->max_dtim_enable = set ? TRUE : FALSE;
if (cfg->soft_suspend) {
wl_cfg80211_set_suspend_bcn_li_dtim(cfg, net, TRUE);
}
break;
default:
WL_ERR(("Unknown type: %d\n", type));
return err;
}
}
return err;
}
#ifdef WL_USABLE_CHAN
static int wl_cfgvendor_get_usable_channels(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
usable_channel_info_t u_info;
usable_channel_t u_chan;
struct sk_buff *skb;
int ret = BCME_OK;
s32 type, rem_attr;
const struct nlattr *iter;
int i = 0;
uint32 uchan_item_size = 0, uchan_data_len = 0;
int off = 0;
char *uchan_data = NULL;
nla_for_each_attr(iter, data, len, rem_attr) {
type = nla_type(iter);
switch (type) {
case USABLECHAN_ATTRIBUTE_BAND:
u_info.band_mask = nla_get_u32(iter);
break;
case USABLECHAN_ATTRIBUTE_IFACE:
u_info.iface_mode_mask = nla_get_u32(iter);
break;
case USABLECHAN_ATTRIBUTE_FILTER:
u_info.filter_mask = nla_get_u32(iter);
break;
case USABLECHAN_ATTRIBUTE_MAX_SIZE:
u_info.max_size = nla_get_u32(iter);
break;
default:
WL_ERR(("Invalid usable_chan attribute type %d\n", type));
break;
}
}
WL_INFORM_MEM(("usable channel param band:%u iface:%u filter:%u max_size:%u\n",
u_info.band_mask, u_info.iface_mode_mask, u_info.filter_mask, u_info.max_size));
if (u_info.max_size == 0 || u_info.band_mask == 0 || u_info.iface_mode_mask == 0) {
WL_ERR(("Invalid param band:%u iface:%u filter:%u max_size:%u\n",
u_info.band_mask, u_info.iface_mode_mask,
u_info.filter_mask, u_info.max_size));
return -EINVAL;
}
if (u_info.max_size > USABLE_CHAN_MAX_SIZE) {
WL_ERR(("Too big max_size band:%u iface:%u filter:%u max_size:%u limit:%u\n",
u_info.band_mask, u_info.iface_mode_mask,
u_info.filter_mask, u_info.max_size, USABLE_CHAN_MAX_SIZE));
return -EINVAL;
}
u_info.channels = MALLOCZ(cfg->osh, sizeof(*u_info.channels) * u_info.max_size);
if (!u_info.channels) {
WL_ERR(("failed to allocate channels buffer\n"));
return -ENOMEM;
}
ret = wl_get_usable_channels(cfg, &u_info);
if (ret) {
WL_ERR(("can not get channel list from FW err:%d\n", ret));
goto exit;
}
uchan_item_size = sizeof(u_chan.freq) + sizeof(u_chan.width) +
sizeof(u_chan.iface_mode_mask);
uchan_data_len = uchan_item_size * u_info.size;
/* Only freq, width and iface_mode_mask in usable_channel_t send to HAL */
uchan_data = MALLOC(cfg->osh, uchan_data_len);
if (!uchan_data) {
WL_ERR(("failed to allocate sending buffer\n"));
ret = -ENOMEM;
goto exit;
}
for (i = 0; i < u_info.size; i++) {
memcpy_s(uchan_data + off, uchan_data_len, &u_info.channels[i], uchan_item_size);
off += uchan_item_size;
}
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy,
nla_total_size(uchan_data_len) +
nla_total_size(sizeof(u_info.size)));
if (!skb) {
WL_ERR(("skb allocation is failed\n"));
ret = -ENOMEM;
goto exit;
}
(void)nla_put_u32(skb, USABLECHAN_ATTRIBUTE_SIZE, u_info.size);
(void)nla_put(skb, USABLECHAN_ATTRIBUTE_CHANNELS, uchan_data_len, uchan_data);
ret = cfg80211_vendor_cmd_reply(skb);
if (ret) {
WL_ERR(("Vendor Command reply failed ret:%d \n", ret));
}
exit:
if (uchan_data) {
MFREE(cfg->osh, uchan_data, uchan_data_len);
}
if (u_info.channels) {
MFREE(cfg->osh, u_info.channels, sizeof(*u_info.channels) * u_info.max_size);
}
return ret;
}
#endif /* WL_USABLE_CHAN */
#if defined(WLAN_ACCEL_BOOT)
static int
wl_cfgvendor_trigger_ssr(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
WL_INFORM_MEM(("trigger subsystem recovery\n"));
dhd_dev_set_accel_force_reg_on(wdev->netdev);
return BCME_OK;
}
#endif /* WLAN_ACCEL_BOOT */
const struct nla_policy wifi_tx_power_limits_attr_policy[TX_POWER_ATTRIBUTE_MAX] = {
[TX_POWER_CAP_ENABLE_ATTRIBUTE] = { .type = NLA_U8 },
};
int
wl_cfgvendor_set_tx_power_policy_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
int attr_type;
int rem = len;
const struct nlattr *iter;
bool pwr_lmt_enab = false;
nla_for_each_attr(iter, data, len, rem) {
attr_type = nla_type(iter);
switch (attr_type) {
case TX_POWER_CAP_ENABLE_ATTRIBUTE: {
if (nla_len(iter) != sizeof(uint8)) {
WL_ERR(("Invalid value of tx_power cap\n"));
ret = -EINVAL;
break;
}
pwr_lmt_enab = nla_get_u8(iter);
break;
}
/* Add new attributes here */
default:
WL_ERR(("Unknown type %d\n", attr_type));
ret = -EINVAL;
goto exit;
}
}
WL_DBG_MEM(("wl phy_peak_curr_txpwrcap (%d)\n", pwr_lmt_enab));
ret = wldev_iovar_setint(wdev_to_ndev(wdev), "phy_peak_curr_txpwrcap", pwr_lmt_enab);
if (unlikely(ret)) {
WL_ERR(("txpwrcap set failed with error %d\n", ret));
goto exit;
}
exit:
return ret;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
const struct nla_policy wifi_radio_combo_attr_policy[ANDR_WIFI_ATTRIBUTE_RADIO_COMBO_MAX] = {
[ANDR_WIFI_ATTRIBUTE_RADIO_COMBO_MATRIX] = { .type = NLA_BINARY },
};
#endif /* LINUX_VERSION >= 5.3 */
wifi_radio_configuration radio6_2x2[] = {{WLAN_MAC_6_0_BAND, WIFI_ANTENNA_2X2}};
wifi_radio_configuration radio5_2x2[] = {{WLAN_MAC_5_0_BAND, WIFI_ANTENNA_2X2}};
wifi_radio_configuration radio2_2x2[] = {{WLAN_MAC_2_4_BAND, WIFI_ANTENNA_2X2}};
wifi_radio_configuration radio25_2x2[] = {{WLAN_MAC_2_4_BAND, WIFI_ANTENNA_2X2},
{WLAN_MAC_5_0_BAND, WIFI_ANTENNA_2X2}};
wifi_radio_configuration radio26_2x2[] = {{WLAN_MAC_2_4_BAND, WIFI_ANTENNA_2X2},
{WLAN_MAC_6_0_BAND, WIFI_ANTENNA_2X2}};
static int
wl_cfgvendor_get_radio_combo_matrix(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct net_device *ndev = wdev_to_ndev(wdev);
struct sk_buff *skb = NULL;
int err, mem_needed;
struct bcm_cfg80211 *cfg = wl_get_cfg(ndev);
dhd_pub_t *dhdp = (dhd_pub_t *)(cfg->pub);
u8 buf[WLC_IOCTL_SMLEN] = {0};
u32 total_len = 0, size = 0;
wifi_radio_combination *radio_combinations = NULL;
wifi_radio_combination_matrix *rc = NULL;
if (sizeof(buf) < MAX_RADIO_MATRIX_SIZE) {
WL_ERR(("Buff too short: %ld, exp max_radio matrix size: %ld\n",
sizeof(buf), MAX_RADIO_MATRIX_SIZE));
err = BCME_BUFTOOSHORT;
goto fail;
}
rc = (wifi_radio_combination_matrix *)buf;
(void)memset_s(&buf, sizeof(buf), 0x0, sizeof(buf));
radio_combinations = rc->radio_combinations;
total_len = sizeof(u32);
/* Fill up stand alone cases first and conditionally include rsdb & 6G */
radio_combinations->num_radio_combinations = 1;
(void)(memcpy_s(radio_combinations->radio_configurations,
sizeof(radio2_2x2), (void *)radio2_2x2, sizeof(radio2_2x2)));
total_len += size = sizeof(u32) + sizeof(radio2_2x2);
rc->num_combinations++;
radio_combinations = (wifi_radio_combination *)((u8 *)radio_combinations + size);
radio_combinations->num_radio_combinations = 1;
(void)(memcpy_s(radio_combinations->radio_configurations,
sizeof(radio5_2x2), (void *)radio5_2x2, sizeof(radio5_2x2)));
total_len += size = sizeof(u32) + sizeof(radio5_2x2);
rc->num_combinations++;
#ifdef WL_6G_BAND
if (cfg->band_6g_supported) {
radio_combinations = (wifi_radio_combination *)((u8 *)radio_combinations + size);
radio_combinations->num_radio_combinations = 1;
(void)(memcpy_s(radio_combinations->radio_configurations,
sizeof(radio6_2x2), radio6_2x2, sizeof(radio6_2x2)));
total_len += size = sizeof(u32) + sizeof(radio6_2x2);
rc->num_combinations++;
}
#endif /* WL_6G_BAND */
if (FW_SUPPORTED(dhdp, rsdb)) {
radio_combinations = (wifi_radio_combination *)((u8 *)radio_combinations + size);
radio_combinations->num_radio_combinations = 2;
(void)memcpy_s(radio_combinations->radio_configurations,
sizeof(radio25_2x2), radio25_2x2, sizeof(radio25_2x2));
total_len += size = sizeof(u32) + sizeof(radio25_2x2);
rc->num_combinations++;
#ifdef WL_6G_BAND
if (cfg->band_6g_supported) {
radio_combinations =
(wifi_radio_combination *)((u8 *)radio_combinations + size);
radio_combinations->num_radio_combinations = 2;
(void)memcpy_s(radio_combinations->radio_configurations,
sizeof(radio26_2x2), radio26_2x2, sizeof(radio26_2x2));
total_len += size = sizeof(u32) + sizeof(radio26_2x2);
rc->num_combinations++;
}
#endif /* WL_6G_BAND */
}
mem_needed = VENDOR_REPLY_OVERHEAD + total_len;
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
err = -ENOMEM;
goto fail;
}
err = nla_put(skb, ANDR_WIFI_ATTRIBUTE_RADIO_COMBO_MATRIX, total_len, rc);
if (unlikely(err)) {
WL_ERR(("nla_put ANDR_WIFI_ATTRIBUTE_RADIO_COMBO_MATRIX failed\n"));
goto fail;
}
err = cfg80211_vendor_cmd_reply(skb);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed err:%d \n", err));
}
return err;
fail:
if (skb) {
/* Free skb memory */
kfree_skb(skb);
}
return err;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
const struct nla_policy andr_wifi_attr_policy[ANDR_WIFI_ATTRIBUTE_MAX] = {
[ANDR_WIFI_ATTRIBUTE_NUM_FEATURE_SET] = { .type = NLA_U32 },
[ANDR_WIFI_ATTRIBUTE_FEATURE_SET] = { .type = NLA_U32 },
[ANDR_WIFI_ATTRIBUTE_RANDOM_MAC_OUI] = { .type = NLA_NUL_STRING, .len = 3 },
[ANDR_WIFI_ATTRIBUTE_NODFS_SET] = { .type = NLA_U32 },
[ANDR_WIFI_ATTRIBUTE_COUNTRY] = { .type = NLA_NUL_STRING, .len = 3 },
[ANDR_WIFI_ATTRIBUTE_ND_OFFLOAD_VALUE] = { .type = NLA_U8 },
[ANDR_WIFI_ATTRIBUTE_TCPACK_SUP_VALUE] = { .type = NLA_U32 },
[ANDR_WIFI_ATTRIBUTE_LATENCY_MODE] = { .type = NLA_U32, .len = sizeof(uint32) },
/* Dont see ANDR_WIFI_ATTRIBUTE_RANDOM_MAC being used currently */
[ANDR_WIFI_ATTRIBUTE_RANDOM_MAC] = { .type = NLA_U32 },
[ANDR_WIFI_ATTRIBUTE_TX_POWER_SCENARIO] = { .type = NLA_S8 },
[ANDR_WIFI_ATTRIBUTE_THERMAL_MITIGATION] = { .type = NLA_S8 },
[ANDR_WIFI_ATTRIBUTE_THERMAL_COMPLETION_WINDOW] = { .type = NLA_U32 },
[ANDR_WIFI_ATTRIBUTE_VOIP_MODE] = { .type = NLA_U32, .len = sizeof(uint32) },
[ANDR_WIFI_ATTRIBUTE_DTIM_MULTIPLIER] = { .type = NLA_U32, .len = sizeof(uint32) },
};
const struct nla_policy dump_buf_policy[DUMP_BUF_ATTR_MAX] = {
[DUMP_BUF_ATTR_MEMDUMP] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_SSSR_C0_D11_BEFORE] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_SSSR_C0_D11_AFTER] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_SSSR_C1_D11_BEFORE] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_SSSR_C1_D11_AFTER] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_SSSR_C2_D11_BEFORE] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_SSSR_C2_D11_AFTER] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_SSSR_DIG_BEFORE] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_SSSR_DIG_AFTER] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_TIMESTAMP] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_GENERAL_LOG] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_ECNTRS] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_SPECIAL_LOG] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_DHD_DUMP] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_EXT_TRAP] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_HEALTH_CHK] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_PRESERVE_LOG] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_COOKIE] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_FLOWRING_DUMP] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_PKTLOG] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_PKTLOG_DEBUG] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_STATUS_LOG] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_AXI_ERROR] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_RTT_LOG] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_SDTC_ETB_DUMP] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_PKTID_MAP_LOG] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_PKTID_UNMAP_LOG] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_EWP_HW_INIT_LOG] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_EWP_HW_MOD_DUMP] = { .type = NLA_BINARY },
[DUMP_BUF_ATTR_EWP_HW_REG_DUMP] = { .type = NLA_BINARY },
};
const struct nla_policy andr_dbg_policy[DEBUG_ATTRIBUTE_MAX] = {
[DEBUG_ATTRIBUTE_GET_DRIVER] = { .type = NLA_BINARY },
[DEBUG_ATTRIBUTE_GET_FW] = { .type = NLA_BINARY },
[DEBUG_ATTRIBUTE_RING_ID] = { .type = NLA_U32 },
[DEBUG_ATTRIBUTE_RING_NAME] = { .type = NLA_NUL_STRING },
[DEBUG_ATTRIBUTE_RING_FLAGS] = { .type = NLA_U32 },
[DEBUG_ATTRIBUTE_LOG_LEVEL] = { .type = NLA_U32 },
[DEBUG_ATTRIBUTE_LOG_TIME_INTVAL] = { .type = NLA_U32 },
[DEBUG_ATTRIBUTE_LOG_MIN_DATA_SIZE] = { .type = NLA_U32 },
[DEBUG_ATTRIBUTE_FW_DUMP_LEN] = { .type = NLA_U32 },
[DEBUG_ATTRIBUTE_FW_DUMP_DATA] = { .type = NLA_U64 },
[DEBUG_ATTRIBUTE_FW_ERR_CODE] = { .type = NLA_U32 },
[DEBUG_ATTRIBUTE_RING_DATA] = { .type = NLA_BINARY },
[DEBUG_ATTRIBUTE_RING_STATUS] = { .type = NLA_BINARY },
[DEBUG_ATTRIBUTE_RING_NUM] = { .type = NLA_U32 },
[DEBUG_ATTRIBUTE_DRIVER_DUMP_LEN] = { .type = NLA_U32 },
[DEBUG_ATTRIBUTE_DRIVER_DUMP_DATA] = { .type = NLA_BINARY },
[DEBUG_ATTRIBUTE_PKT_FATE_NUM] = { .type = NLA_U32 },
[DEBUG_ATTRIBUTE_PKT_FATE_DATA] = { .type = NLA_U64 },
[DEBUG_ATTRIBUTE_HANG_REASON] = { .type = NLA_BINARY },
};
const struct nla_policy brcm_drv_attr_policy[BRCM_ATTR_DRIVER_MAX] = {
[BRCM_ATTR_DRIVER_CMD] = { .type = NLA_NUL_STRING },
[BRCM_ATTR_DRIVER_KEY_PMK] = { .type = NLA_BINARY, .len = WSEC_MAX_PASSPHRASE_LEN },
[BRCM_ATTR_DRIVER_FEATURE_FLAGS] = { .type = NLA_BINARY, .len =
((BRCM_WLAN_VENDOR_FEATURES_MAX / 8) + 1) },
[BRCM_ATTR_DRIVER_RAND_MAC] = { .type = NLA_BINARY, .len = ETHER_ADDR_LEN },
[BRCM_ATTR_SAE_PWE] = { .type = NLA_U32 },
[BRCM_ATTR_TD_POLICY] = { .type = NLA_U32 },
};
#ifdef RTT_SUPPORT
const struct nla_policy rtt_attr_policy[RTT_ATTRIBUTE_MAX] = {
[RTT_ATTRIBUTE_TARGET_CNT] = { .type = NLA_U8 },
[RTT_ATTRIBUTE_TARGET_INFO] = { .type = NLA_NESTED },
[RTT_ATTRIBUTE_TARGET_MAC] = { .type = NLA_BINARY, .len = ETHER_ADDR_LEN },
[RTT_ATTRIBUTE_TARGET_TYPE] = { .type = NLA_U8 },
[RTT_ATTRIBUTE_TARGET_PEER] = { .type = NLA_U8 },
[RTT_ATTRIBUTE_TARGET_CHAN] = { .type = NLA_BINARY },
[RTT_ATTRIBUTE_TARGET_PERIOD] = { .type = NLA_U32 },
[RTT_ATTRIBUTE_TARGET_NUM_BURST] = { .type = NLA_U32 },
[RTT_ATTRIBUTE_TARGET_NUM_FTM_BURST] = { .type = NLA_U32 },
[RTT_ATTRIBUTE_TARGET_NUM_RETRY_FTM] = { .type = NLA_U32 },
[RTT_ATTRIBUTE_TARGET_NUM_RETRY_FTMR] = { .type = NLA_U32 },
[RTT_ATTRIBUTE_TARGET_LCI] = { .type = NLA_U8 },
[RTT_ATTRIBUTE_TARGET_LCR] = { .type = NLA_U8 },
[RTT_ATTRIBUTE_TARGET_BURST_DURATION] = { .type = NLA_U32 },
[RTT_ATTRIBUTE_TARGET_PREAMBLE] = { .type = NLA_U8 },
[RTT_ATTRIBUTE_TARGET_BW] = { .type = NLA_U8 },
[RTT_ATTRIBUTE_RESULTS_COMPLETE] = { .type = NLA_U32 },
[RTT_ATTRIBUTE_RESULTS_PER_TARGET] = { .type = NLA_NESTED },
[RTT_ATTRIBUTE_RESULT_CNT] = { .type = NLA_U32 },
[RTT_ATTRIBUTE_RESULT] = { .type = NLA_BINARY, .len = sizeof(rtt_result_t) },
[RTT_ATTRIBUTE_RESULT_DETAIL] = { .type = NLA_BINARY,
.len = sizeof(struct rtt_result_detail) },
};
#endif /* RTT_SUPPORT */
#ifdef RSSI_MONITOR_SUPPORT
const struct nla_policy rssi_monitor_attr_policy[RSSI_MONITOR_ATTRIBUTE_MAX] = {
[RSSI_MONITOR_ATTRIBUTE_MAX_RSSI] = { .type = NLA_U32 },
[RSSI_MONITOR_ATTRIBUTE_MIN_RSSI] = { .type = NLA_U32 },
[RSSI_MONITOR_ATTRIBUTE_START] = { .type = NLA_U32 }
};
#endif /* RSSI_MONITOR_SUPPORT */
#ifdef KEEP_ALIVE
const struct nla_policy mkeep_alive_attr_policy[MKEEP_ALIVE_ATTRIBUTE_MAX] = {
[MKEEP_ALIVE_ATTRIBUTE_ID] = { .type = NLA_U8 },
[MKEEP_ALIVE_ATTRIBUTE_IP_PKT] = { .type = NLA_BINARY, .len = MKEEP_ALIVE_IP_PKT_MAX },
[MKEEP_ALIVE_ATTRIBUTE_IP_PKT_LEN] = { .type = NLA_U16 },
[MKEEP_ALIVE_ATTRIBUTE_SRC_MAC_ADDR] = { .type = NLA_BINARY, .len = ETHER_ADDR_LEN },
[MKEEP_ALIVE_ATTRIBUTE_DST_MAC_ADDR] = { .type = NLA_BINARY, .len = ETHER_ADDR_LEN },
[MKEEP_ALIVE_ATTRIBUTE_PERIOD_MSEC] = { .type = NLA_U32 },
[MKEEP_ALIVE_ATTRIBUTE_ETHER_TYPE] = { .type = NLA_U16 }
};
#endif /* KEEP_ALIVE */
#ifdef WL_NAN
const struct nla_policy nan_attr_policy[NAN_ATTRIBUTE_MAX] = {
[NAN_ATTRIBUTE_2G_SUPPORT] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_5G_SUPPORT] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_CLUSTER_LOW] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_CLUSTER_HIGH] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_SID_BEACON] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SUB_SID_BEACON] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SYNC_DISC_2G_BEACON] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SYNC_DISC_5G_BEACON] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SDF_2G_SUPPORT] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SDF_5G_SUPPORT] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_HOP_COUNT_LIMIT] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_RANDOM_TIME] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_MASTER_PREF] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_OUI] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_WARMUP_TIME] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_CHANNEL] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_24G_CHANNEL] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_5G_CHANNEL] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_CONF_CLUSTER_VAL] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_DWELL_TIME] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SCAN_PERIOD] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_DWELL_TIME_5G] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SCAN_PERIOD_5G] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_AVAIL_BIT_MAP] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_ENTRY_CONTROL] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_RSSI_CLOSE] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_RSSI_MIDDLE] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_RSSI_PROXIMITY] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_RSSI_CLOSE_5G] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_RSSI_MIDDLE_5G] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_RSSI_PROXIMITY_5G] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_RSSI_WINDOW_SIZE] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_CIPHER_SUITE_TYPE] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SCID_LEN] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_SCID] = { .type = NLA_BINARY, .len = NAN_MAX_SCID_BUF_LEN },
[NAN_ATTRIBUTE_2G_AWAKE_DW] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_5G_AWAKE_DW] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_DISC_IND_CFG] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_MAC_ADDR] = { .type = NLA_BINARY, .len = ETHER_ADDR_LEN },
[NAN_ATTRIBUTE_RANDOMIZATION_INTERVAL] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_CMD_USE_NDPE] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_ENABLE_MERGE] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_DISCOVERY_BEACON_INTERVAL] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_NSS] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_ENABLE_RANGING] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_DW_EARLY_TERM] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_TRANSAC_ID] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_PUBLISH_ID] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO_LEN] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO] = { .type = NLA_BINARY, .len =
NAN_MAX_SERVICE_SPECIFIC_INFO_LEN },
[NAN_ATTRIBUTE_SUBSCRIBE_ID] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_SUBSCRIBE_TYPE] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_PUBLISH_COUNT] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_PUBLISH_TYPE] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_PERIOD] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_TTL] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_SERVICE_NAME_LEN] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_SERVICE_NAME] = { .type = NLA_BINARY, .len = WL_NAN_SVC_HASH_LEN },
[NAN_ATTRIBUTE_PEER_ID] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_INST_ID] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_SUBSCRIBE_COUNT] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SSIREQUIREDFORMATCHINDICATION] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SUBSCRIBE_MATCH] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_PUBLISH_MATCH] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SERVICERESPONSEFILTER] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SERVICERESPONSEINCLUDE] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_USESERVICERESPONSEFILTER] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_RX_MATCH_FILTER_LEN] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_RX_MATCH_FILTER] = { .type = NLA_BINARY, .len = MAX_MATCH_FILTER_LEN },
[NAN_ATTRIBUTE_TX_MATCH_FILTER_LEN] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_TX_MATCH_FILTER] = { .type = NLA_BINARY, .len = MAX_MATCH_FILTER_LEN },
[NAN_ATTRIBUTE_MAC_ADDR_LIST_NUM_ENTRIES] = { .type = NLA_U16, .len = sizeof(uint16) },
[NAN_ATTRIBUTE_MAC_ADDR_LIST] = { .type = NLA_BINARY, .len =
(NAN_SRF_MAX_MAC*ETHER_ADDR_LEN) },
[NAN_ATTRIBUTE_TX_TYPE] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SDE_CONTROL_CONFIG_DP] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SDE_CONTROL_RANGE_SUPPORT] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SDE_CONTROL_DP_TYPE] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SDE_CONTROL_SECURITY] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_RECV_IND_CFG] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_KEY_TYPE] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_KEY_LEN] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_KEY_DATA] = { .type = NLA_BINARY, .len = NAN_MAX_PMK_LEN },
[NAN_ATTRIBUTE_RSSI_THRESHOLD_FLAG] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_SDEA_SERVICE_SPECIFIC_INFO_LEN] = { .type = NLA_U16, .len =
sizeof(uint16) },
[NAN_ATTRIBUTE_SDEA_SERVICE_SPECIFIC_INFO] = { .type = NLA_BINARY, .len =
MAX_SDEA_SVC_INFO_LEN },
[NAN_ATTRIBUTE_SECURITY] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_RANGING_INTERVAL] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_RANGING_INGRESS_LIMIT] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_RANGING_EGRESS_LIMIT] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_RANGING_INDICATION] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_SVC_RESPONDER_POLICY] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_NDP_ID] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_IFACE] = { .type = NLA_BINARY, .len = IFNAMSIZ+1 },
[NAN_ATTRIBUTE_QOS] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_RSP_CODE] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_INST_COUNT] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_PEER_DISC_MAC_ADDR] = { .type = NLA_BINARY, .len = ETHER_ADDR_LEN },
[NAN_ATTRIBUTE_PEER_NDI_MAC_ADDR] = { .type = NLA_BINARY, .len = ETHER_ADDR_LEN },
[NAN_ATTRIBUTE_IF_ADDR] = { .type = NLA_BINARY, .len = ETHER_ADDR_LEN },
[NAN_ATTRIBUTE_NO_CONFIG_AVAIL] = { .type = NLA_U8, .len = sizeof(uint8) },
[NAN_ATTRIBUTE_CHANNEL_INFO] = { .type = NLA_BINARY, .len =
sizeof(nan_channel_info_t) * NAN_MAX_CHANNEL_INFO_SUPPORTED },
[NAN_ATTRIBUTE_NUM_CHANNELS] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_INSTANT_MODE_ENABLE] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_INSTANT_COMM_CHAN] = { .type = NLA_U32, .len = sizeof(uint32) },
[NAN_ATTRIBUTE_CHRE_REQUEST] = { .type = NLA_U8, .len = sizeof(uint8) },
};
#endif /* WL_NAN */
const struct nla_policy gscan_attr_policy[GSCAN_ATTRIBUTE_MAX] = {
[GSCAN_ATTRIBUTE_BAND] = { .type = NLA_U32 },
[GSCAN_ATTRIBUTE_NUM_CHANNELS] = { .type = NLA_U32 },
[GSCAN_ATTRIBUTE_CHANNEL_LIST] = { .type = NLA_BINARY },
[GSCAN_ATTRIBUTE_WHITELIST_SSID] = { .type = NLA_BINARY, .len = IEEE80211_MAX_SSID_LEN },
[GSCAN_ATTRIBUTE_NUM_WL_SSID] = { .type = NLA_U32 },
[GSCAN_ATTRIBUTE_WL_SSID_LEN] = { .type = NLA_U32 },
[GSCAN_ATTRIBUTE_WL_SSID_FLUSH] = { .type = NLA_U32 },
[GSCAN_ATTRIBUTE_WHITELIST_SSID_ELEM] = { .type = NLA_NESTED },
/* length is sizeof(wl_ssid_whitelist_t) * MAX_SSID_WHITELIST_NUM */
[GSCAN_ATTRIBUTE_NUM_BSSID] = { .type = NLA_U32 },
[GSCAN_ATTRIBUTE_BSSID_PREF_LIST] = { .type = NLA_NESTED },
/* length is sizeof(wl_bssid_pref_list_t) * MAX_BSSID_PREF_LIST_NUM */
[GSCAN_ATTRIBUTE_BSSID_PREF_FLUSH] = { .type = NLA_U32 },
[GSCAN_ATTRIBUTE_BSSID_PREF] = { .type = NLA_BINARY, .len = ETH_ALEN },
[GSCAN_ATTRIBUTE_RSSI_MODIFIER] = { .type = NLA_U32 },
[GSCAN_ATTRIBUTE_BSSID_BLACKLIST_FLUSH] = { .type = NLA_U32 },
[GSCAN_ATTRIBUTE_BLACKLIST_BSSID] = { .type = NLA_BINARY, .len = ETH_ALEN },
[GSCAN_ATTRIBUTE_ROAM_STATE_SET] = { .type = NLA_U32 },
};
#ifdef DHD_WAKE_STATUS
const struct nla_policy wake_stat_attr_policy[WAKE_STAT_ATTRIBUTE_MAX] = {
[WAKE_STAT_ATTRIBUTE_TOTAL_CMD_EVENT] = { .type = NLA_U32 },
#ifdef CUSTOM_WAKE_REASON_STATS
[WAKE_STAT_ATTRIBUTE_CMD_EVENT_WAKE] = { .type = NLA_BINARY,
.len = (MAX_WAKE_REASON_STATS * sizeof(int))},
#else
[WAKE_STAT_ATTRIBUTE_CMD_EVENT_WAKE] = { .type = NLA_BINARY,
.len = (WLC_E_LAST * sizeof(uint))},
#endif /* CUSTOM_WAKE_REASON_STATS */
[WAKE_STAT_ATTRIBUTE_CMD_EVENT_COUNT] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_CMD_EVENT_COUNT_USED] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_TOTAL_DRIVER_FW] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_DRIVER_FW_WAKE] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_DRIVER_FW_COUNT] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_DRIVER_FW_COUNT_USED] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_TOTAL_RX_DATA_WAKE] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_RX_UNICAST_COUNT] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_RX_MULTICAST_COUNT] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_RX_BROADCAST_COUNT] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_RX_ICMP_PKT] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_RX_ICMP6_PKT] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_RX_ICMP6_RA] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_RX_ICMP6_NA] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_RX_ICMP6_NS] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_IPV4_RX_MULTICAST_ADD_CNT] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_IPV6_RX_MULTICAST_ADD_CNT] = { .type = NLA_U32 },
[WAKE_STAT_ATTRIBUTE_OTHER_RX_MULTICAST_ADD_CNT] = { .type = NLA_U32 },
};
#endif /* DHD_WAKE_STATUS */
#ifdef WL_SOFTAP_ACS
const struct nla_policy acs_attr_policy[BRCM_VENDOR_ATTR_ACS_LAST] = {
[BRCM_VENDOR_ATTR_ACS_CHANNEL_INVALID] = { .type = NLA_U8 },
[BRCM_VENDOR_ATTR_ACS_PRIMARY_FREQ] = { .type = NLA_U32 },
[BRCM_VENDOR_ATTR_ACS_SECONDARY_FREQ] = { .type = NLA_U32 },
[BRCM_VENDOR_ATTR_ACS_VHT_SEG0_CENTER_CHANNEL] = { .type = NLA_U8 },
[BRCM_VENDOR_ATTR_ACS_VHT_SEG1_CENTER_CHANNEL] = { .type = NLA_U8 },
[BRCM_VENDOR_ATTR_ACS_HW_MODE] = { .type = NLA_U8 },
[BRCM_VENDOR_ATTR_ACS_HT_ENABLED] = { .type = NLA_U8 },
[BRCM_VENDOR_ATTR_ACS_HT40_ENABLED] = { .type = NLA_U8 },
[BRCM_VENDOR_ATTR_ACS_VHT_ENABLED] = { .type = NLA_U8 },
[BRCM_VENDOR_ATTR_ACS_CHWIDTH] = { .type = NLA_U16 },
[BRCM_VENDOR_ATTR_ACS_CH_LIST] = { .type = NLA_BINARY },
[BRCM_VENDOR_ATTR_ACS_FREQ_LIST] = { .type = NLA_BINARY },
};
#endif /* WL_SOFTAP_ACS */
const struct nla_policy hal_start_attr_policy[SET_HAL_START_ATTRIBUTE_MAX] = {
[0] = { .strict_start_type = 0 },
[SET_HAL_START_ATTRIBUTE_DEINIT] = { .type = NLA_UNSPEC },
[SET_HAL_START_ATTRIBUTE_PRE_INIT] = { .type = NLA_NUL_STRING },
[SET_HAL_START_ATTRIBUTE_EVENT_SOCK_PID] = { .type = NLA_U32 },
};
#ifdef WL_CUSTOM_MAPPING_OF_DSCP
const struct nla_policy custom_setting_attr_policy[CUSTOM_SETTING_ATTRIBUTE_MAX] = {
[CUSTOM_SETTING_ATTRIBUTE_DSCP_START] = { .type = NLA_U32 },
[CUSTOM_SETTING_ATTRIBUTE_DSCP_END] = { .type = NLA_U32 },
[CUSTOM_SETTING_ATTRIBUTE_ACCESS_CATEGORY] = { .type = NLA_U32 },
};
#endif /* WL_CUSTOM_MAPPING_OF_DSCP */
#ifdef WL_CELLULAR_CHAN_AVOID
const struct nla_policy cellavoid_attr_policy[CELLAVOID_ATTRIBUTE_MAX] = {
[CELLAVOID_ATTRIBUTE_CNT] = { .type = NLA_U32 },
[CELLAVOID_ATTRIBUTE_CONFIG] = { .type = NLA_NESTED },
[CELLAVOID_ATTRIBUTE_BAND] = { .type = NLA_U32 },
[CELLAVOID_ATTRIBUTE_CHANNEL] = { .type = NLA_U32 },
[CELLAVOID_ATTRIBUTE_PWRCAP] = { .type = NLA_U32 },
[CELLAVOID_ATTRIBUTE_MANDATORY] = { .type = NLA_U32 },
};
#endif /* WL_CELLULAR_CHAN_AVOID */
#ifdef WL_USABLE_CHAN
const struct nla_policy usable_chan_attr_policy[USABLECHAN_ATTRIBUTE_MAX] = {
[USABLECHAN_ATTRIBUTE_BAND] = { .type = NLA_U32 },
[USABLECHAN_ATTRIBUTE_IFACE] = { .type = NLA_U32 },
[USABLECHAN_ATTRIBUTE_FILTER] = { .type = NLA_U32 },
[USABLECHAN_ATTRIBUTE_MAX_SIZE] = { .type = NLA_U32 },
[USABLECHAN_ATTRIBUTE_SIZE] = { .type = NLA_U32 },
[USABLECHAN_ATTRIBUTE_CHANNELS] = { .type = NLA_BINARY },
};
#endif /* WL_USABLE_CHAN */
#ifdef TPUT_DEBUG_DUMP
const struct nla_policy tput_debug_dump_attr_policy[TPUT_DEBUG_ATTRIBUTE_MAX] = {
[0] = { .strict_start_type = 0 },
[TPUT_DEBUG_ATTRIBUTE_CMD_STR ] = { .type = NLA_NUL_STRING },
[TPUT_DEBUG_ATTRIBUTE_SUB_CMD_STR_AMPDU] = { .type = NLA_NUL_STRING },
[TPUT_DEBUG_ATTRIBUTE_SUB_CMD_STR_CLEAR] = { .type = NLA_NUL_STRING },
};
#endif /* TPUT_DEBUG_DUMP */
#ifdef SUPPORT_OTA_UPDATE
const struct nla_policy ota_update_attr_policy[OTA_UPDATE_ATTRIBUTE_MAX] = {
[OTA_DOWNLOAD_CLM_LENGTH_ATTR ] = { .type = NLA_U32 },
[OTA_DOWNLOAD_CLM_ATTR ] = { .type = NLA_BINARY },
[OTA_DOWNLOAD_NVRAM_LENGTH_ATTR ] = { .type = NLA_U32 },
[OTA_DOWNLOAD_NVRAM_ATTR ] = { .type = NLA_BINARY },
[OTA_SET_FORCE_REG_ON ] = { .type = NLA_U32 },
[OTA_CUR_NVRAM_EXT_ATTR] = { .type = NLA_NUL_STRING },
};
#endif /* SUPPORT_OTA_UPDATE */
const struct nla_policy multista_attr_policy[MULTISTA_ATTRIBUTE_MAX] = {
[MULTISTA_ATTRIBUTE_PRIM_CONN_IFACE] = { .type = NLA_NUL_STRING },
[MULTISTA_ATTRIBUTE_USE_CASE] = { .type = NLA_U32 },
};
#if !defined(WL_TWT) && defined(WL_TWT_HAL_IF)
const struct nla_policy andr_twt_attr_policy[ANDR_TWT_ATTR_MAX] = {
[ANDR_TWT_ATTR_NONE] = { .strict_start_type = 0 },
[ANDR_TWT_ATTR_CONFIG_ID] = { .type = NLA_U8 },
[ANDR_TWT_ATTR_NEGOTIATION_TYPE] = { .type = NLA_U8 },
[ANDR_TWT_ATTR_TRIGGER_TYPE] = { .type = NLA_U8 },
[ANDR_TWT_ATTR_WAKE_DURATION] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_WAKE_INTERVAL] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_WAKE_INTERVAL_MIN] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_WAKE_INTERVAL_MAX] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_WAKE_DURATION_MIN] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_WAKE_DURATION_MAX] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_AVG_PKT_SIZE] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_AVG_PKT_NUM] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_WAKETIME_OFFSET] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_ALL_TWT] = { .type = NLA_U8 },
[ANDR_TWT_ATTR_RESUME_TIME] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_AVG_EOSP_DUR] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_EOSP_CNT] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_NUM_SP] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_DEVICE_CAP] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_PEER_CAP] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_STATUS] = { .type = NLA_U8 },
[ANDR_TWT_ATTR_REASON_CODE] = { .type = NLA_U8 },
[ANDR_TWT_ATTR_TWT_RESUMED] = { .type = NLA_U8 },
[ANDR_TWT_ATTR_TWT_NOTIFICATION] = { .type = NLA_U8 },
[ANDR_TWT_ATTR_SUB_EVENT] = { .type = NLA_U8 },
[ANDR_TWT_ATTR_NUM_PEER_STATS] = { .type = NLA_U8 },
[ANDR_TWT_ATTR_AVG_PKT_NUM_TX] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_AVG_PKT_SIZE_TX] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_AVG_PKT_NUM_RX] = { .type = NLA_U32 },
[ANDR_TWT_ATTR_AVG_PKT_SIZE_RX] = { .type = NLA_U32 },
};
#endif /* !WL_TWT && WL_TWT_HAL_IF */
#endif /* LINUX_VERSION >= 5.3 */
static struct wiphy_vendor_command wl_vendor_cmds [] = {
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_PRIV_STR
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_priv_string_handler,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = brcm_drv_attr_policy,
.maxattr = BRCM_ATTR_DRIVER_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#ifdef BCM_PRIV_CMD_SUPPORT
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_BCM_STR
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_priv_bcm_handler,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = brcm_drv_attr_policy,
.maxattr = BRCM_ATTR_DRIVER_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* BCM_PRIV_CMD_SUPPORT */
#if defined(WL_SAE) || defined(WL_CLIENT_SAE)
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_BCM_PSK
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_sae_password
},
#endif /* WL_SAE || WL_CLIENT_SAE */
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_SET_CONNECT_PARAMS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_connect_params_handler,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = brcm_drv_attr_policy,
.maxattr = BRCM_ATTR_DRIVER_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_SET_START_AP_PARAMS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_start_ap_params_handler,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = brcm_drv_attr_policy,
.maxattr = BRCM_ATTR_DRIVER_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_SET_TD_POLICY
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_td_policy,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = brcm_drv_attr_policy,
.maxattr = BRCM_ATTR_DRIVER_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#ifdef GSCAN_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_CAPABILITIES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_gscan_get_capabilities
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_scan_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_SCAN_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_batch_scan_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_ENABLE_GSCAN
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_initiate_gscan
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_ENABLE_FULL_SCAN_RESULTS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_enable_full_scan_result
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_HOTLIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_hotlist_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_SCAN_RESULTS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_gscan_get_batch_results
},
#endif /* GSCAN_SUPPORT */
#if defined(GSCAN_SUPPORT) || defined(DHD_GET_VALID_CHANNELS)
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_CHANNEL_LIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_gscan_get_channel_list,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = gscan_attr_policy,
.maxattr = GSCAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* GSCAN_SUPPORT || DHD_GET_VALID_CHANNELS */
#ifdef RTT_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_SET_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_rtt_set_config,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = rtt_attr_policy,
.maxattr = RTT_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_CANCEL_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_rtt_cancel_config,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = rtt_attr_policy,
.maxattr = RTT_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_GETCAPABILITY
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_rtt_get_capability,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = rtt_attr_policy,
.maxattr = RTT_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_GETAVAILCHANNEL
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_rtt_get_responder_info,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = rtt_attr_policy,
.maxattr = RTT_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_SET_RESPONDER
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_rtt_set_responder,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = rtt_attr_policy,
.maxattr = RTT_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_CANCEL_RESPONDER
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_rtt_cancel_responder,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = rtt_attr_policy,
.maxattr = RTT_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* RTT_SUPPORT */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_WIFI_SUBCMD_GET_FEATURE_SET
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_get_feature_set,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_wifi_attr_policy,
.maxattr = ANDR_WIFI_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_WIFI_SUBCMD_GET_FEATURE_SET_MATRIX
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_get_feature_set_matrix,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_wifi_attr_policy,
.maxattr = ANDR_WIFI_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_WIFI_RANDOM_MAC_OUI
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_rand_mac_oui,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_wifi_attr_policy,
.maxattr = ANDR_WIFI_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#ifdef CUSTOM_FORCE_NODFS_FLAG
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_WIFI_NODFS_CHANNELS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_nodfs_flag,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_wifi_attr_policy,
.maxattr = ANDR_WIFI_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* CUSTOM_FORCE_NODFS_FLAG */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_WIFI_SET_COUNTRY
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_country,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_wifi_attr_policy,
.maxattr = ANDR_WIFI_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#ifdef LINKSTAT_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LSTATS_SUBCMD_GET_INFO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_lstats_get_info
},
#endif /* LINKSTAT_SUPPORT */
#ifdef GSCAN_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_EPNO_SSID
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_epno_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_LAZY_ROAM_PARAMS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_lazy_roam_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_ENABLE_LAZY_ROAM
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_enable_lazy_roam
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_BSSID_PREF
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_bssid_pref
},
#endif /* GSCAN_SUPPORT */
#if defined(GSCAN_SUPPORT) || defined(ROAMEXP_SUPPORT)
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_SSID_WHITELIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_ssid_whitelist,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = gscan_attr_policy,
.maxattr = GSCAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_BSSID_BLACKLIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_bssid_blacklist,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = gscan_attr_policy,
.maxattr = GSCAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* GSCAN_SUPPORT || ROAMEXP_SUPPORT */
#ifdef ROAMEXP_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_FW_ROAM_POLICY
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_fw_roaming_state,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = gscan_attr_policy,
.maxattr = GSCAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_ROAM_CAPABILITY
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_fw_roam_get_capability
},
#endif /* ROAMEXP_SUPPORT */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_VER
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_get_version,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_dbg_policy,
.maxattr = DEBUG_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#ifdef DHD_LOG_DUMP
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_FILE_DUMP_BUF
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_file_dump,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = dump_buf_policy,
.maxattr = DUMP_BUF_ATTR_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* DHD_LOG_DUMP */
#ifdef DEBUGABILITY
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_TRIGGER_MEM_DUMP
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_trigger_mem_dump
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_MEM_DUMP
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_get_mem_dump,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_dbg_policy,
.maxattr = DEBUG_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_START_LOGGING
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_start_logging,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_dbg_policy,
.maxattr = DEBUG_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_RESET_LOGGING
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_reset_logging
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_RING_STATUS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_get_ring_status,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_dbg_policy,
.maxattr = DEBUG_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_RING_DATA
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_get_ring_data,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_dbg_policy,
.maxattr = DEBUG_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#ifdef DHD_HAL_RING_DUMP
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_BUF_RING_MAP
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_get_buf_ring_map,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_dbg_policy,
.maxattr = DEBUG_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* DHD_HAL_RING_DUMP */
#endif /* DEBUGABILITY */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_FEATURE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_get_feature
},
#ifdef DBG_PKT_MON
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_START_PKT_FATE_MONITORING
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_start_pkt_fate_monitoring
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_TX_PKT_FATES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_get_tx_pkt_fates,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_dbg_policy,
.maxattr = DEBUG_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_RX_PKT_FATES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_get_rx_pkt_fates,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_dbg_policy,
.maxattr = DEBUG_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* DBG_PKT_MON */
#ifdef KEEP_ALIVE
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_OFFLOAD_SUBCMD_START_MKEEP_ALIVE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_start_mkeep_alive,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = mkeep_alive_attr_policy,
.maxattr = MKEEP_ALIVE_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_OFFLOAD_SUBCMD_STOP_MKEEP_ALIVE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_stop_mkeep_alive,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = mkeep_alive_attr_policy,
.maxattr = MKEEP_ALIVE_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* KEEP_ALIVE */
#ifdef WL_NAN
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_ENABLE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_start_handler,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_DISABLE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_stop_handler,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_config_handler,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_REQUEST_PUBLISH
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_req_publish,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_REQUEST_SUBSCRIBE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_req_subscribe,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_CANCEL_PUBLISH
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_cancel_publish,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_CANCEL_SUBSCRIBE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_cancel_subscribe,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_TRANSMIT
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_transmit,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_GET_CAPABILITIES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_get_capablities
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_DATA_PATH_IFACE_CREATE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_data_path_iface_create,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_DATA_PATH_IFACE_DELETE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_data_path_iface_delete,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_DATA_PATH_REQUEST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_data_path_request,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_DATA_PATH_RESPONSE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_data_path_response,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_DATA_PATH_END
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_data_path_end,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#ifdef WL_NAN_DISC_CACHE
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_DATA_PATH_SEC_INFO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_data_path_sec_info,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* WL_NAN_DISC_CACHE */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_VERSION_INFO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_version_info
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_ENABLE_MERGE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_nan_enable_merge,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = nan_attr_policy,
.maxattr = NAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* WL_NAN */
#if defined(APF)
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = APF_SUBCMD_GET_CAPABILITIES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_apf_get_capabilities,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = apf_atrribute_policy,
.maxattr = APF_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = APF_SUBCMD_SET_FILTER
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_apf_set_filter,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = apf_atrribute_policy,
.maxattr = APF_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = APF_SUBCMD_READ_FILTER_DATA
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_apf_read_filter_data,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = apf_atrribute_policy,
.maxattr = APF_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* APF */
#ifdef NDO_CONFIG_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_CONFIG_ND_OFFLOAD
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_configure_nd_offload,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_wifi_attr_policy,
.maxattr = ANDR_WIFI_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* NDO_CONFIG_SUPPORT */
#ifdef RSSI_MONITOR_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_RSSI_MONITOR
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_rssi_monitor,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = rssi_monitor_attr_policy,
.maxattr = RSSI_MONITOR_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* RSSI_MONITOR_SUPPORT */
#ifdef DHD_WAKE_STATUS
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_WAKE_REASON_STATS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_get_wake_reason_stats,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = wake_stat_attr_policy,
.maxattr = WAKE_STAT_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* DHD_WAKE_STATUS */
#ifdef DHDTCPACK_SUPPRESS
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_CONFIG_TCPACK_SUP
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_tcpack_sup_mode,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_wifi_attr_policy,
.maxattr = ANDR_WIFI_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* DHDTCPACK_SUPPRESS */
#if !defined(BCMSUP_4WAY_HANDSHAKE) || (LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0))
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_SET_PMK
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_pmk,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = brcm_drv_attr_policy,
.maxattr = BRCM_ATTR_DRIVER_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* !BCMSUP_4WAY_HANDSHAKE || LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0) */
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_GET_FEATURES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_get_driver_feature,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = brcm_drv_attr_policy,
.maxattr = BRCM_ATTR_DRIVER_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#if defined(WL_CFG80211) && defined(DHD_FILE_DUMP_EVENT)
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_FILE_DUMP_DONE_IND
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_notify_dump_completion
},
#endif /* WL_CFG80211 && DHD_FILE_DUMP_EVENT */
#if defined(WL_CFG80211)
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_SET_HAL_START
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_hal_started,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = hal_start_attr_policy,
.maxattr = SET_HAL_START_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_SET_HAL_STOP
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_stop_hal
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_SET_HAL_PID
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_hal_pid,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = hal_start_attr_policy,
.maxattr = SET_HAL_START_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* WL_CFG80211 */
#ifdef WL_LATENCY_MODE
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_LATENCY_MODE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_latency_mode_config,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_wifi_attr_policy,
.maxattr = ANDR_WIFI_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_CONFIG_VOIP_MODE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_latency_mode_config,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_wifi_attr_policy,
.maxattr = ANDR_WIFI_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* WL_LATENCY_MODE */
#ifdef WL_P2P_RAND
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_SET_MAC
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV,
.doit = wl_cfgvendor_set_p2p_rand_mac,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = brcm_drv_attr_policy,
.maxattr = BRCM_ATTR_DRIVER_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* WL_P2P_RAND */
#ifdef WL_THERMAL_MITIGATION
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_THERMAL_MITIGATION
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_thermal_mitigation,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_wifi_attr_policy,
.maxattr = ANDR_WIFI_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* WL_THERMAL_MITIGATION */
#ifdef WL_SAR_TX_POWER
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_TX_POWER_SCENARIO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV,
.doit = wl_cfgvendor_tx_power_scenario,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_wifi_attr_policy,
.maxattr = ANDR_WIFI_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* WL_SAR_TX_POWER */
#ifdef WL_SOFTAP_ACS
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_ACS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgscan_acs,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = acs_attr_policy,
.maxattr = BRCM_VENDOR_ATTR_ACS_LAST
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* WL_SOFTAP_ACS */
#ifdef WL_CUSTOM_MAPPING_OF_DSCP
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_CUSTOM_MAPPING_OF_DSCP
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV,
.doit = wl_cfgvendor_custom_mapping_of_dscp,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = custom_setting_attr_policy,
.maxattr = CUSTOM_SETTING_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_CUSTOM_MAPPING_OF_DSCP_RESET
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV,
.doit = wl_cfgvendor_custom_mapping_of_dscp_reset,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = custom_setting_attr_policy,
.maxattr = CUSTOM_SETTING_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* WL_CUSTOM_MAPPING_OF_DSCP */
#ifdef WL_CELLULAR_CHAN_AVOID
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_CELL_AVOID_SUBCMD_SET_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV,
.doit = wl_cfgvendor_cellavoid_set_cell_channels,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = cellavoid_attr_policy,
.maxattr = CELLAVOID_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* WL_CELLULAR_CHAN_AVOID */
#ifdef TPUT_DEBUG_DUMP
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_SET_TPUT_DEBUG_DUMP_CMD
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgdbg_tput_debug_get_cmd,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = tput_debug_dump_attr_policy,
.maxattr = TPUT_DEBUG_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* TPUT_DEBUG_DUMP */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_MULTISTA_PRIMARY_CONNECTION
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_multista_set_primary_connection,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = multista_attr_policy,
.maxattr = MULTISTA_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_MULTISTA_USE_CASE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_multista_set_use_case,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = multista_attr_policy,
.maxattr = MULTISTA_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#if !defined(WL_TWT) && defined(WL_TWT_HAL_IF)
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_TWT_SUBCMD_SETUP
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_twt_setup,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_twt_attr_policy,
.maxattr = ANDR_TWT_ATTR_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_TWT_SUBCMD_TEARDOWN
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_twt_teardown,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_twt_attr_policy,
.maxattr = ANDR_TWT_ATTR_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_TWT_SUBCMD_INFO_FRAME
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_twt_info_frame,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_twt_attr_policy,
.maxattr = ANDR_TWT_ATTR_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_TWT_SUBCMD_GET_CAP
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_twt_cap,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_twt_attr_policy,
.maxattr = ANDR_TWT_ATTR_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_TWT_SUBCMD_GET_STATS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_twt_get_stats,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_twt_attr_policy,
.maxattr = ANDR_TWT_ATTR_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_TWT_SUBCMD_CLR_STATS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_twt_clear_stats,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_twt_attr_policy,
.maxattr = ANDR_TWT_ATTR_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* !WL_TWT && WL_TWT_HAL_IF */
#ifdef SUPPORT_OTA_UPDATE
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_GET_OTA_CURRUNT_INFO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_get_ota_current_info,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = ota_update_attr_policy,
.maxattr = OTA_UPDATE_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_OTA_UPDATE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_ota_download,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = ota_update_attr_policy,
.maxattr = OTA_UPDATE_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* SUPPORT_OTA_UPDATE */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_DTIM_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_dtim_config,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = andr_wifi_attr_policy,
.maxattr = ANDR_WIFI_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#ifdef WL_USABLE_CHAN
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_USABLE_CHAN
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV,
.doit = wl_cfgvendor_get_usable_channels,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = usable_chan_attr_policy,
.maxattr = USABLECHAN_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
#endif /* WL_USABLE_CHAN */
#ifdef WLAN_ACCEL_BOOT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_TRIGGER_SSR
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_trigger_ssr
},
#endif /* WLAN_ACCEL_BOOT */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_GET_RADIO_COMBO_MATRIX
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_get_radio_combo_matrix,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = wifi_radio_combo_attr_policy,
.maxattr = ANDR_WIFI_ATTRIBUTE_RADIO_COMBO_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_TX_POWER_LIMITS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_tx_power_policy_handler,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = wifi_tx_power_limits_attr_policy,
.maxattr = TX_POWER_ATTRIBUTE_MAX
#endif /* LINUX_VERSION >= 5.3 */
},
};
static const struct nl80211_vendor_cmd_info wl_vendor_events [] = {
{ OUI_BRCM, BRCM_VENDOR_EVENT_UNSPEC },
{ OUI_BRCM, BRCM_VENDOR_EVENT_PRIV_STR },
{ OUI_GOOGLE, GOOGLE_GSCAN_SIGNIFICANT_EVENT },
{ OUI_GOOGLE, GOOGLE_GSCAN_GEOFENCE_FOUND_EVENT },
{ OUI_GOOGLE, GOOGLE_GSCAN_BATCH_SCAN_EVENT },
{ OUI_GOOGLE, GOOGLE_SCAN_FULL_RESULTS_EVENT },
{ OUI_GOOGLE, GOOGLE_RTT_COMPLETE_EVENT },
{ OUI_GOOGLE, GOOGLE_SCAN_COMPLETE_EVENT },
{ OUI_GOOGLE, GOOGLE_GSCAN_GEOFENCE_LOST_EVENT },
{ OUI_GOOGLE, GOOGLE_SCAN_EPNO_EVENT },
{ OUI_GOOGLE, GOOGLE_DEBUG_RING_EVENT },
{ OUI_GOOGLE, GOOGLE_FW_DUMP_EVENT },
{ OUI_GOOGLE, GOOGLE_PNO_HOTSPOT_FOUND_EVENT },
{ OUI_GOOGLE, GOOGLE_RSSI_MONITOR_EVENT },
{ OUI_GOOGLE, GOOGLE_MKEEP_ALIVE_EVENT },
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_ENABLED},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_DISABLED},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_SUBSCRIBE_MATCH},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_REPLIED},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_PUBLISH_TERMINATED},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_SUBSCRIBE_TERMINATED},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_DE_EVENT},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_FOLLOWUP},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_TRANSMIT_FOLLOWUP_IND},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_DATA_REQUEST},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_DATA_CONFIRMATION},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_DATA_END},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_BEACON},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_SDF},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_TCA},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_SUBSCRIBE_UNMATCH},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_UNKNOWN},
{ OUI_GOOGLE, GOOGLE_ROAM_EVENT_START},
{ OUI_BRCM, BRCM_VENDOR_EVENT_HANGED},
{ OUI_BRCM, BRCM_VENDOR_EVENT_SAE_KEY},
{ OUI_BRCM, BRCM_VENDOR_EVENT_BEACON_RECV},
{ OUI_BRCM, BRCM_VENDOR_EVENT_PORT_AUTHORIZED},
{ OUI_GOOGLE, GOOGLE_FILE_DUMP_EVENT },
{ OUI_BRCM, BRCM_VENDOR_EVENT_CU},
{ OUI_BRCM, BRCM_VENDOR_EVENT_WIPS},
{ OUI_GOOGLE, NAN_ASYNC_RESPONSE_DISABLED},
{ OUI_BRCM, BRCM_VENDOR_EVENT_RCC_INFO},
{ OUI_BRCM, BRCM_VENDOR_EVENT_ACS},
{ OUI_BRCM, BRCM_VENDOR_EVENT_TWT},
{ OUI_GOOGLE, BRCM_VENDOR_EVENT_TPUT_DUMP},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_MATCH_EXPIRY},
{ OUI_BRCM, BRCM_VENDOR_EVENT_RCC_FREQ_INFO},
{ OUI_BRCM, BRCM_VENDOR_EVENT_CONNECTIVITY_LOG},
};
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
static void
wl_cfgvendor_apply_cmd_policy(struct wiphy *wiphy)
{
int i;
u32 n_cmds = wiphy->n_vendor_commands;
WL_INFORM(("Apply CMD_RAW_DATA policy\n"));
for (i = 0; i < n_cmds; i++) {
if (wl_vendor_cmds[i].policy == NULL) {
wl_vendor_cmds[i].policy = VENDOR_CMD_RAW_DATA;
}
}
}
#endif /* LINUX VER >= 5.3 */
int wl_cfgvendor_attach(struct wiphy *wiphy, dhd_pub_t *dhd)
{
WL_INFORM_MEM(("Vendor: Register BRCM cfg80211 vendor cmd(0x%x) interface \n",
NL80211_CMD_VENDOR));
wiphy->vendor_commands = wl_vendor_cmds;
wiphy->n_vendor_commands = ARRAY_SIZE(wl_vendor_cmds);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
wl_cfgvendor_apply_cmd_policy(wiphy);
#endif /* LINUX VER >= 5.3 */
wiphy->vendor_events = wl_vendor_events;
wiphy->n_vendor_events = ARRAY_SIZE(wl_vendor_events);
#ifdef DEBUGABILITY
dhd_os_dbg_register_callback(FW_VERBOSE_RING_ID, wl_cfgvendor_dbg_ring_send_evt);
#ifdef DHD_DEBUGABILITY_EVENT_RING
dhd_os_dbg_register_callback(DHD_EVENT_RING_ID, wl_cfgvendor_dbg_ring_send_evt);
#endif /* DHD_DEBUGABILITY_EVENT_RING */
#ifdef DHD_DEBUGABILITY_LOG_DUMP_RING
dhd_os_dbg_register_callback(DRIVER_LOG_RING_ID, wl_cfgvendor_dbg_ring_send_evt);
dhd_os_dbg_register_callback(ROAM_STATS_RING_ID, wl_cfgvendor_dbg_ring_send_evt);
#ifdef DHD_DEBUGABILITY_DEBUG_DUMP
dhd_os_dbg_register_callback(DEBUG_DUMP_RING1_ID, wl_cfgvendor_dbg_ring_send_evt);
dhd_os_dbg_register_callback(DEBUG_DUMP_RING2_ID, wl_cfgvendor_dbg_ring_send_evt);
#endif /* DHD_DEBUGABILITY_DEBUG_DUMP */
#endif /* DHD_DEBUGABILITY_LOG_DUMP_RING */
#ifdef DHD_PKT_LOGGING_DBGRING
dhd_os_dbg_register_callback(PACKET_LOG_RING_ID, wl_cfgvendor_dbg_ring_send_evt);
#endif /* DHD_PKT_LOGGING_DBGRING */
#endif /* DEBUGABILITY */
#ifdef DHD_LOG_DUMP
dhd_os_dbg_register_urgent_notifier(dhd, wl_cfgvendor_dbg_send_file_dump_evt);
#endif /* DHD_LOG_DUMP */
#ifdef WL_CUSTOM_MAPPING_OF_DSCP
(void)wl_set_dscp_deafult_priority(custom_dscp2priomap);
#endif
#ifdef SUPPORT_OTA_UPDATE
(void)wl_set_ota_nvram_ext(dhd);
#endif /* SUPPORT_OTA_UPDATE */
return 0;
}
int wl_cfgvendor_detach(struct wiphy *wiphy)
{
WL_INFORM_MEM(("Vendor: Unregister BRCM cfg80211 vendor interface \n"));
wiphy->vendor_commands = NULL;
wiphy->vendor_events = NULL;
wiphy->n_vendor_commands = 0;
wiphy->n_vendor_events = 0;
return 0;
}
#endif /* (LINUX_VERSION_CODE > KERNEL_VERSION(3, 13, 0)) || defined(WL_VENDOR_EXT_SUPPORT) */
#ifdef WL_CFGVENDOR_SEND_HANG_EVENT
void
wl_cfgvendor_send_hang_event(struct net_device *dev, u16 reason, char *string, int hang_info_cnt)
{
struct bcm_cfg80211 *cfg = wl_get_cfg(dev);
struct wiphy *wiphy;
char *hang_info;
int len = 0;
int bytes_written;
uint32 dummy_data = 0;
int reason_hang_info = 0;
int cnt = 0;
dhd_pub_t *dhd;
int hang_reason_mismatch = FALSE;
if (!cfg || !cfg->wdev) {
WL_ERR(("cfg=%p wdev=%p\n", cfg, (cfg ? cfg->wdev : NULL)));
return;
}
wiphy = cfg->wdev->wiphy;
if (!wiphy) {
WL_ERR(("wiphy is NULL\n"));
return;
}
hang_info = MALLOCZ(cfg->osh, VENDOR_SEND_HANG_EXT_INFO_LEN);
if (hang_info == NULL) {
WL_ERR(("alloc hang_info failed\n"));
return;
}
dhd = (dhd_pub_t *)(cfg->pub);
#ifdef WL_BCNRECV
/* check fakeapscan in progress then stop scan */
if (cfg->bcnrecv_info.bcnrecv_state == BEACON_RECV_STARTED) {
wl_android_bcnrecv_stop(dev, WL_BCNRECV_HANG);
}
#endif /* WL_BCNRECV */
sscanf(string, "%d", &reason_hang_info);
bytes_written = 0;
len = VENDOR_SEND_HANG_EXT_INFO_LEN - bytes_written;
if (strlen(string) == 0 || (reason_hang_info != reason)) {
WL_ERR(("hang reason mismatch: string len %d reason_hang_info %d\n",
(int)strlen(string), reason_hang_info));
hang_reason_mismatch = TRUE;
if (dhd) {
get_debug_dump_time(dhd->debug_dump_time_hang_str);
copy_debug_dump_time(dhd->debug_dump_time_str,
dhd->debug_dump_time_hang_str);
}
/* Fill bigdata key with */
bytes_written += scnprintf(&hang_info[bytes_written], len,
"%d %d %s %08x %08x %08x %08x %08x %08x %08x",
reason, VENDOR_SEND_HANG_EXT_INFO_VER,
dhd->debug_dump_time_hang_str,
0, 0, 0, 0, 0, 0, 0);
if (dhd) {
clear_debug_dump_time(dhd->debug_dump_time_hang_str);
}
} else {
bytes_written += scnprintf(&hang_info[bytes_written], len, "%s", string);
}
WL_ERR(("hang reason: %d info cnt: %d\n", reason, hang_info_cnt));
if (hang_reason_mismatch == FALSE) {
cnt = hang_info_cnt;
} else {
cnt = HANG_FIELD_MISMATCH_CNT;
}
while (cnt < HANG_FIELD_CNT_MAX) {
len = VENDOR_SEND_HANG_EXT_INFO_LEN - bytes_written;
if (len <= 0) {
break;
}
bytes_written += scnprintf(&hang_info[bytes_written], len,
"%c%08x", HANG_RAW_DEL, dummy_data);
cnt++;
}
WL_ERR(("hang info cnt: %d len: %d\n", cnt, (int)strlen(hang_info)));
WL_ERR(("hang info data: %s\n", hang_info));
wl_cfgvendor_send_async_event(wiphy,
bcmcfg_to_prmry_ndev(cfg), BRCM_VENDOR_EVENT_HANGED,
hang_info, (int)strlen(hang_info));
memset(string, 0, VENDOR_SEND_HANG_EXT_INFO_LEN);
if (hang_info) {
MFREE(cfg->osh, hang_info, VENDOR_SEND_HANG_EXT_INFO_LEN);
}
#ifdef DHD_LOG_DUMP
dhd_logdump_cookie_save(dhd, dhd->debug_dump_time_hang_str, "HANG");
#endif /* DHD_LOG_DUMP */
if (dhd) {
clear_debug_dump_time(dhd->debug_dump_time_str);
}
}
void
wl_cfgvendor_simple_hang_event(struct net_device *dev, u16 reason)
{
struct bcm_cfg80211 *cfg;
struct wiphy *wiphy;
struct sk_buff *msg;
gfp_t kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
int hang_event_len = 0;
#ifdef DHD_COREDUMP
dhd_pub_t *dhd;
char hang_reason_str[DHD_MEMDUMP_LONGSTR_LEN];
#endif
WL_ERR(("0x%x\n", reason));
cfg = wl_cfg80211_get_bcmcfg();
if (!cfg || !cfg->wdev) {
WL_ERR(("fw dump evt invalid arg\n"));
return;
}
wiphy = bcmcfg_to_wiphy(cfg);
if (!wiphy) {
WL_ERR(("wiphy is NULL\n"));
return;
}
#ifdef DHD_COREDUMP
hang_event_len = DHD_MEMDUMP_LONGSTR_LEN;
#endif
/* Allocate the skb for vendor event */
msg = CFG80211_VENDOR_EVENT_ALLOC(wiphy, ndev_to_wdev(dev),
hang_event_len, BRCM_VENDOR_EVENT_HANGED, kflags);
if (!msg) {
WL_ERR(("%s: fail to allocate skb for vendor event\n", __FUNCTION__));
return;
}
#ifdef DHD_COREDUMP
dhd = (dhd_pub_t *)(cfg->pub);
memset_s(hang_reason_str, sizeof(hang_reason_str), 0, DHD_MEMDUMP_LONGSTR_LEN);
if (reason == HANG_REASON_DONGLE_TRAP && dhd->memdump_type == DUMP_TYPE_DONGLE_TRAP) {
strncpy(hang_reason_str, dhd->memdump_str, DHD_MEMDUMP_LONGSTR_LEN);
} else {
dhd_convert_hang_reason_to_str(reason, hang_reason_str, DHD_MEMDUMP_LONGSTR_LEN);
}
WL_ERR(("hang reason: %s\n", hang_reason_str));
nla_put(msg, DEBUG_ATTRIBUTE_HANG_REASON, DHD_MEMDUMP_LONGSTR_LEN, hang_reason_str);
#endif
cfg80211_vendor_event(msg, kflags);
return;
}
void
wl_copy_hang_info_if_falure(struct net_device *dev, u16 reason, s32 ret)
{
struct bcm_cfg80211 *cfg = NULL;
dhd_pub_t *dhd;
s32 err = 0;
char ioctl_buf[WLC_IOCTL_SMLEN];
memuse_info_t mu;
int bytes_written = 0;
int remain_len = 0;
if (!dev) {
WL_ERR(("dev is null"));
return;
}
cfg = wl_get_cfg(dev);
if (!cfg) {
WL_ERR(("dev=%p cfg=%p\n", dev, cfg));
return;
}
dhd = (dhd_pub_t *)(cfg->pub);
if (!dhd || !dhd->hang_info) {
WL_ERR(("%s dhd=%p hang_info=%p\n", __FUNCTION__,
dhd, (dhd ? dhd->hang_info : NULL)));
return;
}
err = wldev_iovar_getbuf_bsscfg(dev, "memuse",
NULL, 0, ioctl_buf, WLC_IOCTL_SMLEN, 0, NULL);
if (unlikely(err)) {
WL_ERR(("error (%d)\n", err));
return;
}
memcpy(&mu, ioctl_buf, sizeof(memuse_info_t));
if (mu.len >= sizeof(memuse_info_t)) {
WL_ERR(("Heap Total: %d(%dK)\n", mu.arena_size, KB(mu.arena_size)));
WL_ERR(("Free: %d(%dK), LWM: %d(%dK)\n",
mu.arena_free, KB(mu.arena_free),
mu.free_lwm, KB(mu.free_lwm)));
WL_ERR(("In use: %d(%dK), HWM: %d(%dK)\n",
mu.inuse_size, KB(mu.inuse_size),
mu.inuse_hwm, KB(mu.inuse_hwm)));
WL_ERR(("Malloc failure count: %d\n", mu.mf_count));
}
memset(dhd->hang_info, 0, VENDOR_SEND_HANG_EXT_INFO_LEN);
remain_len = VENDOR_SEND_HANG_EXT_INFO_LEN - bytes_written;
get_debug_dump_time(dhd->debug_dump_time_hang_str);
copy_debug_dump_time(dhd->debug_dump_time_str, dhd->debug_dump_time_hang_str);
bytes_written += scnprintf(&dhd->hang_info[bytes_written], remain_len,
"%d %d %s %d %d %d %d %d %08x %08x",
reason, VENDOR_SEND_HANG_EXT_INFO_VER,
dhd->debug_dump_time_hang_str,
ret, mu.arena_size, mu.arena_free, mu.inuse_size, mu.mf_count, 0, 0);
dhd->hang_info_cnt = HANG_FIELD_IF_FAILURE_CNT;
clear_debug_dump_time(dhd->debug_dump_time_hang_str);
return;
}
#endif /* WL_CFGVENDOR_SEND_HANG_EVENT */
#ifdef WL_CFGVENDOR_SEND_ALERT_EVENT
void
wl_cfgvendor_send_alert_event(struct net_device *dev, uint32 reason)
{
struct bcm_cfg80211 *cfg;
struct wiphy *wiphy;
struct sk_buff *msg;
gfp_t kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
WL_DBG(("wl_cfgvendor_send_fw_dump_event %d\n", reason));
cfg = wl_cfg80211_get_bcmcfg();
if (!cfg || !cfg->wdev) {
WL_ERR(("fw dump evt invalid arg\n"));
return;
}
wiphy = bcmcfg_to_wiphy(cfg);
if (!wiphy) {
WL_ERR(("wiphy is NULL\n"));
return;
}
/* Allocate the skb for vendor event */
msg = CFG80211_VENDOR_EVENT_ALLOC(wiphy, ndev_to_wdev(dev), sizeof(uint32),
GOOGLE_FW_DUMP_EVENT, kflags);
if (!msg) {
WL_ERR(("%s: fail to allocate skb for vendor event\n", __FUNCTION__));
return;
}
nla_put_u32(msg, DEBUG_ATTRIBUTE_FW_ERR_CODE, reason);
cfg80211_vendor_event(msg, kflags);
return;
}
#endif /* WL_CFGVENDOR_SEND_ALERT_EVENT */
#ifdef WL_CFGVENDOR_CUST_ADVLOG
void
wl_cfgvendor_custom_advlog_roam_log(void *plog, uint32 armcycle)
{
prsv_periodic_log_hdr_t *hdr = (prsv_periodic_log_hdr_t *)plog;
const pr_advlog_tbl_t *cur_advlog_elem = &advlog_print_tbl[0];
if (hdr->version < ROAM_LOG_VER_3) {
WL_ERR(("%s: Version mis-match(%d)\n", __FUNCTION__, hdr->version));
return;
}
while (cur_advlog_elem && cur_advlog_elem->advlog_func) {
if (hdr->id == cur_advlog_elem->id) {
cur_advlog_elem->advlog_func(plog, armcycle);
break;
}
cur_advlog_elem++;
}
}
static void
wl_cfgvendor_custom_advlog_scan_start(void *plog, uint32 armcycle)
{
roam_log_trig_v2_t *log = (roam_log_trig_v2_t *)plog;
uint cust_roam_rsn = WLC_E_REASON_INITIAL_ASSOC;
int i;
bool rssi_thresh = FALSE;
if (log->result != BCME_OK) {
/* Not required logging if ROAM scan is failed. */
return;
}
for (i = 0; i < WL_CUST_ROAM_REASON_MAX; i++) {
if (dhd_covt_roam_rsn_list[i].roam_rsn == log->reason) {
cust_roam_rsn = dhd_covt_roam_rsn_list[i].cust_roam_rsn;
break;
}
}
if ((log->reason == WLC_E_REASON_LOW_RSSI) ||
(log->reason == WLC_E_REASON_LOW_RSSI_CU) ||
(log->reason == WLC_E_REASON_INACTIVITY) ||
(log->reason == WLC_E_REASON_ROAM_SCAN_TIMEOUT)) {
rssi_thresh = TRUE;
}
SUPP_ADVLOG(("[ROAM] SCAN_START reason=%d rssi=%d cu=%d full_scan=%d "
"rssi_thresh=%d [%d]\n",
cust_roam_rsn, log->rssi, log->current_cu, log->full_scan,
(rssi_thresh ? log->low_rssi.rssi_threshold : (0)), armcycle));
}
static int
wl_cfgvendor_custom_advlog_get_rcc(chanspec_t *chanspecs)
{
struct bcm_cfg80211 *cfg;
struct net_device *ndev;
int rcc_chan_cnt = 0;
wlc_ssid_t *ssid = NULL;
cfg = wl_cfg80211_get_bcmcfg();
ndev = bcmcfg_to_prmry_ndev(cfg);
/* Get Current SSID */
ssid = (struct wlc_ssid *)wl_read_prof(cfg, ndev, WL_PROF_SSID);
if (!ssid) {
WL_ERR(("No SSID found in the saved profile\n"));
goto exit;
}
rcc_chan_cnt = get_roam_channel_list(cfg, 0, chanspecs, MAX_ROAM_CHANNEL,
ssid, ioctl_version);
exit:
return rcc_chan_cnt;
}
#define CH_LIST_LEN (SUPP_LOG_LEN / 2)
static void
wl_cfgvendor_custom_advlog_scan_cmpl(void *plog, uint32 armcycle)
{
int i;
roam_log_scan_cmplt_v2_t *log = (roam_log_scan_cmplt_v2_t *)plog;
int freq;
#ifdef ESCAN_CHANNEL_CACHE
chanspec_t chanspecs[MAX_ROAM_CHANNEL] = {0};
uint ch_cnt = 0;
char ch_list[CH_LIST_LEN] = {'\0'};
uint buf_pos = 0;
ch_cnt = wl_cfgvendor_custom_advlog_get_rcc(chanspecs);
bzero(ch_list, CH_LIST_LEN);
for (i = 0; i < ch_cnt; i++) {
freq = wl_channel_to_frequency(wf_chspec_ctlchan(chanspecs[i]),
CHSPEC_BAND(chanspecs[i]));
if (CH_LIST_LEN < buf_pos) {
break;
}
buf_pos += snprintf(&ch_list[buf_pos], CH_LIST_LEN - buf_pos,
"%d ", freq);
}
SUPP_ADVLOG(("[ROAM] SCAN_DONE ap_count=%d freq[%d]=%s [%d]\n",
log->scan_count, ch_cnt, ch_list, armcycle));
#else
SUPP_ADVLOG(("[ROAM] SCAN_DONE ap_count=%d freq[%d] [%d]\n",
log->scan_count, log->chan_num, armcycle));
#endif /* ESCAN_CHANNEL_CACHE */
freq = wl_channel_to_frequency(wf_chspec_ctlchan(log->cur_info.chanspec),
CHSPEC_BAND(log->cur_info.chanspec));
/* do not print to the kernel, only for framework (MACDBG_FULL) */
SUPP_ADVLOG(("[ROAM] SCORE_CUR_AP bssid=" MACDBG_FULL " freq=%d rssi=%d cu=%d "
"score=%d.%02d\n",
MAC2STRDBG_FULL((uint8 *)&log->cur_info.addr),
freq, log->cur_info.rssi,
log->cur_info.cu_avail ?
(log->cur_info.cu * 100 / WL_MAX_CHANNEL_USAGE) : WL_CU_NOT_AVAIL,
log->cur_info.score / 100, log->cur_info.score % 100));
for (i = 0; i < log->scan_list_size; i++) {
freq = wl_channel_to_frequency(wf_chspec_ctlchan(log->scan_list[i].chanspec),
CHSPEC_BAND(log->scan_list[i].chanspec));
/* do not print to the kernel, only for framework (MACDBG_FULL) */
SUPP_ADVLOG(("[ROAM] SCORE_CANDI[%d], bssid=" MACDBG_FULL " freq=%d "
"rssi=%d cu=%d score=%d.%02d tp=%dkbps\n",
i, MAC2STRDBG_FULL((uint8 *)&log->scan_list[i].addr), freq,
log->scan_list[i].rssi,
log->scan_list[i].cu_avail ?
(log->scan_list[i].cu * 100 / WL_MAX_CHANNEL_USAGE) : WL_CU_NOT_AVAIL,
log->scan_list[i].score / 100, log->scan_list[i].score % 100,
log->scan_list[i].estm_tput != ROAM_LOG_INVALID_TPUT?
log->scan_list[i].estm_tput:0));
}
}
static void
wl_cfgvendor_custom_advlog_roam_cmpl(void *plog, uint32 armcycle)
{
roam_log_cmplt_v1_t *log = (roam_log_cmplt_v1_t *)plog;
if (log->status == WLC_E_STATUS_ABORT) {
/* Roaming Abort(Cancel) */
SUPP_ADVLOG(("[ROAM] CANCELLED [%d]\n", armcycle));
} else if (log->status == WLC_E_STATUS_NO_NETWORKS || log->status == WLC_E_STATUS_TIMEOUT) {
/* Roaming No Networks */
/* do not print to the kernel, only for framework (MACDBG_FULL) */
SUPP_ADVLOG(("[ROAM] RESULT NO_ROAM bssid=" MACDBG_FULL " [%d]\n",
MAC2STRDBG_FULL((uint8 *)&log->addr), armcycle));
} else {
/* do not print to the kernel, only for framework (MACDBG_FULL) */
SUPP_ADVLOG(("[ROAM] RESULT ROAM bssid=" MACDBG_FULL " [%d status=%d]\n",
MAC2STRDBG_FULL((uint8 *)&log->addr), armcycle, log->status));
}
}
static void
wl_cfgvendor_custom_advlog_btm_req(void *plog, uint32 armcycle)
{
roam_log_btm_req_v4_t *log = (roam_log_btm_req_v4_t *)plog;
int i;
SUPP_ADVLOG(("[BTM] REQ token=%d mode=%d disassoc=%d validity=%d "
"candidate_list_cnt=%d [%d]\n",
log->token, log->req_mode, log->disassoc_dur, log->validity_dur,
log->nbrlist_size, armcycle));
if (log->nbrlist_size) {
int max_idx = MIN(log->nbrlist_size, ROAM_NBR_RPT_LIST_SIZE);
for (i = 0; i < max_idx; i++) {
/* do not print to the kernel, only for framework (MACDBG_FULL) */
SUPP_ADVLOG(("[BTM] REQ_CANDI[%d] bssid=" MACDBG_FULL " preference=%d\n",
i, MAC2STRDBG_FULL((uint8 *)&log->nbr_list[i].bssid),
log->nbr_list[i].preference));
}
}
}
static void
wl_cfgvendor_custom_advlog_btm_resp(void *plog, uint32 armcycle)
{
roam_log_btm_resp_v4_t *log = (roam_log_btm_resp_v4_t *)plog;
/* do not print to the kernel, only for framework (MACDBG_FULL) */
SUPP_ADVLOG(("[BTM] RESP token=%d status=%d delay=%d target=" MACDBG_FULL " [%d]\n",
log->token, log->status, log->term_delay,
MAC2STRDBG_FULL((uint8 *)&log->target_addr), armcycle));
}
static void
wl_cfgvendor_custom_advlog_btm_wtc(void *plog, uint32 armcycle)
{
roam_log_wtc_btmrep_v3_t *log = (roam_log_wtc_btmrep_v3_t *)plog;
if (log->wtc_type == WTC_BTMREQ) {
SUPP_ADVLOG(("[BTM] WTC reason=%d sub_code=%d duration=%d [%d]\n",
log->wtcreq.rsn_code, log->wtcreq.subcode, log->wtcreq.duration,
armcycle));
} else if (log->wtc_type == WTC_BTMRESP) {
SUPP_ADVLOG(("[BTM] WTC reason_code=%d [%d]\n",
log->wtcresp.rsn_code, armcycle));
}
}
static void
wl_cfgvendor_custom_advlog_btm_query(void *plog, uint32 armcycle)
{
roam_log_btm_query_v3_t *log = (roam_log_btm_query_v3_t *)plog;
SUPP_ADVLOG(("[BTM] QUERY token=%d reason=%d [%d]\n",
log->token, log->reason, armcycle));
}
#endif /* WL_CFGVENDOR_CUST_ADVLOG */