blob: aa677176ef80cbe347df428535029cd7ba991e15 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
/*
*
* (C) COPYRIGHT 2010-2023 ARM Limited. All rights reserved.
*
* This program is free software and is provided to you under the terms of the
* GNU General Public License version 2 as published by the Free Software
* Foundation, and any use by you of this program is subject to the terms
* of such GNU license.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
*/
/**
* DOC: Base kernel memory APIs
*/
#ifndef _KBASE_MEM_H_
#define _KBASE_MEM_H_
#ifndef _KBASE_H_
#error "Don't include this file directly, use mali_kbase.h instead"
#endif
#include <linux/kref.h>
#include <uapi/gpu/arm/midgard/mali_base_kernel.h>
#include <mali_kbase_hw.h>
#include "mali_kbase_pm.h"
#include "mali_kbase_defs.h"
/* Required for kbase_mem_evictable_unmake */
#include "mali_kbase_mem_linux.h"
#include "mali_kbase_mem_migrate.h"
#include "mali_kbase_refcount_defs.h"
static inline void kbase_process_page_usage_inc(struct kbase_context *kctx,
int pages);
/* Part of the workaround for uTLB invalid pages is to ensure we grow/shrink tmem by 4 pages at a time */
#define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2_HW_ISSUE_8316 (2) /* round to 4 pages */
/* Part of the workaround for PRLAM-9630 requires us to grow/shrink memory by
* 8 pages. The MMU reads in 8 page table entries from memory at a time, if we
* have more than one page fault within the same 8 pages and page tables are
* updated accordingly, the MMU does not re-read the page table entries from
* memory for the subsequent page table updates and generates duplicate page
* faults as the page table information used by the MMU is not valid.
*/
#define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2_HW_ISSUE_9630 (3) /* round to 8 pages */
#define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2 (0) /* round to 1 page */
/* This must always be a power of 2 */
#define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES (1u << KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2)
#define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_HW_ISSUE_8316 (1u << KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2_HW_ISSUE_8316)
#define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_HW_ISSUE_9630 (1u << KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2_HW_ISSUE_9630)
/* Free region */
#define KBASE_REG_FREE (1ul << 0)
/* CPU write access */
#define KBASE_REG_CPU_WR (1ul << 1)
/* GPU write access */
#define KBASE_REG_GPU_WR (1ul << 2)
/* No eXecute flag */
#define KBASE_REG_GPU_NX (1ul << 3)
/* Is CPU cached? */
#define KBASE_REG_CPU_CACHED (1ul << 4)
/* Is GPU cached?
* Some components within the GPU might only be able to access memory that is
* GPU cacheable. Refer to the specific GPU implementation for more details.
*/
#define KBASE_REG_GPU_CACHED (1ul << 5)
#define KBASE_REG_GROWABLE (1ul << 6)
/* Can grow on pf? */
#define KBASE_REG_PF_GROW (1ul << 7)
/* Allocation doesn't straddle the 4GB boundary in GPU virtual space */
#define KBASE_REG_GPU_VA_SAME_4GB_PAGE (1ul << 8)
/* inner shareable coherency */
#define KBASE_REG_SHARE_IN (1ul << 9)
/* inner & outer shareable coherency */
#define KBASE_REG_SHARE_BOTH (1ul << 10)
#if MALI_USE_CSF
/* Space for 8 different zones */
#define KBASE_REG_ZONE_BITS 3
#else
/* Space for 4 different zones */
#define KBASE_REG_ZONE_BITS 2
#endif
/* The bits 11-13 (inclusive) of the kbase_va_region flag are reserved
* for information about the zone in which it was allocated.
*/
#define KBASE_REG_ZONE_SHIFT (11ul)
#define KBASE_REG_ZONE_MASK (((1 << KBASE_REG_ZONE_BITS) - 1ul) << KBASE_REG_ZONE_SHIFT)
#if KBASE_REG_ZONE_MAX > (1 << KBASE_REG_ZONE_BITS)
#error "Too many zones for the number of zone bits defined"
#endif
/* GPU read access */
#define KBASE_REG_GPU_RD (1ul << 14)
/* CPU read access */
#define KBASE_REG_CPU_RD (1ul << 15)
/* Index of chosen MEMATTR for this region (0..7) */
#define KBASE_REG_MEMATTR_MASK (7ul << 16)
#define KBASE_REG_MEMATTR_INDEX(x) (((x)&7) << 16)
#define KBASE_REG_MEMATTR_VALUE(x) (((x)&KBASE_REG_MEMATTR_MASK) >> 16)
#define KBASE_REG_PROTECTED (1ul << 19)
/* Region belongs to a shrinker.
*
* This can either mean that it is part of the JIT/Ephemeral or tiler heap
* shrinker paths. Should be removed only after making sure that there are
* no references remaining to it in these paths, as it may cause the physical
* backing of the region to disappear during use.
*/
#define KBASE_REG_DONT_NEED (1ul << 20)
/* Imported buffer is padded? */
#define KBASE_REG_IMPORT_PAD (1ul << 21)
#if MALI_USE_CSF
/* CSF event memory */
#define KBASE_REG_CSF_EVENT (1ul << 22)
/* Bit 23 is reserved.
*
* Do not remove, use the next unreserved bit for new flags
*/
#define KBASE_REG_RESERVED_BIT_23 (1ul << 23)
#else
/* Bit 22 is reserved.
*
* Do not remove, use the next unreserved bit for new flags
*/
#define KBASE_REG_RESERVED_BIT_22 (1ul << 22)
/* The top of the initial commit is aligned to extension pages.
* Extent must be a power of 2
*/
#define KBASE_REG_TILER_ALIGN_TOP (1ul << 23)
#endif /* MALI_USE_CSF */
/* Bit 24 is currently unused and is available for use for a new flag */
/* Memory has permanent kernel side mapping */
#define KBASE_REG_PERMANENT_KERNEL_MAPPING (1ul << 25)
/* GPU VA region has been freed by the userspace, but still remains allocated
* due to the reference held by CPU mappings created on the GPU VA region.
*
* A region with this flag set has had kbase_gpu_munmap() called on it, but can
* still be looked-up in the region tracker as a non-free region. Hence must
* not create or update any more GPU mappings on such regions because they will
* not be unmapped when the region is finally destroyed.
*
* Since such regions are still present in the region tracker, new allocations
* attempted with BASE_MEM_SAME_VA might fail if their address intersects with
* a region with this flag set.
*
* In addition, this flag indicates the gpu_alloc member might no longer valid
* e.g. in infinite cache simulation.
*/
#define KBASE_REG_VA_FREED (1ul << 26)
/* If set, the heap info address points to a u32 holding the used size in bytes;
* otherwise it points to a u64 holding the lowest address of unused memory.
*/
#define KBASE_REG_HEAP_INFO_IS_SIZE (1ul << 27)
/* Allocation is actively used for JIT memory */
#define KBASE_REG_ACTIVE_JIT_ALLOC (1ul << 28)
#if MALI_USE_CSF
/* This flag only applies to allocations in the EXEC_FIXED_VA and FIXED_VA
* memory zones, and it determines whether they were created with a fixed
* GPU VA address requested by the user.
*/
#define KBASE_REG_FIXED_ADDRESS (1ul << 29)
#else
#define KBASE_REG_RESERVED_BIT_29 (1ul << 29)
#endif
#define KBASE_REG_ZONE_CUSTOM_VA_BASE (0x100000000ULL >> PAGE_SHIFT)
#if MALI_USE_CSF
/* only used with 32-bit clients */
/* On a 32bit platform, custom VA should be wired from 4GB to 2^(43).
*/
#define KBASE_REG_ZONE_CUSTOM_VA_SIZE (((1ULL << 43) >> PAGE_SHIFT) - KBASE_REG_ZONE_CUSTOM_VA_BASE)
#else
/* only used with 32-bit clients */
/* On a 32bit platform, custom VA should be wired from 4GB to the VA limit of the
* GPU. Unfortunately, the Linux mmap() interface limits us to 2^32 pages (2^44
* bytes, see mmap64 man page for reference). So we put the default limit to the
* maximum possible on Linux and shrink it down, if required by the GPU, during
* initialization.
*/
#define KBASE_REG_ZONE_CUSTOM_VA_SIZE (((1ULL << 44) >> PAGE_SHIFT) - KBASE_REG_ZONE_CUSTOM_VA_BASE)
/* end 32-bit clients only */
#endif
/* The starting address and size of the GPU-executable zone are dynamic
* and depend on the platform and the number of pages requested by the
* user process, with an upper limit of 4 GB.
*/
#define KBASE_REG_ZONE_EXEC_VA_MAX_PAGES ((1ULL << 32) >> PAGE_SHIFT) /* 4 GB */
#define KBASE_REG_ZONE_EXEC_VA_SIZE KBASE_REG_ZONE_EXEC_VA_MAX_PAGES
#if MALI_USE_CSF
#define KBASE_REG_ZONE_MCU_SHARED_BASE (0x04000000ULL >> PAGE_SHIFT)
#define MCU_SHARED_ZONE_SIZE (((0x08000000ULL) >> PAGE_SHIFT) - KBASE_REG_ZONE_MCU_SHARED_BASE)
/* For CSF GPUs, the EXEC_VA zone is always 4GB in size, and starts at 2^47 for 64-bit
* clients, and 2^43 for 32-bit clients.
*/
#define KBASE_REG_ZONE_EXEC_VA_BASE_64 ((1ULL << 47) >> PAGE_SHIFT)
#define KBASE_REG_ZONE_EXEC_VA_BASE_32 ((1ULL << 43) >> PAGE_SHIFT)
/* Executable zone supporting FIXED/FIXABLE allocations.
* It is always 4GB in size.
*/
#define KBASE_REG_ZONE_EXEC_FIXED_VA_SIZE KBASE_REG_ZONE_EXEC_VA_MAX_PAGES
/* Non-executable zone supporting FIXED/FIXABLE allocations.
* It extends from (2^47) up to (2^48)-1, for 64-bit userspace clients, and from
* (2^43) up to (2^44)-1 for 32-bit userspace clients. For the same reason,
* the end of the FIXED_VA zone for 64-bit clients is (2^48)-1.
*/
#define KBASE_REG_ZONE_FIXED_VA_END_64 ((1ULL << 48) >> PAGE_SHIFT)
#define KBASE_REG_ZONE_FIXED_VA_END_32 ((1ULL << 44) >> PAGE_SHIFT)
#endif
/*
* A CPU mapping
*/
struct kbase_cpu_mapping {
struct list_head mappings_list;
struct kbase_mem_phy_alloc *alloc;
struct kbase_context *kctx;
struct kbase_va_region *region;
int count;
int free_on_close;
};
enum kbase_memory_type {
KBASE_MEM_TYPE_NATIVE,
KBASE_MEM_TYPE_IMPORTED_UMM,
KBASE_MEM_TYPE_IMPORTED_USER_BUF,
KBASE_MEM_TYPE_ALIAS,
KBASE_MEM_TYPE_RAW
};
/* internal structure, mirroring base_mem_aliasing_info,
* but with alloc instead of a gpu va (handle)
*/
struct kbase_aliased {
struct kbase_mem_phy_alloc *alloc; /* NULL for special, non-NULL for native */
u64 offset; /* in pages */
u64 length; /* in pages */
};
/* Physical pages tracking object properties */
#define KBASE_MEM_PHY_ALLOC_ACCESSED_CACHED (1u << 0)
#define KBASE_MEM_PHY_ALLOC_LARGE (1u << 1)
/* struct kbase_mem_phy_alloc - Physical pages tracking object.
*
* Set up to track N pages.
* N not stored here, the creator holds that info.
* This object only tracks how many elements are actually valid (present).
* Changing of nents or *pages should only happen if the kbase_mem_phy_alloc
* is not shared with another region or client. CPU mappings are OK to
* exist when changing, as long as the tracked mappings objects are
* updated as part of the change.
*
* @kref: number of users of this alloc
* @gpu_mappings: count number of times mapped on the GPU. Indicates the number
* of references there are to the physical pages from different
* GPU VA regions.
* @kernel_mappings: count number of times mapped on the CPU, specifically in
* the kernel. Indicates the number of references there are
* to the physical pages to prevent flag changes or shrink
* while maps are still held.
* @nents: 0..N
* @pages: N elements, only 0..nents are valid
* @mappings: List of CPU mappings of this physical memory allocation.
* @evict_node: Node used to store this allocation on the eviction list
* @evicted: Physical backing size when the pages where evicted
* @reg: Back reference to the region structure which created this
* allocation, or NULL if it has been freed.
* @type: type of buffer
* @permanent_map: Kernel side mapping of the alloc, shall never be
* referred directly. kbase_phy_alloc_mapping_get() &
* kbase_phy_alloc_mapping_put() pair should be used
* around access to the kernel-side CPU mapping so that
* mapping doesn't disappear whilst it is being accessed.
* @properties: Bitmask of properties, e.g. KBASE_MEM_PHY_ALLOC_LARGE.
* @group_id: A memory group ID to be passed to a platform-specific
* memory group manager, if present.
* Valid range is 0..(MEMORY_GROUP_MANAGER_NR_GROUPS-1).
* @imported: member in union valid based on @a type
*/
struct kbase_mem_phy_alloc {
struct kref kref;
atomic_t gpu_mappings;
atomic_t kernel_mappings;
size_t nents;
struct tagged_addr *pages;
struct list_head mappings;
struct list_head evict_node;
size_t evicted;
struct kbase_va_region *reg;
enum kbase_memory_type type;
struct kbase_vmap_struct *permanent_map;
u8 properties;
u8 group_id;
union {
struct {
struct kbase_context *kctx;
struct dma_buf *dma_buf;
struct dma_buf_attachment *dma_attachment;
unsigned int current_mapping_usage_count;
struct sg_table *sgt;
bool need_sync;
} umm;
struct {
u64 stride;
size_t nents;
struct kbase_aliased *aliased;
} alias;
struct {
struct kbase_context *kctx;
/* Number of pages in this structure, including *pages.
* Used for kernel memory tracking.
*/
size_t nr_struct_pages;
} native;
struct kbase_alloc_import_user_buf {
unsigned long address;
unsigned long size;
unsigned long nr_pages;
struct page **pages;
/* top bit (1<<31) of current_mapping_usage_count
* specifies that this import was pinned on import
* See PINNED_ON_IMPORT
*/
u32 current_mapping_usage_count;
struct mm_struct *mm;
dma_addr_t *dma_addrs;
} user_buf;
} imported;
};
/**
* enum kbase_page_status - Status of a page used for page migration.
*
* @MEM_POOL: Stable state. Page is located in a memory pool and can safely
* be migrated.
* @ALLOCATE_IN_PROGRESS: Transitory state. A page is set to this status as
* soon as it leaves a memory pool.
* @SPILL_IN_PROGRESS: Transitory state. Corner case where pages in a memory
* pool of a dying context are being moved to the device
* memory pool.
* @NOT_MOVABLE: Stable state. Page has been allocated for an object that is
* not movable, but may return to be movable when the object
* is freed.
* @ALLOCATED_MAPPED: Stable state. Page has been allocated, mapped to GPU
* and has reference to kbase_mem_phy_alloc object.
* @PT_MAPPED: Stable state. Similar to ALLOCATED_MAPPED, but page doesn't
* reference kbase_mem_phy_alloc object. Used as a page in MMU
* page table.
* @FREE_IN_PROGRESS: Transitory state. A page is set to this status as soon as
* the driver manages to acquire a lock on the page while
* unmapping it. This status means that a memory release is
* happening and it's still not complete.
* @FREE_ISOLATED_IN_PROGRESS: Transitory state. This is a very particular corner case.
* A page is isolated while it is in ALLOCATED_MAPPED state,
* but then the driver tries to destroy the allocation.
* @FREE_PT_ISOLATED_IN_PROGRESS: Transitory state. This is a very particular corner case.
* A page is isolated while it is in PT_MAPPED state, but
* then the driver tries to destroy the allocation.
*
* Pages can only be migrated in stable states.
*/
enum kbase_page_status {
MEM_POOL = 0,
ALLOCATE_IN_PROGRESS,
SPILL_IN_PROGRESS,
NOT_MOVABLE,
ALLOCATED_MAPPED,
PT_MAPPED,
FREE_IN_PROGRESS,
FREE_ISOLATED_IN_PROGRESS,
FREE_PT_ISOLATED_IN_PROGRESS,
};
#define PGD_VPFN_LEVEL_MASK ((u64)0x3)
#define PGD_VPFN_LEVEL_GET_LEVEL(pgd_vpfn_level) (pgd_vpfn_level & PGD_VPFN_LEVEL_MASK)
#define PGD_VPFN_LEVEL_GET_VPFN(pgd_vpfn_level) (pgd_vpfn_level & ~PGD_VPFN_LEVEL_MASK)
#define PGD_VPFN_LEVEL_SET(pgd_vpfn, level) \
((pgd_vpfn & ~PGD_VPFN_LEVEL_MASK) | (level & PGD_VPFN_LEVEL_MASK))
/**
* struct kbase_page_metadata - Metadata for each page in kbase
*
* @kbdev: Pointer to kbase device.
* @dma_addr: DMA address mapped to page.
* @migrate_lock: A spinlock to protect the private metadata.
* @data: Member in union valid based on @status.
* @status: Status to keep track if page can be migrated at any
* given moment. MSB will indicate if page is isolated.
* Protected by @migrate_lock.
* @vmap_count: Counter of kernel mappings.
* @group_id: Memory group ID obtained at the time of page allocation.
*
* Each 4KB page will have a reference to this struct in the private field.
* This will be used to keep track of information required for Linux page
* migration functionality as well as address for DMA mapping.
*/
struct kbase_page_metadata {
dma_addr_t dma_addr;
spinlock_t migrate_lock;
union {
struct {
struct kbase_mem_pool *pool;
/* Pool could be terminated after page is isolated and therefore
* won't be able to get reference to kbase device.
*/
struct kbase_device *kbdev;
} mem_pool;
struct {
struct kbase_va_region *reg;
struct kbase_mmu_table *mmut;
u64 vpfn;
} mapped;
struct {
struct kbase_mmu_table *mmut;
u64 pgd_vpfn_level;
} pt_mapped;
struct {
struct kbase_device *kbdev;
} free_isolated;
struct {
struct kbase_device *kbdev;
} free_pt_isolated;
} data;
u8 status;
u8 vmap_count;
u8 group_id;
};
/* The top bit of kbase_alloc_import_user_buf::current_mapping_usage_count is
* used to signify that a buffer was pinned when it was imported. Since the
* reference count is limited by the number of atoms that can be submitted at
* once there should be no danger of overflowing into this bit.
* Stealing the top bit also has the benefit that
* current_mapping_usage_count != 0 if and only if the buffer is mapped.
*/
#define PINNED_ON_IMPORT (1<<31)
/**
* enum kbase_jit_report_flags - Flags for just-in-time memory allocation
* pressure limit functions
* @KBASE_JIT_REPORT_ON_ALLOC_OR_FREE: Notifying about an update happening due
* to a just-in-time memory allocation or free
*
* Used to control flow within pressure limit related functions, or to provide
* extra debugging information
*/
enum kbase_jit_report_flags {
KBASE_JIT_REPORT_ON_ALLOC_OR_FREE = (1u << 0)
};
/**
* kbase_zone_to_bits - Convert a memory zone @zone to the corresponding
* bitpattern, for ORing together with other flags.
* @zone: Memory zone
*
* Return: Bitpattern with the appropriate bits set.
*/
unsigned long kbase_zone_to_bits(enum kbase_memory_zone zone);
/**
* kbase_bits_to_zone - Convert the bitpattern @zone_bits to the corresponding
* zone identifier
* @zone_bits: Memory allocation flag containing a zone pattern
*
* Return: Zone identifier for valid zone bitpatterns,
*/
enum kbase_memory_zone kbase_bits_to_zone(unsigned long zone_bits);
/**
* kbase_mem_zone_get_name - Get the string name for a given memory zone
* @zone: Memory zone identifier
*
* Return: string for valid memory zone, NULL otherwise
*/
char *kbase_reg_zone_get_name(enum kbase_memory_zone zone);
/**
* kbase_set_phy_alloc_page_status - Set the page migration status of the underlying
* physical allocation.
* @alloc: the physical allocation containing the pages whose metadata is going
* to be modified
* @status: the status the pages should end up in
*
* Note that this function does not go through all of the checking to ensure that
* proper states are set. Instead, it is only used when we change the allocation
* to NOT_MOVABLE or from NOT_MOVABLE to ALLOCATED_MAPPED
*/
void kbase_set_phy_alloc_page_status(struct kbase_mem_phy_alloc *alloc,
enum kbase_page_status status);
static inline void kbase_mem_phy_alloc_gpu_mapped(struct kbase_mem_phy_alloc *alloc)
{
KBASE_DEBUG_ASSERT(alloc);
/* we only track mappings of NATIVE buffers */
if (alloc->type == KBASE_MEM_TYPE_NATIVE)
atomic_inc(&alloc->gpu_mappings);
}
static inline void kbase_mem_phy_alloc_gpu_unmapped(struct kbase_mem_phy_alloc *alloc)
{
KBASE_DEBUG_ASSERT(alloc);
/* we only track mappings of NATIVE buffers */
if (alloc->type == KBASE_MEM_TYPE_NATIVE)
if (atomic_dec_return(&alloc->gpu_mappings) < 0) {
pr_err("Mismatched %s:\n", __func__);
dump_stack();
}
}
/**
* kbase_mem_phy_alloc_kernel_mapped - Increment kernel_mappings counter for a
* memory region to prevent commit and flag
* changes
*
* @alloc: Pointer to physical pages tracking object
*/
static inline void
kbase_mem_phy_alloc_kernel_mapped(struct kbase_mem_phy_alloc *alloc)
{
atomic_inc(&alloc->kernel_mappings);
}
/**
* kbase_mem_phy_alloc_kernel_unmapped - Decrement kernel_mappings
* counter for a memory region to allow commit and flag changes
*
* @alloc: Pointer to physical pages tracking object
*/
static inline void
kbase_mem_phy_alloc_kernel_unmapped(struct kbase_mem_phy_alloc *alloc)
{
WARN_ON(atomic_dec_return(&alloc->kernel_mappings) < 0);
}
/**
* kbase_mem_is_imported - Indicate whether a memory type is imported
*
* @type: the memory type
*
* Return: true if the memory type is imported, false otherwise
*/
static inline bool kbase_mem_is_imported(enum kbase_memory_type type)
{
return (type == KBASE_MEM_TYPE_IMPORTED_UMM) ||
(type == KBASE_MEM_TYPE_IMPORTED_USER_BUF);
}
void kbase_mem_kref_free(struct kref *kref);
int kbase_mem_init(struct kbase_device *kbdev);
void kbase_mem_halt(struct kbase_device *kbdev);
void kbase_mem_term(struct kbase_device *kbdev);
static inline struct kbase_mem_phy_alloc *kbase_mem_phy_alloc_get(struct kbase_mem_phy_alloc *alloc)
{
kref_get(&alloc->kref);
return alloc;
}
static inline struct kbase_mem_phy_alloc *kbase_mem_phy_alloc_put(struct kbase_mem_phy_alloc *alloc)
{
kref_put(&alloc->kref, kbase_mem_kref_free);
return NULL;
}
/**
* struct kbase_va_region - A GPU memory region, and attributes for CPU mappings
*
* @rblink: Node in a red-black tree of memory regions within the same zone of
* the GPU's virtual address space.
* @link: Links to neighboring items in a list of growable memory regions
* that triggered incremental rendering by growing too much.
* @rbtree: Backlink to the red-black tree of memory regions.
* @start_pfn: The Page Frame Number in GPU virtual address space.
* @user_data: The address of GPU command queue when VA region represents
* a ring buffer.
* @nr_pages: The size of the region in pages.
* @initial_commit: Initial commit, for aligning the start address and
* correctly growing KBASE_REG_TILER_ALIGN_TOP regions.
* @threshold_pages: If non-zero and the amount of memory committed to a region
* that can grow on page fault exceeds this number of pages
* then the driver switches to incremental rendering.
* @flags: Flags
* @extension: Number of pages allocated on page fault.
* @cpu_alloc: The physical memory we mmap to the CPU when mapping this region.
* @gpu_alloc: The physical memory we mmap to the GPU when mapping this region.
* @jit_node: Links to neighboring regions in the just-in-time memory pool.
* @jit_usage_id: The last just-in-time memory usage ID for this region.
* @jit_bin_id: The just-in-time memory bin this region came from.
* @va_refcnt: Number of users of this region. Protected by reg_lock.
* @no_user_free_count: Number of contexts that want to prevent the region
* from being freed by userspace.
* @heap_info_gpu_addr: Pointer to an object in GPU memory defining an end of
* an allocated region
* The object can be one of:
* - u32 value defining the size of the region
* - u64 pointer first unused byte in the region
* The interpretation of the object depends on
* BASE_JIT_ALLOC_HEAP_INFO_IS_SIZE flag in
* jit_info_flags - if it is set, the heap info object
* should be interpreted as size.
* @used_pages: The current estimate of the number of pages used, which in
* normal use is either:
* - the initial estimate == va_pages
* - the actual pages used, as found by a JIT usage report
* Note that since the value is calculated from GPU memory after a
* JIT usage report, at any point in time it is allowed to take a
* random value that is no greater than va_pages (e.g. it may be
* greater than gpu_alloc->nents)
*/
struct kbase_va_region {
struct rb_node rblink;
struct list_head link;
struct rb_root *rbtree;
u64 start_pfn;
void *user_data;
size_t nr_pages;
size_t initial_commit;
size_t threshold_pages;
unsigned long flags;
size_t extension;
struct kbase_mem_phy_alloc *cpu_alloc;
struct kbase_mem_phy_alloc *gpu_alloc;
struct list_head jit_node;
u16 jit_usage_id;
u8 jit_bin_id;
#if MALI_JIT_PRESSURE_LIMIT_BASE
/* Pointer to an object in GPU memory defining an end of an allocated
* region
*
* The object can be one of:
* - u32 value defining the size of the region
* - u64 pointer first unused byte in the region
*
* The interpretation of the object depends on
* BASE_JIT_ALLOC_HEAP_INFO_IS_SIZE flag in jit_info_flags - if it is
* set, the heap info object should be interpreted as size.
*/
u64 heap_info_gpu_addr;
/* The current estimate of the number of pages used, which in normal
* use is either:
* - the initial estimate == va_pages
* - the actual pages used, as found by a JIT usage report
*
* Note that since the value is calculated from GPU memory after a JIT
* usage report, at any point in time it is allowed to take a random
* value that is no greater than va_pages (e.g. it may be greater than
* gpu_alloc->nents)
*/
size_t used_pages;
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
kbase_refcount_t va_refcnt;
atomic_t no_user_free_count;
};
/**
* kbase_is_ctx_reg_zone - Determine whether a zone is associated with a
* context or with the device
* @zone: Zone identifier
*
* Return: True if @zone is a context zone, False otherwise
*/
static inline bool kbase_is_ctx_reg_zone(enum kbase_memory_zone zone)
{
#if MALI_USE_CSF
return !(zone == MCU_SHARED_ZONE);
#else
return true;
#endif
}
/* Special marker for failed JIT allocations that still must be marked as
* in-use
*/
#define KBASE_RESERVED_REG_JIT_ALLOC ((struct kbase_va_region *)-1)
static inline bool kbase_is_region_free(struct kbase_va_region *reg)
{
return (!reg || reg->flags & KBASE_REG_FREE);
}
static inline bool kbase_is_region_invalid(struct kbase_va_region *reg)
{
return (!reg || reg->flags & KBASE_REG_VA_FREED);
}
static inline bool kbase_is_region_invalid_or_free(struct kbase_va_region *reg)
{
/* Possibly not all functions that find regions would be using this
* helper, so they need to be checked when maintaining this function.
*/
return (kbase_is_region_invalid(reg) || kbase_is_region_free(reg));
}
/**
* kbase_is_region_shrinkable - Check if a region is "shrinkable".
* A shrinkable regions is a region for which its backing pages (reg->gpu_alloc->pages)
* can be freed at any point, even though the kbase_va_region structure itself
* may have been refcounted.
* Regions that aren't on a shrinker, but could be shrunk at any point in future
* without warning are still considered "shrinkable" (e.g. Active JIT allocs)
*
* @reg: Pointer to region
*
* Return: true if the region is "shrinkable", false if not.
*/
static inline bool kbase_is_region_shrinkable(struct kbase_va_region *reg)
{
return (reg->flags & KBASE_REG_DONT_NEED) || (reg->flags & KBASE_REG_ACTIVE_JIT_ALLOC);
}
void kbase_remove_va_region(struct kbase_device *kbdev,
struct kbase_va_region *reg);
static inline void kbase_region_refcnt_free(struct kbase_device *kbdev,
struct kbase_va_region *reg)
{
/* If region was mapped then remove va region*/
if (reg->start_pfn)
kbase_remove_va_region(kbdev, reg);
/* To detect use-after-free in debug builds */
KBASE_DEBUG_CODE(reg->flags |= KBASE_REG_FREE);
kfree(reg);
}
static inline struct kbase_va_region *kbase_va_region_alloc_get(
struct kbase_context *kctx, struct kbase_va_region *region)
{
WARN_ON(!kbase_refcount_read(&region->va_refcnt));
WARN_ON(kbase_refcount_read(&region->va_refcnt) == INT_MAX);
dev_dbg(kctx->kbdev->dev, "va_refcnt %d before get %pK\n",
kbase_refcount_read(&region->va_refcnt), (void *)region);
kbase_refcount_inc(&region->va_refcnt);
return region;
}
static inline struct kbase_va_region *kbase_va_region_alloc_put(
struct kbase_context *kctx, struct kbase_va_region *region)
{
WARN_ON(kbase_refcount_read(&region->va_refcnt) <= 0);
WARN_ON(region->flags & KBASE_REG_FREE);
if (kbase_refcount_dec_and_test(&region->va_refcnt))
kbase_region_refcnt_free(kctx->kbdev, region);
else
dev_dbg(kctx->kbdev->dev, "va_refcnt %d after put %pK\n",
kbase_refcount_read(&region->va_refcnt), (void *)region);
return NULL;
}
/**
* kbase_va_region_is_no_user_free - Check if user free is forbidden for the region.
* A region that must not be freed by userspace indicates that it is owned by some other
* kbase subsystem, for example tiler heaps, JIT memory or CSF queues.
* Such regions must not be shrunk (i.e. have their backing pages freed), except by the
* current owner.
* Hence, callers cannot rely on this check alone to determine if a region might be shrunk
* by any part of kbase. Instead they should use kbase_is_region_shrinkable().
*
* @region: Pointer to region.
*
* Return: true if userspace cannot free the region, false if userspace can free the region.
*/
static inline bool kbase_va_region_is_no_user_free(struct kbase_va_region *region)
{
return atomic_read(&region->no_user_free_count) > 0;
}
/**
* kbase_va_region_no_user_free_inc - Increment "no user free" count for a region.
* Calling this function will prevent the region to be shrunk by parts of kbase that
* don't own the region (as long as the count stays above zero). Refer to
* kbase_va_region_is_no_user_free() for more information.
*
* @region: Pointer to region (not shrinkable).
*
* Return: the pointer to the region passed as argument.
*/
static inline void kbase_va_region_no_user_free_inc(struct kbase_va_region *region)
{
WARN_ON(kbase_is_region_shrinkable(region));
WARN_ON(atomic_read(&region->no_user_free_count) == INT_MAX);
/* non-atomic as kctx->reg_lock is held */
atomic_inc(&region->no_user_free_count);
}
/**
* kbase_va_region_no_user_free_dec - Decrement "no user free" count for a region.
*
* @region: Pointer to region (not shrinkable).
*/
static inline void kbase_va_region_no_user_free_dec(struct kbase_va_region *region)
{
WARN_ON(!kbase_va_region_is_no_user_free(region));
atomic_dec(&region->no_user_free_count);
}
/* Common functions */
static inline struct tagged_addr *kbase_get_cpu_phy_pages(
struct kbase_va_region *reg)
{
KBASE_DEBUG_ASSERT(reg);
KBASE_DEBUG_ASSERT(reg->cpu_alloc);
KBASE_DEBUG_ASSERT(reg->gpu_alloc);
KBASE_DEBUG_ASSERT(reg->cpu_alloc->nents == reg->gpu_alloc->nents);
return reg->cpu_alloc->pages;
}
static inline struct tagged_addr *kbase_get_gpu_phy_pages(
struct kbase_va_region *reg)
{
KBASE_DEBUG_ASSERT(reg);
KBASE_DEBUG_ASSERT(reg->cpu_alloc);
KBASE_DEBUG_ASSERT(reg->gpu_alloc);
KBASE_DEBUG_ASSERT(reg->cpu_alloc->nents == reg->gpu_alloc->nents);
return reg->gpu_alloc->pages;
}
static inline size_t kbase_reg_current_backed_size(struct kbase_va_region *reg)
{
KBASE_DEBUG_ASSERT(reg);
/* if no alloc object the backed size naturally is 0 */
if (!reg->cpu_alloc)
return 0;
KBASE_DEBUG_ASSERT(reg->cpu_alloc);
KBASE_DEBUG_ASSERT(reg->gpu_alloc);
KBASE_DEBUG_ASSERT(reg->cpu_alloc->nents == reg->gpu_alloc->nents);
return reg->cpu_alloc->nents;
}
#define KBASE_MEM_PHY_ALLOC_LARGE_THRESHOLD ((size_t)(4*1024)) /* size above which vmalloc is used over kmalloc */
static inline struct kbase_mem_phy_alloc *kbase_alloc_create(
struct kbase_context *kctx, size_t nr_pages,
enum kbase_memory_type type, int group_id)
{
struct kbase_mem_phy_alloc *alloc;
size_t alloc_size = sizeof(*alloc) + sizeof(*alloc->pages) * nr_pages;
size_t per_page_size = sizeof(*alloc->pages);
/* Imported pages may have page private data already in use */
if (type == KBASE_MEM_TYPE_IMPORTED_USER_BUF) {
alloc_size += nr_pages *
sizeof(*alloc->imported.user_buf.dma_addrs);
per_page_size += sizeof(*alloc->imported.user_buf.dma_addrs);
}
/*
* Prevent nr_pages*per_page_size + sizeof(*alloc) from
* wrapping around.
*/
if (nr_pages > ((((size_t) -1) - sizeof(*alloc))
/ per_page_size))
return ERR_PTR(-ENOMEM);
/* Allocate based on the size to reduce internal fragmentation of vmem */
if (alloc_size > KBASE_MEM_PHY_ALLOC_LARGE_THRESHOLD)
alloc = vzalloc(alloc_size);
else
alloc = kzalloc(alloc_size, GFP_KERNEL);
if (!alloc)
return ERR_PTR(-ENOMEM);
if (type == KBASE_MEM_TYPE_NATIVE) {
alloc->imported.native.nr_struct_pages =
(alloc_size + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
kbase_process_page_usage_inc(kctx,
alloc->imported.native.nr_struct_pages);
}
/* Store allocation method */
if (alloc_size > KBASE_MEM_PHY_ALLOC_LARGE_THRESHOLD)
alloc->properties |= KBASE_MEM_PHY_ALLOC_LARGE;
kref_init(&alloc->kref);
atomic_set(&alloc->gpu_mappings, 0);
atomic_set(&alloc->kernel_mappings, 0);
alloc->nents = 0;
alloc->pages = (void *)(alloc + 1);
INIT_LIST_HEAD(&alloc->mappings);
alloc->type = type;
alloc->group_id = group_id;
if (type == KBASE_MEM_TYPE_IMPORTED_USER_BUF)
alloc->imported.user_buf.dma_addrs =
(void *) (alloc->pages + nr_pages);
return alloc;
}
static inline int kbase_reg_prepare_native(struct kbase_va_region *reg,
struct kbase_context *kctx, int group_id)
{
KBASE_DEBUG_ASSERT(reg);
KBASE_DEBUG_ASSERT(!reg->cpu_alloc);
KBASE_DEBUG_ASSERT(!reg->gpu_alloc);
KBASE_DEBUG_ASSERT(reg->flags & KBASE_REG_FREE);
reg->cpu_alloc = kbase_alloc_create(kctx, reg->nr_pages,
KBASE_MEM_TYPE_NATIVE, group_id);
if (IS_ERR(reg->cpu_alloc))
return PTR_ERR(reg->cpu_alloc);
else if (!reg->cpu_alloc)
return -ENOMEM;
reg->cpu_alloc->imported.native.kctx = kctx;
if (kbase_ctx_flag(kctx, KCTX_INFINITE_CACHE)
&& (reg->flags & KBASE_REG_CPU_CACHED)) {
reg->gpu_alloc = kbase_alloc_create(kctx, reg->nr_pages,
KBASE_MEM_TYPE_NATIVE, group_id);
if (IS_ERR_OR_NULL(reg->gpu_alloc)) {
kbase_mem_phy_alloc_put(reg->cpu_alloc);
return -ENOMEM;
}
reg->gpu_alloc->imported.native.kctx = kctx;
} else {
reg->gpu_alloc = kbase_mem_phy_alloc_get(reg->cpu_alloc);
}
mutex_lock(&kctx->jit_evict_lock);
INIT_LIST_HEAD(&reg->cpu_alloc->evict_node);
INIT_LIST_HEAD(&reg->gpu_alloc->evict_node);
mutex_unlock(&kctx->jit_evict_lock);
reg->flags &= ~KBASE_REG_FREE;
return 0;
}
/*
* Max size for kbdev memory pool (in pages)
*/
#define KBASE_MEM_POOL_MAX_SIZE_KBDEV (SZ_64M >> PAGE_SHIFT)
/*
* Max size for kctx memory pool (in pages)
*/
#define KBASE_MEM_POOL_MAX_SIZE_KCTX (SZ_64M >> PAGE_SHIFT)
/*
* The order required for a 2MB page allocation (2^order * 4KB = 2MB)
*/
#define KBASE_MEM_POOL_2MB_PAGE_TABLE_ORDER 9
/*
* The order required for a 4KB page allocation
*/
#define KBASE_MEM_POOL_4KB_PAGE_TABLE_ORDER 0
/**
* kbase_mem_pool_config_set_max_size - Set maximum number of free pages in
* initial configuration of a memory pool
*
* @config: Initial configuration for a physical memory pool
* @max_size: Maximum number of free pages that a pool created from
* @config can hold
*/
static inline void kbase_mem_pool_config_set_max_size(
struct kbase_mem_pool_config *const config, size_t const max_size)
{
WRITE_ONCE(config->max_size, max_size);
}
/**
* kbase_mem_pool_config_get_max_size - Get maximum number of free pages from
* initial configuration of a memory pool
*
* @config: Initial configuration for a physical memory pool
*
* Return: Maximum number of free pages that a pool created from @config
* can hold
*/
static inline size_t kbase_mem_pool_config_get_max_size(
const struct kbase_mem_pool_config *const config)
{
return READ_ONCE(config->max_size);
}
/**
* kbase_mem_pool_init - Create a memory pool for a kbase device
* @pool: Memory pool to initialize
* @config: Initial configuration for the memory pool
* @order: Page order for physical page size (order=0=>4kB, order=9=>2MB)
* @group_id: A memory group ID to be passed to a platform-specific
* memory group manager, if present.
* Valid range is 0..(MEMORY_GROUP_MANAGER_NR_GROUPS-1).
* @kbdev: Kbase device where memory is used
* @next_pool: Pointer to the next pool or NULL.
*
* Allocations from @pool are in whole pages. Each @pool has a free list where
* pages can be quickly allocated from. The free list is initially empty and
* filled whenever pages are freed back to the pool. The number of free pages
* in the pool will in general not exceed @max_size, but the pool may in
* certain corner cases grow above @max_size.
*
* If @next_pool is not NULL, we will allocate from @next_pool before going to
* the memory group manager. Similarly pages can spill over to @next_pool when
* @pool is full. Pages are zeroed before they spill over to another pool, to
* prevent leaking information between applications.
*
* A shrinker is registered so that Linux mm can reclaim pages from the pool as
* needed.
*
* Return: 0 on success, negative -errno on error
*/
int kbase_mem_pool_init(struct kbase_mem_pool *pool, const struct kbase_mem_pool_config *config,
unsigned int order, int group_id, struct kbase_device *kbdev,
struct kbase_mem_pool *next_pool);
/**
* kbase_mem_pool_term - Destroy a memory pool
* @pool: Memory pool to destroy
*
* Pages in the pool will spill over to @next_pool (if available) or freed to
* the kernel.
*/
void kbase_mem_pool_term(struct kbase_mem_pool *pool);
/**
* kbase_mem_pool_alloc - Allocate a page from memory pool
* @pool: Memory pool to allocate from
*
* Allocations from the pool are made as follows:
* 1. If there are free pages in the pool, allocate a page from @pool.
* 2. Otherwise, if @next_pool is not NULL and has free pages, allocate a page
* from @next_pool.
* 3. Return NULL if no memory in the pool
*
* Return: Pointer to allocated page, or NULL if allocation failed.
*
* Note : This function should not be used if the pool lock is held. Use
* kbase_mem_pool_alloc_locked() instead.
*/
struct page *kbase_mem_pool_alloc(struct kbase_mem_pool *pool);
/**
* kbase_mem_pool_alloc_locked - Allocate a page from memory pool
* @pool: Memory pool to allocate from
*
* If there are free pages in the pool, this function allocates a page from
* @pool. This function does not use @next_pool.
*
* Return: Pointer to allocated page, or NULL if allocation failed.
*
* Note : Caller must hold the pool lock.
*/
struct page *kbase_mem_pool_alloc_locked(struct kbase_mem_pool *pool);
/**
* kbase_mem_pool_free - Free a page to memory pool
* @pool: Memory pool where page should be freed
* @page: Page to free to the pool
* @dirty: Whether some of the page may be dirty in the cache.
*
* Pages are freed to the pool as follows:
* 1. If @pool is not full, add @page to @pool.
* 2. Otherwise, if @next_pool is not NULL and not full, add @page to
* @next_pool.
* 3. Finally, free @page to the kernel.
*
* Note : This function should not be used if the pool lock is held. Use
* kbase_mem_pool_free_locked() instead.
*/
void kbase_mem_pool_free(struct kbase_mem_pool *pool, struct page *page,
bool dirty);
/**
* kbase_mem_pool_free_locked - Free a page to memory pool
* @pool: Memory pool where page should be freed
* @p: Page to free to the pool
* @dirty: Whether some of the page may be dirty in the cache.
*
* If @pool is not full, this function adds @page to @pool. Otherwise, @page is
* freed to the kernel. This function does not use @next_pool.
*
* Note : Caller must hold the pool lock.
*/
void kbase_mem_pool_free_locked(struct kbase_mem_pool *pool, struct page *p,
bool dirty);
/**
* kbase_mem_pool_alloc_pages - Allocate pages from memory pool
* @pool: Memory pool to allocate from
* @nr_4k_pages: Number of pages to allocate
* @pages: Pointer to array where the physical address of the allocated
* pages will be stored.
* @partial_allowed: If fewer pages allocated is allowed
* @page_owner: Pointer to the task that created the Kbase context for which
* the pages are being allocated. It can be NULL if the pages
* won't be associated with any Kbase context.
*
* Like kbase_mem_pool_alloc() but optimized for allocating many pages.
*
* Return:
* On success number of pages allocated (could be less than nr_pages if
* partial_allowed).
* On error an error code.
*
* Note : This function should not be used if the pool lock is held. Use
* kbase_mem_pool_alloc_pages_locked() instead.
*
* The caller must not hold vm_lock, as this could cause a deadlock if
* the kernel OoM killer runs. If the caller must allocate pages while holding
* this lock, it should use kbase_mem_pool_alloc_pages_locked() instead.
*/
int kbase_mem_pool_alloc_pages(struct kbase_mem_pool *pool, size_t nr_4k_pages,
struct tagged_addr *pages, bool partial_allowed,
struct task_struct *page_owner);
/**
* kbase_mem_pool_alloc_pages_locked - Allocate pages from memory pool
* @pool: Memory pool to allocate from
* @nr_4k_pages: Number of pages to allocate
* @pages: Pointer to array where the physical address of the allocated
* pages will be stored.
*
* Like kbase_mem_pool_alloc() but optimized for allocating many pages. This
* version does not allocate new pages from the kernel, and therefore will never
* trigger the OoM killer. Therefore, it can be run while the vm_lock is held.
*
* As new pages can not be allocated, the caller must ensure there are
* sufficient pages in the pool. Usage of this function should look like :
*
* kbase_gpu_vm_lock(kctx);
* kbase_mem_pool_lock(pool)
* while (kbase_mem_pool_size(pool) < pages_required) {
* kbase_mem_pool_unlock(pool)
* kbase_gpu_vm_unlock(kctx);
* kbase_mem_pool_grow(pool)
* kbase_gpu_vm_lock(kctx);
* kbase_mem_pool_lock(pool)
* }
* kbase_mem_pool_alloc_pages_locked(pool)
* kbase_mem_pool_unlock(pool)
* Perform other processing that requires vm_lock...
* kbase_gpu_vm_unlock(kctx);
*
* This ensures that the pool can be grown to the required size and that the
* allocation can complete without another thread using the newly grown pages.
*
* Return:
* On success number of pages allocated.
* On error an error code.
*
* Note : Caller must hold the pool lock.
*/
int kbase_mem_pool_alloc_pages_locked(struct kbase_mem_pool *pool,
size_t nr_4k_pages, struct tagged_addr *pages);
/**
* kbase_mem_pool_free_pages - Free pages to memory pool
* @pool: Memory pool where pages should be freed
* @nr_pages: Number of pages to free
* @pages: Pointer to array holding the physical addresses of the pages to
* free.
* @dirty: Whether any pages may be dirty in the cache.
* @reclaimed: Whether the pages where reclaimable and thus should bypass
* the pool and go straight to the kernel.
*
* Like kbase_mem_pool_free() but optimized for freeing many pages.
*/
void kbase_mem_pool_free_pages(struct kbase_mem_pool *pool, size_t nr_pages,
struct tagged_addr *pages, bool dirty, bool reclaimed);
/**
* kbase_mem_pool_free_pages_locked - Free pages to memory pool
* @pool: Memory pool where pages should be freed
* @nr_pages: Number of pages to free
* @pages: Pointer to array holding the physical addresses of the pages to
* free.
* @dirty: Whether any pages may be dirty in the cache.
* @reclaimed: Whether the pages where reclaimable and thus should bypass
* the pool and go straight to the kernel.
*
* Like kbase_mem_pool_free() but optimized for freeing many pages.
*/
void kbase_mem_pool_free_pages_locked(struct kbase_mem_pool *pool,
size_t nr_pages, struct tagged_addr *pages, bool dirty,
bool reclaimed);
/**
* kbase_mem_pool_size - Get number of free pages in memory pool
* @pool: Memory pool to inspect
*
* Note: the size of the pool may in certain corner cases exceed @max_size!
*
* Return: Number of free pages in the pool
*/
static inline size_t kbase_mem_pool_size(struct kbase_mem_pool *pool)
{
return READ_ONCE(pool->cur_size);
}
/**
* kbase_mem_pool_max_size - Get maximum number of free pages in memory pool
* @pool: Memory pool to inspect
*
* Return: Maximum number of free pages in the pool
*/
static inline size_t kbase_mem_pool_max_size(struct kbase_mem_pool *pool)
{
return pool->max_size;
}
/**
* kbase_mem_pool_set_max_size - Set maximum number of free pages in memory pool
* @pool: Memory pool to inspect
* @max_size: Maximum number of free pages the pool can hold
*
* If @max_size is reduced, the pool will be shrunk to adhere to the new limit.
* For details see kbase_mem_pool_shrink().
*/
void kbase_mem_pool_set_max_size(struct kbase_mem_pool *pool, size_t max_size);
/**
* kbase_mem_pool_grow - Grow the pool
* @pool: Memory pool to grow
* @nr_to_grow: Number of pages to add to the pool
* @page_owner: Pointer to the task that created the Kbase context for which
* the memory pool is being grown. It can be NULL if the pages
* to be allocated won't be associated with any Kbase context.
*
* Adds @nr_to_grow pages to the pool. Note that this may cause the pool to
* become larger than the maximum size specified.
*
* Return: 0 on success, -ENOMEM if unable to allocate sufficent pages
*/
int kbase_mem_pool_grow(struct kbase_mem_pool *pool, size_t nr_to_grow,
struct task_struct *page_owner);
/**
* kbase_mem_pool_trim - Grow or shrink the pool to a new size
* @pool: Memory pool to trim
* @new_size: New number of pages in the pool
*
* If @new_size > @cur_size, fill the pool with new pages from the kernel, but
* not above the max_size for the pool.
* If @new_size < @cur_size, shrink the pool by freeing pages to the kernel.
*/
void kbase_mem_pool_trim(struct kbase_mem_pool *pool, size_t new_size);
/**
* kbase_mem_pool_mark_dying - Mark that this pool is dying
* @pool: Memory pool
*
* This will cause any ongoing allocation operations (eg growing on page fault)
* to be terminated.
*/
void kbase_mem_pool_mark_dying(struct kbase_mem_pool *pool);
/**
* kbase_mem_alloc_page - Allocate a new page for a device
* @pool: Memory pool to allocate a page from
*
* Most uses should use kbase_mem_pool_alloc to allocate a page. However that
* function can fail in the event the pool is empty.
*
* Return: A new page or NULL if no memory
*/
struct page *kbase_mem_alloc_page(struct kbase_mem_pool *pool);
/**
* kbase_mem_pool_free_page - Free a page from a memory pool.
* @pool: Memory pool to free a page from
* @p: Page to free
*
* This will free any associated data stored for the page and release
* the page back to the kernel.
*/
void kbase_mem_pool_free_page(struct kbase_mem_pool *pool, struct page *p);
/**
* kbase_region_tracker_init - Initialize the region tracker data structure
* @kctx: kbase context
*
* Return: 0 if success, negative error code otherwise.
*/
int kbase_region_tracker_init(struct kbase_context *kctx);
/**
* kbase_region_tracker_init_jit - Initialize the just-in-time memory
* allocation region
* @kctx: Kbase context.
* @jit_va_pages: Size of the JIT region in pages.
* @max_allocations: Maximum number of allocations allowed for the JIT region.
* Valid range is 0..%BASE_JIT_ALLOC_COUNT.
* @trim_level: Trim level for the JIT region.
* Valid range is 0..%BASE_JIT_MAX_TRIM_LEVEL.
* @group_id: The physical group ID from which to allocate JIT memory.
* Valid range is 0..(%MEMORY_GROUP_MANAGER_NR_GROUPS-1).
* @phys_pages_limit: Maximum number of physical pages to use to back the JIT
* region. Must not exceed @jit_va_pages.
*
* Return: 0 if success, negative error code otherwise.
*/
int kbase_region_tracker_init_jit(struct kbase_context *kctx, u64 jit_va_pages,
int max_allocations, int trim_level, int group_id,
u64 phys_pages_limit);
/**
* kbase_region_tracker_init_exec - Initialize the GPU-executable memory region
* @kctx: kbase context
* @exec_va_pages: Size of the JIT region in pages.
* It must not be greater than 4 GB.
*
* Return: 0 if success, negative error code otherwise.
*/
int kbase_region_tracker_init_exec(struct kbase_context *kctx, u64 exec_va_pages);
/**
* kbase_region_tracker_term - Terminate the JIT region
* @kctx: kbase context
*/
void kbase_region_tracker_term(struct kbase_context *kctx);
/**
* kbase_region_tracker_erase_rbtree - Free memory for a region tracker
*
* @rbtree: Region tracker tree root
*
* This will free all the regions within the region tracker
*/
void kbase_region_tracker_erase_rbtree(struct rb_root *rbtree);
struct kbase_va_region *kbase_region_tracker_find_region_enclosing_address(
struct kbase_context *kctx, u64 gpu_addr);
struct kbase_va_region *kbase_find_region_enclosing_address(
struct rb_root *rbtree, u64 gpu_addr);
void kbase_region_tracker_insert(struct kbase_va_region *new_reg);
/**
* kbase_region_tracker_find_region_base_address - Check that a pointer is
* actually a valid region.
* @kctx: kbase context containing the region
* @gpu_addr: pointer to check
*
* Must be called with context lock held.
*
* Return: pointer to the valid region on success, NULL otherwise
*/
struct kbase_va_region *kbase_region_tracker_find_region_base_address(
struct kbase_context *kctx, u64 gpu_addr);
struct kbase_va_region *kbase_find_region_base_address(struct rb_root *rbtree,
u64 gpu_addr);
struct kbase_va_region *kbase_alloc_free_region(struct kbase_reg_zone *zone, u64 start_pfn,
size_t nr_pages);
struct kbase_va_region *kbase_ctx_alloc_free_region(struct kbase_context *kctx,
enum kbase_memory_zone id, u64 start_pfn,
size_t nr_pages);
void kbase_free_alloced_region(struct kbase_va_region *reg);
int kbase_add_va_region(struct kbase_context *kctx, struct kbase_va_region *reg,
u64 addr, size_t nr_pages, size_t align);
int kbase_add_va_region_rbtree(struct kbase_device *kbdev,
struct kbase_va_region *reg, u64 addr, size_t nr_pages,
size_t align);
bool kbase_check_alloc_flags(unsigned long flags);
bool kbase_check_import_flags(unsigned long flags);
static inline bool kbase_import_size_is_valid(struct kbase_device *kbdev, u64 va_pages)
{
if (va_pages > KBASE_MEM_ALLOC_MAX_SIZE) {
dev_dbg(
kbdev->dev,
"Import attempted with va_pages==%lld larger than KBASE_MEM_ALLOC_MAX_SIZE!",
(unsigned long long)va_pages);
return false;
}
return true;
}
static inline bool kbase_alias_size_is_valid(struct kbase_device *kbdev, u64 va_pages)
{
if (va_pages > KBASE_MEM_ALLOC_MAX_SIZE) {
dev_dbg(
kbdev->dev,
"Alias attempted with va_pages==%lld larger than KBASE_MEM_ALLOC_MAX_SIZE!",
(unsigned long long)va_pages);
return false;
}
return true;
}
/**
* kbase_check_alloc_sizes - check user space sizes parameters for an
* allocation
*
* @kctx: kbase context
* @flags: The flags passed from user space
* @va_pages: The size of the requested region, in pages.
* @commit_pages: Number of pages to commit initially.
* @extension: Number of pages to grow by on GPU page fault and/or alignment
* (depending on flags)
*
* Makes checks on the size parameters passed in from user space for a memory
* allocation call, with respect to the flags requested.
*
* Return: 0 if sizes are valid for these flags, negative error code otherwise
*/
int kbase_check_alloc_sizes(struct kbase_context *kctx, unsigned long flags,
u64 va_pages, u64 commit_pages, u64 extension);
/**
* kbase_update_region_flags - Convert user space flags to kernel region flags
*
* @kctx: kbase context
* @reg: The region to update the flags on
* @flags: The flags passed from user space
*
* The user space flag BASE_MEM_COHERENT_SYSTEM_REQUIRED will be rejected and
* this function will fail if the system does not support system coherency.
*
* Return: 0 if successful, -EINVAL if the flags are not supported
*/
int kbase_update_region_flags(struct kbase_context *kctx,
struct kbase_va_region *reg, unsigned long flags);
/**
* kbase_gpu_vm_lock() - Acquire the per-context region list lock
* @kctx: KBase context
*
* Care must be taken when making an allocation whilst holding this lock, because of interaction
* with the Kernel's OoM-killer and use of this lock in &vm_operations_struct close() handlers.
*
* If this lock is taken during a syscall, and/or the allocation is 'small' then it is safe to use.
*
* If the caller is not in a syscall, and the allocation is 'large', then it must not hold this
* lock.
*
* This is because the kernel OoM killer might target the process corresponding to that same kbase
* context, and attempt to call the context's close() handlers for its open VMAs. This is safe if
* the allocating caller is in a syscall, because the VMA close() handlers are delayed until all
* syscalls have finished (noting that no new syscalls can start as the remaining user threads will
* have been killed too), and so there is no possibility of contention between the thread
* allocating with this lock held, and the VMA close() handler.
*
* However, outside of a syscall (e.g. a kworker or other kthread), one of kbase's VMA close()
* handlers (kbase_cpu_vm_close()) also takes this lock, and so prevents the process from being
* killed until the caller of the function allocating memory has released this lock. On subsequent
* retries for allocating a page, the OoM killer would be re-invoked but skips over the process
* stuck in its close() handler.
*
* Also because the caller is not in a syscall, the page allocation code in the kernel is not aware
* that the allocation is being done on behalf of another process, and so does not realize that
* process has received a kill signal due to an OoM, and so will continually retry with the OoM
* killer until enough memory has been released, or until all other killable processes have been
* killed (at which point the kernel halts with a panic).
*
* However, if the allocation outside of a syscall is small enough to be satisfied by killing
* another process, then the allocation completes, the caller releases this lock, and
* kbase_cpu_vm_close() can unblock and allow the process to be killed.
*
* Hence, this is effectively a deadlock with kbase_cpu_vm_close(), except that if the memory
* allocation is small enough the deadlock can be resolved. For that reason, such a memory deadlock
* is NOT discovered with CONFIG_PROVE_LOCKING.
*
* If this may be called outside of a syscall, consider moving allocations outside of this lock, or
* use __GFP_NORETRY for such allocations (which will allow direct-reclaim attempts, but will
* prevent OoM kills to satisfy the allocation, and will just fail the allocation instead).
*/
void kbase_gpu_vm_lock(struct kbase_context *kctx);
/**
* kbase_gpu_vm_unlock() - Release the per-context region list lock
* @kctx: KBase context
*/
void kbase_gpu_vm_unlock(struct kbase_context *kctx);
int kbase_alloc_phy_pages(struct kbase_va_region *reg, size_t vsize, size_t size);
/**
* kbase_gpu_mmap - Register region and map it on the GPU.
*
* @kctx: kbase context containing the region
* @reg: the region to add
* @addr: the address to insert the region at
* @nr_pages: the number of pages in the region
* @align: the minimum alignment in pages
* @mmu_sync_info: Indicates whether this call is synchronous wrt MMU ops.
*
* Call kbase_add_va_region() and map the region on the GPU.
*
* Return: 0 on success, error code otherwise.
*/
int kbase_gpu_mmap(struct kbase_context *kctx, struct kbase_va_region *reg,
u64 addr, size_t nr_pages, size_t align,
enum kbase_caller_mmu_sync_info mmu_sync_info);
/**
* kbase_gpu_munmap - Remove the region from the GPU and unregister it.
*
* @kctx: KBase context
* @reg: The region to remove
*
* Must be called with context lock held.
*
* Return: 0 on success, error code otherwise.
*/
int kbase_gpu_munmap(struct kbase_context *kctx, struct kbase_va_region *reg);
/**
* kbase_mmu_update - Configure an address space on the GPU to the specified
* MMU tables
*
* @kbdev: Kbase device structure
* @mmut: The set of MMU tables to be configured on the address space
* @as_nr: The address space to be configured
*
* The caller has the following locking conditions:
* - It must hold kbase_device->mmu_hw_mutex
* - It must hold the hwaccess_lock
*/
void kbase_mmu_update(struct kbase_device *kbdev, struct kbase_mmu_table *mmut,
int as_nr);
/**
* kbase_mmu_disable() - Disable the MMU for a previously active kbase context.
* @kctx: Kbase context
*
* Disable and perform the required cache maintenance to remove the all
* data from provided kbase context from the GPU caches.
*
* The caller has the following locking conditions:
* - It must hold kbase_device->mmu_hw_mutex
* - It must hold the hwaccess_lock
*/
void kbase_mmu_disable(struct kbase_context *kctx);
/**
* kbase_mmu_disable_as() - Set the MMU to unmapped mode for the specified
* address space.
* @kbdev: Kbase device
* @as_nr: The address space number to set to unmapped.
*
* This function must only be called during reset/power-up and it used to
* ensure the registers are in a known state.
*
* The caller must hold kbdev->mmu_hw_mutex.
*/
void kbase_mmu_disable_as(struct kbase_device *kbdev, int as_nr);
void kbase_mmu_interrupt(struct kbase_device *kbdev, u32 irq_stat);
#if defined(CONFIG_MALI_VECTOR_DUMP)
/**
* kbase_mmu_dump() - Dump the MMU tables to a buffer.
*
* @kctx: The kbase context to dump
* @nr_pages: The number of pages to allocate for the buffer.
*
* This function allocates a buffer (of @c nr_pages pages) to hold a dump
* of the MMU tables and fills it. If the buffer is too small
* then the return value will be NULL.
*
* The GPU vm lock must be held when calling this function.
*
* The buffer returned should be freed with @ref vfree when it is no longer
* required.
*
* Return: The address of the buffer containing the MMU dump or NULL on error
* (including if the @c nr_pages is too small)
*/
void *kbase_mmu_dump(struct kbase_context *kctx, int nr_pages);
#endif
/**
* kbase_sync_now - Perform cache maintenance on a memory region
*
* @kctx: The kbase context of the region
* @sset: A syncset structure describing the region and direction of the
* synchronisation required
*
* Return: 0 on success or error code
*/
int kbase_sync_now(struct kbase_context *kctx, struct basep_syncset *sset);
void kbase_sync_single(struct kbase_context *kctx, struct tagged_addr cpu_pa,
struct tagged_addr gpu_pa, off_t offset, size_t size,
enum kbase_sync_type sync_fn);
/* OS specific functions */
int kbase_mem_free(struct kbase_context *kctx, u64 gpu_addr);
int kbase_mem_free_region(struct kbase_context *kctx, struct kbase_va_region *reg);
void kbase_os_mem_map_lock(struct kbase_context *kctx);
void kbase_os_mem_map_unlock(struct kbase_context *kctx);
/**
* kbasep_os_process_page_usage_update() - Update the memory allocation
* counters for the current process.
*
* @kctx: The kbase context
* @pages: The desired delta to apply to the memory usage counters.
*
* OS specific call to updates the current memory allocation counters
* for the current process with the supplied delta.
*/
void kbasep_os_process_page_usage_update(struct kbase_context *kctx, int pages);
/**
* kbase_process_page_usage_inc() - Add to the memory allocation counters for
* the current process
*
* @kctx: The kernel base context used for the allocation.
* @pages: The desired delta to apply to the memory usage counters.
*
* OS specific call to add to the current memory allocation counters for
* the current process by the supplied amount.
*/
static inline void kbase_process_page_usage_inc(struct kbase_context *kctx, int pages)
{
kbasep_os_process_page_usage_update(kctx, pages);
}
/**
* kbase_process_page_usage_dec() - Subtract from the memory allocation
* counters for the current process.
*
* @kctx: The kernel base context used for the allocation.
* @pages: The desired delta to apply to the memory usage counters.
*
* OS specific call to subtract from the current memory allocation counters
* for the current process by the supplied amount.
*/
static inline void kbase_process_page_usage_dec(struct kbase_context *kctx, int pages)
{
kbasep_os_process_page_usage_update(kctx, 0 - pages);
}
/**
* kbasep_find_enclosing_cpu_mapping_offset() - Find the offset of the CPU
* mapping of a memory allocation containing a given address range
*
* @kctx: The kernel base context used for the allocation.
* @uaddr: Start of the CPU virtual address range.
* @size: Size of the CPU virtual address range (in bytes).
* @offset: The offset from the start of the allocation to the specified CPU
* virtual address.
*
* Searches for a CPU mapping of any part of any region that fully encloses the
* CPU virtual address range specified by @uaddr and @size. Returns a failure
* indication if only part of the address range lies within a CPU mapping.
*
* Return: 0 if offset was obtained successfully. Error code otherwise.
*/
int kbasep_find_enclosing_cpu_mapping_offset(
struct kbase_context *kctx,
unsigned long uaddr, size_t size, u64 *offset);
/**
* kbasep_find_enclosing_gpu_mapping_start_and_offset() - Find the address of
* the start of GPU virtual memory region which encloses @gpu_addr for the
* @size length in bytes
*
* @kctx: The kernel base context within which the memory is searched.
* @gpu_addr: GPU virtual address for which the region is sought; defines
* the beginning of the provided region.
* @size: The length (in bytes) of the provided region for which the
* GPU virtual memory region is sought.
* @start: Pointer to the location where the address of the start of
* the found GPU virtual memory region is.
* @offset: Pointer to the location where the offset of @gpu_addr into
* the found GPU virtual memory region is.
*
* Searches for the memory region in GPU virtual memory space which contains
* the region defined by the @gpu_addr and @size, where @gpu_addr is the
* beginning and @size the length in bytes of the provided region. If found,
* the location of the start address of the GPU virtual memory region is
* passed in @start pointer and the location of the offset of the region into
* the GPU virtual memory region is passed in @offset pointer.
*
* Return: 0 on success, error code otherwise.
*/
int kbasep_find_enclosing_gpu_mapping_start_and_offset(
struct kbase_context *kctx,
u64 gpu_addr, size_t size, u64 *start, u64 *offset);
/**
* kbase_alloc_phy_pages_helper - Allocates physical pages.
* @alloc: allocation object to add pages to
* @nr_pages_requested: number of physical pages to allocate
*
* Allocates @nr_pages_requested and updates the alloc object.
*
* Note: if kbase_gpu_vm_lock() is to be held around this function to ensure thread-safe updating
* of @alloc, then refer to the documentation of kbase_gpu_vm_lock() about the requirements of
* either calling during a syscall, or ensuring the allocation is small. These requirements prevent
* an effective deadlock between the kernel's OoM killer and kbase's VMA close() handlers, which
* could take kbase_gpu_vm_lock() too.
*
* If the requirements of kbase_gpu_vm_lock() cannot be satisfied when calling this function, but
* @alloc must still be updated in a thread-safe way, then instead use
* kbase_alloc_phy_pages_helper_locked() and restructure callers into the sequence outlined there.
*
* This function cannot be used from interrupt context
*
* Return: 0 if all pages have been successfully allocated. Error code otherwise
*/
int kbase_alloc_phy_pages_helper(struct kbase_mem_phy_alloc *alloc,
size_t nr_pages_requested);
/**
* kbase_alloc_phy_pages_helper_locked - Allocates physical pages.
* @alloc: allocation object to add pages to
* @pool: Memory pool to allocate from
* @nr_pages_requested: number of physical pages to allocate
*
* @prealloc_sa: Information about the partial allocation if the amount of memory requested
* is not a multiple of 2MB. One instance of struct kbase_sub_alloc must be
* allocated by the caller if kbdev->pagesize_2mb is enabled.
*
* Allocates @nr_pages_requested and updates the alloc object. This function does not allocate new
* pages from the kernel, and therefore will never trigger the OoM killer. Therefore, it can be
* called whilst a thread operating outside of a syscall has held the region list lock
* (kbase_gpu_vm_lock()), as it will not cause an effective deadlock with VMA close() handlers used
* by the OoM killer.
*
* As new pages can not be allocated, the caller must ensure there are sufficient pages in the
* pool. Usage of this function should look like :
*
* kbase_gpu_vm_lock(kctx);
* kbase_mem_pool_lock(pool)
* while (kbase_mem_pool_size(pool) < pages_required) {
* kbase_mem_pool_unlock(pool)
* kbase_gpu_vm_unlock(kctx);
* kbase_mem_pool_grow(pool)
* kbase_gpu_vm_lock(kctx);
* kbase_mem_pool_lock(pool)
* }
* kbase_alloc_phy_pages_helper_locked(pool)
* kbase_mem_pool_unlock(pool)
* // Perform other processing that requires vm_lock...
* kbase_gpu_vm_unlock(kctx);
*
* This ensures that the pool can be grown to the required size and that the allocation can
* complete without another thread using the newly grown pages.
*
* If kbdev->pagesize_2mb is enabled and the allocation is >= 2MB, then @pool must be one of the
* pools from alloc->imported.native.kctx->mem_pools.large[]. Otherwise it must be one of the
* mempools from alloc->imported.native.kctx->mem_pools.small[].
*
* @prealloc_sa is used to manage the non-2MB sub-allocation. It has to be pre-allocated because we
* must not sleep (due to the usage of kmalloc()) whilst holding pool->pool_lock. @prealloc_sa
* shall be set to NULL if it has been consumed by this function to indicate that the caller no
* longer owns it and should not access it further.
*
* Note: Caller must hold @pool->pool_lock
*
* Return: Pointer to array of allocated pages. NULL on failure.
*/
struct tagged_addr *kbase_alloc_phy_pages_helper_locked(
struct kbase_mem_phy_alloc *alloc, struct kbase_mem_pool *pool,
size_t nr_pages_requested,
struct kbase_sub_alloc **prealloc_sa);
/**
* kbase_free_phy_pages_helper() - Free physical pages.
*
* @alloc: allocation object to free pages from
* @nr_pages_to_free: number of physical pages to free
*
* Free @nr_pages_to_free pages and updates the alloc object.
*
* Return: 0 on success, otherwise a negative error code
*/
int kbase_free_phy_pages_helper(struct kbase_mem_phy_alloc *alloc, size_t nr_pages_to_free);
/**
* kbase_free_phy_pages_helper_locked - Free pages allocated with
* kbase_alloc_phy_pages_helper_locked()
* @alloc: Allocation object to free pages from
* @pool: Memory pool to return freed pages to
* @pages: Pages allocated by kbase_alloc_phy_pages_helper_locked()
* @nr_pages_to_free: Number of physical pages to free
*
* This function atomically frees pages allocated with
* kbase_alloc_phy_pages_helper_locked(). @pages is the pointer to the page
* array that is returned by that function. @pool must be the pool that the
* pages were originally allocated from.
*
* If the mem_pool has been unlocked since the allocation then
* kbase_free_phy_pages_helper() should be used instead.
*/
void kbase_free_phy_pages_helper_locked(struct kbase_mem_phy_alloc *alloc,
struct kbase_mem_pool *pool, struct tagged_addr *pages,
size_t nr_pages_to_free);
static inline void kbase_set_dma_addr_as_priv(struct page *p, dma_addr_t dma_addr)
{
SetPagePrivate(p);
if (sizeof(dma_addr_t) > sizeof(p->private)) {
/* on 32-bit ARM with LPAE dma_addr_t becomes larger, but the
* private field stays the same. So we have to be clever and
* use the fact that we only store DMA addresses of whole pages,
* so the low bits should be zero
*/
KBASE_DEBUG_ASSERT(!(dma_addr & (PAGE_SIZE - 1)));
set_page_private(p, dma_addr >> PAGE_SHIFT);
} else {
set_page_private(p, dma_addr);
}
}
static inline dma_addr_t kbase_dma_addr_as_priv(struct page *p)
{
if (sizeof(dma_addr_t) > sizeof(p->private))
return ((dma_addr_t)page_private(p)) << PAGE_SHIFT;
return (dma_addr_t)page_private(p);
}
static inline void kbase_clear_dma_addr_as_priv(struct page *p)
{
ClearPagePrivate(p);
}
static inline struct kbase_page_metadata *kbase_page_private(struct page *p)
{
return (struct kbase_page_metadata *)page_private(p);
}
static inline dma_addr_t kbase_dma_addr(struct page *p)
{
if (kbase_is_page_migration_enabled())
return kbase_page_private(p)->dma_addr;
return kbase_dma_addr_as_priv(p);
}
static inline dma_addr_t kbase_dma_addr_from_tagged(struct tagged_addr tagged_pa)
{
phys_addr_t pa = as_phys_addr_t(tagged_pa);
struct page *page = pfn_to_page(PFN_DOWN(pa));
dma_addr_t dma_addr = (is_huge(tagged_pa) || is_partial(tagged_pa)) ?
kbase_dma_addr_as_priv(page) :
kbase_dma_addr(page);
return dma_addr;
}
/**
* kbase_flush_mmu_wqs() - Flush MMU workqueues.
* @kbdev: Device pointer.
*
* This function will cause any outstanding page or bus faults to be processed.
* It should be called prior to powering off the GPU.
*/
void kbase_flush_mmu_wqs(struct kbase_device *kbdev);
/**
* kbase_sync_single_for_device - update physical memory and give GPU ownership
* @kbdev: Device pointer
* @handle: DMA address of region
* @size: Size of region to sync
* @dir: DMA data direction
*/
void kbase_sync_single_for_device(struct kbase_device *kbdev, dma_addr_t handle,
size_t size, enum dma_data_direction dir);
/**
* kbase_sync_single_for_cpu - update physical memory and give CPU ownership
* @kbdev: Device pointer
* @handle: DMA address of region
* @size: Size of region to sync
* @dir: DMA data direction
*/
void kbase_sync_single_for_cpu(struct kbase_device *kbdev, dma_addr_t handle,
size_t size, enum dma_data_direction dir);
#if IS_ENABLED(CONFIG_DEBUG_FS)
/**
* kbase_jit_debugfs_init - Add per context debugfs entry for JIT.
* @kctx: kbase context
*/
void kbase_jit_debugfs_init(struct kbase_context *kctx);
#endif /* CONFIG_DEBUG_FS */
/**
* kbase_jit_init - Initialize the JIT memory pool management
* @kctx: kbase context
*
* Return: zero on success or negative error number on failure.
*/
int kbase_jit_init(struct kbase_context *kctx);
/**
* kbase_jit_allocate - Allocate JIT memory
* @kctx: kbase context
* @info: JIT allocation information
* @ignore_pressure_limit: Whether the JIT memory pressure limit is ignored
*
* Return: JIT allocation on success or NULL on failure.
*/
struct kbase_va_region *kbase_jit_allocate(struct kbase_context *kctx,
const struct base_jit_alloc_info *info,
bool ignore_pressure_limit);
/**
* kbase_jit_free - Free a JIT allocation
* @kctx: kbase context
* @reg: JIT allocation
*
* Frees a JIT allocation and places it into the free pool for later reuse.
*/
void kbase_jit_free(struct kbase_context *kctx, struct kbase_va_region *reg);
/**
* kbase_jit_backing_lost - Inform JIT that an allocation has lost backing
* @reg: JIT allocation
*/
void kbase_jit_backing_lost(struct kbase_va_region *reg);
/**
* kbase_jit_evict - Evict a JIT allocation from the pool
* @kctx: kbase context
*
* Evict the least recently used JIT allocation from the pool. This can be
* required if normal VA allocations are failing due to VA exhaustion.
*
* Return: True if a JIT allocation was freed, false otherwise.
*/
bool kbase_jit_evict(struct kbase_context *kctx);
/**
* kbase_jit_term - Terminate the JIT memory pool management
* @kctx: kbase context
*/
void kbase_jit_term(struct kbase_context *kctx);
#if MALI_JIT_PRESSURE_LIMIT_BASE
/**
* kbase_trace_jit_report_gpu_mem_trace_enabled - variant of
* kbase_trace_jit_report_gpu_mem() that should only be called once the
* corresponding tracepoint is verified to be enabled
* @kctx: kbase context
* @reg: Just-in-time memory region to trace
* @flags: combination of values from enum kbase_jit_report_flags
*/
void kbase_trace_jit_report_gpu_mem_trace_enabled(struct kbase_context *kctx,
struct kbase_va_region *reg, unsigned int flags);
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
/**
* kbase_trace_jit_report_gpu_mem - Trace information about the GPU memory used
* to make a JIT report
* @kctx: kbase context
* @reg: Just-in-time memory region to trace
* @flags: combination of values from enum kbase_jit_report_flags
*
* Information is traced using the trace_mali_jit_report_gpu_mem() tracepoint.
*
* In case that tracepoint is not enabled, this function should have the same
* low overheads as a tracepoint itself (i.e. use of 'jump labels' to avoid
* conditional branches)
*
* This can take the reg_lock on @kctx, do not use in places where this lock is
* already held.
*
* Note: this has to be a macro because at this stage the tracepoints have not
* been included. Also gives no opportunity for the compiler to mess up
* inlining it.
*/
#if MALI_JIT_PRESSURE_LIMIT_BASE
#define kbase_trace_jit_report_gpu_mem(kctx, reg, flags) \
do { \
if (trace_mali_jit_report_gpu_mem_enabled()) \
kbase_trace_jit_report_gpu_mem_trace_enabled( \
(kctx), (reg), (flags)); \
} while (0)
#else
#define kbase_trace_jit_report_gpu_mem(kctx, reg, flags) \
CSTD_NOP(kctx, reg, flags)
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
#if MALI_JIT_PRESSURE_LIMIT_BASE
/**
* kbase_jit_report_update_pressure - safely update the JIT physical page
* pressure and JIT region's estimate of used_pages
* @kctx: kbase context, to update the current physical pressure
* @reg: Just-in-time memory region to update with @new_used_pages
* @new_used_pages: new value of number of pages used in the JIT region
* @flags: combination of values from enum kbase_jit_report_flags
*
* Takes care of:
* - correctly updating the pressure given the current reg->used_pages and
* new_used_pages
* - then updating the %kbase_va_region used_pages member
*
* Precondition:
* - new_used_pages <= reg->nr_pages
*/
void kbase_jit_report_update_pressure(struct kbase_context *kctx,
struct kbase_va_region *reg, u64 new_used_pages,
unsigned int flags);
/**
* kbase_jit_trim_necessary_pages() - calculate and trim the least pages
* possible to satisfy a new JIT allocation
*
* @kctx: Pointer to the kbase context
* @needed_pages: Number of JIT physical pages by which trimming is requested.
* The actual number of pages trimmed could differ.
*
* Before allocating a new just-in-time memory region or reusing a previous
* one, ensure that the total JIT physical page usage also will not exceed the
* pressure limit.
*
* If there are no reported-on allocations, then we already guarantee this will
* be the case - because our current pressure then only comes from the va_pages
* of each JIT region, hence JIT physical page usage is guaranteed to be
* bounded by this.
*
* However as soon as JIT allocations become "reported on", the pressure is
* lowered to allow new JIT regions to be allocated. It is after such a point
* that the total JIT physical page usage could (either now or in the future on
* a grow-on-GPU-page-fault) exceed the pressure limit, but only on newly
* allocated JIT regions. Hence, trim any "reported on" regions.
*
* Any pages freed will go into the pool and be allocated from there in
* kbase_mem_alloc().
*/
void kbase_jit_trim_necessary_pages(struct kbase_context *kctx,
size_t needed_pages);
/*
* Same as kbase_jit_request_phys_increase(), except that Caller is supposed
* to take jit_evict_lock also on @kctx before calling this function.
*/
static inline void
kbase_jit_request_phys_increase_locked(struct kbase_context *kctx,
size_t needed_pages)
{
#if !MALI_USE_CSF
lockdep_assert_held(&kctx->jctx.lock);
#endif /* !MALI_USE_CSF */
lockdep_assert_held(&kctx->reg_lock);
lockdep_assert_held(&kctx->jit_evict_lock);
kctx->jit_phys_pages_to_be_allocated += needed_pages;
kbase_jit_trim_necessary_pages(kctx,
kctx->jit_phys_pages_to_be_allocated);
}
/**
* kbase_jit_request_phys_increase() - Increment the backing pages count and do
* the required trimming before allocating pages for a JIT allocation.
*
* @kctx: Pointer to the kbase context
* @needed_pages: Number of pages to be allocated for the JIT allocation.
*
* This function needs to be called before allocating backing pages for a
* just-in-time memory region. The backing pages are currently allocated when,
*
* - A new JIT region is created.
* - An old JIT region is reused from the cached pool.
* - GPU page fault occurs for the active JIT region.
* - Backing is grown for the JIT region through the commit ioctl.
*
* This function would ensure that the total JIT physical page usage does not
* exceed the pressure limit even when the backing pages get allocated
* simultaneously for multiple JIT allocations from different threads.
*
* There should be a matching call to kbase_jit_done_phys_increase(), after
* the pages have been allocated and accounted against the active JIT
* allocation.
*
* Caller is supposed to take reg_lock on @kctx before calling this function.
*/
static inline void kbase_jit_request_phys_increase(struct kbase_context *kctx,
size_t needed_pages)
{
#if !MALI_USE_CSF
lockdep_assert_held(&kctx->jctx.lock);
#endif /* !MALI_USE_CSF */
lockdep_assert_held(&kctx->reg_lock);
mutex_lock(&kctx->jit_evict_lock);
kbase_jit_request_phys_increase_locked(kctx, needed_pages);
mutex_unlock(&kctx->jit_evict_lock);
}
/**
* kbase_jit_done_phys_increase() - Decrement the backing pages count after the
* allocation of pages for a JIT allocation.
*
* @kctx: Pointer to the kbase context
* @needed_pages: Number of pages that were allocated for the JIT allocation.
*
* This function should be called after backing pages have been allocated and
* accounted against the active JIT allocation.
* The call should be made when the following have been satisfied:
* when the allocation is on the jit_active_head.
* when additional needed_pages have been allocated.
* kctx->reg_lock was held during the above and has not yet been unlocked.
* Failure to call this function before unlocking the kctx->reg_lock when
* either the above have changed may result in over-accounting the memory.
* This ensures kbase_jit_trim_necessary_pages() gets a consistent count of
* the memory.
*
* A matching call to kbase_jit_request_phys_increase() should have been made,
* before the allocation of backing pages.
*
* Caller is supposed to take reg_lock on @kctx before calling this function.
*/
static inline void kbase_jit_done_phys_increase(struct kbase_context *kctx,
size_t needed_pages)
{
lockdep_assert_held(&kctx->reg_lock);
WARN_ON(kctx->jit_phys_pages_to_be_allocated < needed_pages);
kctx->jit_phys_pages_to_be_allocated -= needed_pages;
}
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
/**
* kbase_has_exec_va_zone - EXEC_VA zone predicate
*
* @kctx: kbase context
*
* Determine whether an EXEC_VA zone has been created for the GPU address space
* of the given kbase context.
*
* Return: True if the kbase context has an EXEC_VA zone.
*/
bool kbase_has_exec_va_zone(struct kbase_context *kctx);
/**
* kbase_map_external_resource - Map an external resource to the GPU.
* @kctx: kbase context.
* @reg: External resource to map.
* @locked_mm: The mm_struct which has been locked for this operation.
*
* On successful mapping, the VA region and the gpu_alloc refcounts will be
* increased, making it safe to use and store both values directly.
*
* Return: Zero on success, or negative error code.
*/
int kbase_map_external_resource(struct kbase_context *kctx, struct kbase_va_region *reg,
struct mm_struct *locked_mm);
/**
* kbase_unmap_external_resource - Unmap an external resource from the GPU.
* @kctx: kbase context.
* @reg: VA region corresponding to external resource
*
* On successful unmapping, the VA region and the gpu_alloc refcounts will
* be decreased. If the refcount reaches zero, both @reg and the corresponding
* allocation may be freed, so using them after returning from this function
* requires the caller to explicitly check their state.
*/
void kbase_unmap_external_resource(struct kbase_context *kctx, struct kbase_va_region *reg);
/**
* kbase_unpin_user_buf_page - Unpin a page of a user buffer.
* @page: page to unpin
*
* The caller must have ensured that there are no CPU mappings for @page (as
* might be created from the struct kbase_mem_phy_alloc that tracks @page), and
* that userspace will not be able to recreate the CPU mappings again.
*/
void kbase_unpin_user_buf_page(struct page *page);
/**
* kbase_jd_user_buf_pin_pages - Pin the pages of a user buffer.
* @kctx: kbase context.
* @reg: The region associated with the imported user buffer.
*
* To successfully pin the pages for a user buffer the current mm_struct must
* be the same as the mm_struct of the user buffer. After successfully pinning
* the pages further calls to this function succeed without doing work.
*
* Return: zero on success or negative number on failure.
*/
int kbase_jd_user_buf_pin_pages(struct kbase_context *kctx,
struct kbase_va_region *reg);
/**
* kbase_sticky_resource_init - Initialize sticky resource management.
* @kctx: kbase context
*
* Return: zero on success or negative error number on failure.
*/
int kbase_sticky_resource_init(struct kbase_context *kctx);
/**
* kbase_sticky_resource_acquire - Acquire a reference on a sticky resource.
* @kctx: kbase context.
* @gpu_addr: The GPU address of the external resource.
*
* Return: The metadata object which represents the binding between the
* external resource and the kbase context on success or NULL on failure.
*/
struct kbase_ctx_ext_res_meta *kbase_sticky_resource_acquire(
struct kbase_context *kctx, u64 gpu_addr);
/**
* kbase_sticky_resource_release - Release a reference on a sticky resource.
* @kctx: kbase context.
* @meta: Binding metadata.
* @gpu_addr: GPU address of the external resource.
*
* If meta is NULL then gpu_addr will be used to scan the metadata list and
* find the matching metadata (if any), otherwise the provided meta will be
* used and gpu_addr will be ignored.
*
* Return: True if the release found the metadata and the reference was dropped.
*/
bool kbase_sticky_resource_release(struct kbase_context *kctx,
struct kbase_ctx_ext_res_meta *meta, u64 gpu_addr);
/**
* kbase_sticky_resource_release_force - Release a sticky resource.
* @kctx: kbase context.
* @meta: Binding metadata.
* @gpu_addr: GPU address of the external resource.
*
* If meta is NULL then gpu_addr will be used to scan the metadata list and
* find the matching metadata (if any), otherwise the provided meta will be
* used and gpu_addr will be ignored.
*
* Return: True if the release found the metadata and the resource was
* released.
*/
bool kbase_sticky_resource_release_force(struct kbase_context *kctx,
struct kbase_ctx_ext_res_meta *meta, u64 gpu_addr);
/**
* kbase_sticky_resource_term - Terminate sticky resource management.
* @kctx: kbase context
*/
void kbase_sticky_resource_term(struct kbase_context *kctx);
/**
* kbase_mem_pool_lock - Lock a memory pool
* @pool: Memory pool to lock
*/
static inline void kbase_mem_pool_lock(struct kbase_mem_pool *pool)
{
spin_lock(&pool->pool_lock);
}
/**
* kbase_mem_pool_unlock - Release a memory pool
* @pool: Memory pool to lock
*/
static inline void kbase_mem_pool_unlock(struct kbase_mem_pool *pool)
{
spin_unlock(&pool->pool_lock);
}
/**
* kbase_mem_evictable_mark_reclaim - Mark the pages as reclaimable.
* @alloc: The physical allocation
*/
void kbase_mem_evictable_mark_reclaim(struct kbase_mem_phy_alloc *alloc);
#if MALI_USE_CSF
/**
* kbase_link_event_mem_page - Add the new event memory region to the per
* context list of event pages.
* @kctx: Pointer to kbase context
* @reg: Pointer to the region allocated for event memory.
*
* The region being linked shouldn't have been marked as free and should
* have KBASE_REG_CSF_EVENT flag set for it.
*/
static inline void kbase_link_event_mem_page(struct kbase_context *kctx,
struct kbase_va_region *reg)
{
lockdep_assert_held(&kctx->reg_lock);
WARN_ON(reg->flags & KBASE_REG_FREE);
WARN_ON(!(reg->flags & KBASE_REG_CSF_EVENT));
list_add(&reg->link, &kctx->csf.event_pages_head);
}
/**
* kbase_unlink_event_mem_page - Remove the event memory region from the per
* context list of event pages.
* @kctx: Pointer to kbase context
* @reg: Pointer to the region allocated for event memory.
*
* The region being un-linked shouldn't have been marked as free and should
* have KBASE_REG_CSF_EVENT flag set for it.
*/
static inline void kbase_unlink_event_mem_page(struct kbase_context *kctx,
struct kbase_va_region *reg)
{
lockdep_assert_held(&kctx->reg_lock);
WARN_ON(reg->flags & KBASE_REG_FREE);
WARN_ON(!(reg->flags & KBASE_REG_CSF_EVENT));
list_del(&reg->link);
}
/**
* kbase_mcu_shared_interface_region_tracker_init - Initialize the rb tree to
* manage the shared interface segment of MCU firmware address space.
* @kbdev: Pointer to the kbase device
*
* Return: zero on success or negative error number on failure.
*/
int kbase_mcu_shared_interface_region_tracker_init(struct kbase_device *kbdev);
/**
* kbase_mcu_shared_interface_region_tracker_term - Teardown the rb tree
* managing the shared interface segment of MCU firmware address space.
* @kbdev: Pointer to the kbase device
*/
void kbase_mcu_shared_interface_region_tracker_term(struct kbase_device *kbdev);
#endif
/**
* kbase_mem_umm_map - Map dma-buf
* @kctx: Pointer to the kbase context
* @reg: Pointer to the region of the imported dma-buf to map
*
* Map a dma-buf on the GPU. The mappings are reference counted.
*
* Return: 0 on success, or a negative error code.
*/
int kbase_mem_umm_map(struct kbase_context *kctx,
struct kbase_va_region *reg);
/**
* kbase_mem_umm_unmap - Unmap dma-buf
* @kctx: Pointer to the kbase context
* @reg: Pointer to the region of the imported dma-buf to unmap
* @alloc: Pointer to the alloc to release
*
* Unmap a dma-buf from the GPU. The mappings are reference counted.
*
* @reg must be the original region with GPU mapping of @alloc; or NULL. If
* @reg is NULL, or doesn't match @alloc, the GPU page table entries matching
* @reg will not be updated.
*
* @alloc must be a valid physical allocation of type
* KBASE_MEM_TYPE_IMPORTED_UMM that was previously mapped by
* kbase_mem_umm_map(). The dma-buf attachment referenced by @alloc will
* release it's mapping reference, and if the refcount reaches 0, also be
* unmapped, regardless of the value of @reg.
*/
void kbase_mem_umm_unmap(struct kbase_context *kctx,
struct kbase_va_region *reg, struct kbase_mem_phy_alloc *alloc);
/**
* kbase_mem_do_sync_imported - Sync caches for imported memory
* @kctx: Pointer to the kbase context
* @reg: Pointer to the region with imported memory to sync
* @sync_fn: The type of sync operation to perform
*
* Sync CPU caches for supported (currently only dma-buf (UMM)) memory.
* Attempting to sync unsupported imported memory types will result in an error
* code, -EINVAL.
*
* Return: 0 on success, or a negative error code.
*/
int kbase_mem_do_sync_imported(struct kbase_context *kctx,
struct kbase_va_region *reg, enum kbase_sync_type sync_fn);
/**
* kbase_mem_copy_to_pinned_user_pages - Memcpy from source input page to
* an unaligned address at a given offset from the start of a target page.
*
* @dest_pages: Pointer to the array of pages to which the content is
* to be copied from the provided @src_page.
* @src_page: Pointer to the page which correspond to the source page
* from which the copying will take place.
* @to_copy: Total number of bytes pending to be copied from
* @src_page to @target_page_nr within @dest_pages.
* This will get decremented by number of bytes we
* managed to copy from source page to target pages.
* @nr_pages: Total number of pages present in @dest_pages.
* @target_page_nr: Target page number to which @src_page needs to be
* copied. This will get incremented by one if
* we are successful in copying from source page.
* @offset: Offset in bytes into the target pages from which the
* copying is to be performed.
*
* Return: 0 on success, or a negative error code.
*/
int kbase_mem_copy_to_pinned_user_pages(struct page **dest_pages,
void *src_page, size_t *to_copy, unsigned int nr_pages,
unsigned int *target_page_nr, size_t offset);
/**
* kbase_ctx_reg_zone_get_nolock - Get a zone from @kctx where the caller does
* not have @kctx 's region lock
* @kctx: Pointer to kbase context
* @zone: Zone identifier
*
* This should only be used in performance-critical paths where the code is
* resilient to a race with the zone changing, and only when the zone is tracked
* by the @kctx.
*
* Return: The zone corresponding to @zone
*/
static inline struct kbase_reg_zone *kbase_ctx_reg_zone_get_nolock(struct kbase_context *kctx,
enum kbase_memory_zone zone)
{
WARN_ON(!kbase_is_ctx_reg_zone(zone));
return &kctx->reg_zone[zone];
}
/**
* kbase_ctx_reg_zone_get - Get a memory zone from @kctx
* @kctx: Pointer to kbase context
* @zone: Zone identifier
*
* Note that the zone is not refcounted, so there is no corresponding operation to
* put the zone back.
*
* Return: The zone corresponding to @zone
*/
static inline struct kbase_reg_zone *kbase_ctx_reg_zone_get(struct kbase_context *kctx,
enum kbase_memory_zone zone)
{
lockdep_assert_held(&kctx->reg_lock);
return kbase_ctx_reg_zone_get_nolock(kctx, zone);
}
/**
* kbase_reg_zone_init - Initialize a zone in @kctx
* @kbdev: Pointer to kbase device in order to initialize the VA region cache
* @zone: Memory zone
* @id: Memory zone identifier to facilitate lookups
* @base_pfn: Page Frame Number in GPU virtual address space for the start of
* the Zone
* @va_size_pages: Size of the Zone in pages
*
* Return:
* * 0 on success
* * -ENOMEM on error
*/
static inline int kbase_reg_zone_init(struct kbase_device *kbdev, struct kbase_reg_zone *zone,
enum kbase_memory_zone id, u64 base_pfn, u64 va_size_pages)
{
struct kbase_va_region *reg;
*zone = (struct kbase_reg_zone){ .reg_rbtree = RB_ROOT,
.base_pfn = base_pfn,
.va_size_pages = va_size_pages,
.id = id,
.cache = kbdev->va_region_slab };
if (unlikely(!va_size_pages))
return 0;
reg = kbase_alloc_free_region(zone, base_pfn, va_size_pages);
if (unlikely(!reg))
return -ENOMEM;
kbase_region_tracker_insert(reg);
return 0;
}
/**
* kbase_reg_zone_end_pfn - return the end Page Frame Number of @zone
* @zone: zone to query
*
* Return: The end of the zone corresponding to @zone
*/
static inline u64 kbase_reg_zone_end_pfn(struct kbase_reg_zone *zone)
{
return zone->base_pfn + zone->va_size_pages;
}
/**
* kbase_reg_zone_term - Terminate the memory zone tracker
* @zone: Memory zone
*/
static inline void kbase_reg_zone_term(struct kbase_reg_zone *zone)
{
kbase_region_tracker_erase_rbtree(&zone->reg_rbtree);
}
/**
* kbase_mem_allow_alloc - Check if allocation of GPU memory is allowed
* @kctx: Pointer to kbase context
*
* Don't allow the allocation of GPU memory if the ioctl has been issued
* from the forked child process using the mali device file fd inherited from
* the parent process.
*
* Return: true if allocation is allowed.
*/
static inline bool kbase_mem_allow_alloc(struct kbase_context *kctx)
{
return (kctx->process_mm == current->mm);
}
/**
* kbase_mem_mmgrab - Wrapper function to take reference on mm_struct of current process
*/
static inline void kbase_mem_mmgrab(void)
{
/* This merely takes a reference on the memory descriptor structure
* i.e. mm_struct of current process and not on its address space and
* so won't block the freeing of address space on process exit.
*/
#if KERNEL_VERSION(4, 11, 0) > LINUX_VERSION_CODE
atomic_inc(&current->mm->mm_count);
#else
mmgrab(current->mm);
#endif
}
/**
* kbase_mem_group_id_get - Get group ID from flags
* @flags: Flags to pass to base_mem_alloc
*
* This inline function extracts the encoded group ID from flags
* and converts it into numeric value (0~15).
*
* Return: group ID(0~15) extracted from the parameter
*/
static inline int kbase_mem_group_id_get(base_mem_alloc_flags flags)
{
KBASE_DEBUG_ASSERT((flags & ~BASE_MEM_FLAGS_INPUT_MASK) == 0);
return (int)BASE_MEM_GROUP_ID_GET(flags);
}
/**
* kbase_mem_group_id_set - Set group ID into base_mem_alloc_flags
* @id: group ID(0~15) you want to encode
*
* This inline function encodes specific group ID into base_mem_alloc_flags.
* Parameter 'id' should lie in-between 0 to 15.
*
* Return: base_mem_alloc_flags with the group ID (id) encoded
*
* The return value can be combined with other flags against base_mem_alloc
* to identify a specific memory group.
*/
static inline base_mem_alloc_flags kbase_mem_group_id_set(int id)
{
return BASE_MEM_GROUP_ID_SET(id);
}
#endif /* _KBASE_MEM_H_ */