blob: d6b4eb77ee024de5e10ded18ada3f2f23a1f0456 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
/*
*
* (C) COPYRIGHT 2010-2023 ARM Limited. All rights reserved.
*
* This program is free software and is provided to you under the terms of the
* GNU General Public License version 2 as published by the Free Software
* Foundation, and any use by you of this program is subject to the terms
* of such GNU license.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
*/
/**
* DOC: Base kernel MMU management.
*/
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/migrate.h>
#include <mali_kbase.h>
#include <gpu/mali_kbase_gpu_fault.h>
#include <gpu/mali_kbase_gpu_regmap.h>
#include <tl/mali_kbase_tracepoints.h>
#include <backend/gpu/mali_kbase_instr_defs.h>
#include <mali_kbase_ctx_sched.h>
#include <mali_kbase_debug.h>
#include <mali_kbase_defs.h>
#include <mali_kbase_hw.h>
#include <mmu/mali_kbase_mmu_hw.h>
#include <mali_kbase_mem.h>
#include <mali_kbase_reset_gpu.h>
#include <mmu/mali_kbase_mmu.h>
#include <mmu/mali_kbase_mmu_internal.h>
#include <mali_kbase_cs_experimental.h>
#include <device/mali_kbase_device.h>
#include <uapi/gpu/arm/midgard/gpu/mali_kbase_gpu_id.h>
#if !MALI_USE_CSF
#include <mali_kbase_hwaccess_jm.h>
#endif
#include <linux/version_compat_defs.h>
#include <mali_kbase_trace_gpu_mem.h>
#include <backend/gpu/mali_kbase_pm_internal.h>
/* Threshold used to decide whether to flush full caches or just a physical range */
#define KBASE_PA_RANGE_THRESHOLD_NR_PAGES 20
#define MGM_DEFAULT_PTE_GROUP (0)
/* Macro to convert updated PDGs to flags indicating levels skip in flush */
#define pgd_level_to_skip_flush(dirty_pgds) (~(dirty_pgds) & 0xF)
static int mmu_insert_pages_no_flush(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
const u64 start_vpfn, struct tagged_addr *phys, size_t nr,
unsigned long flags, int const group_id, u64 *dirty_pgds,
struct kbase_va_region *reg, bool ignore_page_migration);
/* Small wrapper function to factor out GPU-dependent context releasing */
static void release_ctx(struct kbase_device *kbdev,
struct kbase_context *kctx)
{
#if MALI_USE_CSF
CSTD_UNUSED(kbdev);
kbase_ctx_sched_release_ctx_lock(kctx);
#else /* MALI_USE_CSF */
kbasep_js_runpool_release_ctx(kbdev, kctx);
#endif /* MALI_USE_CSF */
}
static void mmu_hw_operation_begin(struct kbase_device *kbdev)
{
#if !IS_ENABLED(CONFIG_MALI_NO_MALI)
#if MALI_USE_CSF
if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_GPU2019_3878)) {
unsigned long flags;
lockdep_assert_held(&kbdev->mmu_hw_mutex);
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
WARN_ON_ONCE(kbdev->mmu_hw_operation_in_progress);
kbdev->mmu_hw_operation_in_progress = true;
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
}
#endif /* MALI_USE_CSF */
#endif /* !CONFIG_MALI_NO_MALI */
}
static void mmu_hw_operation_end(struct kbase_device *kbdev)
{
#if !IS_ENABLED(CONFIG_MALI_NO_MALI)
#if MALI_USE_CSF
if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_GPU2019_3878)) {
unsigned long flags;
lockdep_assert_held(&kbdev->mmu_hw_mutex);
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
WARN_ON_ONCE(!kbdev->mmu_hw_operation_in_progress);
kbdev->mmu_hw_operation_in_progress = false;
/* Invoke the PM state machine, the L2 power off may have been
* skipped due to the MMU command.
*/
kbase_pm_update_state(kbdev);
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
}
#endif /* MALI_USE_CSF */
#endif /* !CONFIG_MALI_NO_MALI */
}
/**
* mmu_flush_cache_on_gpu_ctrl() - Check if cache flush needs to be done
* through GPU_CONTROL interface.
*
* @kbdev: kbase device to check GPU model ID on.
*
* This function returns whether a cache flush for page table update should
* run through GPU_CONTROL interface or MMU_AS_CONTROL interface.
*
* Return: True if cache flush should be done on GPU command.
*/
static bool mmu_flush_cache_on_gpu_ctrl(struct kbase_device *kbdev)
{
uint32_t const arch_maj_cur = (kbdev->gpu_props.props.raw_props.gpu_id &
GPU_ID2_ARCH_MAJOR) >>
GPU_ID2_ARCH_MAJOR_SHIFT;
return arch_maj_cur > 11;
}
/**
* mmu_flush_pa_range() - Flush physical address range
*
* @kbdev: kbase device to issue the MMU operation on.
* @phys: Starting address of the physical range to start the operation on.
* @nr_bytes: Number of bytes to work on.
* @op: Type of cache flush operation to perform.
*
* Issue a cache flush physical range command.
*/
#if MALI_USE_CSF
static void mmu_flush_pa_range(struct kbase_device *kbdev, phys_addr_t phys, size_t nr_bytes,
enum kbase_mmu_op_type op)
{
u32 flush_op;
lockdep_assert_held(&kbdev->hwaccess_lock);
/* Translate operation to command */
if (op == KBASE_MMU_OP_FLUSH_PT)
flush_op = GPU_COMMAND_FLUSH_PA_RANGE_CLN_INV_L2;
else if (op == KBASE_MMU_OP_FLUSH_MEM)
flush_op = GPU_COMMAND_FLUSH_PA_RANGE_CLN_INV_L2_LSC;
else {
dev_warn(kbdev->dev, "Invalid flush request (op = %d)", op);
return;
}
if (kbase_gpu_cache_flush_pa_range_and_busy_wait(kbdev, phys, nr_bytes, flush_op))
dev_err(kbdev->dev, "Flush for physical address range did not complete");
}
#endif
/**
* mmu_invalidate() - Perform an invalidate operation on MMU caches.
* @kbdev: The Kbase device.
* @kctx: The Kbase context.
* @as_nr: GPU address space number for which invalidate is required.
* @op_param: Non-NULL pointer to struct containing information about the MMU
* operation to perform.
*
* Perform an MMU invalidate operation on a particual address space
* by issuing a UNLOCK command.
*/
static void mmu_invalidate(struct kbase_device *kbdev, struct kbase_context *kctx, int as_nr,
const struct kbase_mmu_hw_op_param *op_param)
{
unsigned long flags;
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
if (kbdev->pm.backend.gpu_ready && (!kctx || kctx->as_nr >= 0)) {
as_nr = kctx ? kctx->as_nr : as_nr;
if (kbase_mmu_hw_do_unlock(kbdev, &kbdev->as[as_nr], op_param))
dev_err(kbdev->dev,
"Invalidate after GPU page table update did not complete");
}
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
}
/* Perform a flush/invalidate on a particular address space
*/
static void mmu_flush_invalidate_as(struct kbase_device *kbdev, struct kbase_as *as,
const struct kbase_mmu_hw_op_param *op_param)
{
unsigned long flags;
/* AS transaction begin */
mutex_lock(&kbdev->mmu_hw_mutex);
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
if (kbdev->pm.backend.gpu_ready && (kbase_mmu_hw_do_flush_locked(kbdev, as, op_param)))
dev_err(kbdev->dev, "Flush for GPU page table update did not complete");
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
mutex_unlock(&kbdev->mmu_hw_mutex);
/* AS transaction end */
}
/**
* mmu_flush_invalidate() - Perform a flush operation on GPU caches.
* @kbdev: The Kbase device.
* @kctx: The Kbase context.
* @as_nr: GPU address space number for which flush + invalidate is required.
* @op_param: Non-NULL pointer to struct containing information about the MMU
* operation to perform.
*
* This function performs the cache flush operation described by @op_param.
* The function retains a reference to the given @kctx and releases it
* after performing the flush operation.
*
* If operation is set to KBASE_MMU_OP_FLUSH_PT then this function will issue
* a cache flush + invalidate to the L2 caches and invalidate the TLBs.
*
* If operation is set to KBASE_MMU_OP_FLUSH_MEM then this function will issue
* a cache flush + invalidate to the L2 and GPU Load/Store caches as well as
* invalidating the TLBs.
*/
static void mmu_flush_invalidate(struct kbase_device *kbdev, struct kbase_context *kctx, int as_nr,
const struct kbase_mmu_hw_op_param *op_param)
{
bool ctx_is_in_runpool;
/* Early out if there is nothing to do */
if (op_param->nr == 0)
return;
/* If no context is provided then MMU operation is performed on address
* space which does not belong to user space context. Otherwise, retain
* refcount to context provided and release after flush operation.
*/
if (!kctx) {
mmu_flush_invalidate_as(kbdev, &kbdev->as[as_nr], op_param);
} else {
#if !MALI_USE_CSF
rt_mutex_lock(&kbdev->js_data.queue_mutex);
ctx_is_in_runpool = kbase_ctx_sched_inc_refcount(kctx);
rt_mutex_unlock(&kbdev->js_data.queue_mutex);
#else
ctx_is_in_runpool = kbase_ctx_sched_inc_refcount_if_as_valid(kctx);
#endif /* !MALI_USE_CSF */
if (ctx_is_in_runpool) {
KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);
mmu_flush_invalidate_as(kbdev, &kbdev->as[kctx->as_nr], op_param);
release_ctx(kbdev, kctx);
}
}
}
/**
* mmu_flush_invalidate_on_gpu_ctrl() - Perform a flush operation on GPU caches via
* the GPU_CONTROL interface
* @kbdev: The Kbase device.
* @kctx: The Kbase context.
* @as_nr: GPU address space number for which flush + invalidate is required.
* @op_param: Non-NULL pointer to struct containing information about the MMU
* operation to perform.
*
* Perform a flush/invalidate on a particular address space via the GPU_CONTROL
* interface.
*/
static void mmu_flush_invalidate_on_gpu_ctrl(struct kbase_device *kbdev, struct kbase_context *kctx,
int as_nr, const struct kbase_mmu_hw_op_param *op_param)
{
unsigned long flags;
/* AS transaction begin */
mutex_lock(&kbdev->mmu_hw_mutex);
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
if (kbdev->pm.backend.gpu_ready && (!kctx || kctx->as_nr >= 0)) {
as_nr = kctx ? kctx->as_nr : as_nr;
if (kbase_mmu_hw_do_flush_on_gpu_ctrl(kbdev, &kbdev->as[as_nr], op_param))
dev_err(kbdev->dev, "Flush for GPU page table update did not complete");
}
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
mutex_unlock(&kbdev->mmu_hw_mutex);
}
static void kbase_mmu_sync_pgd_gpu(struct kbase_device *kbdev, struct kbase_context *kctx,
phys_addr_t phys, size_t size,
enum kbase_mmu_op_type flush_op)
{
kbase_mmu_flush_pa_range(kbdev, kctx, phys, size, flush_op);
}
static void kbase_mmu_sync_pgd_cpu(struct kbase_device *kbdev, dma_addr_t handle, size_t size)
{
/* Ensure that the GPU can read the pages from memory.
*
* pixel: b/200555454 requires this sync to happen even if the system
* is coherent.
*/
dma_sync_single_for_device(kbdev->dev, handle, size,
DMA_TO_DEVICE);
}
/**
* kbase_mmu_sync_pgd() - sync page directory to memory when needed.
* @kbdev: Device pointer.
* @kctx: Context pointer.
* @phys: Starting physical address of the destination region.
* @handle: Address of DMA region.
* @size: Size of the region to sync.
* @flush_op: MMU cache flush operation to perform on the physical address
* range, if GPU control is available.
*
* This function is called whenever the association between a virtual address
* range and a physical address range changes, because a mapping is created or
* destroyed.
* One of the effects of this operation is performing an MMU cache flush
* operation only on the physical address range affected by this function, if
* GPU control is available.
*
* This should be called after each page directory update.
*/
static void kbase_mmu_sync_pgd(struct kbase_device *kbdev, struct kbase_context *kctx,
phys_addr_t phys, dma_addr_t handle, size_t size,
enum kbase_mmu_op_type flush_op)
{
kbase_mmu_sync_pgd_cpu(kbdev, handle, size);
kbase_mmu_sync_pgd_gpu(kbdev, kctx, phys, size, flush_op);
}
/*
* Definitions:
* - PGD: Page Directory.
* - PTE: Page Table Entry. A 64bit value pointing to the next
* level of translation
* - ATE: Address Translation Entry. A 64bit value pointing to
* a 4kB physical page.
*/
/**
* kbase_mmu_update_and_free_parent_pgds() - Update number of valid entries and
* free memory of the page directories
*
* @kbdev: Device pointer.
* @mmut: GPU MMU page table.
* @pgds: Physical addresses of page directories to be freed.
* @vpfn: The virtual page frame number.
* @level: The level of MMU page table.
* @flush_op: The type of MMU flush operation to perform.
* @dirty_pgds: Flags to track every level where a PGD has been updated.
*/
static void kbase_mmu_update_and_free_parent_pgds(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut, phys_addr_t *pgds,
u64 vpfn, int level,
enum kbase_mmu_op_type flush_op, u64 *dirty_pgds);
static void kbase_mmu_account_freed_pgd(struct kbase_device *kbdev, struct kbase_mmu_table *mmut)
{
atomic_sub(1, &kbdev->memdev.used_pages);
/* If MMU tables belong to a context then pages will have been accounted
* against it, so we must decrement the usage counts here.
*/
if (mmut->kctx) {
kbase_process_page_usage_dec(mmut->kctx, 1);
atomic_sub(1, &mmut->kctx->used_pages);
}
kbase_trace_gpu_mem_usage_dec(kbdev, mmut->kctx, 1);
}
static bool kbase_mmu_handle_isolated_pgd_page(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut,
struct page *p)
{
struct kbase_page_metadata *page_md = kbase_page_private(p);
bool page_is_isolated = false;
lockdep_assert_held(&mmut->mmu_lock);
if (!kbase_is_page_migration_enabled())
return false;
spin_lock(&page_md->migrate_lock);
if (PAGE_STATUS_GET(page_md->status) == PT_MAPPED) {
WARN_ON_ONCE(!mmut->kctx);
if (IS_PAGE_ISOLATED(page_md->status)) {
page_md->status = PAGE_STATUS_SET(page_md->status,
FREE_PT_ISOLATED_IN_PROGRESS);
page_md->data.free_pt_isolated.kbdev = kbdev;
page_is_isolated = true;
} else {
page_md->status =
PAGE_STATUS_SET(page_md->status, FREE_IN_PROGRESS);
}
} else if ((PAGE_STATUS_GET(page_md->status) == FREE_IN_PROGRESS) ||
(PAGE_STATUS_GET(page_md->status) == ALLOCATE_IN_PROGRESS)) {
/* Nothing to do - fall through */
} else {
WARN_ON_ONCE(PAGE_STATUS_GET(page_md->status) != NOT_MOVABLE);
}
spin_unlock(&page_md->migrate_lock);
if (unlikely(page_is_isolated)) {
/* Do the CPU cache flush and accounting here for the isolated
* PGD page, which is done inside kbase_mmu_free_pgd() for the
* PGD page that did not get isolated.
*/
dma_sync_single_for_device(kbdev->dev, kbase_dma_addr(p), PAGE_SIZE,
DMA_BIDIRECTIONAL);
kbase_mmu_account_freed_pgd(kbdev, mmut);
}
return page_is_isolated;
}
/**
* kbase_mmu_free_pgd() - Free memory of the page directory
*
* @kbdev: Device pointer.
* @mmut: GPU MMU page table.
* @pgd: Physical address of page directory to be freed.
*
* This function is supposed to be called with mmu_lock held and after
* ensuring that the GPU won't be able to access the page.
*/
static void kbase_mmu_free_pgd(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
phys_addr_t pgd)
{
struct page *p;
bool page_is_isolated = false;
lockdep_assert_held(&mmut->mmu_lock);
p = pfn_to_page(PFN_DOWN(pgd));
page_is_isolated = kbase_mmu_handle_isolated_pgd_page(kbdev, mmut, p);
if (likely(!page_is_isolated)) {
kbase_mem_pool_free(&kbdev->mem_pools.small[mmut->group_id], p, true);
kbase_mmu_account_freed_pgd(kbdev, mmut);
}
}
/**
* kbase_mmu_free_pgds_list() - Free the PGD pages present in the list
*
* @kbdev: Device pointer.
* @mmut: GPU MMU page table.
*
* This function will call kbase_mmu_free_pgd() on each page directory page
* present in the list of free PGDs inside @mmut.
*
* The function is supposed to be called after the GPU cache and MMU TLB has
* been invalidated post the teardown loop.
*
* The mmu_lock shall be held prior to calling the function.
*/
static void kbase_mmu_free_pgds_list(struct kbase_device *kbdev, struct kbase_mmu_table *mmut)
{
size_t i;
lockdep_assert_held(&mmut->mmu_lock);
for (i = 0; i < mmut->scratch_mem.free_pgds.head_index; i++)
kbase_mmu_free_pgd(kbdev, mmut, page_to_phys(mmut->scratch_mem.free_pgds.pgds[i]));
mmut->scratch_mem.free_pgds.head_index = 0;
}
static void kbase_mmu_add_to_free_pgds_list(struct kbase_mmu_table *mmut, struct page *p)
{
lockdep_assert_held(&mmut->mmu_lock);
if (WARN_ON_ONCE(mmut->scratch_mem.free_pgds.head_index > (MAX_FREE_PGDS - 1)))
return;
mmut->scratch_mem.free_pgds.pgds[mmut->scratch_mem.free_pgds.head_index++] = p;
}
static inline void kbase_mmu_reset_free_pgds_list(struct kbase_mmu_table *mmut)
{
lockdep_assert_held(&mmut->mmu_lock);
mmut->scratch_mem.free_pgds.head_index = 0;
}
/**
* reg_grow_calc_extra_pages() - Calculate the number of backed pages to add to
* a region on a GPU page fault
* @kbdev: KBase device
* @reg: The region that will be backed with more pages
* @fault_rel_pfn: PFN of the fault relative to the start of the region
*
* This calculates how much to increase the backing of a region by, based on
* where a GPU page fault occurred and the flags in the region.
*
* This can be more than the minimum number of pages that would reach
* @fault_rel_pfn, for example to reduce the overall rate of page fault
* interrupts on a region, or to ensure that the end address is aligned.
*
* Return: the number of backed pages to increase by
*/
static size_t reg_grow_calc_extra_pages(struct kbase_device *kbdev,
struct kbase_va_region *reg, size_t fault_rel_pfn)
{
size_t multiple = reg->extension;
size_t reg_current_size = kbase_reg_current_backed_size(reg);
size_t minimum_extra = fault_rel_pfn - reg_current_size + 1;
size_t remainder;
if (!multiple) {
dev_warn(
kbdev->dev,
"VA Region 0x%llx extension was 0, allocator needs to set this properly for KBASE_REG_PF_GROW",
((unsigned long long)reg->start_pfn) << PAGE_SHIFT);
return minimum_extra;
}
/* Calculate the remainder to subtract from minimum_extra to make it
* the desired (rounded down) multiple of the extension.
* Depending on reg's flags, the base used for calculating multiples is
* different
*/
/* multiple is based from the current backed size, even if the
* current backed size/pfn for end of committed memory are not
* themselves aligned to multiple
*/
remainder = minimum_extra % multiple;
#if !MALI_USE_CSF
if (reg->flags & KBASE_REG_TILER_ALIGN_TOP) {
/* multiple is based from the top of the initial commit, which
* has been allocated in such a way that (start_pfn +
* initial_commit) is already aligned to multiple. Hence the
* pfn for the end of committed memory will also be aligned to
* multiple
*/
size_t initial_commit = reg->initial_commit;
if (fault_rel_pfn < initial_commit) {
/* this case is just to catch in case it's been
* recommitted by userspace to be smaller than the
* initial commit
*/
minimum_extra = initial_commit - reg_current_size;
remainder = 0;
} else {
/* same as calculating
* (fault_rel_pfn - initial_commit + 1)
*/
size_t pages_after_initial = minimum_extra +
reg_current_size - initial_commit;
remainder = pages_after_initial % multiple;
}
}
#endif /* !MALI_USE_CSF */
if (remainder == 0)
return minimum_extra;
return minimum_extra + multiple - remainder;
}
#ifdef CONFIG_MALI_CINSTR_GWT
static void kbase_gpu_mmu_handle_write_faulting_as(struct kbase_device *kbdev,
struct kbase_as *faulting_as,
u64 start_pfn, size_t nr,
u32 kctx_id, u64 dirty_pgds)
{
/* Calls to this function are inherently synchronous, with respect to
* MMU operations.
*/
const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_SYNC;
struct kbase_mmu_hw_op_param op_param;
int ret = 0;
mutex_lock(&kbdev->mmu_hw_mutex);
kbase_mmu_hw_clear_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
/* flush L2 and unlock the VA (resumes the MMU) */
op_param.vpfn = start_pfn;
op_param.nr = nr;
op_param.op = KBASE_MMU_OP_FLUSH_PT;
op_param.kctx_id = kctx_id;
op_param.mmu_sync_info = mmu_sync_info;
if (mmu_flush_cache_on_gpu_ctrl(kbdev)) {
unsigned long irq_flags;
spin_lock_irqsave(&kbdev->hwaccess_lock, irq_flags);
op_param.flush_skip_levels =
pgd_level_to_skip_flush(dirty_pgds);
ret = kbase_mmu_hw_do_flush_on_gpu_ctrl(kbdev, faulting_as, &op_param);
spin_unlock_irqrestore(&kbdev->hwaccess_lock, irq_flags);
} else {
mmu_hw_operation_begin(kbdev);
ret = kbase_mmu_hw_do_flush(kbdev, faulting_as, &op_param);
mmu_hw_operation_end(kbdev);
}
mutex_unlock(&kbdev->mmu_hw_mutex);
if (ret)
dev_err(kbdev->dev,
"Flush for GPU page fault due to write access did not complete");
kbase_mmu_hw_enable_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
}
static void set_gwt_element_page_addr_and_size(
struct kbasep_gwt_list_element *element,
u64 fault_page_addr, struct tagged_addr fault_phys)
{
u64 fault_pfn = fault_page_addr >> PAGE_SHIFT;
unsigned int vindex = fault_pfn & (NUM_4K_PAGES_IN_2MB_PAGE - 1);
/* If the fault address lies within a 2MB page, then consider
* the whole 2MB page for dumping to avoid incomplete dumps.
*/
if (is_huge(fault_phys) && (vindex == index_in_large_page(fault_phys))) {
element->page_addr = fault_page_addr & ~(SZ_2M - 1);
element->num_pages = NUM_4K_PAGES_IN_2MB_PAGE;
} else {
element->page_addr = fault_page_addr;
element->num_pages = 1;
}
}
static void kbase_gpu_mmu_handle_write_fault(struct kbase_context *kctx,
struct kbase_as *faulting_as)
{
struct kbasep_gwt_list_element *pos;
struct kbase_va_region *region;
struct kbase_device *kbdev;
struct tagged_addr *fault_phys_addr;
struct kbase_fault *fault;
u64 fault_pfn, pfn_offset;
int as_no;
u64 dirty_pgds = 0;
as_no = faulting_as->number;
kbdev = container_of(faulting_as, struct kbase_device, as[as_no]);
fault = &faulting_as->pf_data;
fault_pfn = fault->addr >> PAGE_SHIFT;
kbase_gpu_vm_lock(kctx);
/* Find region and check if it should be writable. */
region = kbase_region_tracker_find_region_enclosing_address(kctx,
fault->addr);
if (kbase_is_region_invalid_or_free(region)) {
kbase_gpu_vm_unlock(kctx);
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Memory is not mapped on the GPU",
&faulting_as->pf_data);
return;
}
if (!(region->flags & KBASE_REG_GPU_WR)) {
kbase_gpu_vm_unlock(kctx);
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Region does not have write permissions",
&faulting_as->pf_data);
return;
}
pfn_offset = fault_pfn - region->start_pfn;
fault_phys_addr = &kbase_get_gpu_phy_pages(region)[pfn_offset];
/* Capture addresses of faulting write location
* for job dumping if write tracking is enabled.
*/
if (kctx->gwt_enabled) {
u64 fault_page_addr = fault->addr & PAGE_MASK;
bool found = false;
/* Check if this write was already handled. */
list_for_each_entry(pos, &kctx->gwt_current_list, link) {
if (fault_page_addr == pos->page_addr) {
found = true;
break;
}
}
if (!found) {
pos = kmalloc(sizeof(*pos), GFP_KERNEL);
if (pos) {
pos->region = region;
set_gwt_element_page_addr_and_size(pos,
fault_page_addr, *fault_phys_addr);
list_add(&pos->link, &kctx->gwt_current_list);
} else {
dev_warn(kbdev->dev, "kmalloc failure");
}
}
}
/* Now make this faulting page writable to GPU. */
kbase_mmu_update_pages_no_flush(kbdev, &kctx->mmu, fault_pfn, fault_phys_addr, 1,
region->flags, region->gpu_alloc->group_id, &dirty_pgds);
kbase_gpu_mmu_handle_write_faulting_as(kbdev, faulting_as, fault_pfn, 1,
kctx->id, dirty_pgds);
kbase_gpu_vm_unlock(kctx);
}
static void kbase_gpu_mmu_handle_permission_fault(struct kbase_context *kctx,
struct kbase_as *faulting_as)
{
struct kbase_fault *fault = &faulting_as->pf_data;
switch (AS_FAULTSTATUS_ACCESS_TYPE_GET(fault->status)) {
case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
kbase_gpu_mmu_handle_write_fault(kctx, faulting_as);
break;
case AS_FAULTSTATUS_ACCESS_TYPE_EXECUTE:
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Execute Permission fault", fault);
break;
case AS_FAULTSTATUS_ACCESS_TYPE_READ:
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Read Permission fault", fault);
break;
default:
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Unknown Permission fault", fault);
break;
}
}
#endif
/**
* estimate_pool_space_required - Determine how much a pool should be grown by to support a future
* allocation
* @pool: The memory pool to check, including its linked pools
* @pages_required: Number of 4KiB pages require for the pool to support a future allocation
*
* The value returned is accounting for the size of @pool and the size of each memory pool linked to
* @pool. Hence, the caller should use @pool and (if not already satisfied) all its linked pools to
* allocate from.
*
* Note: this is only an estimate, because even during the calculation the memory pool(s) involved
* can be updated to be larger or smaller. Hence, the result is only a guide as to whether an
* allocation could succeed, or an estimate of the correct amount to grow the pool by. The caller
* should keep attempting an allocation and then re-growing with a new value queried form this
* function until the allocation succeeds.
*
* Return: an estimate of the amount of extra 4KiB pages in @pool that are required to satisfy an
* allocation, or 0 if @pool (including its linked pools) is likely to already satisfy the
* allocation.
*/
static size_t estimate_pool_space_required(struct kbase_mem_pool *pool, const size_t pages_required)
{
size_t pages_still_required;
for (pages_still_required = pages_required; pool != NULL && pages_still_required;
pool = pool->next_pool) {
size_t pool_size_4k;
kbase_mem_pool_lock(pool);
pool_size_4k = kbase_mem_pool_size(pool) << pool->order;
if (pool_size_4k >= pages_still_required)
pages_still_required = 0;
else
pages_still_required -= pool_size_4k;
kbase_mem_pool_unlock(pool);
}
return pages_still_required;
}
/**
* page_fault_try_alloc - Try to allocate memory from a context pool
* @kctx: Context pointer
* @region: Region to grow
* @new_pages: Number of 4 KiB pages to allocate
* @pages_to_grow: Pointer to variable to store number of outstanding pages on failure. This can be
* either 4 KiB or 2 MiB pages, depending on the number of pages requested.
* @grow_2mb_pool: Pointer to variable to store which pool needs to grow - true for 2 MiB, false for
* 4 KiB.
* @prealloc_sas: Pointer to kbase_sub_alloc structures
*
* This function will try to allocate as many pages as possible from the context pool, then if
* required will try to allocate the remaining pages from the device pool.
*
* This function will not allocate any new memory beyond that is already present in the context or
* device pools. This is because it is intended to be called whilst the thread has acquired the
* region list lock with kbase_gpu_vm_lock(), and a large enough memory allocation whilst that is
* held could invoke the OoM killer and cause an effective deadlock with kbase_cpu_vm_close().
*
* If 2 MiB pages are enabled and new_pages is >= 2 MiB then pages_to_grow will be a count of 2 MiB
* pages, otherwise it will be a count of 4 KiB pages.
*
* Return: true if successful, false on failure
*/
static bool page_fault_try_alloc(struct kbase_context *kctx,
struct kbase_va_region *region, size_t new_pages,
int *pages_to_grow, bool *grow_2mb_pool,
struct kbase_sub_alloc **prealloc_sas)
{
size_t total_gpu_pages_alloced = 0;
size_t total_cpu_pages_alloced = 0;
struct kbase_mem_pool *pool, *root_pool;
bool alloc_failed = false;
size_t pages_still_required;
size_t total_mempools_free_4k = 0;
lockdep_assert_held(&kctx->reg_lock);
lockdep_assert_held(&kctx->mem_partials_lock);
if (WARN_ON(region->gpu_alloc->group_id >=
MEMORY_GROUP_MANAGER_NR_GROUPS)) {
/* Do not try to grow the memory pool */
*pages_to_grow = 0;
return false;
}
if (kctx->kbdev->pagesize_2mb && new_pages >= (SZ_2M / SZ_4K)) {
root_pool = &kctx->mem_pools.large[region->gpu_alloc->group_id];
*grow_2mb_pool = true;
} else {
root_pool = &kctx->mem_pools.small[region->gpu_alloc->group_id];
*grow_2mb_pool = false;
}
if (region->gpu_alloc != region->cpu_alloc)
new_pages *= 2;
/* Determine how many pages are in the pools before trying to allocate.
* Don't attempt to allocate & free if the allocation can't succeed.
*/
pages_still_required = estimate_pool_space_required(root_pool, new_pages);
if (pages_still_required) {
/* Insufficient pages in pools. Don't try to allocate - just
* request a grow.
*/
*pages_to_grow = pages_still_required;
return false;
}
/* Since we're not holding any of the mempool locks, the amount of memory in the pools may
* change between the above estimate and the actual allocation.
*/
pages_still_required = new_pages;
for (pool = root_pool; pool != NULL && pages_still_required; pool = pool->next_pool) {
size_t pool_size_4k;
size_t pages_to_alloc_4k;
size_t pages_to_alloc_4k_per_alloc;
kbase_mem_pool_lock(pool);
/* Allocate as much as possible from this pool*/
pool_size_4k = kbase_mem_pool_size(pool) << pool->order;
total_mempools_free_4k += pool_size_4k;
pages_to_alloc_4k = MIN(pages_still_required, pool_size_4k);
if (region->gpu_alloc == region->cpu_alloc)
pages_to_alloc_4k_per_alloc = pages_to_alloc_4k;
else
pages_to_alloc_4k_per_alloc = pages_to_alloc_4k >> 1;
if (pages_to_alloc_4k) {
struct tagged_addr *gpu_pages =
kbase_alloc_phy_pages_helper_locked(region->gpu_alloc, pool,
pages_to_alloc_4k_per_alloc,
&prealloc_sas[0]);
if (!gpu_pages)
alloc_failed = true;
else
total_gpu_pages_alloced += pages_to_alloc_4k_per_alloc;
if (!alloc_failed && region->gpu_alloc != region->cpu_alloc) {
struct tagged_addr *cpu_pages = kbase_alloc_phy_pages_helper_locked(
region->cpu_alloc, pool, pages_to_alloc_4k_per_alloc,
&prealloc_sas[1]);
if (!cpu_pages)
alloc_failed = true;
else
total_cpu_pages_alloced += pages_to_alloc_4k_per_alloc;
}
}
kbase_mem_pool_unlock(pool);
if (alloc_failed) {
WARN_ON(!pages_still_required);
WARN_ON(pages_to_alloc_4k >= pages_still_required);
WARN_ON(pages_to_alloc_4k_per_alloc >= pages_still_required);
break;
}
pages_still_required -= pages_to_alloc_4k;
}
if (pages_still_required) {
/* Allocation was unsuccessful. We have dropped the mem_pool lock after allocation,
* so must in any case use kbase_free_phy_pages_helper() rather than
* kbase_free_phy_pages_helper_locked()
*/
if (total_gpu_pages_alloced > 0)
kbase_free_phy_pages_helper(region->gpu_alloc, total_gpu_pages_alloced);
if (region->gpu_alloc != region->cpu_alloc && total_cpu_pages_alloced > 0)
kbase_free_phy_pages_helper(region->cpu_alloc, total_cpu_pages_alloced);
if (alloc_failed) {
/* Note that in allocating from the above memory pools, we always ensure
* never to request more than is available in each pool with the pool's
* lock held. Hence failing to allocate in such situations would be unusual
* and we should cancel the growth instead (as re-growing the memory pool
* might not fix the situation)
*/
dev_warn(
kctx->kbdev->dev,
"Page allocation failure of %zu pages: managed %zu pages, mempool (inc linked pools) had %zu pages available",
new_pages, total_gpu_pages_alloced + total_cpu_pages_alloced,
total_mempools_free_4k);
*pages_to_grow = 0;
} else {
/* Tell the caller to try to grow the memory pool
*
* Freeing pages above may have spilled or returned them to the OS, so we
* have to take into account how many are still in the pool before giving a
* new estimate for growth required of the pool. We can just re-estimate a
* new value.
*/
pages_still_required = estimate_pool_space_required(root_pool, new_pages);
if (pages_still_required) {
*pages_to_grow = pages_still_required;
} else {
/* It's possible another thread could've grown the pool to be just
* big enough after we rolled back the allocation. Request at least
* one more page to ensure the caller doesn't fail the growth by
* conflating it with the alloc_failed case above
*/
*pages_to_grow = 1u;
}
}
return false;
}
/* Allocation was successful. No pages to grow, return success. */
*pages_to_grow = 0;
return true;
}
void kbase_mmu_page_fault_worker(struct work_struct *data)
{
u64 fault_pfn;
u32 fault_status;
size_t new_pages;
size_t fault_rel_pfn;
struct kbase_as *faulting_as;
int as_no;
struct kbase_context *kctx;
struct kbase_device *kbdev;
struct kbase_va_region *region;
struct kbase_fault *fault;
int err;
bool grown = false;
int pages_to_grow;
bool grow_2mb_pool;
struct kbase_sub_alloc *prealloc_sas[2] = { NULL, NULL };
int i;
size_t current_backed_size;
#if MALI_JIT_PRESSURE_LIMIT_BASE
size_t pages_trimmed = 0;
#endif
/* Calls to this function are inherently synchronous, with respect to
* MMU operations.
*/
const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_SYNC;
faulting_as = container_of(data, struct kbase_as, work_pagefault);
fault = &faulting_as->pf_data;
fault_pfn = fault->addr >> PAGE_SHIFT;
as_no = faulting_as->number;
kbdev = container_of(faulting_as, struct kbase_device, as[as_no]);
dev_dbg(kbdev->dev, "Entering %s %pK, fault_pfn %lld, as_no %d", __func__, (void *)data,
fault_pfn, as_no);
/* Grab the context that was already refcounted in kbase_mmu_interrupt()
* Therefore, it cannot be scheduled out of this AS until we explicitly
* release it
*/
kctx = kbase_ctx_sched_as_to_ctx(kbdev, as_no);
if (!kctx) {
atomic_dec(&kbdev->faults_pending);
return;
}
KBASE_DEBUG_ASSERT(kctx->kbdev == kbdev);
#if MALI_JIT_PRESSURE_LIMIT_BASE
#if !MALI_USE_CSF
rt_mutex_lock(&kctx->jctx.lock);
#endif
#endif
#ifdef CONFIG_MALI_ARBITER_SUPPORT
/* check if we still have GPU */
if (unlikely(kbase_is_gpu_removed(kbdev))) {
dev_dbg(kbdev->dev, "%s: GPU has been removed", __func__);
goto fault_done;
}
#endif
if (unlikely(fault->protected_mode)) {
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Protected mode fault", fault);
kbase_mmu_hw_clear_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
goto fault_done;
}
fault_status = fault->status;
switch (fault_status & AS_FAULTSTATUS_EXCEPTION_CODE_MASK) {
case AS_FAULTSTATUS_EXCEPTION_CODE_TRANSLATION_FAULT:
/* need to check against the region to handle this one */
break;
case AS_FAULTSTATUS_EXCEPTION_CODE_PERMISSION_FAULT:
#ifdef CONFIG_MALI_CINSTR_GWT
/* If GWT was ever enabled then we need to handle
* write fault pages even if the feature was disabled later.
*/
if (kctx->gwt_was_enabled) {
kbase_gpu_mmu_handle_permission_fault(kctx,
faulting_as);
goto fault_done;
}
#endif
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Permission failure", fault);
goto fault_done;
case AS_FAULTSTATUS_EXCEPTION_CODE_TRANSTAB_BUS_FAULT:
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Translation table bus fault", fault);
goto fault_done;
case AS_FAULTSTATUS_EXCEPTION_CODE_ACCESS_FLAG:
/* nothing to do, but we don't expect this fault currently */
dev_warn(kbdev->dev, "Access flag unexpectedly set");
goto fault_done;
case AS_FAULTSTATUS_EXCEPTION_CODE_ADDRESS_SIZE_FAULT:
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Address size fault", fault);
goto fault_done;
case AS_FAULTSTATUS_EXCEPTION_CODE_MEMORY_ATTRIBUTES_FAULT:
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Memory attributes fault", fault);
goto fault_done;
default:
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Unknown fault code", fault);
goto fault_done;
}
page_fault_retry:
if (kbdev->pagesize_2mb) {
/* Preallocate (or re-allocate) memory for the sub-allocation structs if necessary */
for (i = 0; i != ARRAY_SIZE(prealloc_sas); ++i) {
if (!prealloc_sas[i]) {
prealloc_sas[i] = kmalloc(sizeof(*prealloc_sas[i]), GFP_KERNEL);
if (!prealloc_sas[i]) {
kbase_mmu_report_fault_and_kill(
kctx, faulting_as,
"Failed pre-allocating memory for sub-allocations' metadata",
fault);
goto fault_done;
}
}
}
}
/* so we have a translation fault,
* let's see if it is for growable memory
*/
kbase_gpu_vm_lock(kctx);
region = kbase_region_tracker_find_region_enclosing_address(kctx,
fault->addr);
if (kbase_is_region_invalid_or_free(region)) {
kbase_gpu_vm_unlock(kctx);
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Memory is not mapped on the GPU", fault);
goto fault_done;
}
if (region->gpu_alloc->type == KBASE_MEM_TYPE_IMPORTED_UMM) {
kbase_gpu_vm_unlock(kctx);
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"DMA-BUF is not mapped on the GPU", fault);
goto fault_done;
}
if (region->gpu_alloc->group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS) {
kbase_gpu_vm_unlock(kctx);
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Bad physical memory group ID", fault);
goto fault_done;
}
if ((region->flags & GROWABLE_FLAGS_REQUIRED)
!= GROWABLE_FLAGS_REQUIRED) {
kbase_gpu_vm_unlock(kctx);
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Memory is not growable", fault);
goto fault_done;
}
if ((region->flags & KBASE_REG_DONT_NEED)) {
kbase_gpu_vm_unlock(kctx);
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Don't need memory can't be grown", fault);
goto fault_done;
}
if (AS_FAULTSTATUS_ACCESS_TYPE_GET(fault_status) ==
AS_FAULTSTATUS_ACCESS_TYPE_READ)
dev_warn(kbdev->dev, "Grow on pagefault while reading");
/* find the size we need to grow it by
* we know the result fit in a size_t due to
* kbase_region_tracker_find_region_enclosing_address
* validating the fault_address to be within a size_t from the start_pfn
*/
fault_rel_pfn = fault_pfn - region->start_pfn;
current_backed_size = kbase_reg_current_backed_size(region);
if (fault_rel_pfn < current_backed_size) {
struct kbase_mmu_hw_op_param op_param;
dev_dbg(kbdev->dev,
"Page fault @ 0x%llx in allocated region 0x%llx-0x%llx of growable TMEM: Ignoring",
fault->addr, region->start_pfn,
region->start_pfn +
current_backed_size);
mutex_lock(&kbdev->mmu_hw_mutex);
kbase_mmu_hw_clear_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
/* [1] in case another page fault occurred while we were
* handling the (duplicate) page fault we need to ensure we
* don't loose the other page fault as result of us clearing
* the MMU IRQ. Therefore, after we clear the MMU IRQ we send
* an UNLOCK command that will retry any stalled memory
* transaction (which should cause the other page fault to be
* raised again).
*/
op_param.mmu_sync_info = mmu_sync_info;
op_param.kctx_id = kctx->id;
if (!mmu_flush_cache_on_gpu_ctrl(kbdev)) {
mmu_hw_operation_begin(kbdev);
err = kbase_mmu_hw_do_unlock_no_addr(kbdev, faulting_as,
&op_param);
mmu_hw_operation_end(kbdev);
} else {
/* Can safely skip the invalidate for all levels in case
* of duplicate page faults.
*/
op_param.flush_skip_levels = 0xF;
op_param.vpfn = fault_pfn;
op_param.nr = 1;
err = kbase_mmu_hw_do_unlock(kbdev, faulting_as,
&op_param);
}
if (err) {
dev_err(kbdev->dev,
"Invalidation for MMU did not complete on handling page fault @ 0x%llx",
fault->addr);
}
mutex_unlock(&kbdev->mmu_hw_mutex);
kbase_mmu_hw_enable_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
kbase_gpu_vm_unlock(kctx);
goto fault_done;
}
new_pages = reg_grow_calc_extra_pages(kbdev, region, fault_rel_pfn);
/* cap to max vsize */
new_pages = min(new_pages, region->nr_pages - current_backed_size);
dev_dbg(kctx->kbdev->dev, "Allocate %zu pages on page fault", new_pages);
if (new_pages == 0) {
struct kbase_mmu_hw_op_param op_param;
mutex_lock(&kbdev->mmu_hw_mutex);
/* Duplicate of a fault we've already handled, nothing to do */
kbase_mmu_hw_clear_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
/* See comment [1] about UNLOCK usage */
op_param.mmu_sync_info = mmu_sync_info;
op_param.kctx_id = kctx->id;
if (!mmu_flush_cache_on_gpu_ctrl(kbdev)) {
mmu_hw_operation_begin(kbdev);
err = kbase_mmu_hw_do_unlock_no_addr(kbdev, faulting_as,
&op_param);
mmu_hw_operation_end(kbdev);
} else {
/* Can safely skip the invalidate for all levels in case
* of duplicate page faults.
*/
op_param.flush_skip_levels = 0xF;
op_param.vpfn = fault_pfn;
op_param.nr = 1;
err = kbase_mmu_hw_do_unlock(kbdev, faulting_as,
&op_param);
}
if (err) {
dev_err(kbdev->dev,
"Invalidation for MMU did not complete on handling page fault @ 0x%llx",
fault->addr);
}
mutex_unlock(&kbdev->mmu_hw_mutex);
kbase_mmu_hw_enable_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
kbase_gpu_vm_unlock(kctx);
goto fault_done;
}
pages_to_grow = 0;
#if MALI_JIT_PRESSURE_LIMIT_BASE
if ((region->flags & KBASE_REG_ACTIVE_JIT_ALLOC) && !pages_trimmed) {
kbase_jit_request_phys_increase(kctx, new_pages);
pages_trimmed = new_pages;
}
#endif
spin_lock(&kctx->mem_partials_lock);
grown = page_fault_try_alloc(kctx, region, new_pages, &pages_to_grow,
&grow_2mb_pool, prealloc_sas);
spin_unlock(&kctx->mem_partials_lock);
if (grown) {
u64 dirty_pgds = 0;
u64 pfn_offset;
struct kbase_mmu_hw_op_param op_param;
/* alloc success */
WARN_ON(kbase_reg_current_backed_size(region) >
region->nr_pages);
/* set up the new pages */
pfn_offset = kbase_reg_current_backed_size(region) - new_pages;
/*
* Note:
* Issuing an MMU operation will unlock the MMU and cause the
* translation to be replayed. If the page insertion fails then
* rather then trying to continue the context should be killed
* so the no_flush version of insert_pages is used which allows
* us to unlock the MMU as we see fit.
*/
err = mmu_insert_pages_no_flush(kbdev, &kctx->mmu, region->start_pfn + pfn_offset,
&kbase_get_gpu_phy_pages(region)[pfn_offset],
new_pages, region->flags,
region->gpu_alloc->group_id, &dirty_pgds, region,
false);
if (err) {
kbase_free_phy_pages_helper(region->gpu_alloc,
new_pages);
if (region->gpu_alloc != region->cpu_alloc)
kbase_free_phy_pages_helper(region->cpu_alloc,
new_pages);
kbase_gpu_vm_unlock(kctx);
/* The locked VA region will be unlocked and the cache
* invalidated in here
*/
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Page table update failure", fault);
goto fault_done;
}
KBASE_TLSTREAM_AUX_PAGEFAULT(kbdev, kctx->id, as_no,
(u64)new_pages);
trace_mali_mmu_page_fault_grow(region, fault, new_pages);
#if MALI_INCREMENTAL_RENDERING_JM
/* Switch to incremental rendering if we have nearly run out of
* memory in a JIT memory allocation.
*/
if (region->threshold_pages &&
kbase_reg_current_backed_size(region) >
region->threshold_pages) {
dev_dbg(kctx->kbdev->dev, "%zu pages exceeded IR threshold %zu",
new_pages + current_backed_size, region->threshold_pages);
if (kbase_mmu_switch_to_ir(kctx, region) >= 0) {
dev_dbg(kctx->kbdev->dev, "Get region %pK for IR", (void *)region);
kbase_va_region_alloc_get(kctx, region);
}
}
#endif
/* AS transaction begin */
mutex_lock(&kbdev->mmu_hw_mutex);
/* clear MMU interrupt - this needs to be done after updating
* the page tables but before issuing a FLUSH command. The
* FLUSH cmd has a side effect that it restarts stalled memory
* transactions in other address spaces which may cause
* another fault to occur. If we didn't clear the interrupt at
* this stage a new IRQ might not be raised when the GPU finds
* a MMU IRQ is already pending.
*/
kbase_mmu_hw_clear_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
op_param.vpfn = region->start_pfn + pfn_offset;
op_param.nr = new_pages;
op_param.op = KBASE_MMU_OP_FLUSH_PT;
op_param.kctx_id = kctx->id;
op_param.mmu_sync_info = mmu_sync_info;
if (mmu_flush_cache_on_gpu_ctrl(kbdev)) {
/* Unlock to invalidate the TLB (and resume the MMU) */
op_param.flush_skip_levels =
pgd_level_to_skip_flush(dirty_pgds);
err = kbase_mmu_hw_do_unlock(kbdev, faulting_as,
&op_param);
} else {
/* flush L2 and unlock the VA (resumes the MMU) */
mmu_hw_operation_begin(kbdev);
err = kbase_mmu_hw_do_flush(kbdev, faulting_as,
&op_param);
mmu_hw_operation_end(kbdev);
}
if (err) {
dev_err(kbdev->dev,
"Flush for GPU page table update did not complete on handling page fault @ 0x%llx",
fault->addr);
}
mutex_unlock(&kbdev->mmu_hw_mutex);
/* AS transaction end */
/* reenable this in the mask */
kbase_mmu_hw_enable_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_PAGE);
#ifdef CONFIG_MALI_CINSTR_GWT
if (kctx->gwt_enabled) {
/* GWT also tracks growable regions. */
struct kbasep_gwt_list_element *pos;
pos = kmalloc(sizeof(*pos), GFP_KERNEL);
if (pos) {
pos->region = region;
pos->page_addr = (region->start_pfn +
pfn_offset) <<
PAGE_SHIFT;
pos->num_pages = new_pages;
list_add(&pos->link,
&kctx->gwt_current_list);
} else {
dev_warn(kbdev->dev, "kmalloc failure");
}
}
#endif
#if MALI_JIT_PRESSURE_LIMIT_BASE
if (pages_trimmed) {
kbase_jit_done_phys_increase(kctx, pages_trimmed);
pages_trimmed = 0;
}
#endif
kbase_gpu_vm_unlock(kctx);
} else {
int ret = -ENOMEM;
const u8 group_id = region->gpu_alloc->group_id;
kbase_gpu_vm_unlock(kctx);
/* If the memory pool was insufficient then grow it and retry.
* Otherwise fail the allocation.
*/
if (pages_to_grow > 0) {
if (kbdev->pagesize_2mb && grow_2mb_pool) {
/* Round page requirement up to nearest 2 MB */
struct kbase_mem_pool *const lp_mem_pool =
&kctx->mem_pools.large[group_id];
pages_to_grow = (pages_to_grow +
((1 << lp_mem_pool->order) - 1))
>> lp_mem_pool->order;
ret = kbase_mem_pool_grow(lp_mem_pool,
pages_to_grow, kctx->task);
} else {
struct kbase_mem_pool *const mem_pool =
&kctx->mem_pools.small[group_id];
ret = kbase_mem_pool_grow(mem_pool,
pages_to_grow, kctx->task);
}
}
if (ret < 0) {
/* failed to extend, handle as a normal PF */
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Page allocation failure", fault);
} else {
dev_dbg(kbdev->dev, "Try again after pool_grow");
goto page_fault_retry;
}
}
fault_done:
#if MALI_JIT_PRESSURE_LIMIT_BASE
if (pages_trimmed) {
kbase_gpu_vm_lock(kctx);
kbase_jit_done_phys_increase(kctx, pages_trimmed);
kbase_gpu_vm_unlock(kctx);
}
#if !MALI_USE_CSF
rt_mutex_unlock(&kctx->jctx.lock);
#endif
#endif
for (i = 0; i != ARRAY_SIZE(prealloc_sas); ++i)
kfree(prealloc_sas[i]);
/*
* By this point, the fault was handled in some way,
* so release the ctx refcount
*/
release_ctx(kbdev, kctx);
atomic_dec(&kbdev->faults_pending);
dev_dbg(kbdev->dev, "Leaving page_fault_worker %pK", (void *)data);
}
static phys_addr_t kbase_mmu_alloc_pgd(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut)
{
u64 *page;
struct page *p;
phys_addr_t pgd;
p = kbase_mem_pool_alloc(&kbdev->mem_pools.small[mmut->group_id]);
if (!p)
return KBASE_MMU_INVALID_PGD_ADDRESS;
page = kbase_kmap(p);
if (page == NULL)
goto alloc_free;
pgd = page_to_phys(p);
/* If the MMU tables belong to a context then account the memory usage
* to that context, otherwise the MMU tables are device wide and are
* only accounted to the device.
*/
if (mmut->kctx) {
int new_page_count;
new_page_count = atomic_add_return(1,
&mmut->kctx->used_pages);
KBASE_TLSTREAM_AUX_PAGESALLOC(
kbdev,
mmut->kctx->id,
(u64)new_page_count);
kbase_process_page_usage_inc(mmut->kctx, 1);
}
atomic_add(1, &kbdev->memdev.used_pages);
kbase_trace_gpu_mem_usage_inc(kbdev, mmut->kctx, 1);
kbdev->mmu_mode->entries_invalidate(page, KBASE_MMU_PAGE_ENTRIES);
/* As this page is newly created, therefore there is no content to
* clean or invalidate in the GPU caches.
*/
kbase_mmu_sync_pgd_cpu(kbdev, kbase_dma_addr(p), PAGE_SIZE);
kbase_kunmap(p, page);
return pgd;
alloc_free:
kbase_mem_pool_free(&kbdev->mem_pools.small[mmut->group_id], p, false);
return KBASE_MMU_INVALID_PGD_ADDRESS;
}
/**
* mmu_get_next_pgd() - Given PGD PFN for level N, return PGD PFN for level N+1
*
* @kbdev: Device pointer.
* @mmut: GPU MMU page table.
* @pgd: Physical addresse of level N page directory.
* @vpfn: The virtual page frame number.
* @level: The level of MMU page table (N).
*
* Return:
* * 0 - OK
* * -EFAULT - level N+1 PGD does not exist
* * -EINVAL - kmap() failed for level N PGD PFN
*/
static int mmu_get_next_pgd(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
phys_addr_t *pgd, u64 vpfn, int level)
{
u64 *page;
phys_addr_t target_pgd;
struct page *p;
lockdep_assert_held(&mmut->mmu_lock);
/*
* Architecture spec defines level-0 as being the top-most.
* This is a bit unfortunate here, but we keep the same convention.
*/
vpfn >>= (3 - level) * 9;
vpfn &= 0x1FF;
p = pfn_to_page(PFN_DOWN(*pgd));
page = kbase_kmap(p);
if (page == NULL) {
dev_err(kbdev->dev, "%s: kmap failure", __func__);
return -EINVAL;
}
if (!kbdev->mmu_mode->pte_is_valid(page[vpfn], level)) {
dev_dbg(kbdev->dev, "%s: invalid PTE at level %d vpfn 0x%llx", __func__, level,
vpfn);
kbase_kunmap(p, page);
return -EFAULT;
} else {
target_pgd = kbdev->mmu_mode->pte_to_phy_addr(
kbdev->mgm_dev->ops.mgm_pte_to_original_pte(
kbdev->mgm_dev, MGM_DEFAULT_PTE_GROUP, level, page[vpfn]));
}
kbase_kunmap(p, page);
*pgd = target_pgd;
return 0;
}
/**
* mmu_get_lowest_valid_pgd() - Find a valid PGD at or closest to in_level
*
* @kbdev: Device pointer.
* @mmut: GPU MMU page table.
* @vpfn: The virtual page frame number.
* @in_level: The level of MMU page table (N).
* @out_level: Set to the level of the lowest valid PGD found on success.
* Invalid on error.
* @out_pgd: Set to the lowest valid PGD found on success.
* Invalid on error.
*
* Does a page table walk starting from top level (L0) to in_level to find a valid PGD at or
* closest to in_level
*
* Terminology:
* Level-0 = Top-level = highest
* Level-3 = Bottom-level = lowest
*
* Return:
* * 0 - OK
* * -EINVAL - kmap() failed during page table walk.
*/
static int mmu_get_lowest_valid_pgd(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
u64 vpfn, int in_level, int *out_level, phys_addr_t *out_pgd)
{
phys_addr_t pgd;
int l;
int err = 0;
lockdep_assert_held(&mmut->mmu_lock);
pgd = mmut->pgd;
for (l = MIDGARD_MMU_TOPLEVEL; l < in_level; l++) {
err = mmu_get_next_pgd(kbdev, mmut, &pgd, vpfn, l);
/* Handle failure condition */
if (err) {
dev_dbg(kbdev->dev,
"%s: mmu_get_next_pgd() failed to find a valid pgd at level %d",
__func__, l + 1);
break;
}
}
*out_pgd = pgd;
*out_level = l;
/* -EFAULT indicates that pgd param was valid but the next pgd entry at vpfn was invalid.
* This implies that we have found the lowest valid pgd. Reset the error code.
*/
if (err == -EFAULT)
err = 0;
return err;
}
/*
* On success, sets out_pgd to the PGD for the specified level of translation
* Returns -EFAULT if a valid PGD is not found
*/
static int mmu_get_pgd_at_level(struct kbase_device *kbdev, struct kbase_mmu_table *mmut, u64 vpfn,
int level, phys_addr_t *out_pgd)
{
phys_addr_t pgd;
int l;
lockdep_assert_held(&mmut->mmu_lock);
pgd = mmut->pgd;
for (l = MIDGARD_MMU_TOPLEVEL; l < level; l++) {
int err = mmu_get_next_pgd(kbdev, mmut, &pgd, vpfn, l);
/* Handle failure condition */
if (err) {
dev_err(kbdev->dev,
"%s: mmu_get_next_pgd() failed to find a valid pgd at level %d",
__func__, l + 1);
return err;
}
}
*out_pgd = pgd;
return 0;
}
static void mmu_insert_pages_failure_recovery(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut, u64 from_vpfn,
u64 to_vpfn, u64 *dirty_pgds,
struct tagged_addr *phys, bool ignore_page_migration)
{
u64 vpfn = from_vpfn;
struct kbase_mmu_mode const *mmu_mode;
/* 64-bit address range is the max */
KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE));
KBASE_DEBUG_ASSERT(from_vpfn <= to_vpfn);
lockdep_assert_held(&mmut->mmu_lock);
mmu_mode = kbdev->mmu_mode;
kbase_mmu_reset_free_pgds_list(mmut);
while (vpfn < to_vpfn) {
unsigned int idx = vpfn & 0x1FF;
unsigned int count = KBASE_MMU_PAGE_ENTRIES - idx;
unsigned int pcount = 0;
unsigned int left = to_vpfn - vpfn;
int level;
u64 *page;
phys_addr_t pgds[MIDGARD_MMU_BOTTOMLEVEL + 1];
phys_addr_t pgd = mmut->pgd;
struct page *p = phys_to_page(pgd);
register unsigned int num_of_valid_entries;
if (count > left)
count = left;
/* need to check if this is a 2MB page or a 4kB */
for (level = MIDGARD_MMU_TOPLEVEL;
level <= MIDGARD_MMU_BOTTOMLEVEL; level++) {
idx = (vpfn >> ((3 - level) * 9)) & 0x1FF;
pgds[level] = pgd;
page = kbase_kmap(p);
if (mmu_mode->ate_is_valid(page[idx], level))
break; /* keep the mapping */
kbase_kunmap(p, page);
pgd = mmu_mode->pte_to_phy_addr(kbdev->mgm_dev->ops.mgm_pte_to_original_pte(
kbdev->mgm_dev, MGM_DEFAULT_PTE_GROUP, level, page[idx]));
p = phys_to_page(pgd);
}
switch (level) {
case MIDGARD_MMU_LEVEL(2):
/* remap to single entry to update */
pcount = 1;
break;
case MIDGARD_MMU_BOTTOMLEVEL:
/* page count is the same as the logical count */
pcount = count;
break;
default:
dev_warn(kbdev->dev, "%sNo support for ATEs at level %d", __func__, level);
goto next;
}
if (dirty_pgds && pcount > 0)
*dirty_pgds |= 1ULL << level;
num_of_valid_entries = mmu_mode->get_num_valid_entries(page);
if (WARN_ON_ONCE(num_of_valid_entries < pcount))
num_of_valid_entries = 0;
else
num_of_valid_entries -= pcount;
/* Invalidate the entries we added */
mmu_mode->entries_invalidate(&page[idx], pcount);
if (!num_of_valid_entries) {
kbase_kunmap(p, page);
kbase_mmu_add_to_free_pgds_list(mmut, p);
kbase_mmu_update_and_free_parent_pgds(kbdev, mmut, pgds, vpfn, level,
KBASE_MMU_OP_NONE, dirty_pgds);
vpfn += count;
continue;
}
mmu_mode->set_num_valid_entries(page, num_of_valid_entries);
/* MMU cache flush strategy is NONE because GPU cache maintenance is
* going to be done by the caller
*/
kbase_mmu_sync_pgd(kbdev, mmut->kctx, pgd + (idx * sizeof(u64)),
kbase_dma_addr(p) + sizeof(u64) * idx, sizeof(u64) * pcount,
KBASE_MMU_OP_NONE);
kbase_kunmap(p, page);
next:
vpfn += count;
}
/* If page migration is enabled: the only way to recover from failure
* is to mark all pages as not movable. It is not predictable what's
* going to happen to these pages at this stage. They might return
* movable once they are returned to a memory pool.
*/
if (kbase_is_page_migration_enabled() && !ignore_page_migration && phys) {
const u64 num_pages = to_vpfn - from_vpfn + 1;
u64 i;
for (i = 0; i < num_pages; i++) {
struct page *phys_page = as_page(phys[i]);
struct kbase_page_metadata *page_md = kbase_page_private(phys_page);
if (page_md) {
spin_lock(&page_md->migrate_lock);
page_md->status = PAGE_STATUS_SET(page_md->status, (u8)NOT_MOVABLE);
spin_unlock(&page_md->migrate_lock);
}
}
}
}
static void mmu_flush_invalidate_insert_pages(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut, const u64 vpfn,
size_t nr, u64 dirty_pgds,
enum kbase_caller_mmu_sync_info mmu_sync_info,
bool insert_pages_failed)
{
struct kbase_mmu_hw_op_param op_param;
int as_nr = 0;
op_param.vpfn = vpfn;
op_param.nr = nr;
op_param.op = KBASE_MMU_OP_FLUSH_PT;
op_param.mmu_sync_info = mmu_sync_info;
op_param.kctx_id = mmut->kctx ? mmut->kctx->id : 0xFFFFFFFF;
op_param.flush_skip_levels = pgd_level_to_skip_flush(dirty_pgds);
#if MALI_USE_CSF
as_nr = mmut->kctx ? mmut->kctx->as_nr : MCU_AS_NR;
#else
WARN_ON(!mmut->kctx);
#endif
/* MMU cache flush strategy depends on whether GPU control commands for
* flushing physical address ranges are supported. The new physical pages
* are not present in GPU caches therefore they don't need any cache
* maintenance, but PGDs in the page table may or may not be created anew.
*
* Operations that affect the whole GPU cache shall only be done if it's
* impossible to update physical ranges.
*
* On GPUs where flushing by physical address range is supported,
* full cache flush is done when an error occurs during
* insert_pages() to keep the error handling simpler.
*/
if (mmu_flush_cache_on_gpu_ctrl(kbdev) && !insert_pages_failed)
mmu_invalidate(kbdev, mmut->kctx, as_nr, &op_param);
else
mmu_flush_invalidate(kbdev, mmut->kctx, as_nr, &op_param);
}
/**
* update_parent_pgds() - Updates the page table from bottom level towards
* the top level to insert a new ATE
*
* @kbdev: Device pointer.
* @mmut: GPU MMU page table.
* @cur_level: The level of MMU page table where the ATE needs to be added.
* The bottom PGD level.
* @insert_level: The level of MMU page table where the chain of newly allocated
* PGDs needs to be linked-in/inserted.
* @insert_vpfn: The virtual page frame number for the ATE.
* @pgds_to_insert: Ptr to an array (size MIDGARD_MMU_BOTTOMLEVEL+1) that contains
* the physical addresses of newly allocated PGDs from index
* insert_level+1 to cur_level, and an existing PGD at index
* insert_level.
*
* The newly allocated PGDs are linked from the bottom level up and inserted into the PGD
* at insert_level which already exists in the MMU Page Tables. Migration status is also
* updated for all the newly allocated PGD pages.
*
* Return:
* * 0 - OK
* * -EFAULT - level N+1 PGD does not exist
* * -EINVAL - kmap() failed for level N PGD PFN
*/
static int update_parent_pgds(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
int cur_level, int insert_level, u64 insert_vpfn,
phys_addr_t *pgds_to_insert)
{
int pgd_index;
int err = 0;
/* Add a PTE for the new PGD page at pgd_index into the parent PGD at (pgd_index-1)
* Loop runs from the bottom-most to the top-most level so that all entries in the chain
* are valid when they are inserted into the MMU Page table via the insert_level PGD.
*/
for (pgd_index = cur_level; pgd_index > insert_level; pgd_index--) {
int parent_index = pgd_index - 1;
phys_addr_t parent_pgd = pgds_to_insert[parent_index];
unsigned int current_valid_entries;
u64 pte;
phys_addr_t target_pgd = pgds_to_insert[pgd_index];
u64 parent_vpfn = (insert_vpfn >> ((3 - parent_index) * 9)) & 0x1FF;
struct page *parent_page = pfn_to_page(PFN_DOWN(parent_pgd));
u64 *parent_page_va;
if (WARN_ON_ONCE(target_pgd == KBASE_MMU_INVALID_PGD_ADDRESS)) {
err = -EFAULT;
goto failure_recovery;
}
parent_page_va = kbase_kmap(parent_page);
if (unlikely(parent_page_va == NULL)) {
dev_err(kbdev->dev, "%s: kmap failure", __func__);
err = -EINVAL;
goto failure_recovery;
}
current_valid_entries = kbdev->mmu_mode->get_num_valid_entries(parent_page_va);
kbdev->mmu_mode->entry_set_pte(&pte, target_pgd);
parent_page_va[parent_vpfn] = kbdev->mgm_dev->ops.mgm_update_gpu_pte(
kbdev->mgm_dev, MGM_DEFAULT_PTE_GROUP, parent_index, pte);
kbdev->mmu_mode->set_num_valid_entries(parent_page_va, current_valid_entries + 1);
kbase_kunmap(parent_page, parent_page_va);
if (parent_index != insert_level) {
/* Newly allocated PGDs */
kbase_mmu_sync_pgd_cpu(
kbdev, kbase_dma_addr(parent_page) + (parent_vpfn * sizeof(u64)),
sizeof(u64));
} else {
/* A new valid entry is added to an existing PGD. Perform the
* invalidate operation for GPU cache as it could be having a
* cacheline that contains the entry (in an invalid form).
*/
kbase_mmu_sync_pgd(
kbdev, mmut->kctx, parent_pgd + (parent_vpfn * sizeof(u64)),
kbase_dma_addr(parent_page) + (parent_vpfn * sizeof(u64)),
sizeof(u64), KBASE_MMU_OP_FLUSH_PT);
}
/* Update the new target_pgd page to its stable state */
if (kbase_is_page_migration_enabled()) {
struct kbase_page_metadata *page_md =
kbase_page_private(phys_to_page(target_pgd));
spin_lock(&page_md->migrate_lock);
WARN_ON_ONCE(PAGE_STATUS_GET(page_md->status) != ALLOCATE_IN_PROGRESS ||
IS_PAGE_ISOLATED(page_md->status));
if (mmut->kctx) {
page_md->status = PAGE_STATUS_SET(page_md->status, PT_MAPPED);
page_md->data.pt_mapped.mmut = mmut;
page_md->data.pt_mapped.pgd_vpfn_level =
PGD_VPFN_LEVEL_SET(insert_vpfn, parent_index);
} else {
page_md->status = PAGE_STATUS_SET(page_md->status, NOT_MOVABLE);
}
spin_unlock(&page_md->migrate_lock);
}
}
return 0;
failure_recovery:
/* Cleanup PTEs from PGDs. The Parent PGD in the loop above is just "PGD" here */
for (; pgd_index < cur_level; pgd_index++) {
phys_addr_t pgd = pgds_to_insert[pgd_index];
struct page *pgd_page = pfn_to_page(PFN_DOWN(pgd));
u64 *pgd_page_va = kbase_kmap(pgd_page);
u64 vpfn = (insert_vpfn >> ((3 - pgd_index) * 9)) & 0x1FF;
kbdev->mmu_mode->entries_invalidate(&pgd_page_va[vpfn], 1);
kbase_kunmap(pgd_page, pgd_page_va);
}
return err;
}
/**
* mmu_insert_alloc_pgds() - allocate memory for PGDs from level_low to
* level_high (inclusive)
*
* @kbdev: Device pointer.
* @mmut: GPU MMU page table.
* @level_low: The lower bound for the levels for which the PGD allocs are required
* @level_high: The higher bound for the levels for which the PGD allocs are required
* @new_pgds: Ptr to an array (size MIDGARD_MMU_BOTTOMLEVEL+1) to write the
* newly allocated PGD addresses to.
*
* Numerically, level_low < level_high, not to be confused with top level and
* bottom level concepts for MMU PGDs. They are only used as low and high bounds
* in an incrementing for-loop.
*
* Return:
* * 0 - OK
* * -ENOMEM - allocation failed for a PGD.
*/
static int mmu_insert_alloc_pgds(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
phys_addr_t *new_pgds, int level_low, int level_high)
{
int err = 0;
int i;
lockdep_assert_held(&mmut->mmu_lock);
for (i = level_low; i <= level_high; i++) {
do {
new_pgds[i] = kbase_mmu_alloc_pgd(kbdev, mmut);
if (new_pgds[i] != KBASE_MMU_INVALID_PGD_ADDRESS)
break;
rt_mutex_unlock(&mmut->mmu_lock);
err = kbase_mem_pool_grow(&kbdev->mem_pools.small[mmut->group_id],
level_high, NULL);
rt_mutex_lock(&mmut->mmu_lock);
if (err) {
dev_err(kbdev->dev, "%s: kbase_mem_pool_grow() returned error %d",
__func__, err);
/* Free all PGDs allocated in previous successful iterations
* from (i-1) to level_low
*/
for (i = (i - 1); i >= level_low; i--) {
if (new_pgds[i] != KBASE_MMU_INVALID_PGD_ADDRESS)
kbase_mmu_free_pgd(kbdev, mmut, new_pgds[i]);
}
return err;
}
} while (1);
}
return 0;
}
static int kbase_mmu_insert_single_page(struct kbase_context *kctx, u64 start_vpfn,
struct tagged_addr phys, size_t nr, unsigned long flags,
int const group_id,
enum kbase_caller_mmu_sync_info mmu_sync_info,
bool ignore_page_migration)
{
phys_addr_t pgd;
u64 *pgd_page;
u64 insert_vpfn = start_vpfn;
size_t remain = nr;
int err;
struct kbase_device *kbdev;
u64 dirty_pgds = 0;
unsigned int i;
phys_addr_t new_pgds[MIDGARD_MMU_BOTTOMLEVEL + 1];
enum kbase_mmu_op_type flush_op;
struct kbase_mmu_table *mmut = &kctx->mmu;
int l, cur_level, insert_level;
if (WARN_ON(kctx == NULL))
return -EINVAL;
/* 64-bit address range is the max */
KBASE_DEBUG_ASSERT(start_vpfn <= (U64_MAX / PAGE_SIZE));
kbdev = kctx->kbdev;
/* Early out if there is nothing to do */
if (nr == 0)
return 0;
/* If page migration is enabled, pages involved in multiple GPU mappings
* are always treated as not movable.
*/
if (kbase_is_page_migration_enabled() && !ignore_page_migration) {
struct page *phys_page = as_page(phys);
struct kbase_page_metadata *page_md = kbase_page_private(phys_page);
if (page_md) {
spin_lock(&page_md->migrate_lock);
page_md->status = PAGE_STATUS_SET(page_md->status, (u8)NOT_MOVABLE);
spin_unlock(&page_md->migrate_lock);
}
}
rt_mutex_lock(&mmut->mmu_lock);
while (remain) {
unsigned int vindex = insert_vpfn & 0x1FF;
unsigned int count = KBASE_MMU_PAGE_ENTRIES - vindex;
struct page *p;
register unsigned int num_of_valid_entries;
bool newly_created_pgd = false;
if (count > remain)
count = remain;
cur_level = MIDGARD_MMU_BOTTOMLEVEL;
insert_level = cur_level;
/*
* Repeatedly calling mmu_get_lowest_valid_pgd() is clearly
* suboptimal. We don't have to re-parse the whole tree
* each time (just cache the l0-l2 sequence).
* On the other hand, it's only a gain when we map more than
* 256 pages at once (on average). Do we really care?
*/
/* insert_level < cur_level if there's no valid PGD for cur_level and insert_vpn */
err = mmu_get_lowest_valid_pgd(kbdev, mmut, insert_vpfn, cur_level, &insert_level,
&pgd);
if (err) {
dev_err(kbdev->dev, "%s: mmu_get_lowest_valid_pgd() returned error %d",
__func__, err);
goto fail_unlock;
}
/* No valid pgd at cur_level */
if (insert_level != cur_level) {
/* Allocate new pgds for all missing levels from the required level
* down to the lowest valid pgd at insert_level
*/
err = mmu_insert_alloc_pgds(kbdev, mmut, new_pgds, (insert_level + 1),
cur_level);
if (err)
goto fail_unlock;
newly_created_pgd = true;
new_pgds[insert_level] = pgd;
/* If we didn't find an existing valid pgd at cur_level,
* we've now allocated one. The ATE in the next step should
* be inserted in this newly allocated pgd.
*/
pgd = new_pgds[cur_level];
}
p = pfn_to_page(PFN_DOWN(pgd));
pgd_page = kbase_kmap(p);
if (!pgd_page) {
dev_err(kbdev->dev, "%s: kmap failure", __func__);
err = -ENOMEM;
goto fail_unlock_free_pgds;
}
num_of_valid_entries =
kbdev->mmu_mode->get_num_valid_entries(pgd_page);
for (i = 0; i < count; i++) {
unsigned int ofs = vindex + i;
/* Fail if the current page is a valid ATE entry */
KBASE_DEBUG_ASSERT(0 == (pgd_page[ofs] & 1UL));
pgd_page[ofs] = kbase_mmu_create_ate(kbdev,
phys, flags, MIDGARD_MMU_BOTTOMLEVEL, group_id);
}
kbdev->mmu_mode->set_num_valid_entries(
pgd_page, num_of_valid_entries + count);
dirty_pgds |= 1ULL << (newly_created_pgd ? insert_level : MIDGARD_MMU_BOTTOMLEVEL);
/* MMU cache flush operation here will depend on whether bottom level
* PGD is newly created or not.
*
* If bottom level PGD is newly created then no GPU cache maintenance is
* required as the PGD will not exist in GPU cache. Otherwise GPU cache
* maintenance is required for existing PGD.
*/
flush_op = newly_created_pgd ? KBASE_MMU_OP_NONE : KBASE_MMU_OP_FLUSH_PT;
kbase_mmu_sync_pgd(kbdev, kctx, pgd + (vindex * sizeof(u64)),
kbase_dma_addr(p) + (vindex * sizeof(u64)), count * sizeof(u64),
flush_op);
if (newly_created_pgd) {
err = update_parent_pgds(kbdev, mmut, cur_level, insert_level, insert_vpfn,
new_pgds);
if (err) {
dev_err(kbdev->dev, "%s: update_parent_pgds() failed (%d)",
__func__, err);
kbdev->mmu_mode->entries_invalidate(&pgd_page[vindex], count);
kbase_kunmap(p, pgd_page);
goto fail_unlock_free_pgds;
}
}
insert_vpfn += count;
remain -= count;
kbase_kunmap(p, pgd_page);
}
rt_mutex_unlock(&mmut->mmu_lock);
mmu_flush_invalidate_insert_pages(kbdev, mmut, start_vpfn, nr, dirty_pgds, mmu_sync_info,
false);
return 0;
fail_unlock_free_pgds:
/* Free the pgds allocated by us from insert_level+1 to bottom level */
for (l = cur_level; l > insert_level; l--)
kbase_mmu_free_pgd(kbdev, mmut, new_pgds[l]);
fail_unlock:
if (insert_vpfn != start_vpfn) {
/* Invalidate the pages we have partially completed */
mmu_insert_pages_failure_recovery(kbdev, mmut, start_vpfn, insert_vpfn, &dirty_pgds,
NULL, true);
}
mmu_flush_invalidate_insert_pages(kbdev, mmut, start_vpfn, nr, dirty_pgds, mmu_sync_info,
true);
kbase_mmu_free_pgds_list(kbdev, mmut);
rt_mutex_unlock(&mmut->mmu_lock);
return err;
}
int kbase_mmu_insert_single_imported_page(struct kbase_context *kctx, u64 vpfn,
struct tagged_addr phys, size_t nr, unsigned long flags,
int const group_id,
enum kbase_caller_mmu_sync_info mmu_sync_info)
{
/* The aliasing sink page has metadata and shall be moved to NOT_MOVABLE. */
return kbase_mmu_insert_single_page(kctx, vpfn, phys, nr, flags, group_id, mmu_sync_info,
false);
}
int kbase_mmu_insert_single_aliased_page(struct kbase_context *kctx, u64 vpfn,
struct tagged_addr phys, size_t nr, unsigned long flags,
int const group_id,
enum kbase_caller_mmu_sync_info mmu_sync_info)
{
/* The aliasing sink page has metadata and shall be moved to NOT_MOVABLE. */
return kbase_mmu_insert_single_page(kctx, vpfn, phys, nr, flags, group_id, mmu_sync_info,
false);
}
static void kbase_mmu_progress_migration_on_insert(struct tagged_addr phys,
struct kbase_va_region *reg,
struct kbase_mmu_table *mmut, const u64 vpfn)
{
struct page *phys_page = as_page(phys);
struct kbase_page_metadata *page_md = kbase_page_private(phys_page);
if (!IS_ENABLED(CONFIG_PAGE_MIGRATION_SUPPORT))
return;
spin_lock(&page_md->migrate_lock);
/* If no GPU va region is given: the metadata provided are
* invalid.
*
* If the page is already allocated and mapped: this is
* an additional GPU mapping, probably to create a memory
* alias, which means it is no longer possible to migrate
* the page easily because tracking all the GPU mappings
* would be too costly.
*
* In any case: the page becomes not movable. It is kept
* alive, but attempts to migrate it will fail. The page
* will be freed if it is still not movable when it returns
* to a memory pool. Notice that the movable flag is not
* cleared because that would require taking the page lock.
*/
if (!reg || PAGE_STATUS_GET(page_md->status) == (u8)ALLOCATED_MAPPED) {
page_md->status = PAGE_STATUS_SET(page_md->status, (u8)NOT_MOVABLE);
} else if (PAGE_STATUS_GET(page_md->status) == (u8)ALLOCATE_IN_PROGRESS) {
page_md->status = PAGE_STATUS_SET(page_md->status, (u8)ALLOCATED_MAPPED);
page_md->data.mapped.reg = reg;
page_md->data.mapped.mmut = mmut;
page_md->data.mapped.vpfn = vpfn;
}
spin_unlock(&page_md->migrate_lock);
}
static void kbase_mmu_progress_migration_on_teardown(struct kbase_device *kbdev,
struct tagged_addr *phys, size_t requested_nr)
{
size_t i;
if (!IS_ENABLED(CONFIG_PAGE_MIGRATION_SUPPORT))
return;
for (i = 0; i < requested_nr; i++) {
struct page *phys_page = as_page(phys[i]);
struct kbase_page_metadata *page_md = kbase_page_private(phys_page);
/* Skip the 4KB page that is part of a large page, as the large page is
* excluded from the migration process.
*/
if (is_huge(phys[i]) || is_partial(phys[i]))
continue;
if (page_md) {
u8 status;
spin_lock(&page_md->migrate_lock);
status = PAGE_STATUS_GET(page_md->status);
if (status == ALLOCATED_MAPPED) {
if (IS_PAGE_ISOLATED(page_md->status)) {
page_md->status = PAGE_STATUS_SET(
page_md->status, (u8)FREE_ISOLATED_IN_PROGRESS);
page_md->data.free_isolated.kbdev = kbdev;
/* At this point, we still have a reference
* to the page via its page migration metadata,
* and any page with the FREE_ISOLATED_IN_PROGRESS
* status will subsequently be freed in either
* kbase_page_migrate() or kbase_page_putback()
*/
phys[i] = as_tagged(0);
} else
page_md->status = PAGE_STATUS_SET(page_md->status,
(u8)FREE_IN_PROGRESS);
}
spin_unlock(&page_md->migrate_lock);
}
}
}
u64 kbase_mmu_create_ate(struct kbase_device *const kbdev,
struct tagged_addr const phy, unsigned long const flags,
int const level, int const group_id)
{
u64 entry;
kbdev->mmu_mode->entry_set_ate(&entry, phy, flags, level);
return kbdev->mgm_dev->ops.mgm_update_gpu_pte(kbdev->mgm_dev,
group_id, level, entry);
}
static int mmu_insert_pages_no_flush(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
const u64 start_vpfn, struct tagged_addr *phys, size_t nr,
unsigned long flags, int const group_id, u64 *dirty_pgds,
struct kbase_va_region *reg, bool ignore_page_migration)
{
phys_addr_t pgd;
u64 *pgd_page;
u64 insert_vpfn = start_vpfn;
size_t remain = nr;
int err;
struct kbase_mmu_mode const *mmu_mode;
unsigned int i;
phys_addr_t new_pgds[MIDGARD_MMU_BOTTOMLEVEL + 1];
int l, cur_level, insert_level;
/* Note that 0 is a valid start_vpfn */
/* 64-bit address range is the max */
KBASE_DEBUG_ASSERT(start_vpfn <= (U64_MAX / PAGE_SIZE));
mmu_mode = kbdev->mmu_mode;
/* Early out if there is nothing to do */
if (nr == 0)
return 0;
rt_mutex_lock(&mmut->mmu_lock);
while (remain) {
unsigned int vindex = insert_vpfn & 0x1FF;
unsigned int count = KBASE_MMU_PAGE_ENTRIES - vindex;
struct page *p;
register unsigned int num_of_valid_entries;
bool newly_created_pgd = false;
enum kbase_mmu_op_type flush_op;
if (count > remain)
count = remain;
if (!vindex && is_huge_head(*phys))
cur_level = MIDGARD_MMU_LEVEL(2);
else
cur_level = MIDGARD_MMU_BOTTOMLEVEL;
insert_level = cur_level;
/*
* Repeatedly calling mmu_get_lowest_valid_pgd() is clearly
* suboptimal. We don't have to re-parse the whole tree
* each time (just cache the l0-l2 sequence).
* On the other hand, it's only a gain when we map more than
* 256 pages at once (on average). Do we really care?
*/
/* insert_level < cur_level if there's no valid PGD for cur_level and insert_vpn */
err = mmu_get_lowest_valid_pgd(kbdev, mmut, insert_vpfn, cur_level, &insert_level,
&pgd);
if (err) {
dev_err(kbdev->dev, "%s: mmu_get_lowest_valid_pgd() returned error %d",
__func__, err);
goto fail_unlock;
}
/* No valid pgd at cur_level */
if (insert_level != cur_level) {
/* Allocate new pgds for all missing levels from the required level
* down to the lowest valid pgd at insert_level
*/
err = mmu_insert_alloc_pgds(kbdev, mmut, new_pgds, (insert_level + 1),
cur_level);
if (err)
goto fail_unlock;
newly_created_pgd = true;
new_pgds[insert_level] = pgd;
/* If we didn't find an existing valid pgd at cur_level,
* we've now allocated one. The ATE in the next step should
* be inserted in this newly allocated pgd.
*/
pgd = new_pgds[cur_level];
}
p = pfn_to_page(PFN_DOWN(pgd));
pgd_page = kbase_kmap(p);
if (!pgd_page) {
dev_err(kbdev->dev, "%s: kmap failure", __func__);
err = -ENOMEM;
goto fail_unlock_free_pgds;
}
num_of_valid_entries =
mmu_mode->get_num_valid_entries(pgd_page);
if (cur_level == MIDGARD_MMU_LEVEL(2)) {
int level_index = (insert_vpfn >> 9) & 0x1FF;
pgd_page[level_index] =
kbase_mmu_create_ate(kbdev, *phys, flags, cur_level, group_id);
num_of_valid_entries++;
} else {
for (i = 0; i < count; i++) {
unsigned int ofs = vindex + i;
u64 *target = &pgd_page[ofs];
/* Warn if the current page is a valid ATE
* entry. The page table shouldn't have anything
* in the place where we are trying to put a
* new entry. Modification to page table entries
* should be performed with
* kbase_mmu_update_pages()
*/
WARN_ON((*target & 1UL) != 0);
*target = kbase_mmu_create_ate(kbdev,
phys[i], flags, cur_level, group_id);
/* If page migration is enabled, this is the right time
* to update the status of the page.
*/
if (kbase_is_page_migration_enabled() && !ignore_page_migration &&
!is_huge(phys[i]) && !is_partial(phys[i]))
kbase_mmu_progress_migration_on_insert(phys[i], reg, mmut,
insert_vpfn + i);
}
num_of_valid_entries += count;
}
mmu_mode->set_num_valid_entries(pgd_page, num_of_valid_entries);
if (dirty_pgds)
*dirty_pgds |= 1ULL << (newly_created_pgd ? insert_level : cur_level);
/* MMU cache flush operation here will depend on whether bottom level
* PGD is newly created or not.
*
* If bottom level PGD is newly created then no GPU cache maintenance is
* required as the PGD will not exist in GPU cache. Otherwise GPU cache
* maintenance is required for existing PGD.
*/
flush_op = newly_created_pgd ? KBASE_MMU_OP_NONE : KBASE_MMU_OP_FLUSH_PT;
kbase_mmu_sync_pgd(kbdev, mmut->kctx, pgd + (vindex * sizeof(u64)),
kbase_dma_addr(p) + (vindex * sizeof(u64)), count * sizeof(u64),
flush_op);
if (newly_created_pgd) {
err = update_parent_pgds(kbdev, mmut, cur_level, insert_level, insert_vpfn,
new_pgds);
if (err) {
dev_err(kbdev->dev, "%s: update_parent_pgds() failed (%d)",
__func__, err);
kbdev->mmu_mode->entries_invalidate(&pgd_page[vindex], count);
kbase_kunmap(p, pgd_page);
goto fail_unlock_free_pgds;
}
}
phys += count;
insert_vpfn += count;
remain -= count;
kbase_kunmap(p, pgd_page);
}
rt_mutex_unlock(&mmut->mmu_lock);
return 0;
fail_unlock_free_pgds:
/* Free the pgds allocated by us from insert_level+1 to bottom level */
for (l = cur_level; l > insert_level; l--)
kbase_mmu_free_pgd(kbdev, mmut, new_pgds[l]);
fail_unlock:
if (insert_vpfn != start_vpfn) {
/* Invalidate the pages we have partially completed */
mmu_insert_pages_failure_recovery(kbdev, mmut, start_vpfn, insert_vpfn, dirty_pgds,
phys, ignore_page_migration);
}
mmu_flush_invalidate_insert_pages(kbdev, mmut, start_vpfn, nr,
dirty_pgds ? *dirty_pgds : 0xF, CALLER_MMU_ASYNC, true);
kbase_mmu_free_pgds_list(kbdev, mmut);
rt_mutex_unlock(&mmut->mmu_lock);
return err;
}
int kbase_mmu_insert_pages_no_flush(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
const u64 start_vpfn, struct tagged_addr *phys, size_t nr,
unsigned long flags, int const group_id, u64 *dirty_pgds,
struct kbase_va_region *reg)
{
int err;
/* Early out if there is nothing to do */
if (nr == 0)
return 0;
err = mmu_insert_pages_no_flush(kbdev, mmut, start_vpfn, phys, nr, flags, group_id,
dirty_pgds, reg, false);
return err;
}
/*
* Map 'nr' pages pointed to by 'phys' at GPU PFN 'vpfn' for GPU address space
* number 'as_nr'.
*/
int kbase_mmu_insert_pages(struct kbase_device *kbdev, struct kbase_mmu_table *mmut, u64 vpfn,
struct tagged_addr *phys, size_t nr, unsigned long flags, int as_nr,
int const group_id, enum kbase_caller_mmu_sync_info mmu_sync_info,
struct kbase_va_region *reg)
{
int err;
u64 dirty_pgds = 0;
/* Early out if there is nothing to do */
if (nr == 0)
return 0;
err = mmu_insert_pages_no_flush(kbdev, mmut, vpfn, phys, nr, flags, group_id, &dirty_pgds,
reg, false);
if (err)
return err;
mmu_flush_invalidate_insert_pages(kbdev, mmut, vpfn, nr, dirty_pgds, mmu_sync_info, false);
return 0;
}
KBASE_EXPORT_TEST_API(kbase_mmu_insert_pages);
int kbase_mmu_insert_pages_skip_status_update(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut, u64 vpfn,
struct tagged_addr *phys, size_t nr,
unsigned long flags, int as_nr, int const group_id,
enum kbase_caller_mmu_sync_info mmu_sync_info,
struct kbase_va_region *reg)
{
int err;
u64 dirty_pgds = 0;
/* Early out if there is nothing to do */
if (nr == 0)
return 0;
/* Imported allocations don't have metadata and therefore always ignore the
* page migration logic.
*/
err = mmu_insert_pages_no_flush(kbdev, mmut, vpfn, phys, nr, flags, group_id, &dirty_pgds,
reg, true);
if (err)
return err;
mmu_flush_invalidate_insert_pages(kbdev, mmut, vpfn, nr, dirty_pgds, mmu_sync_info, false);
return 0;
}
int kbase_mmu_insert_aliased_pages(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
u64 vpfn, struct tagged_addr *phys, size_t nr,
unsigned long flags, int as_nr, int const group_id,
enum kbase_caller_mmu_sync_info mmu_sync_info,
struct kbase_va_region *reg)
{
int err;
u64 dirty_pgds = 0;
/* Early out if there is nothing to do */
if (nr == 0)
return 0;
/* Memory aliases are always built on top of existing allocations,
* therefore the state of physical pages shall be updated.
*/
err = mmu_insert_pages_no_flush(kbdev, mmut, vpfn, phys, nr, flags, group_id, &dirty_pgds,
reg, false);
if (err)
return err;
mmu_flush_invalidate_insert_pages(kbdev, mmut, vpfn, nr, dirty_pgds, mmu_sync_info, false);
return 0;
}
#if !MALI_USE_CSF
/**
* kbase_mmu_flush_noretain() - Flush and invalidate the GPU caches
* without retaining the kbase context.
* @kctx: The KBase context.
* @vpfn: The virtual page frame number to start the flush on.
* @nr: The number of pages to flush.
*
* As per kbase_mmu_flush_invalidate but doesn't retain the kctx or do any
* other locking.
*/
static void kbase_mmu_flush_noretain(struct kbase_context *kctx, u64 vpfn, size_t nr)
{
struct kbase_device *kbdev = kctx->kbdev;
int err;
/* Calls to this function are inherently asynchronous, with respect to
* MMU operations.
*/
const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_ASYNC;
struct kbase_mmu_hw_op_param op_param;
lockdep_assert_held(&kctx->kbdev->hwaccess_lock);
lockdep_assert_held(&kctx->kbdev->mmu_hw_mutex);
/* Early out if there is nothing to do */
if (nr == 0)
return;
/* flush L2 and unlock the VA (resumes the MMU) */
op_param.vpfn = vpfn;
op_param.nr = nr;
op_param.op = KBASE_MMU_OP_FLUSH_MEM;
op_param.kctx_id = kctx->id;
op_param.mmu_sync_info = mmu_sync_info;
if (mmu_flush_cache_on_gpu_ctrl(kbdev)) {
/* Value used to prevent skipping of any levels when flushing */
op_param.flush_skip_levels = pgd_level_to_skip_flush(0xF);
err = kbase_mmu_hw_do_flush_on_gpu_ctrl(kbdev, &kbdev->as[kctx->as_nr],
&op_param);
} else {
err = kbase_mmu_hw_do_flush_locked(kbdev, &kbdev->as[kctx->as_nr],
&op_param);
}
if (err) {
/* Flush failed to complete, assume the
* GPU has hung and perform a reset to recover
*/
dev_err(kbdev->dev, "Flush for GPU page table update did not complete. Issuing GPU soft-reset to recover");
if (kbase_prepare_to_reset_gpu_locked(kbdev, RESET_FLAGS_NONE))
kbase_reset_gpu_locked(kbdev);
}
}
#endif
void kbase_mmu_update(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut,
int as_nr)
{
lockdep_assert_held(&kbdev->hwaccess_lock);
lockdep_assert_held(&kbdev->mmu_hw_mutex);
KBASE_DEBUG_ASSERT(as_nr != KBASEP_AS_NR_INVALID);
kbdev->mmu_mode->update(kbdev, mmut, as_nr);
}
KBASE_EXPORT_TEST_API(kbase_mmu_update);
void kbase_mmu_disable_as(struct kbase_device *kbdev, int as_nr)
{
lockdep_assert_held(&kbdev->hwaccess_lock);
lockdep_assert_held(&kbdev->mmu_hw_mutex);
kbdev->mmu_mode->disable_as(kbdev, as_nr);
}
#if MALI_USE_CSF
void kbase_mmu_disable(struct kbase_context *kctx)
{
/* Calls to this function are inherently asynchronous, with respect to
* MMU operations.
*/
const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_ASYNC;
struct kbase_device *kbdev = kctx->kbdev;
struct kbase_mmu_hw_op_param op_param = { 0 };
int lock_err, flush_err;
/* ASSERT that the context has a valid as_nr, which is only the case
* when it's scheduled in.
*
* as_nr won't change because the caller has the hwaccess_lock
*/
KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);
lockdep_assert_held(&kctx->kbdev->hwaccess_lock);
lockdep_assert_held(&kctx->kbdev->mmu_hw_mutex);
op_param.vpfn = 0;
op_param.nr = ~0;
op_param.op = KBASE_MMU_OP_FLUSH_MEM;
op_param.kctx_id = kctx->id;
op_param.mmu_sync_info = mmu_sync_info;
#if MALI_USE_CSF
/* 0xF value used to prevent skipping of any levels when flushing */
if (mmu_flush_cache_on_gpu_ctrl(kbdev))
op_param.flush_skip_levels = pgd_level_to_skip_flush(0xF);
#endif
/* lock MMU to prevent existing jobs on GPU from executing while the AS is
* not yet disabled
*/
lock_err = kbase_mmu_hw_do_lock(kbdev, &kbdev->as[kctx->as_nr], &op_param);
if (lock_err)
dev_err(kbdev->dev, "Failed to lock AS %d for ctx %d_%d", kctx->as_nr, kctx->tgid,
kctx->id);
/* Issue the flush command only when L2 cache is in stable power on state.
* Any other state for L2 cache implies that shader cores are powered off,
* which in turn implies there is no execution happening on the GPU.
*/
if (kbdev->pm.backend.l2_state == KBASE_L2_ON) {
flush_err = kbase_gpu_cache_flush_and_busy_wait(kbdev,
GPU_COMMAND_CACHE_CLN_INV_L2_LSC);
if (flush_err)
dev_err(kbdev->dev,
"Failed to flush GPU cache when disabling AS %d for ctx %d_%d",
kctx->as_nr, kctx->tgid, kctx->id);
}
kbdev->mmu_mode->disable_as(kbdev, kctx->as_nr);
if (!lock_err) {
/* unlock the MMU to allow it to resume */
lock_err =
kbase_mmu_hw_do_unlock_no_addr(kbdev, &kbdev->as[kctx->as_nr], &op_param);
if (lock_err)
dev_err(kbdev->dev, "Failed to unlock AS %d for ctx %d_%d", kctx->as_nr,
kctx->tgid, kctx->id);
}
#if !MALI_USE_CSF
/*
* JM GPUs has some L1 read only caches that need to be invalidated
* with START_FLUSH configuration. Purge the MMU disabled kctx from
* the slot_rb tracking field so such invalidation is performed when
* a new katom is executed on the affected slots.
*/
kbase_backend_slot_kctx_purge_locked(kbdev, kctx);
#endif
/* kbase_gpu_cache_flush_and_busy_wait() will reset the GPU on timeout. Only
* reset the GPU if locking or unlocking fails.
*/
if (lock_err)
if (kbase_prepare_to_reset_gpu_locked(kbdev, RESET_FLAGS_NONE))
kbase_reset_gpu_locked(kbdev);
}
#else
void kbase_mmu_disable(struct kbase_context *kctx)
{
/* ASSERT that the context has a valid as_nr, which is only the case
* when it's scheduled in.
*
* as_nr won't change because the caller has the hwaccess_lock
*/
KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);
lockdep_assert_held(&kctx->kbdev->hwaccess_lock);
lockdep_assert_held(&kctx->kbdev->mmu_hw_mutex);
/*
* The address space is being disabled, drain all knowledge of it out
* from the caches as pages and page tables might be freed after this.
*
* The job scheduler code will already be holding the locks and context
* so just do the flush.
*/
kbase_mmu_flush_noretain(kctx, 0, ~0);
kctx->kbdev->mmu_mode->disable_as(kctx->kbdev, kctx->as_nr);
#if !MALI_USE_CSF
/*
* JM GPUs has some L1 read only caches that need to be invalidated
* with START_FLUSH configuration. Purge the MMU disabled kctx from
* the slot_rb tracking field so such invalidation is performed when
* a new katom is executed on the affected slots.
*/
kbase_backend_slot_kctx_purge_locked(kctx->kbdev, kctx);
#endif
}
#endif
KBASE_EXPORT_TEST_API(kbase_mmu_disable);
static void kbase_mmu_update_and_free_parent_pgds(struct kbase_device *kbdev,
struct kbase_mmu_table *mmut, phys_addr_t *pgds,
u64 vpfn, int level,
enum kbase_mmu_op_type flush_op, u64 *dirty_pgds)
{
int current_level;
lockdep_assert_held(&mmut->mmu_lock);
for (current_level = level - 1; current_level >= MIDGARD_MMU_LEVEL(0);
current_level--) {
phys_addr_t current_pgd = pgds[current_level];
struct page *p = phys_to_page(current_pgd);
u64 *current_page = kbase_kmap(p);
unsigned int current_valid_entries =
kbdev->mmu_mode->get_num_valid_entries(current_page);
int index = (vpfn >> ((3 - current_level) * 9)) & 0x1FF;
/* We need to track every level that needs updating */
if (dirty_pgds)
*dirty_pgds |= 1ULL << current_level;
kbdev->mmu_mode->entries_invalidate(&current_page[index], 1);
if (current_valid_entries == 1 &&
current_level != MIDGARD_MMU_LEVEL(0)) {
kbase_kunmap(p, current_page);
/* Ensure the cacheline containing the last valid entry
* of PGD is invalidated from the GPU cache, before the
* PGD page is freed.
*/
kbase_mmu_sync_pgd_gpu(kbdev, mmut->kctx,
current_pgd + (index * sizeof(u64)),
sizeof(u64), flush_op);
kbase_mmu_add_to_free_pgds_list(mmut, p);
} else {
current_valid_entries--;
kbdev->mmu_mode->set_num_valid_entries(
current_page, current_valid_entries);
kbase_kunmap(p, current_page);
kbase_mmu_sync_pgd(kbdev, mmut->kctx, current_pgd + (index * sizeof(u64)),
kbase_dma_addr(p) + (index * sizeof(u64)), sizeof(u64),
flush_op);
break;
}
}
}
/**
* mmu_flush_invalidate_teardown_pages() - Perform flush operation after unmapping pages.
*
* @kbdev: Pointer to kbase device.
* @kctx: Pointer to kbase context.
* @as_nr: Address space number, for GPU cache maintenance operations
* that happen outside a specific kbase context.
* @phys: Array of physical pages to flush.
* @phys_page_nr: Number of physical pages to flush.
* @op_param: Non-NULL pointer to struct containing information about the flush
* operation to perform.
*
* This function will do one of three things:
* 1. Invalidate the MMU caches, followed by a partial GPU cache flush of the
* individual pages that were unmapped if feature is supported on GPU.
* 2. Perform a full GPU cache flush through the GPU_CONTROL interface if feature is
* supported on GPU or,
* 3. Perform a full GPU cache flush through the MMU_CONTROL interface.
*
* When performing a partial GPU cache flush, the number of physical
* pages does not have to be identical to the number of virtual pages on the MMU,
* to support a single physical address flush for an aliased page.
*/
static void mmu_flush_invalidate_teardown_pages(struct kbase_device *kbdev,
struct kbase_context *kctx, int as_nr,
struct tagged_addr *phys, size_t phys_page_nr,
struct kbase_mmu_hw_op_param *op_param)
{
if (!mmu_flush_cache_on_gpu_ctrl(kbdev)) {
/* Full cache flush through the MMU_COMMAND */
mmu_flush_invalidate(kbdev, kctx, as_nr, op_param);
} else if (op_param->op == KBASE_MMU_OP_FLUSH_MEM) {
/* Full cache flush through the GPU_CONTROL */
mmu_flush_invalidate_on_gpu_ctrl(kbdev, kctx, as_nr, op_param);
}
#if MALI_USE_CSF
else {
/* Partial GPU cache flush with MMU cache invalidation */
unsigned long irq_flags;
unsigned int i;
bool flush_done = false;
mmu_invalidate(kbdev, kctx, as_nr, op_param);
for (i = 0; !flush_done && i < phys_page_nr; i++) {
spin_lock_irqsave(&kbdev->hwaccess_lock, irq_flags);
if (kbdev->pm.backend.gpu_ready && (!kctx || kctx->as_nr >= 0))
mmu_flush_pa_range(kbdev, as_phys_addr_t(phys[i]), PAGE_SIZE,
KBASE_MMU_OP_FLUSH_MEM);
else
flush_done = true;
spin_unlock_irqrestore(&kbdev->hwaccess_lock, irq_flags);
}
}
#endif
}
static int kbase_mmu_teardown_pgd_pages(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
u64 vpfn, size_t nr, u64 *dirty_pgds,
struct list_head *free_pgds_list,
enum kbase_mmu_op_type flush_op)
{
struct kbase_mmu_mode const *mmu_mode = kbdev->mmu_mode;
lockdep_assert_held(&mmut->mmu_lock);
kbase_mmu_reset_free_pgds_list(mmut);
while (nr) {
unsigned int index = vpfn & 0x1FF;
unsigned int count = KBASE_MMU_PAGE_ENTRIES - index;
unsigned int pcount;
int level;
u64 *page;
phys_addr_t pgds[MIDGARD_MMU_BOTTOMLEVEL + 1];
register unsigned int num_of_valid_entries;
phys_addr_t pgd = mmut->pgd;
struct page *p = phys_to_page(pgd);
if (count > nr)
count = nr;
/* need to check if this is a 2MB page or a 4kB */
for (level = MIDGARD_MMU_TOPLEVEL;
level <= MIDGARD_MMU_BOTTOMLEVEL; level++) {
phys_addr_t next_pgd;
index = (vpfn >> ((3 - level) * 9)) & 0x1FF;
page = kbase_kmap(p);
if (mmu_mode->ate_is_valid(page[index], level))
break; /* keep the mapping */
else if (!mmu_mode->pte_is_valid(page[index], level)) {
/* nothing here, advance */
switch (level) {
case MIDGARD_MMU_LEVEL(0):
count = 134217728;
break;
case MIDGARD_MMU_LEVEL(1):
count = 262144;
break;
case MIDGARD_MMU_LEVEL(2):
count = 512;
break;
case MIDGARD_MMU_LEVEL(3):
count = 1;
break;
}
if (count > nr)
count = nr;
goto next;
}
next_pgd = mmu_mode->pte_to_phy_addr(
kbdev->mgm_dev->ops.mgm_pte_to_original_pte(
kbdev->mgm_dev, MGM_DEFAULT_PTE_GROUP, level, page[index]));
kbase_kunmap(p, page);
pgds[level] = pgd;
pgd = next_pgd;
p = phys_to_page(pgd);
}
switch (level) {
case MIDGARD_MMU_LEVEL(0):
case MIDGARD_MMU_LEVEL(1):
dev_warn(kbdev->dev, "%s: No support for ATEs at level %d", __func__,
level);
kbase_kunmap(p, page);
goto out;
case MIDGARD_MMU_LEVEL(2):
/* can only teardown if count >= 512 */
if (count >= 512) {
pcount = 1;
} else {
dev_warn(
kbdev->dev,
"%s: limiting teardown as it tries to do a partial 2MB teardown, need 512, but have %d to tear down",
__func__, count);
pcount = 0;
}
break;
case MIDGARD_MMU_BOTTOMLEVEL:
/* page count is the same as the logical count */
pcount = count;
break;
default:
dev_err(kbdev->dev, "%s: found non-mapped memory, early out", __func__);
vpfn += count;
nr -= count;
continue;
}
if (pcount > 0)
*dirty_pgds |= 1ULL << level;
num_of_valid_entries = mmu_mode->get_num_valid_entries(page);
if (WARN_ON_ONCE(num_of_valid_entries < pcount))
num_of_valid_entries = 0;
else
num_of_valid_entries -= pcount;
/* Invalidate the entries we added */
mmu_mode->entries_invalidate(&page[index], pcount);
if (!num_of_valid_entries) {
kbase_kunmap(p, page);
/* Ensure the cacheline(s) containing the last valid entries
* of PGD is invalidated from the GPU cache, before the
* PGD page is freed.
*/
kbase_mmu_sync_pgd_gpu(kbdev, mmut->kctx,
pgd + (index * sizeof(u64)),
pcount * sizeof(u64), flush_op);
kbase_mmu_add_to_free_pgds_list(mmut, p);
kbase_mmu_update_and_free_parent_pgds(kbdev, mmut, pgds, vpfn, level,
flush_op, dirty_pgds);
vpfn += count;
nr -= count;
continue;
}
mmu_mode->set_num_valid_entries(page, num_of_valid_entries);
kbase_mmu_sync_pgd(kbdev, mmut->kctx, pgd + (index * sizeof(u64)),
kbase_dma_addr(p) + (index * sizeof(u64)), pcount * sizeof(u64),
flush_op);
next:
kbase_kunmap(p, page);
vpfn += count;
nr -= count;
}
out:
return 0;
}
/**
* mmu_teardown_pages - Remove GPU virtual addresses from the MMU page table
*
* @kbdev: Pointer to kbase device.
* @mmut: Pointer to GPU MMU page table.
* @vpfn: Start page frame number of the GPU virtual pages to unmap.
* @phys: Array of physical pages currently mapped to the virtual
* pages to unmap, or NULL. This is used for GPU cache maintenance
* and page migration support.
* @nr_phys_pages: Number of physical pages to flush.
* @nr_virt_pages: Number of virtual pages whose PTEs should be destroyed.
* @as_nr: Address space number, for GPU cache maintenance operations
* that happen outside a specific kbase context.
* @ignore_page_migration: Whether page migration metadata should be ignored.
*
* We actually discard the ATE and free the page table pages if no valid entries
* exist in the PGD.
*
* IMPORTANT: This uses kbasep_js_runpool_release_ctx() when the context is
* currently scheduled into the runpool, and so potentially uses a lot of locks.
* These locks must be taken in the correct order with respect to others
* already held by the caller. Refer to kbasep_js_runpool_release_ctx() for more
* information.
*
* The @p phys pointer to physical pages is not necessary for unmapping virtual memory,
* but it is used for fine-grained GPU cache maintenance. If @p phys is NULL,
* GPU cache maintenance will be done as usual; that is, invalidating the whole GPU caches
* instead of specific physical address ranges.
*
* Return: 0 on success, otherwise an error code.
*/
static int mmu_teardown_pages(struct kbase_device *kbdev, struct kbase_mmu_table *mmut, u64 vpfn,
struct tagged_addr *phys, size_t nr_phys_pages, size_t nr_virt_pages,
int as_nr, bool ignore_page_migration)
{
u64 start_vpfn = vpfn;
enum kbase_mmu_op_type flush_op = KBASE_MMU_OP_NONE;
struct kbase_mmu_hw_op_param op_param;
int err = -EFAULT;
u64 dirty_pgds = 0;
LIST_HEAD(free_pgds_list);
/* Calls to this function are inherently asynchronous, with respect to
* MMU operations.
*/
const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_ASYNC;
/* This function performs two operations: MMU maintenance and flushing
* the caches. To ensure internal consistency between the caches and the
* MMU, it does not make sense to be able to flush only the physical pages
* from the cache and keep the PTE, nor does it make sense to use this
* function to remove a PTE and keep the physical pages in the cache.
*
* However, we have legitimate cases where we can try to tear down a mapping
* with zero virtual and zero physical pages, so we must have the following
* behaviour:
* - if both physical and virtual page counts are zero, return early
* - if either physical and virtual page counts are zero, return early
* - if there are fewer physical pages than virtual pages, return -EINVAL
*/
if (unlikely(nr_virt_pages == 0 || nr_phys_pages == 0))
return 0;
if (unlikely(nr_virt_pages < nr_phys_pages))
return -EINVAL;
/* MMU cache flush strategy depends on the number of pages to unmap. In both cases
* the operation is invalidate but the granularity of cache maintenance may change
* according to the situation.
*
* If GPU control command operations are present and the number of pages is "small",
* then the optimal strategy is flushing on the physical address range of the pages
* which are affected by the operation. That implies both the PGDs which are modified
* or removed from the page table and the physical pages which are freed from memory.
*
* Otherwise, there's no alternative to invalidating the whole GPU cache.
*/
if (mmu_flush_cache_on_gpu_ctrl(kbdev) && phys &&
nr_phys_pages <= KBASE_PA_RANGE_THRESHOLD_NR_PAGES)
flush_op = KBASE_MMU_OP_FLUSH_PT;
if (!rt_mutex_trylock(&mmut->mmu_lock)) {
/*
* Sometimes, mmu_lock takes long time to be released.
* In that case, kswapd is stuck until it can hold
* the lock. Instead, just bail out here so kswapd
* could reclaim other pages.
*/
if (current_is_kswapd())
return -EBUSY;
rt_mutex_lock(&mmut->mmu_lock);
}
err = kbase_mmu_teardown_pgd_pages(kbdev, mmut, vpfn, nr_virt_pages, &dirty_pgds,
&free_pgds_list, flush_op);
/* Set up MMU operation parameters. See above about MMU cache flush strategy. */
op_param = (struct kbase_mmu_hw_op_param){
.vpfn = start_vpfn,
.nr = nr_virt_pages,
.mmu_sync_info = mmu_sync_info,
.kctx_id = mmut->kctx ? mmut->kctx->id : 0xFFFFFFFF,
.op = (flush_op == KBASE_MMU_OP_FLUSH_PT) ? KBASE_MMU_OP_FLUSH_PT :
KBASE_MMU_OP_FLUSH_MEM,
.flush_skip_levels = pgd_level_to_skip_flush(dirty_pgds),
};
mmu_flush_invalidate_teardown_pages(kbdev, mmut->kctx, as_nr, phys, nr_phys_pages,
&op_param);
/* If page migration is enabled: the status of all physical pages involved
* shall be updated, unless they are not movable. Their status shall be
* updated before releasing the lock to protect against concurrent
* requests to migrate the pages, if they have been isolated.
*/
if (kbase_is_page_migration_enabled() && phys && !ignore_page_migration)
kbase_mmu_progress_migration_on_teardown(kbdev, phys, nr_phys_pages);
kbase_mmu_free_pgds_list(kbdev, mmut);
rt_mutex_unlock(&mmut->mmu_lock);
return err;
}
int kbase_mmu_teardown_pages(struct kbase_device *kbdev, struct kbase_mmu_table *mmut, u64 vpfn,
struct tagged_addr *phys, size_t nr_phys_pages, size_t nr_virt_pages,
int as_nr)
{
return mmu_teardown_pages(kbdev, mmut, vpfn, phys, nr_phys_pages, nr_virt_pages, as_nr,
false);
}
int kbase_mmu_teardown_imported_pages(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
u64 vpfn, struct tagged_addr *phys, size_t nr_phys_pages,
size_t nr_virt_pages, int as_nr)
{
return mmu_teardown_pages(kbdev, mmut, vpfn, phys, nr_phys_pages, nr_virt_pages, as_nr,
true);
}
/**
* kbase_mmu_update_pages_no_flush() - Update phy pages and attributes data in GPU
* page table entries
*
* @kbdev: Pointer to kbase device.
* @mmut: The involved MMU table
* @vpfn: Virtual PFN (Page Frame Number) of the first page to update
* @phys: Pointer to the array of tagged physical addresses of the physical
* pages that are pointed to by the page table entries (that need to
* be updated). The pointer should be within the reg->gpu_alloc->pages
* array.
* @nr: Number of pages to update
* @flags: Flags
* @group_id: The physical memory group in which the page was allocated.
* Valid range is 0..(MEMORY_GROUP_MANAGER_NR_GROUPS-1).
* @dirty_pgds: Flags to track every level where a PGD has been updated.
*
* This will update page table entries that already exist on the GPU based on
* new flags and replace any existing phy pages that are passed (the PGD pages
* remain unchanged). It is used as a response to the changes of phys as well
* as the the memory attributes.
*
* The caller is responsible for validating the memory attributes.
*
* Return: 0 if the attributes data in page table entries were updated
* successfully, otherwise an error code.
*/
int kbase_mmu_update_pages_no_flush(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
u64 vpfn, struct tagged_addr *phys, size_t nr,
unsigned long flags, int const group_id, u64 *dirty_pgds)
{
phys_addr_t pgd;
u64 *pgd_page;
int err;
KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE));
/* Early out if there is nothing to do */
if (nr == 0)
return 0;
rt_mutex_lock(&mmut->mmu_lock);
while (nr) {
unsigned int i;
unsigned int index = vpfn & 0x1FF;
size_t count = KBASE_MMU_PAGE_ENTRIES - index;
struct page *p;
register unsigned int num_of_valid_entries;
int cur_level = MIDGARD_MMU_BOTTOMLEVEL;
if (count > nr)
count = nr;
if (is_huge(*phys) && (index == index_in_large_page(*phys)))
cur_level = MIDGARD_MMU_LEVEL(2);
err = mmu_get_pgd_at_level(kbdev, mmut, vpfn, cur_level, &pgd);
if (WARN_ON(err))
goto fail_unlock;
p = pfn_to_page(PFN_DOWN(pgd));
pgd_page = kbase_kmap(p);
if (!pgd_page) {
dev_warn(kbdev->dev, "kmap failure on update_pages");
err = -ENOMEM;
goto fail_unlock;
}
num_of_valid_entries =
kbdev->mmu_mode->get_num_valid_entries(pgd_page);
if (cur_level == MIDGARD_MMU_LEVEL(2)) {
int level_index = (vpfn >> 9) & 0x1FF;
struct tagged_addr *target_phys =
phys - index_in_large_page(*phys);
#ifdef CONFIG_MALI_DEBUG
WARN_ON_ONCE(!kbdev->mmu_mode->ate_is_valid(
pgd_page[level_index], MIDGARD_MMU_LEVEL(2)));
#endif
pgd_page[level_index] = kbase_mmu_create_ate(kbdev,
*target_phys, flags, MIDGARD_MMU_LEVEL(2),
group_id);
kbase_mmu_sync_pgd(kbdev, mmut->kctx, pgd + (level_index * sizeof(u64)),
kbase_dma_addr(p) + (level_index * sizeof(u64)),
sizeof(u64), KBASE_MMU_OP_NONE);
} else {
for (i = 0; i < count; i++) {
#ifdef CONFIG_MALI_DEBUG
WARN_ON_ONCE(!kbdev->mmu_mode->ate_is_valid(
pgd_page[index + i],
MIDGARD_MMU_BOTTOMLEVEL));
#endif
pgd_page[index + i] = kbase_mmu_create_ate(kbdev,
phys[i], flags, MIDGARD_MMU_BOTTOMLEVEL,
group_id);
}
/* MMU cache flush strategy is NONE because GPU cache maintenance
* will be done by the caller.
*/
kbase_mmu_sync_pgd(kbdev, mmut->kctx, pgd + (index * sizeof(u64)),
kbase_dma_addr(p) + (index * sizeof(u64)),
count * sizeof(u64), KBASE_MMU_OP_NONE);
}
kbdev->mmu_mode->set_num_valid_entries(pgd_page,
num_of_valid_entries);
if (dirty_pgds && count > 0)
*dirty_pgds |= 1ULL << cur_level;
phys += count;
vpfn += count;
nr -= count;
kbase_kunmap(p, pgd_page);
}
rt_mutex_unlock(&mmut->mmu_lock);
return 0;
fail_unlock:
rt_mutex_unlock(&mmut->mmu_lock);
return err;
}
static int kbase_mmu_update_pages_common(struct kbase_device *kbdev, struct kbase_context *kctx,
u64 vpfn, struct tagged_addr *phys, size_t nr,
unsigned long flags, int const group_id)
{
int err;
u64 dirty_pgds = 0;
struct kbase_mmu_table *mmut;
#if !MALI_USE_CSF
if (unlikely(kctx == NULL))
return -EINVAL;
mmut = &kctx->mmu;
#else
mmut = kctx ? &kctx->mmu : &kbdev->csf.mcu_mmu;
#endif
err = kbase_mmu_update_pages_no_flush(kbdev, mmut, vpfn, phys, nr, flags, group_id,
&dirty_pgds);
kbase_mmu_flush_invalidate_update_pages(kbdev, kctx, vpfn, nr, dirty_pgds);
return err;
}
void kbase_mmu_flush_invalidate_update_pages(struct kbase_device *kbdev, struct kbase_context *kctx, u64 vpfn,
size_t nr, u64 dirty_pgds)
{
struct kbase_mmu_hw_op_param op_param;
/* Calls to this function are inherently asynchronous, with respect to
* MMU operations.
*/
const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_ASYNC;
int as_nr;
#if !MALI_USE_CSF
if (unlikely(kctx == NULL))
return;
as_nr = kctx->as_nr;
#else
as_nr = kctx ? kctx->as_nr : MCU_AS_NR;
#endif
op_param = (const struct kbase_mmu_hw_op_param){
.vpfn = vpfn,
.nr = nr,
.op = KBASE_MMU_OP_FLUSH_MEM,
.kctx_id = kctx ? kctx->id : 0xFFFFFFFF,
.mmu_sync_info = mmu_sync_info,
.flush_skip_levels = pgd_level_to_skip_flush(dirty_pgds),
};
if (mmu_flush_cache_on_gpu_ctrl(kbdev))
mmu_flush_invalidate_on_gpu_ctrl(kbdev, kctx, as_nr, &op_param);
else
mmu_flush_invalidate(kbdev, kctx, as_nr, &op_param);
}
int kbase_mmu_update_pages(struct kbase_context *kctx, u64 vpfn, struct tagged_addr *phys,
size_t nr, unsigned long flags, int const group_id)
{
if (unlikely(kctx == NULL))
return -EINVAL;
return kbase_mmu_update_pages_common(kctx->kbdev, kctx, vpfn, phys, nr, flags, group_id);
}
#if MALI_USE_CSF
int kbase_mmu_update_csf_mcu_pages(struct kbase_device *kbdev, u64 vpfn, struct tagged_addr *phys,
size_t nr, unsigned long flags, int const group_id)
{
return kbase_mmu_update_pages_common(kbdev, NULL, vpfn, phys, nr, flags, group_id);
}
#endif /* MALI_USE_CSF */
static void mmu_page_migration_transaction_begin(struct kbase_device *kbdev)
{
lockdep_assert_held(&kbdev->hwaccess_lock);
WARN_ON_ONCE(kbdev->mmu_page_migrate_in_progress);
kbdev->mmu_page_migrate_in_progress = true;
}
static void mmu_page_migration_transaction_end(struct kbase_device *kbdev)
{
lockdep_assert_held(&kbdev->hwaccess_lock);
WARN_ON_ONCE(!kbdev->mmu_page_migrate_in_progress);
kbdev->mmu_page_migrate_in_progress = false;
/* Invoke the PM state machine, as the MMU page migration session
* may have deferred a transition in L2 state machine.
*/
kbase_pm_update_state(kbdev);
}
int kbase_mmu_migrate_page(struct tagged_addr old_phys, struct tagged_addr new_phys,
dma_addr_t old_dma_addr, dma_addr_t new_dma_addr, int level)
{
struct kbase_page_metadata *page_md = kbase_page_private(as_page(old_phys));
struct kbase_mmu_hw_op_param op_param;
struct kbase_mmu_table *mmut = (level == MIDGARD_MMU_BOTTOMLEVEL) ?
page_md->data.mapped.mmut :
page_md->data.pt_mapped.mmut;
struct kbase_device *kbdev;
phys_addr_t pgd;
u64 *old_page, *new_page, *pgd_page, *target, vpfn;
int index, check_state, ret = 0;
unsigned long hwaccess_flags = 0;
unsigned int num_of_valid_entries;
u8 vmap_count = 0;
/* If page migration support is not compiled in, return with fault */
if (!IS_ENABLED(CONFIG_PAGE_MIGRATION_SUPPORT))
return -EINVAL;
/* Due to the hard binding of mmu_command_instr with kctx_id via kbase_mmu_hw_op_param,
* here we skip the no kctx case, which is only used with MCU's mmut.
*/
if (!mmut->kctx)
return -EINVAL;
if (level > MIDGARD_MMU_BOTTOMLEVEL)
return -EINVAL;
else if (level == MIDGARD_MMU_BOTTOMLEVEL)
vpfn = page_md->data.mapped.vpfn;
else
vpfn = PGD_VPFN_LEVEL_GET_VPFN(page_md->data.pt_mapped.pgd_vpfn_level);
kbdev = mmut->kctx->kbdev;
index = (vpfn >> ((3 - level) * 9)) & 0x1FF;
/* Create all mappings before copying content.
* This is done as early as possible because it is the only operation that may
* fail. It is possible to do this before taking any locks because the
* pages to migrate are not going to change and even the parent PGD is not
* going to be affected by any other concurrent operation, since the page
* has been isolated before migration and therefore it cannot disappear in
* the middle of this function.
*/
old_page = kbase_kmap(as_page(old_phys));
if (!old_page) {
dev_warn(kbdev->dev, "%s: kmap failure for old page.", __func__);
ret = -EINVAL;
goto old_page_map_error;
}
new_page = kbase_kmap(as_page(new_phys));
if (!new_page) {
dev_warn(kbdev->dev, "%s: kmap failure for new page.", __func__);
ret = -EINVAL;
goto new_page_map_error;
}
/* GPU cache maintenance affects both memory content and page table,
* but at two different stages. A single virtual memory page is affected
* by the migration.
*
* Notice that the MMU maintenance is done in the following steps:
*
* 1) The MMU region is locked without performing any other operation.
* This lock must cover the entire migration process, in order to
* prevent any GPU access to the virtual page whose physical page
* is being migrated.
* 2) Immediately after locking: the MMU region content is flushed via
* GPU control while the lock is taken and without unlocking.
* The region must stay locked for the duration of the whole page
* migration procedure.
* This is necessary to make sure that pending writes to the old page
* are finalized before copying content to the new page.
* 3) Before unlocking: changes to the page table are flushed.
* Finer-grained GPU control operations are used if possible, otherwise
* the whole GPU cache shall be flushed again.
* This is necessary to make sure that the GPU accesses the new page
* after migration.
* 4) The MMU region is unlocked.
*/
#define PGD_VPFN_MASK(level) (~((((u64)1) << ((3 - level) * 9)) - 1))
op_param.mmu_sync_info = CALLER_MMU_ASYNC;
op_param.kctx_id = mmut->kctx->id;
op_param.vpfn = vpfn & PGD_VPFN_MASK(level);
op_param.nr = 1 << ((3 - level) * 9);
op_param.op = KBASE_MMU_OP_FLUSH_PT;
/* When level is not MIDGARD_MMU_BOTTOMLEVEL, it is assumed PGD page migration */
op_param.flush_skip_levels = (level == MIDGARD_MMU_BOTTOMLEVEL) ?
pgd_level_to_skip_flush(1ULL << level) :
pgd_level_to_skip_flush(3ULL << level);
rt_mutex_lock(&mmut->mmu_lock);
/* The state was evaluated before entering this function, but it could
* have changed before the mmu_lock was taken. However, the state
* transitions which are possible at this point are only two, and in both
* cases it is a stable state progressing to a "free in progress" state.
*
* After taking the mmu_lock the state can no longer change: read it again
* and make sure that it hasn't changed before continuing.
*/
spin_lock(&page_md->migrate_lock);
check_state = PAGE_STATUS_GET(page_md->status);
if (level == MIDGARD_MMU_BOTTOMLEVEL)
vmap_count = page_md->vmap_count;
spin_unlock(&page_md->migrate_lock);
if (level == MIDGARD_MMU_BOTTOMLEVEL) {
if (check_state != ALLOCATED_MAPPED) {
dev_dbg(kbdev->dev,
"%s: state changed to %d (was %d), abort page migration", __func__,
check_state, ALLOCATED_MAPPED);
ret = -EAGAIN;
goto page_state_change_out;
} else if (vmap_count > 0) {
dev_dbg(kbdev->dev, "%s: page was multi-mapped, abort page migration",
__func__);
ret = -EAGAIN;
goto page_state_change_out;
}
} else {
if (check_state != PT_MAPPED) {
dev_dbg(kbdev->dev,
"%s: state changed to %d (was %d), abort PGD page migration",
__func__, check_state, PT_MAPPED);
WARN_ON_ONCE(check_state != FREE_PT_ISOLATED_IN_PROGRESS);
ret = -EAGAIN;
goto page_state_change_out;
}
}
ret = mmu_get_pgd_at_level(kbdev, mmut, vpfn, level, &pgd);
if (ret) {
dev_err(kbdev->dev, "%s: failed to find PGD for old page.", __func__);
goto get_pgd_at_level_error;
}
pgd_page = kbase_kmap(phys_to_page(pgd));
if (!pgd_page) {
dev_warn(kbdev->dev, "%s: kmap failure for PGD page.", __func__);
ret = -EINVAL;
goto pgd_page_map_error;
}
mutex_lock(&kbdev->mmu_hw_mutex);
/* Lock MMU region and flush GPU cache by using GPU control,
* in order to keep MMU region locked.
*/
spin_lock_irqsave(&kbdev->hwaccess_lock, hwaccess_flags);
if (unlikely(!kbase_pm_l2_allow_mmu_page_migration(kbdev))) {
/* Defer the migration as L2 is in a transitional phase */
spin_unlock_irqrestore(&kbdev->hwaccess_lock, hwaccess_flags);
mutex_unlock(&kbdev->mmu_hw_mutex);
dev_dbg(kbdev->dev, "%s: L2 in transtion, abort PGD page migration", __func__);
ret = -EAGAIN;
goto l2_state_defer_out;
}
/* Prevent transitional phases in L2 by starting the transaction */
mmu_page_migration_transaction_begin(kbdev);
if (kbdev->pm.backend.gpu_ready && mmut->kctx->as_nr >= 0) {
int as_nr = mmut->kctx->as_nr;
struct kbase_as *as = &kbdev->as[as_nr];
ret = kbase_mmu_hw_do_lock(kbdev, as, &op_param);
if (!ret) {
ret = kbase_gpu_cache_flush_and_busy_wait(
kbdev, GPU_COMMAND_CACHE_CLN_INV_L2_LSC);
}
if (ret)
mmu_page_migration_transaction_end(kbdev);
}
spin_unlock_irqrestore(&kbdev->hwaccess_lock, hwaccess_flags);
if (ret < 0) {
mutex_unlock(&kbdev->mmu_hw_mutex);
dev_err(kbdev->dev, "%s: failed to lock MMU region or flush GPU cache", __func__);
goto undo_mappings;
}
/* Copy memory content.
*
* It is necessary to claim the ownership of the DMA buffer for the old
* page before performing the copy, to make sure of reading a consistent
* version of its content, before copying. After the copy, ownership of
* the DMA buffer for the new page is given to the GPU in order to make
* the content visible to potential GPU access that may happen as soon as
* this function releases the lock on the MMU region.
*/
dma_sync_single_for_cpu(kbdev->dev, old_dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
memcpy(new_page, old_page, PAGE_SIZE);
dma_sync_single_for_device(kbdev->dev, new_dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
/* Remap GPU virtual page.
*
* This code rests on the assumption that page migration is only enabled
* for 4 kB pages, that necessarily live in the bottom level of the MMU
* page table. For this reason, the PGD level tells us inequivocably
* whether the page being migrated is a "content page" or another PGD
* of the page table:
*
* - Bottom level implies ATE (Address Translation Entry)
* - Any other level implies PTE (Page Table Entry)
*
* The current implementation doesn't handle the case of a level 0 PGD,
* that is: the root PGD of the page table.
*/
target = &pgd_page[index];
/* Certain entries of a page table page encode the count of valid entries
* present in that page. So need to save & restore the count information
* when updating the PTE/ATE to point to the new page.
*/
num_of_valid_entries = kbdev->mmu_mode->get_num_valid_entries(pgd_page);
if (level == MIDGARD_MMU_BOTTOMLEVEL) {
WARN_ON_ONCE((*target & 1UL) == 0);
*target =
kbase_mmu_create_ate(kbdev, new_phys, page_md->data.mapped.reg->flags,
level, page_md->data.mapped.reg->gpu_alloc->group_id);
} else {
u64 managed_pte;
#ifdef CONFIG_MALI_DEBUG
/* The PTE should be pointing to the page being migrated */
WARN_ON_ONCE(as_phys_addr_t(old_phys) != kbdev->mmu_mode->pte_to_phy_addr(
kbdev->mgm_dev->ops.mgm_pte_to_original_pte(
kbdev->mgm_dev, MGM_DEFAULT_PTE_GROUP, level, pgd_page[index])));
#endif
kbdev->mmu_mode->entry_set_pte(&managed_pte, as_phys_addr_t(new_phys));
*target = kbdev->mgm_dev->ops.mgm_update_gpu_pte(
kbdev->mgm_dev, MGM_DEFAULT_PTE_GROUP, level, managed_pte);
}
kbdev->mmu_mode->set_num_valid_entries(pgd_page, num_of_valid_entries);
/* This function always updates a single entry inside an existing PGD,
* therefore cache maintenance is necessary and affects a single entry.
*/
kbase_mmu_sync_pgd(kbdev, mmut->kctx, pgd + (index * sizeof(u64)),
kbase_dma_addr(phys_to_page(pgd)) + (index * sizeof(u64)), sizeof(u64),
KBASE_MMU_OP_FLUSH_PT);
/* Unlock MMU region.
*
* Notice that GPUs which don't issue flush commands via GPU control
* still need an additional GPU cache flush here, this time only
* for the page table, because the function call above to sync PGDs
* won't have any effect on them.
*/
spin_lock_irqsave(&kbdev->hwaccess_lock, hwaccess_flags);
if (kbdev->pm.backend.gpu_ready && mmut->kctx->as_nr >= 0) {
int as_nr = mmut->kctx->as_nr;
struct kbase_as *as = &kbdev->as[as_nr];
if (mmu_flush_cache_on_gpu_ctrl(kbdev)) {
ret = kbase_mmu_hw_do_unlock(kbdev, as, &op_param);
} else {
ret = kbase_gpu_cache_flush_and_busy_wait(kbdev,
GPU_COMMAND_CACHE_CLN_INV_L2);
if (!ret)
ret = kbase_mmu_hw_do_unlock_no_addr(kbdev, as, &op_param);
}
}
spin_unlock_irqrestore(&kbdev->hwaccess_lock, hwaccess_flags);
/* Releasing locks before checking the migration transaction error state */
mutex_unlock(&kbdev->mmu_hw_mutex);
spin_lock_irqsave(&kbdev->hwaccess_lock, hwaccess_flags);
/* Release the transition prevention in L2 by ending the transaction */
mmu_page_migration_transaction_end(kbdev);
spin_unlock_irqrestore(&kbdev->hwaccess_lock, hwaccess_flags);
/* Checking the final migration transaction error state */
if (ret < 0) {
dev_err(kbdev->dev, "%s: failed to unlock MMU region.", __func__);
goto undo_mappings;
}
/* Undertaking metadata transfer, while we are holding the mmu_lock */
spin_lock(&page_md->migrate_lock);
if (level == MIDGARD_MMU_BOTTOMLEVEL) {
size_t page_array_index =
page_md->data.mapped.vpfn - page_md->data.mapped.reg->start_pfn;
WARN_ON(PAGE_STATUS_GET(page_md->status) != ALLOCATED_MAPPED);
/* Replace page in array of pages of the physical allocation. */
page_md->data.mapped.reg->gpu_alloc->pages[page_array_index] = new_phys;
}
/* Update the new page dma_addr with the transferred metadata from the old_page */
page_md->dma_addr = new_dma_addr;
page_md->status = PAGE_ISOLATE_SET(page_md->status, 0);
spin_unlock(&page_md->migrate_lock);
set_page_private(as_page(new_phys), (unsigned long)page_md);
/* Old page metatdata pointer cleared as it now owned by the new page */
set_page_private(as_page(old_phys), 0);
l2_state_defer_out:
kbase_kunmap(phys_to_page(pgd), pgd_page);
pgd_page_map_error:
get_pgd_at_level_error:
page_state_change_out:
rt_mutex_unlock(&mmut->mmu_lock);
kbase_kunmap(as_page(new_phys), new_page);
new_page_map_error:
kbase_kunmap(as_page(old_phys), old_page);
old_page_map_error:
return ret;
undo_mappings:
/* Unlock the MMU table and undo mappings. */
rt_mutex_unlock(&mmut->mmu_lock);
kbase_kunmap(phys_to_page(pgd), pgd_page);
kbase_kunmap(as_page(new_phys), new_page);
kbase_kunmap(as_page(old_phys), old_page);
return ret;
}
static void mmu_teardown_level(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
phys_addr_t pgd, unsigned int level)
{
u64 *pgd_page;
int i;
struct memory_group_manager_device *mgm_dev = kbdev->mgm_dev;
struct kbase_mmu_mode const *mmu_mode = kbdev->mmu_mode;
u64 *pgd_page_buffer = NULL;
struct page *p = phys_to_page(pgd);
lockdep_assert_held(&mmut->mmu_lock);
pgd_page = kbase_kmap_atomic(p);
/* kmap_atomic should NEVER fail. */
if (WARN_ON_ONCE(pgd_page == NULL))
return;
if (level < MIDGARD_MMU_BOTTOMLEVEL) {
/* Copy the page to our preallocated buffer so that we can minimize
* kmap_atomic usage
*/
pgd_page_buffer = mmut->scratch_mem.teardown_pages.levels[level];
memcpy(pgd_page_buffer, pgd_page, PAGE_SIZE);
}
/* When page migration is enabled, kbase_region_tracker_term() would ensure
* there are no pages left mapped on the GPU for a context. Hence the count
* of valid entries is expected to be zero here.
*/
if (kbase_is_page_migration_enabled() && mmut->kctx)
WARN_ON_ONCE(kbdev->mmu_mode->get_num_valid_entries(pgd_page));
/* Invalidate page after copying */
mmu_mode->entries_invalidate(pgd_page, KBASE_MMU_PAGE_ENTRIES);
kbase_kunmap_atomic(pgd_page);
pgd_page = pgd_page_buffer;
if (level < MIDGARD_MMU_BOTTOMLEVEL) {
for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) {
if (mmu_mode->pte_is_valid(pgd_page[i], level)) {
phys_addr_t target_pgd = mmu_mode->pte_to_phy_addr(
mgm_dev->ops.mgm_pte_to_original_pte(mgm_dev,
MGM_DEFAULT_PTE_GROUP,
level, pgd_page[i]));
mmu_teardown_level(kbdev, mmut, target_pgd, level + 1);
}
}
}
kbase_mmu_free_pgd(kbdev, mmut, pgd);
}
static void kbase_mmu_mark_non_movable(struct page *page)
{
struct kbase_page_metadata *page_md;
if (!kbase_is_page_migration_enabled())
return;
page_md = kbase_page_private(page);
spin_lock(&page_md->migrate_lock);
page_md->status = PAGE_STATUS_SET(page_md->status, NOT_MOVABLE);
if (IS_PAGE_MOVABLE(page_md->status))
page_md->status = PAGE_MOVABLE_CLEAR(page_md->status);
spin_unlock(&page_md->migrate_lock);
}
int kbase_mmu_init(struct kbase_device *const kbdev,
struct kbase_mmu_table *const mmut, struct kbase_context *const kctx,
int const group_id)
{
if (WARN_ON(group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS) ||
WARN_ON(group_id < 0))
return -EINVAL;
compiletime_assert(KBASE_MEM_ALLOC_MAX_SIZE <= (((8ull << 30) >> PAGE_SHIFT)),
"List of free PGDs may not be large enough.");
compiletime_assert(MAX_PAGES_FOR_FREE_PGDS >= MIDGARD_MMU_BOTTOMLEVEL,
"Array of MMU levels is not large enough.");
mmut->group_id = group_id;
rt_mutex_init(&mmut->mmu_lock);
mmut->kctx = kctx;
mmut->pgd = KBASE_MMU_INVALID_PGD_ADDRESS;
/* We allocate pages into the kbdev memory pool, then
* kbase_mmu_alloc_pgd will allocate out of that pool. This is done to
* avoid allocations from the kernel happening with the lock held.
*/
while (mmut->pgd == KBASE_MMU_INVALID_PGD_ADDRESS) {
int err;
err = kbase_mem_pool_grow(
&kbdev->mem_pools.small[mmut->group_id],
MIDGARD_MMU_BOTTOMLEVEL, kctx ? kctx->task : NULL);
if (err) {
kbase_mmu_term(kbdev, mmut);
return -ENOMEM;
}
mmut->pgd = kbase_mmu_alloc_pgd(kbdev, mmut);
}
kbase_mmu_mark_non_movable(pfn_to_page(PFN_DOWN(mmut->pgd)));
return 0;
}
void kbase_mmu_term(struct kbase_device *kbdev, struct kbase_mmu_table *mmut)
{
WARN((mmut->kctx) && (mmut->kctx->as_nr != KBASEP_AS_NR_INVALID),
"kctx-%d_%d must first be scheduled out to flush GPU caches+tlbs before tearing down MMU tables",
mmut->kctx->tgid, mmut->kctx->id);
if (mmut->pgd != KBASE_MMU_INVALID_PGD_ADDRESS) {
rt_mutex_lock(&mmut->mmu_lock);
mmu_teardown_level(kbdev, mmut, mmut->pgd, MIDGARD_MMU_TOPLEVEL);
rt_mutex_unlock(&mmut->mmu_lock);
if (mmut->kctx)
KBASE_TLSTREAM_AUX_PAGESALLOC(kbdev, mmut->kctx->id, 0);
}
}
void kbase_mmu_as_term(struct kbase_device *kbdev, unsigned int i)
{
destroy_workqueue(kbdev->as[i].pf_wq);
}
void kbase_mmu_flush_pa_range(struct kbase_device *kbdev, struct kbase_context *kctx,
phys_addr_t phys, size_t size,
enum kbase_mmu_op_type flush_op)
{
#if MALI_USE_CSF
unsigned long irq_flags;
spin_lock_irqsave(&kbdev->hwaccess_lock, irq_flags);
if (mmu_flush_cache_on_gpu_ctrl(kbdev) && (flush_op != KBASE_MMU_OP_NONE) &&
kbdev->pm.backend.gpu_ready && (!kctx || kctx->as_nr >= 0))
mmu_flush_pa_range(kbdev, phys, size, KBASE_MMU_OP_FLUSH_PT);
spin_unlock_irqrestore(&kbdev->hwaccess_lock, irq_flags);
#endif
}
#ifdef CONFIG_MALI_VECTOR_DUMP
static size_t kbasep_mmu_dump_level(struct kbase_context *kctx, phys_addr_t pgd,
int level, char ** const buffer, size_t *size_left)
{
phys_addr_t target_pgd;
u64 *pgd_page;
int i;
size_t size = KBASE_MMU_PAGE_ENTRIES * sizeof(u64) + sizeof(u64);
size_t dump_size;
struct kbase_device *kbdev;
struct kbase_mmu_mode const *mmu_mode;
if (WARN_ON(kctx == NULL))
return 0;
lockdep_assert_held(&kctx->mmu.mmu_lock);
kbdev = kctx->kbdev;
mmu_mode = kbdev->mmu_mode;
pgd_page = kbase_kmap(pfn_to_page(PFN_DOWN(pgd)));
if (!pgd_page) {
dev_warn(kbdev->dev, "%s: kmap failure", __func__);
return 0;
}
if (*size_left >= size) {
/* A modified physical address that contains
* the page table level
*/
u64 m_pgd = pgd | level;
/* Put the modified physical address in the output buffer */
memcpy(*buffer, &m_pgd, sizeof(m_pgd));
*buffer += sizeof(m_pgd);
/* Followed by the page table itself */
memcpy(*buffer, pgd_page, sizeof(u64) * KBASE_MMU_PAGE_ENTRIES);
*buffer += sizeof(u64) * KBASE_MMU_PAGE_ENTRIES;
*size_left -= size;
}
if (level < MIDGARD_MMU_BOTTOMLEVEL) {
for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) {
if (mmu_mode->pte_is_valid(pgd_page[i], level)) {
target_pgd = mmu_mode->pte_to_phy_addr(
kbdev->mgm_dev->ops.mgm_pte_to_original_pte(
kbdev->mgm_dev, MGM_DEFAULT_PTE_GROUP,
level, pgd_page[i]));
dump_size = kbasep_mmu_dump_level(kctx,
target_pgd, level + 1,
buffer, size_left);
if (!dump_size) {
kbase_kunmap(pfn_to_page(PFN_DOWN(pgd)), pgd_page);
return 0;
}
size += dump_size;
}
}
}
kbase_kunmap(pfn_to_page(PFN_DOWN(pgd)), pgd_page);
return size;
}
void *kbase_mmu_dump(struct kbase_context *kctx, int nr_pages)
{
void *kaddr;
size_t size_left;
KBASE_DEBUG_ASSERT(kctx);
if (nr_pages == 0) {
/* can't dump in a 0 sized buffer, early out */
return NULL;
}
size_left = nr_pages * PAGE_SIZE;
if (WARN_ON(size_left == 0))
return NULL;
kaddr = vmalloc_user(size_left);
rt_mutex_lock(&kctx->mmu.mmu_lock);
if (kaddr) {
u64 end_marker = 0xFFULL;
char *buffer;
char *mmu_dump_buffer;
u64 config[3];
size_t dump_size, size = 0;
struct kbase_mmu_setup as_setup;
buffer = (char *)kaddr;
mmu_dump_buffer = buffer;
kctx->kbdev->mmu_mode->get_as_setup(&kctx->mmu,
&as_setup);
config[0] = as_setup.transtab;
config[1] = as_setup.memattr;
config[2] = as_setup.transcfg;
memcpy(buffer, &config, sizeof(config));
mmu_dump_buffer += sizeof(config);
size_left -= sizeof(config);
size += sizeof(config);
dump_size = kbasep_mmu_dump_level(kctx,
kctx->mmu.pgd,
MIDGARD_MMU_TOPLEVEL,
&mmu_dump_buffer,
&size_left);
if (!dump_size)
goto fail_free;
size += dump_size;
/* Add on the size for the end marker */
size += sizeof(u64);
if (size > (nr_pages * PAGE_SIZE)) {
/* The buffer isn't big enough - free the memory and
* return failure
*/
goto fail_free;
}
/* Add the end marker */
memcpy(mmu_dump_buffer, &end_marker, sizeof(u64));
}
rt_mutex_unlock(&kctx->mmu.mmu_lock);
return kaddr;
fail_free:
vfree(kaddr);
rt_mutex_unlock(&kctx->mmu.mmu_lock);
return NULL;
}
KBASE_EXPORT_TEST_API(kbase_mmu_dump);
#endif /* CONFIG_MALI_VECTOR_DUMP */
void kbase_mmu_bus_fault_worker(struct work_struct *data)
{
struct kbase_as *faulting_as;
int as_no;
struct kbase_context *kctx;
struct kbase_device *kbdev;
struct kbase_fault *fault;
faulting_as = container_of(data, struct kbase_as, work_busfault);
fault = &faulting_as->bf_data;
/* Ensure that any pending page fault worker has completed */
flush_work(&faulting_as->work_pagefault);
as_no = faulting_as->number;
kbdev = container_of(faulting_as, struct kbase_device, as[as_no]);
/* Grab the context, already refcounted in kbase_mmu_interrupt() on
* flagging of the bus-fault. Therefore, it cannot be scheduled out of
* this AS until we explicitly release it
*/
kctx = kbase_ctx_sched_as_to_ctx(kbdev, as_no);
if (!kctx) {
atomic_dec(&kbdev->faults_pending);
return;
}
#ifdef CONFIG_MALI_ARBITER_SUPPORT
/* check if we still have GPU */
if (unlikely(kbase_is_gpu_removed(kbdev))) {
dev_dbg(kbdev->dev, "%s: GPU has been removed", __func__);
release_ctx(kbdev, kctx);
atomic_dec(&kbdev->faults_pending);
return;
}
#endif
if (unlikely(fault->protected_mode)) {
kbase_mmu_report_fault_and_kill(kctx, faulting_as,
"Permission failure", fault);
kbase_mmu_hw_clear_fault(kbdev, faulting_as,
KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED);
release_ctx(kbdev, kctx);
atomic_dec(&kbdev->faults_pending);
return;
}
#if MALI_USE_CSF
/* Before the GPU power off, wait is done for the completion of
* in-flight MMU fault work items. So GPU is expected to remain
* powered up whilst the bus fault handling is being done.
*/
kbase_gpu_report_bus_fault_and_kill(kctx, faulting_as, fault);
#else
/* NOTE: If GPU already powered off for suspend,
* we don't need to switch to unmapped
*/
if (!kbase_pm_context_active_handle_suspend(kbdev,
KBASE_PM_SUSPEND_HANDLER_DONT_REACTIVATE)) {
kbase_gpu_report_bus_fault_and_kill(kctx, faulting_as, fault);
kbase_pm_context_idle(kbdev);
}
#endif
release_ctx(kbdev, kctx);
atomic_dec(&kbdev->faults_pending);
}
void kbase_flush_mmu_wqs(struct kbase_device *kbdev)
{
int i;
for (i = 0; i < kbdev->nr_hw_address_spaces; i++) {
struct kbase_as *as = &kbdev->as[i];
flush_workqueue(as->pf_wq);
}
}