blob: c94505fbeccee37ef01be5c165df37059827a69c [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright 2018-2022 Google LLC
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#ifdef CONFIG_PM_SLEEP
#define SUPPORT_PM_SLEEP 1
#endif
#include <linux/kernel.h>
#include <linux/printk.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pm_runtime.h>
#include <linux/platform_device.h>
#include <linux/thermal.h>
#include <linux/slab.h>
#include "gbms_power_supply.h"
#include "google_bms.h"
#include "google_psy.h"
#include "qmath.h"
#include <misc/gvotable.h>
#include <crypto/hash.h>
#include <linux/debugfs.h>
#define BATT_DELAY_INIT_MS 250
#define BATT_WORK_FAST_RETRY_CNT 30
#define BATT_WORK_FAST_RETRY_MS 1000
#define BATT_WORK_DEBOUNCE_RETRY_MS 3000
#define BATT_WORK_ERROR_RETRY_MS 1000
#define DEFAULT_BATT_FAKE_CAPACITY 50
#define DEFAULT_BATT_UPDATE_INTERVAL 30000
#define DEFAULT_BATT_DRV_RL_SOC_THRESHOLD 97
#define DEFAULT_BD_TRICKLE_RL_SOC_THRESHOLD 90
#define DEFAULT_BD_TRICKLE_RESET_SEC (5 * 60)
#define DEFAULT_HIGH_TEMP_UPDATE_THRESHOLD 550
#define DEFAULT_HEALTH_SAFETY_MARGIN (30 * 60)
#define MSC_ERROR_UPDATE_INTERVAL 5000
#define MSC_DEFAULT_UPDATE_INTERVAL 30000
/* AACR default slope is disabled by default */
#define AACR_START_CYCLE_DEFAULT 100
#define AACR_MAX_CYCLE_DEFAULT 0 /* disabled */
/* qual time is 0 minutes of charge or 0% increase in SOC */
#define DEFAULT_CHG_STATS_MIN_QUAL_TIME 0
#define DEFAULT_CHG_STATS_MIN_DELTA_SOC 0
/* Voters */
#define MSC_LOGIC_VOTER "msc_logic"
#define SW_JEITA_VOTER "sw_jeita"
#define RL_STATE_VOTER "rl_state"
#define MSC_HEALTH_VOTER "chg_health"
#define BPST_DETECT_VOTER "bpst_detect"
#define UICURVE_MAX 3
/* sync from google/logbuffer.c */
#define LOG_BUFFER_ENTRY_SIZE 256
/* Initial data of history cycle count */
#define HCC_DEFAULT_DELTA_CYCLE_CNT 10
#define BHI_HEALTH_INDEX_DEFAULT 100
#define BHI_MARGINAL_THRESHOLD_DEFAULT 80
#define BHI_NEED_REP_THRESHOLD_DEFAULT 70
#define BHI_CCBIN_INDEX_LIMIT 90
#define BHI_ALGO_FULL_HEALTH 10000
#define BHI_ROUND_INDEX(index) \
(((index) + BHI_ALGO_FULL_HEALTH / 2) / BHI_ALGO_FULL_HEALTH * 100)
/* TODO: this is for Adaptive charging, rename */
enum batt_health_ui {
/* Internal value used when health is cleared via dialog */
CHG_DEADLINE_DIALOG = -3,
/* Internal value used when health is settings disabled while running */
CHG_DEADLINE_SETTING_STOP = -2,
/* Internal value used when health is settings disabled */
CHG_DEADLINE_SETTING = -1,
/* Internal value used when health is cleared via alarms/re-plug */
CHG_DEADLINE_CLEARED = 0,
};
#if (GBMS_CCBIN_BUCKET_COUNT < 1) || (GBMS_CCBIN_BUCKET_COUNT > 100)
#error "GBMS_CCBIN_BUCKET_COUNT needs to be a value from 1-100"
#endif
#define get_boot_sec() div_u64(ktime_to_ns(ktime_get_boottime()), NSEC_PER_SEC)
struct ssoc_uicurve {
qnum_t real;
qnum_t ui;
};
enum batt_rl_status {
BATT_RL_STATUS_NONE = 0,
BATT_RL_STATUS_DISCHARGE = -1,
BATT_RL_STATUS_RECHARGE = 1,
};
#define RL_DELTA_SOC_MAX 8
struct batt_ssoc_rl_state {
/* rate limiter state */
qnum_t rl_ssoc_target;
ktime_t rl_ssoc_last_update;
/* rate limiter flags */
bool rl_no_zero;
int rl_fast_track;
int rl_track_target;
/* rate limiter config */
int rl_delta_max_time;
qnum_t rl_delta_max_soc;
int rl_delta_soc_ratio[RL_DELTA_SOC_MAX];
qnum_t rl_delta_soc_limit[RL_DELTA_SOC_MAX];
int rl_delta_soc_cnt;
qnum_t rl_ft_low_limit;
qnum_t rl_ft_delta_limit;
};
#define SSOC_STATE_BUF_SZ 128
#define SSOC_DELTA 3
struct batt_ssoc_state {
/* output of gauge data filter */
qnum_t ssoc_gdf;
/* UI Curves */
int ssoc_curve_type; /*<0 dsg, >0 chg, 0? */
struct ssoc_uicurve ssoc_curve[UICURVE_MAX];
qnum_t ssoc_uic;
/* output of rate limiter */
qnum_t ssoc_rl;
struct batt_ssoc_rl_state ssoc_rl_state;
int ssoc_delta;
/* output of rate limiter */
int rl_rate;
int rl_last_ssoc;
ktime_t rl_last_update;
/* connected or disconnected */
ktime_t disconnect_time;
int buck_enabled;
/* recharge logic */
int rl_soc_threshold;
enum batt_rl_status rl_status;
/* trickle defender */
bool bd_trickle_enable;
int bd_trickle_recharge_soc;
int bd_trickle_cnt;
bool bd_trickle_dry_run;
u32 bd_trickle_reset_sec;
/* buff */
char ssoc_state_cstr[SSOC_STATE_BUF_SZ];
/* Save/Restore fake capacity */
bool save_soc_available;
u16 save_soc;
};
struct gbatt_ccbin_data {
u16 count[GBMS_CCBIN_BUCKET_COUNT];
char cyc_ctr_cstr[GBMS_CCBIN_CSTR_SIZE];
struct mutex lock;
int prev_soc;
};
#define DEFAULT_RES_TEMP_LOW 350
#define DEFAULT_RES_TEMP_HIGH 390
#define DEFAULT_RAVG_SOC_LOW 5
#define DEFAULT_RAVG_SOC_HIGH 75
#define DEFAULT_RES_FILT_LEN 10
struct batt_res {
bool estimate_requested;
/* samples */
int sample_accumulator;
int sample_count;
/* registers */
int filter_count;
int resistance_avg;
/* configuration */
int estimate_filter;
int ravg_soc_low;
int ravg_soc_high;
int res_temp_low;
int res_temp_high;
};
/* TODO: move single cell disconnect to bhi_data */
struct batt_bpst {
struct mutex lock;
bool bpst_enable;
bool bpst_detect_disable;
bool bpst_cell_fault;
/* single battery disconnect status */
int bpst_sbd_status;
int bpst_count_threshold;
int bpst_chg_rate;
u8 bpst_count;
};
#define DEV_SN_LENGTH 20
enum batt_paired_state {
BATT_PAIRING_WRITE_ERROR = -4,
BATT_PAIRING_READ_ERROR = -3,
BATT_PAIRING_MISMATCH = -2,
BATT_PAIRING_DISABLED = -1,
BATT_PAIRING_ENABLED = 0,
BATT_PAIRING_PAIRED = 1,
BATT_PAIRING_RESET = 2,
};
enum batt_lfcollect_status {
BATT_LFCOLLECT_NOT_AVAILABLE = 0,
BATT_LFCOLLECT_ENABLED = 1,
BATT_LFCOLLECT_COLLECT = 2,
};
enum batt_aacr_state {
BATT_AACR_UNKNOWN = -3,
BATT_AACR_INVALID_CAP = -2,
BATT_AACR_UNDER_CYCLES = -1,
BATT_AACR_DISABLED = 0,
BATT_AACR_ENABLED = 1,
BATT_AACR_MAX,
};
#define BATT_TEMP_RECORD_THR 3
/* discharge saved after charge */
#define SD_CHG_START 0
#define SD_DISCHG_START BATT_TEMP_RECORD_THR
#define BATT_SD_SAVE_SIZE (BATT_TEMP_RECORD_THR * 2)
#define BATT_SD_MAX_HOURS 15120 /* 90 weeks */
/* TODO: move swelling_data to bhi_data */
struct swelling_data {
/* Time in different temperature */
bool is_enable;
u32 temp_thr[BATT_TEMP_RECORD_THR];
u32 soc_thr[BATT_TEMP_RECORD_THR];
/*
* cumulative time array format:
* | saved | 0 | 1 | 2 |
* |--------| Charge | Charge | Charge |
* | Content| > 30degC & > 90% | > 35degC & > 90% | > 40degC & > 95% |
*
* | saved | 3 | 4 | 5 |
* |--------| Discharge | Discharge | Discharge |
* | Content| > 30degC & > 90% | > 35degC & > 90% | > 40degC & > 95% |
*/
u16 saved[BATT_SD_SAVE_SIZE];
ktime_t chg[BATT_TEMP_RECORD_THR];
ktime_t dischg[BATT_TEMP_RECORD_THR];
ktime_t last_update;
};
struct bhi_data
{
/* context */
int cycle_count; /* from the FG */
int battery_age; /* from the FG, time in field */
/* capacity metrics */
int capacity_design; /* from the FG or from charge table */
int capacity_fade; /* from the FG */
/* impedance */
u32 act_impedance; /* resistance, qualified */
u32 cur_impedance; /* resistance, qualified */
struct batt_res res_state; /* google_resistance */
/* swell probability */
int swell_cumulative; /* from swell data */
int ccbin_index; /* from SOC residency */
};
struct health_data
{
/* current algorithm */
int bhi_algo;
int bhi_w_ci;
int bhi_w_pi;
int bhi_w_sd;
/* current health index and status */
int bhi_index;
enum bhi_status bhi_status;
int marginal_threshold;
int need_rep_threshold;
/* current health metrics */
int bhi_cap_index;
int bhi_imp_index;
int bhi_sd_index;
/* current battery state */
struct bhi_data bhi_data;
};
#define POWER_METRICS_MAX_DATA 50
struct power_metrics_data {
unsigned long charge_count;
unsigned long voltage;
ktime_t time;
};
struct power_metrics {
unsigned int polling_rate;
unsigned int interval;
unsigned int idx;
struct power_metrics_data data[POWER_METRICS_MAX_DATA];
struct delayed_work work;
};
struct csi_stats {
int ssoc;
int csi_speed_min;
int csi_speed_max;
int csi_current_status;
int csi_current_type;
ktime_t csi_time_sum;
int speed_sum;
ktime_t last_update;
};
/* battery driver state */
struct batt_drv {
struct device *device;
struct power_supply *psy;
const char *fg_psy_name;
struct power_supply *fg_psy;
struct notifier_block fg_nb;
struct delayed_work init_work;
struct delayed_work batt_work;
struct wakeup_source *msc_ws;
struct wakeup_source *batt_ws;
struct wakeup_source *taper_ws;
struct wakeup_source *poll_ws;
bool hold_taper_ws;
/* TODO: b/111407333, will likely need to adjust SOC% on wakeup */
bool init_complete;
bool resume_complete;
bool batt_present;
u32 fake_battery_present;
struct mutex batt_lock;
struct mutex chg_lock;
/* battery work */
int fg_status;
int batt_fast_update_cnt;
u32 batt_update_interval;
/* update high temperature in time */
int batt_temp;
u32 batt_update_high_temp_threshold;
/* fake battery temp for thermal testing */
int fake_temp;
/* triger for recharge logic next update from charger */
bool batt_full;
struct batt_ssoc_state ssoc_state;
/* bin count */
struct gbatt_ccbin_data cc_data;
/* fg cycle count */
int cycle_count;
/* for testing */
int fake_aacr_cc;
/* props */
int soh;
int fake_capacity;
int batt_health; /* health of battery, triggers defender UI */
int report_health; /* log health changes for debug */
bool dead_battery;
int capacity_level;
bool chg_done;
/* temp outside the charge table */
int jeita_stop_charging;
/* health based charging */
struct batt_chg_health chg_health;
/* MSC charging */
u32 battery_capacity; /* in mAh */
struct gbms_chg_profile chg_profile;
union gbms_charger_state chg_state;
int temp_idx;
int vbatt_idx;
int checked_cv_cnt;
int checked_ov_cnt;
int checked_tier_switch_cnt;
int last_log_cnt;
int fv_uv;
int cc_max;
int topoff;
int msc_update_interval;
bool disable_votes;
struct gvotable_election *msc_interval_votable;
struct gvotable_election *fcc_votable;
struct gvotable_election *fv_votable;
struct gvotable_election *temp_dryrun_votable;
/* FAN level */
struct gvotable_election *fan_level_votable;
int fan_last_level;
/* stats */
int msc_state;
int msc_irdrop_state;
struct mutex stats_lock;
struct gbms_charging_event ce_data;
struct gbms_charging_event ce_qual;
uint32_t chg_sts_qual_time;
uint32_t chg_sts_delta_soc;
/* health charge margin time */
int health_safety_margin;
/* time to full */
struct batt_ttf_stats ttf_stats;
bool ttf_debounce;
ktime_t ttf_est;
/* logging */
struct logbuffer *ssoc_log;
/* thermal */
struct thermal_zone_device *tz_dev;
/* battery virtual sensor */
struct thermal_zone_device *batt_vs_tz;
int batt_vs_w;
/* used to detect battery replacements and reset statistics */
enum batt_paired_state pairing_state;
char dev_sn[DEV_SN_LENGTH];
/* collect battery history/lifetime data (history) */
enum batt_lfcollect_status blf_state;
u32 blf_collect_now;
int hist_delta_cycle_cnt;
int hist_data_max_cnt;
int hist_data_saved_cnt;
void *hist_data;
/* Battery device info */
u8 dev_info_check[GBMS_DINF_LEN];
/* History Device */
struct gbms_storage_device *history;
/* Fan control */
int fan_level;
/* AACR: Aged Adjusted Charging Rate */
enum batt_aacr_state aacr_state;
int aacr_cycle_grace;
int aacr_cycle_max;
/* BHI: updated on disconnect, EOC */
struct health_data health_data;
struct swelling_data sd;
/* CSI: charging speed */
struct csi_stats csi_stats;
struct gvotable_election *csi_status_votable;
int csi_current_status;
struct gvotable_election *csi_type_votable;
int csi_current_type;
int csi_current_speed;
int fake_charging_speed;
/* battery power metrics */
struct power_metrics power_metrics;
/* battery pack status */
struct batt_bpst bpst_state;
};
static int gbatt_get_temp(const struct batt_drv *batt_drv, int *temp);
static int batt_chg_tier_stats_cstr(char *buff, int size,
const struct gbms_ce_tier_stats *tier_stat,
bool verbose);
static int gbatt_get_capacity(struct batt_drv *batt_drv);
static inline void batt_update_cycle_count(struct batt_drv *batt_drv)
{
batt_drv->cycle_count = GPSY_GET_PROP(batt_drv->fg_psy,
POWER_SUPPLY_PROP_CYCLE_COUNT);
}
static int google_battery_tz_get_cycle_count(void *data, int *cycle_count)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
if (!cycle_count) {
pr_err("Cycle Count NULL");
return -EINVAL;
}
if (batt_drv->cycle_count < 0)
return batt_drv->cycle_count;
*cycle_count = batt_drv->cycle_count;
return 0;
}
static int batt_vs_tz_get(struct thermal_zone_device *tzd, int *batt_vs)
{
struct batt_drv *batt_drv = tzd->devdata;
int temp, rc;
unsigned int ibat;
unsigned long vs_tmp;
if (!batt_vs)
return -EINVAL;
temp = GPSY_GET_INT_PROP(batt_drv->fg_psy, POWER_SUPPLY_PROP_TEMP, &rc) * 100;
if (rc)
return -EINVAL;
ibat = abs(GPSY_GET_INT_PROP(batt_drv->fg_psy, POWER_SUPPLY_PROP_CURRENT_AVG, &rc));
if (rc)
return -EINVAL;
vs_tmp = mul_u32_u32(ibat, ibat) * batt_drv->batt_vs_w / 1000000000000;
*batt_vs = temp - vs_tmp;
return 0;
}
static struct thermal_zone_device_ops batt_vs_tz_ops = {
.get_temp = batt_vs_tz_get,
};
static int psy_changed(struct notifier_block *nb,
unsigned long action, void *data)
{
struct power_supply *psy = data;
struct batt_drv *batt_drv = container_of(nb, struct batt_drv, fg_nb);
pr_debug("name=%s evt=%lu\n", psy->desc->name, action);
if ((action != PSY_EVENT_PROP_CHANGED) ||
(psy == NULL) || (psy->desc == NULL) || (psy->desc->name == NULL))
return NOTIFY_OK;
if (action == PSY_EVENT_PROP_CHANGED &&
(!strcmp(psy->desc->name, batt_drv->fg_psy_name))) {
mod_delayed_work(system_wq, &batt_drv->batt_work, 0);
}
return NOTIFY_OK;
}
/* ------------------------------------------------------------------------- */
#define BATT_PRLOG_DEBUG 0
#define BATT_PRLOG_ALWAYS 1
#define BATT_PRLOG_LAST_LOG_COUNT 10
static int debug_printk_prlog = LOGLEVEL_INFO;
static inline int batt_prlog_level(bool level)
{
return level ? BATT_PRLOG_ALWAYS : BATT_PRLOG_DEBUG;
}
__printf(2,3)
static void batt_prlog__(int info_level, const char *format, ...)
{
const int level = info_level == BATT_PRLOG_ALWAYS ? LOGLEVEL_INFO : LOGLEVEL_DEBUG;
if (level <= debug_printk_prlog) {
va_list args;
va_start(args, format);
vprintk(format, args);
va_end(args);
}
}
#define batt_prlog(l, fmt, ...) batt_prlog__(l, pr_fmt(fmt), ##__VA_ARGS__)
/* ------------------------------------------------------------------------- */
#define SSOC_TRUE 15
#define SSOC_SPOOF 95
#define SSOC_FULL 100
#define UICURVE_BUF_SZ (UICURVE_MAX * 15 + 1)
#define SSOC_HIGH_SOC 90
enum ssoc_uic_type {
SSOC_UIC_TYPE_DSG = -1,
SSOC_UIC_TYPE_NONE = 0,
SSOC_UIC_TYPE_CHG = 1,
};
const qnum_t ssoc_point_true = qnum_rconst(SSOC_TRUE);
const qnum_t ssoc_point_spoof = qnum_rconst(SSOC_SPOOF);
const qnum_t ssoc_point_full = qnum_rconst(SSOC_FULL);
static struct ssoc_uicurve chg_curve[UICURVE_MAX] = {
{ ssoc_point_true, ssoc_point_true },
{ ssoc_point_spoof, ssoc_point_spoof },
{ ssoc_point_full, ssoc_point_full },
};
static struct ssoc_uicurve dsg_curve[UICURVE_MAX] = {
{ ssoc_point_true, ssoc_point_true },
{ ssoc_point_spoof, ssoc_point_full },
{ ssoc_point_full, ssoc_point_full },
};
static char *ssoc_uicurve_cstr(char *buff, size_t size,
struct ssoc_uicurve *curve)
{
int i, len = 0;
for (i = 0; i < UICURVE_MAX ; i++) {
len += scnprintf(&buff[len], size - len,
"[" QNUM_CSTR_FMT " " QNUM_CSTR_FMT "]",
qnum_toint(curve[i].real),
qnum_fracdgt(curve[i].real),
qnum_toint(curve[i].ui),
qnum_fracdgt(curve[i].ui));
if (len >= size)
break;
}
buff[len] = 0;
return buff;
}
/* NOTE: no bounds checks on this one */
static int ssoc_uicurve_find(qnum_t real, struct ssoc_uicurve *curve)
{
int i;
for (i = 1; i < UICURVE_MAX ; i++) {
if (real == curve[i].real)
return i;
if (real > curve[i].real)
continue;
break;
}
return i-1;
}
static qnum_t ssoc_uicurve_map(qnum_t real, struct ssoc_uicurve *curve)
{
qnum_t slope = 0, delta_ui, delta_re;
int i;
if (real < curve[0].real)
return real;
if (real >= curve[UICURVE_MAX - 1].ui)
return curve[UICURVE_MAX - 1].ui;
i = ssoc_uicurve_find(real, curve);
if (curve[i].real == real)
return curve[i].ui;
delta_ui = curve[i + 1].ui - curve[i].ui;
delta_re = curve[i + 1].real - curve[i].real;
if (delta_re)
slope = qnum_div(delta_ui, delta_re);
return curve[i].ui + qnum_mul(slope, (real - curve[i].real));
}
/* "optimized" to work on 3 element curves */
static void ssoc_uicurve_splice(struct ssoc_uicurve *curve, qnum_t real,
qnum_t ui)
{
if (real < curve[0].real || real > curve[2].real)
return;
#if UICURVE_MAX != 3
#error ssoc_uicurve_splice() only support UICURVE_MAX == 3
#endif
/* splice only when real is within the curve range */
curve[1].real = real;
curve[1].ui = ui;
}
static void ssoc_uicurve_dup(struct ssoc_uicurve *dst,
struct ssoc_uicurve *curve)
{
if (dst != curve)
memcpy(dst, curve, sizeof(*dst)*UICURVE_MAX);
}
/* ------------------------------------------------------------------------- */
/* could also use the rate of change for this */
static qnum_t ssoc_rl_max_delta(const struct batt_ssoc_rl_state *rls,
int bucken, ktime_t delta_time)
{
int i;
const qnum_t max_delta = ((qnumd_t)rls->rl_delta_max_soc * delta_time) /
(rls->rl_delta_max_time ? rls->rl_delta_max_time : 1);
if (rls->rl_fast_track)
return max_delta;
/* might have one table for charging and one for discharging */
for (i = 0; i < rls->rl_delta_soc_cnt; i++) {
if (rls->rl_delta_soc_limit[i] == 0)
break;
if (rls->rl_ssoc_target < rls->rl_delta_soc_limit[i])
return ((qnumd_t)max_delta * 10) /
rls->rl_delta_soc_ratio[i];
}
return max_delta;
}
static qnum_t ssoc_apply_rl(struct batt_ssoc_state *ssoc)
{
const ktime_t now = get_boot_sec();
struct batt_ssoc_rl_state *rls = &ssoc->ssoc_rl_state;
qnum_t rl_val;
/* track ssoc_uic when buck is enabled or the minimum value of uic */
if (ssoc->buck_enabled ||
(!ssoc->buck_enabled && ssoc->ssoc_uic < rls->rl_ssoc_target))
rls->rl_ssoc_target = ssoc->ssoc_uic;
/* sanity on the target */
if (rls->rl_ssoc_target > qnum_fromint(100))
rls->rl_ssoc_target = qnum_fromint(100);
if (rls->rl_ssoc_target < qnum_fromint(0))
rls->rl_ssoc_target = qnum_fromint(0);
/* closely track target */
if (rls->rl_track_target) {
rl_val = rls->rl_ssoc_target;
} else {
qnum_t step;
const ktime_t delta_time = now - rls->rl_ssoc_last_update;
const ktime_t max_delta = ssoc_rl_max_delta(rls,
ssoc->buck_enabled,
delta_time);
/* apply the rate limiter, delta_soc to target */
step = rls->rl_ssoc_target - ssoc->ssoc_rl;
if (step < -max_delta)
step = -max_delta;
else if (step > max_delta)
step = max_delta;
rl_val = ssoc->ssoc_rl + step;
}
/* do not increase when not connected */
if (!ssoc->buck_enabled && rl_val > ssoc->ssoc_rl)
rl_val = ssoc->ssoc_rl;
/* will report 0% when rl_no_zero clears */
if (rls->rl_no_zero && rl_val <= qnum_fromint(1))
rl_val = qnum_fromint(1);
rls->rl_ssoc_last_update = now;
return rl_val;
}
/* ------------------------------------------------------------------------- */
static int ssoc_get_real_raw(const struct batt_ssoc_state *ssoc)
{
return ssoc->ssoc_gdf;
}
/* a statement :-) */
static qnum_t ssoc_get_capacity_raw(const struct batt_ssoc_state *ssoc)
{
return ssoc->ssoc_rl;
}
static int ssoc_get_real(const struct batt_ssoc_state *ssoc)
{
const qnum_t real_raw = ssoc_get_real_raw(ssoc);
return qnum_toint(real_raw);
}
#define SOC_ROUND_BASE 0.5
/* reported to userspace: call while holding batt_lock */
static int ssoc_get_capacity(const struct batt_ssoc_state *ssoc)
{
const qnum_t raw = ssoc_get_capacity_raw(ssoc);
return qnum_roundint(raw, SOC_ROUND_BASE);
}
/* ------------------------------------------------------------------------- */
static void dump_ssoc_state(struct batt_ssoc_state *ssoc_state,
struct logbuffer *log)
{
char buff[UICURVE_BUF_SZ] = { 0 };
scnprintf(ssoc_state->ssoc_state_cstr,
sizeof(ssoc_state->ssoc_state_cstr),
"SSOC: l=%d%% gdf=%d.%02d uic=%d.%02d rl=%d.%02d ct=%d curve:%s rls=%d bd_cnt=%d",
ssoc_get_capacity(ssoc_state),
qnum_toint(ssoc_state->ssoc_gdf),
qnum_fracdgt(ssoc_state->ssoc_gdf),
qnum_toint(ssoc_state->ssoc_uic),
qnum_fracdgt(ssoc_state->ssoc_uic),
qnum_toint(ssoc_state->ssoc_rl),
qnum_fracdgt(ssoc_state->ssoc_rl),
ssoc_state->ssoc_curve_type,
ssoc_uicurve_cstr(buff, sizeof(buff), ssoc_state->ssoc_curve),
ssoc_state->rl_status,
ssoc_state->bd_trickle_cnt);
logbuffer_log(log, "%s", ssoc_state->ssoc_state_cstr);
pr_debug("%s\n", ssoc_state->ssoc_state_cstr);
}
/* ------------------------------------------------------------------------- */
/* call while holding batt_lock */
static void ssoc_update(struct batt_ssoc_state *ssoc, qnum_t soc)
{
struct batt_ssoc_rl_state *rls = &ssoc->ssoc_rl_state;
qnum_t delta;
/* low pass filter */
ssoc->ssoc_gdf = soc;
/* spoof UI @ EOC */
ssoc->ssoc_uic = ssoc_uicurve_map(ssoc->ssoc_gdf, ssoc->ssoc_curve);
/* first target is current UIC */
if (rls->rl_ssoc_target == -1) {
rls->rl_ssoc_target = ssoc->ssoc_uic;
ssoc->ssoc_rl = ssoc->ssoc_uic;
}
/* enable fast track when target under configured limit */
rls->rl_fast_track |= rls->rl_ssoc_target < rls->rl_ft_low_limit;
/*
* delta fast tracking during charge
* NOTE: might use the stats from TTF to determine the maximum rate
*/
delta = rls->rl_ssoc_target - ssoc->ssoc_rl;
if (rls->rl_ft_delta_limit && ssoc->buck_enabled && delta > 0) {
/* only when SOC increase */
rls->rl_fast_track |= delta > rls->rl_ft_delta_limit;
} else if (rls->rl_ft_delta_limit && !ssoc->buck_enabled && delta < 0) {
/* enable fast track when target under configured limit */
rls->rl_fast_track |= -delta > rls->rl_ft_delta_limit;
}
/*
* Right now a simple test on target metric falling under 0.5%
* TODO: add a filter that decrements no_zero when a specific
* condition is met (ex rl_ssoc_target < 1%).
*/
if (rls->rl_no_zero)
rls->rl_no_zero = rls->rl_ssoc_target > qnum_from_q8_8(128);
/* monotonicity and rate of change */
ssoc->ssoc_rl = ssoc_apply_rl(ssoc);
}
/*
* Maxim could need:
* 1fh AvCap, 10h FullCap. 23h FullCapNom
* QC could need:
* QG_CC_SOC, QG_Raw_SOC, QG_Bat_SOC, QG_Sys_SOC, QG_Mon_SOC
*/
static int ssoc_work(struct batt_ssoc_state *ssoc_state,
struct power_supply *fg_psy)
{
int soc_q8_8;
qnum_t soc_raw;
/*
* TODO: GBMS_PROP_CAPACITY_RAW should return a qnum_t
* TODO: add an array here configured in DT with the properties
* to query and their weights, make soc_raw come from fusion.
*/
soc_q8_8 = GPSY_GET_PROP(fg_psy, GBMS_PROP_CAPACITY_RAW);
if (soc_q8_8 < 0)
return -EINVAL;
/*
* soc_raw can come from fusion:
* soc_raw = m1 * w1 + m2 * w2 + ...
*
* where m1, m2 are gauge metrics, w1,w1 are weights that change
* with temperature, state of charge, battery health etc.
*/
soc_raw = qnum_from_q8_8(soc_q8_8);
ssoc_update(ssoc_state, soc_raw);
return 0;
}
static void ssoc_change_curve_at_gdf(struct batt_ssoc_state *ssoc_state,
qnum_t gdf, qnum_t capacity,
enum ssoc_uic_type type)
{
struct ssoc_uicurve *new_curve;
new_curve = (type == SSOC_UIC_TYPE_DSG) ? dsg_curve : chg_curve;
ssoc_uicurve_dup(ssoc_state->ssoc_curve, new_curve);
ssoc_state->ssoc_curve_type = type;
/* splice at (->ssoc_gdf,->ssoc_rl) because past spoof */
ssoc_uicurve_splice(ssoc_state->ssoc_curve, gdf, capacity);
}
/*
* Called on connect and disconnect to adjust the UI curve. On disconnect
* splice at GDF less a fixed delta while UI is at 100% (i.e. in RL) to
* avoid showing 100% for "too long" after disconnect.
*/
static void ssoc_change_curve(struct batt_ssoc_state *ssoc_state, qnum_t delta,
enum ssoc_uic_type type)
{
qnum_t ssoc_level = ssoc_get_capacity(ssoc_state);
qnum_t gdf = ssoc_state->ssoc_gdf; /* actual battery level */
/* force dsg curve when connect/disconnect with battery at 100% */
if (ssoc_level >= SSOC_FULL) {
const qnum_t rlt = qnum_fromint(ssoc_state->rl_soc_threshold);
/* bounds GDF - DELTA to prevent SSOC/GDF from diverging significantly */
gdf = gdf > rlt ? gdf : rlt;
type = SSOC_UIC_TYPE_DSG;
gdf -= delta;
}
/* adjust gdf to update curve[1].real in ssoc_uicurve_splice() */
if (gdf > ssoc_point_full)
gdf = ssoc_point_full;
ssoc_change_curve_at_gdf(ssoc_state, gdf,
ssoc_get_capacity_raw(ssoc_state), type);
}
/* Fan levels limits from battery temperature */
#define FAN_BT_LIMIT_NOT_CARE 320
#define FAN_BT_LIMIT_LOW 420
#define FAN_BT_LIMIT_MED 460
#define FAN_BT_LIMIT_HIGH 480
/* Fan levels limits from charge rate */
#define FAN_CHG_LIMIT_NOT_CARE 10
#define FAN_CHG_LIMIT_LOW 50
#define FAN_CHG_LIMIT_MED 70
static int fan_bt_calculate_level(const struct batt_drv *batt_drv)
{
int level, temp, ret;
ret = gbatt_get_temp(batt_drv, &temp);
if (ret < 0) {
if (batt_drv->temp_idx < 2)
level = FAN_LVL_NOT_CARE;
else if (batt_drv->temp_idx == 3)
level = FAN_LVL_MED;
else
level = FAN_LVL_HIGH;
pr_warn("FAN_LEVEL: level=%d from temp_idx=%d (%d)\n",
level, batt_drv->temp_idx, ret);
return level;
}
if (temp <= FAN_BT_LIMIT_NOT_CARE)
level = FAN_LVL_NOT_CARE;
else if (temp <= FAN_BT_LIMIT_LOW)
level = FAN_LVL_LOW;
else if (temp <= FAN_BT_LIMIT_MED)
level = FAN_LVL_LOW;
else if (temp <= FAN_BT_LIMIT_HIGH)
level = FAN_LVL_HIGH;
else
level = FAN_LVL_ALARM;
return level;
}
static int fan_calculate_level(const struct batt_drv *batt_drv)
{
int charging_rate, fan_level, chg_fan_level, cc_max;
if (batt_drv->jeita_stop_charging == 1)
return FAN_LVL_ALARM;
/* defender limits from google_charger */
fan_level = fan_bt_calculate_level(batt_drv);
cc_max = gvotable_get_current_int_vote(batt_drv->fcc_votable);
if (cc_max <= 0 || batt_drv->battery_capacity == 0)
return fan_level;
/* cc_max is -1 when disconnected */
charging_rate = cc_max / batt_drv->battery_capacity / 10;
if (charging_rate < FAN_CHG_LIMIT_NOT_CARE)
chg_fan_level = FAN_LVL_NOT_CARE;
else if (charging_rate <= FAN_CHG_LIMIT_LOW)
chg_fan_level = FAN_LVL_LOW;
else if (charging_rate <= FAN_CHG_LIMIT_MED)
chg_fan_level = FAN_LVL_MED;
else
chg_fan_level = FAN_LVL_HIGH;
/* Charge rate can increase the level */
if (chg_fan_level > fan_level)
fan_level = chg_fan_level;
return fan_level;
}
static void fan_level_reset(const struct batt_drv *batt_drv)
{
if (batt_drv->fan_level_votable)
gvotable_cast_int_vote(batt_drv->fan_level_votable,
"MSC_BATT", 0, false);
}
static int fan_level_cb(struct gvotable_election *el,
const char *reason, void *vote)
{
struct batt_drv *batt_drv = gvotable_get_data(el);
int lvl = GVOTABLE_PTR_TO_INT(vote);
if (!batt_drv)
return 0;
if (batt_drv->fan_last_level != lvl) {
pr_debug("FAN_LEVEL %d->%d reason=%s\n",
batt_drv->fan_last_level, lvl, reason ? reason : "<>");
if (!chg_state_is_disconnected(&batt_drv->chg_state))
logbuffer_log(batt_drv->ttf_stats.ttf_log,
"FAN_LEVEL %d->%d reason=%s",
batt_drv->fan_last_level, lvl,
reason ? reason : "<>");
batt_drv->fan_last_level = lvl;
if (batt_drv->psy)
power_supply_changed(batt_drv->psy);
}
return 0;
}
/* ------------------------------------------------------------------------- */
/*
* enter recharge logic in BATT_RL_STATUS_DISCHARGE on charger_DONE,
* enter BATT_RL_STATUS_RECHARGE on Fuel Gauge FULL
* NOTE: batt_rl_update_status() doesn't call this, it flip from DISCHARGE
* to recharge on its own.
* NOTE: call holding chg_lock
* FIX: BatteryDefenderUI different rules when battery defender is enabled
* @pre rl_status != BATT_RL_STATUS_NONE
*/
static bool batt_rl_enter(struct batt_ssoc_state *ssoc_state,
enum batt_rl_status rl_status)
{
const int rl_current = ssoc_state->rl_status;
const bool enable = ssoc_state->bd_trickle_enable;
const bool dry_run = ssoc_state->bd_trickle_dry_run;
/*
* NOTE: NO_OP when RL=DISCHARGE since batt_rl_update_status() flip
* between BATT_RL_STATUS_DISCHARGE and BATT_RL_STATUS_RECHARGE
* directly.
*/
if (rl_current == rl_status || rl_current == BATT_RL_STATUS_DISCHARGE)
return false;
/* bd_trickle_cnt -1 if the rl_status change does not happen at 100% */
if (rl_current == BATT_RL_STATUS_RECHARGE &&
rl_status == BATT_RL_STATUS_DISCHARGE) {
if (ssoc_get_real(ssoc_state) != SSOC_FULL) {
if (ssoc_state->bd_trickle_cnt > 0)
ssoc_state->bd_trickle_cnt--;
}
}
/*
* NOTE: rl_status transition from *->DISCHARGE on charger FULL (during
* charge or at the end of recharge) and transition from
* NONE->RECHARGE when battery is full (SOC==100%) before charger is.
*/
if (rl_status == BATT_RL_STATUS_DISCHARGE) {
if (enable && !dry_run && ssoc_state->bd_trickle_cnt > 0) {
ssoc_change_curve(ssoc_state, 0, SSOC_UIC_TYPE_DSG);
} else {
ssoc_uicurve_dup(ssoc_state->ssoc_curve, dsg_curve);
ssoc_state->ssoc_curve_type = SSOC_UIC_TYPE_DSG;
}
}
ssoc_update(ssoc_state, ssoc_state->ssoc_gdf);
ssoc_state->rl_status = rl_status;
return true;
}
static int ssoc_rl_read_dt(struct batt_ssoc_rl_state *rls,
struct device_node *node)
{
u32 tmp, delta_soc[RL_DELTA_SOC_MAX];
int ret, i;
ret = of_property_read_u32(node, "google,rl_delta-max-soc", &tmp);
if (ret == 0)
rls->rl_delta_max_soc = qnum_fromint(tmp);
ret = of_property_read_u32(node, "google,rl_delta-max-time", &tmp);
if (ret == 0)
rls->rl_delta_max_time = tmp;
if (!rls->rl_delta_max_soc || !rls->rl_delta_max_time)
return -EINVAL;
rls->rl_no_zero = of_property_read_bool(node, "google,rl_no-zero");
rls->rl_track_target = of_property_read_bool(node,
"google,rl_track-target");
ret = of_property_read_u32(node, "google,rl_ft-low-limit", &tmp);
if (ret == 0)
rls->rl_ft_low_limit = qnum_fromint(tmp);
ret = of_property_read_u32(node, "google,rl_ft-delta-limit", &tmp);
if (ret == 0)
rls->rl_ft_delta_limit = qnum_fromint(tmp);
rls->rl_delta_soc_cnt = of_property_count_elems_of_size(node,
"google,rl_soc-limits",
sizeof(u32));
tmp = of_property_count_elems_of_size(node, "google,rl_soc-rates",
sizeof(u32));
if (rls->rl_delta_soc_cnt != tmp || tmp == 0) {
rls->rl_delta_soc_cnt = 0;
goto done;
}
if (rls->rl_delta_soc_cnt > RL_DELTA_SOC_MAX)
return -EINVAL;
ret = of_property_read_u32_array(node, "google,rl_soc-limits",
delta_soc,
rls->rl_delta_soc_cnt);
if (ret < 0)
return ret;
for (i = 0; i < rls->rl_delta_soc_cnt; i++)
rls->rl_delta_soc_limit[i] = qnum_fromint(delta_soc[i]);
ret = of_property_read_u32_array(node, "google,rl_soc-rates",
delta_soc,
rls->rl_delta_soc_cnt);
if (ret < 0)
return ret;
for (i = 0; i < rls->rl_delta_soc_cnt; i++)
rls->rl_delta_soc_ratio[i] = delta_soc[i];
done:
return 0;
}
/*
* NOTE: might need to use SOC from bootloader as starting point to avoid UI
* SSOC jumping around or taking long time to coverge. Could technically read
* charger voltage and estimate SOC% based on empty and full voltage.
*/
static int ssoc_init(struct batt_ssoc_state *ssoc_state,
struct device_node *node,
struct power_supply *fg_psy)
{
int ret, capacity;
ret = ssoc_rl_read_dt(&ssoc_state->ssoc_rl_state, node);
if (ret < 0)
ssoc_state->ssoc_rl_state.rl_track_target = 1;
ssoc_state->ssoc_rl_state.rl_ssoc_target = -1;
/*
* ssoc_work() needs a curve: start with the charge curve to prevent
* SSOC% from increasing after a reboot. Curve type must be NONE until
* battery knows the charger BUCK_EN state.
*/
ssoc_uicurve_dup(ssoc_state->ssoc_curve, chg_curve);
ssoc_state->ssoc_curve_type = SSOC_UIC_TYPE_NONE;
ret = ssoc_work(ssoc_state, fg_psy);
if (ret < 0)
return -EIO;
capacity = ssoc_get_capacity(ssoc_state);
if (capacity >= SSOC_FULL) {
/* consistent behavior when booting without adapter */
ssoc_uicurve_dup(ssoc_state->ssoc_curve, dsg_curve);
} else if (capacity < SSOC_TRUE) {
/* no split */
} else if (capacity < SSOC_SPOOF) {
/* mark the initial point if under spoof */
ssoc_uicurve_splice(ssoc_state->ssoc_curve,
ssoc_state->ssoc_gdf,
ssoc_state->ssoc_rl);
}
return 0;
}
/* ------------------------------------------------------------------------- */
/*
* just reset state, no PS notifications no changes in the UI curve. This is
* called on startup and on disconnect when the charge driver state is reset
* NOTE: call holding chg_lock
*/
static void batt_rl_reset(struct batt_drv *batt_drv)
{
batt_drv->ssoc_state.rl_status = BATT_RL_STATUS_NONE;
}
/*
* RL recharge: call after SSOC work, restart charging when gdf hit the
* recharge threshold.
* NOTE: call holding chg_lock
*/
static void batt_rl_update_status(struct batt_drv *batt_drv)
{
struct batt_ssoc_state *ssoc_state = &batt_drv->ssoc_state;
const bool bd_dry_run = ssoc_state->bd_trickle_dry_run;
const int bd_cnt = ssoc_state->bd_trickle_cnt;
int soc, rl_soc_threshold;
/* already in _RECHARGE or _NONE, done */
if (ssoc_state->rl_status != BATT_RL_STATUS_DISCHARGE)
return;
/* no threashold (why I am here???) */
if (!ssoc_state->rl_soc_threshold)
return;
/* recharge logic work on real soc */
soc = ssoc_get_real(ssoc_state);
if (ssoc_state->bd_trickle_enable)
rl_soc_threshold = ((bd_cnt > 0) && !bd_dry_run) ?
ssoc_state->bd_trickle_recharge_soc :
ssoc_state->rl_soc_threshold;
else
rl_soc_threshold = ssoc_state->rl_soc_threshold;
if (soc > rl_soc_threshold)
return;
/* change state (will restart charge) on trigger */
ssoc_state->rl_status = BATT_RL_STATUS_RECHARGE;
if (batt_drv->psy)
power_supply_changed(batt_drv->psy);
ssoc_state->bd_trickle_cnt++;
}
/* ------------------------------------------------------------------------- */
static void bat_log_ttf_change(ktime_t estimate, int max_ratio, struct batt_drv *batt_drv)
{
const struct gbms_charging_event *ce_data = &batt_drv->ce_data;
char buff[LOG_BUFFER_ENTRY_SIZE];
long elap, ibatt_avg, icl_avg;
int i, len = 0;
len += scnprintf(&buff[len], sizeof(buff) - len,
"MSC_TTF: est:%lldmin, max_ratio:%d ", estimate / 60, max_ratio);
for (i = 0; i < GBMS_STATS_TIER_COUNT; i++) {
elap = ce_data->tier_stats[i].time_fast +
ce_data->tier_stats[i].time_taper +
ce_data->tier_stats[i].time_other;
if (elap) {
ibatt_avg = ce_data->tier_stats[i].ibatt_sum / elap;
icl_avg = ce_data->tier_stats[i].icl_sum / elap;
} else {
ibatt_avg = 0;
icl_avg = 0;
}
len += scnprintf(&buff[len], sizeof(buff) - len,
"[%d:%ld,%ld,%ld]", i, elap / 60, ibatt_avg, icl_avg);
}
pr_info("%s", buff);
batt_drv->ttf_est = estimate;
}
/*
* msc_logic_health() sync ce_data->ce_health to batt_drv->chg_health
* . return -EINVAL when the device is not connected to power -ERANGE when
* ttf_soc_estimate() returns a negative value (invalid parameters, or
* corrupted internal data)
* . the estimate is 0 when the device is at 100%.
* . the estimate is negative during debounce, when in overheat, when
* custom charge levels are active.
*/
#define MIN_DELTA_FOR_LOG_S 60
static int batt_ttf_estimate(ktime_t *res, struct batt_drv *batt_drv)
{
qnum_t raw_full = ssoc_point_full - qnum_rconst(SOC_ROUND_BASE);
qnum_t soc_raw = ssoc_get_real_raw(&batt_drv->ssoc_state);
ktime_t estimate = 0;
int rc = 0, max_ratio = 0;
if (batt_drv->ssoc_state.buck_enabled != 1)
return -EINVAL;
if (batt_drv->ttf_stats.ttf_fake != -1) {
estimate = batt_drv->ttf_stats.ttf_fake;
goto done;
}
/* TTF is 0 when UI shows 100% */
if (ssoc_get_capacity(&batt_drv->ssoc_state) == SSOC_FULL) {
estimate = 0;
goto done;
}
/* no estimates during debounce or with special profiles */
if (batt_drv->ttf_debounce ||
batt_drv->batt_health == POWER_SUPPLY_HEALTH_OVERHEAT ||
batt_drv->chg_state.f.flags & GBMS_CS_FLAG_CCLVL) {
estimate = -1;
goto done;
}
/*
* Handle rounding (removing it from the end)
* example: 96.64% with SOC_ROUND_BASE = 0.5 -> UI = 97
* ttf = elap[96] * 0.36 + elap[97] + elap[98] +
* elap[99] * (1 - 0.5)
*
* negative return value (usually) means data corruption
*/
rc = ttf_soc_estimate(&estimate, &batt_drv->ttf_stats,
&batt_drv->ce_data, soc_raw, raw_full);
if (rc < 0)
estimate = -1;
else
max_ratio = rc;
/* Log data when changed over 1 min */
if (abs(batt_drv->ttf_est - estimate) > MIN_DELTA_FOR_LOG_S)
bat_log_ttf_change(estimate, max_ratio, batt_drv);
done:
*res = estimate;
return max_ratio;
}
/* ------------------------------------------------------------------------- */
static void cev_ts_init(struct gbms_ce_tier_stats *stats, int8_t idx)
{
stats->vtier_idx = idx;
stats->temp_idx = -1;
stats->soc_in = -1;
}
/* CEV = Charging EVent */
static void cev_stats_init(struct gbms_charging_event *ce_data,
const struct gbms_chg_profile *profile)
{
int i;
memset(ce_data, 0, sizeof(*ce_data));
ce_data->chg_profile = profile;
ce_data->charging_stats.voltage_in = -1;
ce_data->charging_stats.ssoc_in = -1;
ce_data->charging_stats.voltage_out = -1;
ce_data->charging_stats.ssoc_out = -1;
ttf_soc_init(&ce_data->soc_stats);
ce_data->last_soc = -1;
for (i = 0; i < GBMS_STATS_TIER_COUNT ; i++)
cev_ts_init(&ce_data->tier_stats[i], i);
/* batt_chg_health_stats_close() will fix this */
cev_ts_init(&ce_data->health_stats, GBMS_STATS_AC_TI_INVALID);
cev_ts_init(&ce_data->health_pause_stats, GBMS_STATS_AC_TI_PAUSE);
cev_ts_init(&ce_data->health_dryrun_stats, GBMS_STATS_AC_TI_V2_PREDICT);
cev_ts_init(&ce_data->full_charge_stats, GBMS_STATS_AC_TI_FULL_CHARGE);
cev_ts_init(&ce_data->high_soc_stats, GBMS_STATS_AC_TI_HIGH_SOC);
cev_ts_init(&ce_data->overheat_stats, GBMS_STATS_BD_TI_OVERHEAT_TEMP);
cev_ts_init(&ce_data->cc_lvl_stats, GBMS_STATS_BD_TI_CUSTOM_LEVELS);
cev_ts_init(&ce_data->trickle_stats, GBMS_STATS_BD_TI_TRICKLE_CLEARED);
}
static void batt_chg_stats_start(struct batt_drv *batt_drv)
{
union gbms_ce_adapter_details ad;
struct gbms_charging_event *ce_data = &batt_drv->ce_data;
const ktime_t now = get_boot_sec();
int vin, cc_in;
mutex_lock(&batt_drv->stats_lock);
ad.v = batt_drv->ce_data.adapter_details.v;
cev_stats_init(ce_data, &batt_drv->chg_profile);
batt_drv->ce_data.adapter_details.v = ad.v;
vin = GPSY_GET_PROP(batt_drv->fg_psy, POWER_SUPPLY_PROP_VOLTAGE_NOW);
ce_data->charging_stats.voltage_in = (vin < 0) ? -1 : vin / 1000;
ce_data->charging_stats.ssoc_in =
ssoc_get_capacity(&batt_drv->ssoc_state);
cc_in = GPSY_GET_PROP(batt_drv->fg_psy,
POWER_SUPPLY_PROP_CHARGE_COUNTER);
ce_data->charging_stats.cc_in = (cc_in < 0) ? -1 : cc_in / 1000;
ce_data->charging_stats.ssoc_out = -1;
ce_data->charging_stats.voltage_out = -1;
ce_data->first_update = now;
ce_data->last_update = now;
mutex_unlock(&batt_drv->stats_lock);
}
/* call holding stats_lock */
static bool batt_chg_stats_qual(const struct batt_drv *batt_drv)
{
const struct gbms_charging_event *ce_data = &batt_drv->ce_data;
const long elap = ce_data->last_update - ce_data->first_update;
const long ssoc_delta = ce_data->charging_stats.ssoc_out -
ce_data->charging_stats.ssoc_in;
return elap >= batt_drv->chg_sts_qual_time ||
ssoc_delta >= batt_drv->chg_sts_delta_soc;
}
/* call holding stats_lock */
static void batt_chg_stats_tier(struct gbms_ce_tier_stats *tier,
int msc_state,
ktime_t elap)
{
if (msc_state < 0 || msc_state >= MSC_STATES_COUNT)
return;
tier->msc_cnt[msc_state] += 1;
tier->msc_elap[msc_state] += elap;
}
/* call holding stats_lock */
static void batt_chg_stats_soc_update(struct gbms_charging_event *ce_data,
qnum_t soc, ktime_t elap, int tier_index,
int cc)
{
int index;
const int last_soc = ce_data->last_soc;
index = qnum_toint(soc);
if (index < 0)
index = 0;
if (index > 100)
index = 100;
if (index < last_soc)
return;
if (ce_data->soc_stats.elap[index] == 0) {
ce_data->soc_stats.ti[index] = tier_index;
ce_data->soc_stats.cc[index] = cc;
}
if (last_soc != -1)
ce_data->soc_stats.elap[last_soc] += elap;
ce_data->last_soc = index;
}
static void batt_chg_stats_update_tier(const struct batt_drv *const batt_drv,
int temp_idx, int ibatt_ma, int temp,
ktime_t elap, int cc,
struct gbms_ce_tier_stats *tier)
{
const uint16_t icl_settled = batt_drv->chg_state.f.icl;
/*
* book time to previous msc_state for this tier, there is an
* interesting wrinkle here since some tiers (health, full, etc)
* might be entered and exited multiple times.
*/
batt_chg_stats_tier(tier, batt_drv->msc_state, elap);
if (tier->soc_in == -1) {
int soc_in;
soc_in = GPSY_GET_PROP(batt_drv->fg_psy,
GBMS_PROP_CAPACITY_RAW);
if (soc_in < 0) {
pr_info("MSC_STAT cannot read soc_in=%d\n", soc_in);
return;
}
tier->temp_idx = temp_idx;
tier->temp_in = temp;
tier->temp_min = temp;
tier->temp_max = temp;
tier->ibatt_min = ibatt_ma;
tier->ibatt_max = ibatt_ma;
tier->icl_min = icl_settled;
tier->icl_max = icl_settled;
tier->soc_in = soc_in;
tier->cc_in = cc;
tier->cc_total = 0;
} else {
const u8 flags = batt_drv->chg_state.f.flags;
/* crossed temperature tier */
if (temp_idx != tier->temp_idx)
tier->temp_idx = -1;
if (flags & GBMS_CS_FLAG_CC) {
tier->time_fast += elap;
} else if (flags & GBMS_CS_FLAG_CV) {
tier->time_taper += elap;
} else {
tier->time_other += elap;
}
/*
* averages: temp < 100. icl_settled < 3000, sum(ibatt)
* is bound to battery capacity, elap in seconds, sums
* are stored in an s64. For icl_settled I need a tier
* to last for more than ~97M years.
*/
if (temp < tier->temp_min)
tier->temp_min = temp;
if (temp > tier->temp_max)
tier->temp_max = temp;
tier->temp_sum += temp * elap;
if (icl_settled < tier->icl_min)
tier->icl_min = icl_settled;
if (icl_settled > tier->icl_max)
tier->icl_max = icl_settled;
tier->icl_sum += icl_settled * elap;
if (ibatt_ma < tier->ibatt_min)
tier->ibatt_min = ibatt_ma;
if (ibatt_ma > tier->ibatt_max)
tier->ibatt_max = ibatt_ma;
tier->ibatt_sum += ibatt_ma * elap;
tier->cc_total = cc - tier->cc_in;
}
tier->sample_count += 1;
}
/* call holding stats_lock */
static void batt_chg_stats_update(struct batt_drv *batt_drv, int temp_idx,
int tier_idx, int ibatt_ma, int temp,
ktime_t elap)
{
const int soc_real = ssoc_get_real(&batt_drv->ssoc_state);
const int msc_state = batt_drv->msc_state; /* last msc_state */
struct gbms_charging_event *ce_data = &batt_drv->ce_data;
struct gbms_ce_tier_stats *tier = NULL;
int cc;
if (elap == 0)
return;
/* TODO: read at start of tier and update cc_total of previous */
cc = GPSY_GET_PROP(batt_drv->fg_psy, POWER_SUPPLY_PROP_CHARGE_COUNTER);
if (cc < 0) {
pr_debug("MSC_STAT cannot read cc=%d\n", cc);
return;
}
cc = cc / 1000;
/* Note: To log new voltage tiers, add to list in go/pixel-vtier-defs */
/* --- Log tiers in PARALLEL below --- */
if (soc_real >= SSOC_HIGH_SOC)
batt_chg_stats_update_tier(batt_drv, temp_idx, ibatt_ma, temp,
elap, cc,
&ce_data->high_soc_stats);
if (batt_drv->chg_health.dry_run_deadline > 0)
batt_chg_stats_update_tier(batt_drv, temp_idx, ibatt_ma, temp,
elap, cc,
&ce_data->health_dryrun_stats);
/* --- Log tiers in SERIES below --- */
if (batt_drv->batt_full) {
/* Override regular charge tiers when fully charged */
batt_chg_stats_update_tier(batt_drv, temp_idx, ibatt_ma,
temp, elap, cc,
&ce_data->full_charge_stats);
} else if (msc_state == MSC_HEALTH_PAUSE) {
/*
* We log the pause tier in different AC tier groups so that we
* can capture pause time separately.
*/
batt_chg_stats_update_tier(batt_drv, temp_idx, ibatt_ma, temp,
elap, cc,
&ce_data->health_pause_stats);
} else if (msc_state == MSC_HEALTH || msc_state == MSC_HEALTH_ALWAYS_ON) {
/*
* It works because msc_logic call BEFORE updating msc_state.
* NOTE: that OVERHEAT and CCLVL disable AC, I should not be
* here if either of them are set.
* NOTE: We currently only log time when AC is ACTIVE.
* Thus, when disconnecting in ENABLED state, we will log a
* GBMS_STATS_AC_TI_ENABLED tier with no time, and the regular
* charge time is accumulated in normal charge tiers.
* Similarly, once we reach 100%, we stop counting time in the
* health tier and we rely on the full_charge_stats.
*/
/* tier used for TTF during HC, check msc_logic_health() */
batt_chg_stats_update_tier(batt_drv, temp_idx, ibatt_ma,
temp, elap, cc,
&ce_data->health_stats);
} else {
const qnum_t soc = ssoc_get_capacity_raw(&batt_drv->ssoc_state);
/* book to previous soc unless discharging */
if (msc_state != MSC_DSG) {
/* TODO: should I use ssoc instead? */
batt_chg_stats_soc_update(ce_data, soc, elap,
tier_idx, cc);
}
/*
* ce_data.tier_stats[tier_idx] are used for time to full.
* Do not book to them if we are in overheat or LVL
*/
tier = &ce_data->tier_stats[tier_idx];
}
/* --- Log tiers in PARALLEL that MUST NULL normal tiers below --- */
/* batt_drv->batt_health is protected with chg_lock, */
if (batt_drv->batt_health == POWER_SUPPLY_HEALTH_OVERHEAT) {
batt_chg_stats_update_tier(batt_drv, temp_idx, ibatt_ma, temp,
elap, cc,
&ce_data->overheat_stats);
tier = NULL;
}
/* custom charge levels (DWELL-DEFEND or RETAIL) */
if (batt_drv->chg_state.f.flags & GBMS_CS_FLAG_CCLVL) {
batt_chg_stats_update_tier(batt_drv, temp_idx, ibatt_ma, temp,
elap, cc,
&ce_data->cc_lvl_stats);
tier = NULL;
}
/*
* Time/current spent in OVERHEAT or at CustomLevel should not
* be booked to ce_data.tier_stats[tier_idx]
*/
if (!tier)
return;
batt_chg_stats_update_tier(batt_drv, temp_idx, ibatt_ma, temp,
elap, cc, tier);
}
static int batt_chg_health_vti(const struct batt_chg_health *chg_health)
{
enum chg_health_state rest_state = chg_health->rest_state;
ktime_t rest_deadline = chg_health->rest_deadline;
int tier_idx = GBMS_STATS_AC_TI_INVALID;
bool aon_enabled = chg_health->always_on_soc != -1;
switch (rest_state) {
/* battery defender did it */
case CHG_HEALTH_BD_DISABLED:
case CHG_HEALTH_CCLVL_DISABLED:
tier_idx = GBMS_STATS_AC_TI_DEFENDER;
break;
/* user disabled with deadline */
case CHG_HEALTH_USER_DISABLED:
if (rest_deadline == CHG_DEADLINE_SETTING)
tier_idx = GBMS_STATS_AC_TI_DISABLE_SETTING;
else if (rest_deadline == CHG_DEADLINE_SETTING_STOP)
tier_idx = GBMS_STATS_AC_TI_DISABLE_SETTING_STOP;
else if (rest_deadline == CHG_DEADLINE_DIALOG)
tier_idx = GBMS_STATS_AC_TI_DISABLE_DIALOG;
else
tier_idx = GBMS_STATS_AC_TI_DISABLE_MISC;
break;
/* missed the deadline, TODO: log the deadline */
case CHG_HEALTH_DISABLED:
tier_idx = GBMS_STATS_AC_TI_DISABLED;
break;
/* disconnected in active mode, TODO: log the deadline */
case CHG_HEALTH_ACTIVE:
case CHG_HEALTH_PAUSE:
if (aon_enabled)
tier_idx = GBMS_STATS_AC_TI_ACTIVE_AON;
else
tier_idx = GBMS_STATS_AC_TI_ACTIVE;
break;
/* never became active */
case CHG_HEALTH_ENABLED:
if (aon_enabled)
tier_idx = GBMS_STATS_AC_TI_ENABLED_AON;
else
tier_idx = GBMS_STATS_AC_TI_ENABLED;
break;
/* active, worked */
case CHG_HEALTH_DONE:
if (aon_enabled)
tier_idx = GBMS_STATS_AC_TI_DONE_AON;
else
tier_idx = GBMS_STATS_AC_TI_VALID;
break;
default:
break;
}
return tier_idx;
}
static int batt_chg_vbat2tier(const int vbatt_idx)
{
return vbatt_idx < GBMS_STATS_TIER_COUNT ?
vbatt_idx : GBMS_STATS_TIER_COUNT - 1;
}
/* Only the qualified copy gets the timestamp and the exit voltage. */
static bool batt_chg_stats_close(struct batt_drv *batt_drv,
char *reason,
bool force)
{
bool publish;
const int vout = GPSY_GET_PROP(batt_drv->fg_psy,
POWER_SUPPLY_PROP_VOLTAGE_NOW);
const int cc_out = GPSY_GET_PROP(batt_drv->fg_psy,
POWER_SUPPLY_PROP_CHARGE_COUNTER);
const ktime_t now = get_boot_sec();
const ktime_t dry_run_deadline = batt_drv->chg_health.dry_run_deadline;
/* book last period to the current tier
* NOTE: vbatt_idx != -1 -> temp_idx != -1
*/
if (batt_drv->vbatt_idx != -1 && batt_drv->temp_idx != -1) {
const ktime_t elap = now - batt_drv->ce_data.last_update;
const int tier_idx = batt_chg_vbat2tier(batt_drv->vbatt_idx);
const int ibatt = GPSY_GET_PROP(batt_drv->fg_psy,
POWER_SUPPLY_PROP_CURRENT_NOW);
const int temp = GPSY_GET_PROP(batt_drv->fg_psy,
POWER_SUPPLY_PROP_TEMP);
batt_chg_stats_update(batt_drv,
batt_drv->temp_idx, tier_idx,
ibatt / 1000, temp, elap);
batt_drv->ce_data.last_update = now;
}
/* record the closing in data (and qual) */
batt_drv->ce_data.charging_stats.voltage_out =
(vout < 0) ? -1 : vout / 1000;
batt_drv->ce_data.charging_stats.ssoc_out =
ssoc_get_capacity(&batt_drv->ssoc_state);
batt_drv->ce_data.charging_stats.cc_out =
(cc_out < 0) ? -1 : cc_out / 1000;
/* close/fix heath charge data (if enabled) */
memcpy(&batt_drv->ce_data.ce_health, &batt_drv->chg_health,
sizeof(batt_drv->ce_data.ce_health));
batt_drv->ce_data.health_stats.vtier_idx =
batt_chg_health_vti(&batt_drv->chg_health);
batt_drv->ce_data.health_dryrun_stats.vtier_idx =
(now > dry_run_deadline) ? GBMS_STATS_AC_TI_V2_PREDICT_SUCCESS :
GBMS_STATS_AC_TI_V2_PREDICT;
/* TODO: add a field to ce_data to qual weird charge sessions */
publish = force || batt_chg_stats_qual(batt_drv);
if (publish) {
struct gbms_charging_event *ce_qual = &batt_drv->ce_qual;
/* all charge tiers including health */
memcpy(ce_qual, &batt_drv->ce_data, sizeof(*ce_qual));
pr_info("MSC_STAT %s: elap=%lld ssoc=%d->%d v=%d->%d c=%d->%d hdl=%lld hrs=%d hti=%d/%d\n",
reason,
ce_qual->last_update - ce_qual->first_update,
ce_qual->charging_stats.ssoc_in,
ce_qual->charging_stats.ssoc_out,
ce_qual->charging_stats.voltage_in,
ce_qual->charging_stats.voltage_out,
ce_qual->charging_stats.cc_in,
ce_qual->charging_stats.cc_out,
ce_qual->ce_health.rest_deadline,
ce_qual->ce_health.rest_state,
ce_qual->health_stats.vtier_idx,
ce_qual->health_pause_stats.vtier_idx);
}
return publish;
}
static int batt_chg_stats_soc_next(const struct gbms_charging_event *ce_data,
int i)
{
int soc_next;
if (i == GBMS_STATS_TIER_COUNT -1)
return ce_data->last_soc;
soc_next = ce_data->tier_stats[i + 1].soc_in >> 8;
if (soc_next <= 0)
return ce_data->last_soc;
return soc_next;
}
static void bat_log_cstr_handler(struct logbuffer *log, char *buf, int len)
{
int i, j = 0;
char tmp[LOG_BUFFER_ENTRY_SIZE];
buf[len] = '\n';
for (i = 0; i <= len; i++) {
if (buf[i] == '\n') {
tmp[j] = '\0';
/* skip first blank line */
if (i != 0)
logbuffer_log(log, "%s", tmp);
j = 0;
} else if (j >= LOG_BUFFER_ENTRY_SIZE - 1) {
tmp[j] = '\0';
logbuffer_log(log, "%s", tmp);
i--;
j = 0;
} else {
tmp[j] = buf[i];
j++;
}
}
}
static void bat_log_chg_stats(struct logbuffer *log,
const struct gbms_charging_event *ce_data)
{
const char *adapter_name =
gbms_chg_ev_adapter_s(ce_data->adapter_details.ad_type);
int i;
logbuffer_log(log, "A: %s,%d,%d,%d",
adapter_name,
ce_data->adapter_details.ad_type,
ce_data->adapter_details.ad_voltage * 100,
ce_data->adapter_details.ad_amperage * 100);
logbuffer_log(log, "S: %hu,%hu, %hu,%hu %hu,%hu %ld,%ld, %u",
ce_data->charging_stats.ssoc_in,
ce_data->charging_stats.voltage_in,
ce_data->charging_stats.ssoc_out,
ce_data->charging_stats.voltage_out,
ce_data->charging_stats.cc_in,
ce_data->charging_stats.cc_out,
ce_data->first_update,
ce_data->last_update,
ce_data->chg_profile->capacity_ma);
for (i = 0; i < GBMS_STATS_TIER_COUNT; i++) {
const int soc_next = batt_chg_stats_soc_next(ce_data, i);
const int soc_in = ce_data->tier_stats[i].soc_in >> 8;
const long elap = ce_data->tier_stats[i].time_fast +
ce_data->tier_stats[i].time_taper +
ce_data->tier_stats[i].time_other;
/* retrun len in below functions sometimes more than 256 */
char buff[LOG_BUFFER_ENTRY_SIZE * 2] = {0};
int len = 0;
/* Do not output tiers without time */
if (!elap)
continue;
len = batt_chg_tier_stats_cstr(buff, sizeof(buff),
&ce_data->tier_stats[i], true);
bat_log_cstr_handler(log, buff, len);
if (soc_next) {
len = ttf_soc_cstr(buff, sizeof(buff),
&ce_data->soc_stats,
soc_in, soc_next);
bat_log_cstr_handler(log, buff, len);
}
}
}
/* End of charging: close stats, qualify event publish data */
static void batt_chg_stats_pub(struct batt_drv *batt_drv, char *reason,
bool force, bool skip_uevent)
{
bool publish;
mutex_lock(&batt_drv->stats_lock);
publish = batt_chg_stats_close(batt_drv, reason, force);
if (publish) {
ttf_stats_update(&batt_drv->ttf_stats,
&batt_drv->ce_qual, false);
if (skip_uevent == false)
kobject_uevent(&batt_drv->device->kobj, KOBJ_CHANGE);
}
bat_log_chg_stats(batt_drv->ttf_stats.ttf_log, &batt_drv->ce_data);
mutex_unlock(&batt_drv->stats_lock);
}
/* Log only when elap != 0 add a special meaning for health status */
static int batt_chg_tier_stats_cstr(char *buff, int size,
const struct gbms_ce_tier_stats *tier_stat,
bool verbose)
{
const int soc_in = tier_stat->soc_in >> 8;
const long elap = tier_stat->time_fast + tier_stat->time_taper +
tier_stat->time_other;
const static char *codes[] = {"n", "s", "d", "l", "v", "vo", "p", "f",
"t", "dl", "st", "tc", "r", "w", "rs",
"n", "ny", "h", "hp", "ha"};
long temp_avg, ibatt_avg, icl_avg;
int j, len = 0;
if (elap) {
temp_avg = tier_stat->temp_sum / elap;
ibatt_avg = tier_stat->ibatt_sum / elap;
icl_avg = tier_stat->icl_sum / elap;
} else {
temp_avg = 0;
ibatt_avg = 0;
icl_avg = 0;
}
len += scnprintf(&buff[len], size - len, "\n%d%c ",
tier_stat->vtier_idx,
(verbose) ? ':' : ',');
len += scnprintf(&buff[len], size - len,
"%d.%d,%d,%d, %d,%d,%d, %d,%ld,%d, %d,%ld,%d, %d,%ld,%d",
soc_in,
tier_stat->soc_in & 0xff,
tier_stat->cc_in,
tier_stat->temp_in,
tier_stat->time_fast,
tier_stat->time_taper,
tier_stat->time_other,
tier_stat->temp_min,
temp_avg,
tier_stat->temp_max,
tier_stat->ibatt_min,
ibatt_avg,
tier_stat->ibatt_max,
tier_stat->icl_min,
icl_avg,
tier_stat->icl_max);
if (!verbose || !elap)
return len;
/* time spent in every multi step charging state */
len += scnprintf(&buff[len], size - len, "\n%d:",
tier_stat->vtier_idx);
for (j = 0; j < MSC_STATES_COUNT; j++)
len += scnprintf(&buff[len], size - len, " %s=%d",
codes[j], tier_stat->msc_elap[j]);
/* count spent in each step charging state */
len += scnprintf(&buff[len], size - len, "\n%d:",
tier_stat->vtier_idx);
for (j = 0; j < MSC_STATES_COUNT; j++)
len += scnprintf(&buff[len], size - len, " %s=%d",
codes[j], tier_stat->msc_cnt[j]);
return len;
}
/* health_stats->tier_index is set on stats_close() */
static int batt_health_stats_cstr(char *buff, int size,
const struct gbms_charging_event *ce_data,
bool verbose)
{
const struct gbms_ce_tier_stats *health_stats = &ce_data->health_stats;
const int vti = batt_chg_health_vti(&ce_data->ce_health);
int len = 0;
len += scnprintf(&buff[len], size - len, "\nH: %d %d %lld %d\n",
ce_data->ce_health.rest_state, vti,
ce_data->ce_health.rest_deadline,
ce_data->ce_health.always_on_soc);
/* no additional tier stats when vti is invalid */
if (vti == GBMS_STATS_AC_TI_INVALID)
return len;
len += batt_chg_tier_stats_cstr(&buff[len], size - len,
health_stats,
verbose);
/* Only add pause tier logging if there is pause time */
if (ce_data->health_pause_stats.soc_in != -1)
len += batt_chg_tier_stats_cstr(&buff[len], size - len,
&ce_data->health_pause_stats,
verbose);
return len;
}
/* doesn't output hc stats */
static int batt_chg_stats_cstr(char *buff, int size,
const struct gbms_charging_event *ce_data,
bool verbose)
{
int i, len = 0;
if (verbose) {
const char *adapter_name =
gbms_chg_ev_adapter_s(ce_data->adapter_details.ad_type);
len += scnprintf(&buff[len], size - len, "A: %s,",
adapter_name);
}
len += scnprintf(&buff[len], size - len, "%d,%d,%d",
ce_data->adapter_details.ad_type,
ce_data->adapter_details.ad_voltage * 100,
ce_data->adapter_details.ad_amperage * 100);
len += scnprintf(&buff[len], size - len, "%s%hu,%hu, %hu,%hu %u",
(verbose) ? "\nS: " : ", ",
ce_data->charging_stats.ssoc_in,
ce_data->charging_stats.voltage_in,
ce_data->charging_stats.ssoc_out,
ce_data->charging_stats.voltage_out,
ce_data->chg_profile->capacity_ma);
if (verbose) {
len += scnprintf(&buff[len], size - len, " %hu,%hu",
ce_data->charging_stats.cc_in,
ce_data->charging_stats.cc_out);
len += scnprintf(&buff[len], size - len, " %lld,%lld",
ce_data->first_update,
ce_data->last_update);
}
for (i = 0; i < GBMS_STATS_TIER_COUNT; i++) {
const int soc_next = batt_chg_stats_soc_next(ce_data, i);
const int soc_in = ce_data->tier_stats[i].soc_in >> 8;
const long elap = ce_data->tier_stats[i].time_fast +
ce_data->tier_stats[i].time_taper +
ce_data->tier_stats[i].time_other;
/* Do not output tiers without time */
if (!elap)
continue;
len += batt_chg_tier_stats_cstr(&buff[len], size - len,
&ce_data->tier_stats[i],
verbose);
if (soc_next)
len += ttf_soc_cstr(&buff[len], size - len,
&ce_data->soc_stats,
soc_in, soc_next);
}
/* Does not currently check MSC_HEALTH */
if (ce_data->health_dryrun_stats.soc_in != -1)
len += batt_chg_tier_stats_cstr(&buff[len], size - len,
&ce_data->health_dryrun_stats,
verbose);
if (ce_data->full_charge_stats.soc_in != -1)
len += batt_chg_tier_stats_cstr(&buff[len], size - len,
&ce_data->full_charge_stats,
verbose);
if (ce_data->high_soc_stats.soc_in != -1)
len += batt_chg_tier_stats_cstr(&buff[len], size - len,
&ce_data->high_soc_stats,
verbose);
if (ce_data->overheat_stats.soc_in != -1)
len += batt_chg_tier_stats_cstr(&buff[len], size - len,
&ce_data->overheat_stats,
verbose);
if (ce_data->cc_lvl_stats.soc_in != -1)
len += batt_chg_tier_stats_cstr(&buff[len], size - len,
&ce_data->cc_lvl_stats,
verbose);
/* If bd_clear triggers, we need to know about it even if trickle hasn't
* triggered
*/
if (ce_data->trickle_stats.soc_in != -1 || ce_data->bd_clear_trickle)
len += batt_chg_tier_stats_cstr(&buff[len], size - len,
&ce_data->trickle_stats,
verbose);
return len;
}
/* ------------------------------------------------------------------------- */
static int batt_ravg_value(const struct batt_res *rstate)
{
return rstate->resistance_avg * 100;
}
static void batt_res_dump_logs(const struct batt_res *rstate)
{
pr_info("RAVG: req:%d, sample:%d[%d], filt_cnt:%d, res_avg:%d\n",
rstate->estimate_requested, rstate->sample_accumulator,
rstate->sample_count, rstate->filter_count,
rstate->resistance_avg);
}
static void batt_res_state_set(struct batt_res *rstate, bool breq)
{
rstate->estimate_requested = breq;
rstate->sample_accumulator = 0;
rstate->sample_count = 0;
}
static int batt_ravg_write(int resistance_avg, int filter_count)
{
const u16 ravg = (resistance_avg > 0xffff ) ? 0xffff : resistance_avg;
const u16 rfcn = filter_count & 0xffff;
int ret;
ret = gbms_storage_write(GBMS_TAG_RAVG, &ravg, sizeof(ravg));
if (ret < 0) {
pr_debug("RAVG: failed to write RAVG (%d)\n", ret);
return -EIO;
}
/*
* filter_count <= estimate_filter
* TODO: we might not need this...
* TODO: check the error path (ravg saved but filter count not saved)
*/
ret = gbms_storage_write(GBMS_TAG_RFCN, &rfcn, sizeof(rfcn));
if (ret < 0) {
pr_debug("RAVG: failed to write RFCN (%d)\n", ret);
return -EIO;
}
return 0;
}
static void batt_res_update(struct batt_res *rstate)
{
int filter_estimate = 0;
int total_estimate = 0;
long new_estimate = 0;
/* accumulator is scaled */
new_estimate = rstate->sample_accumulator / rstate->sample_count;
filter_estimate = rstate->resistance_avg * rstate->filter_count;
rstate->filter_count++;
if (rstate->filter_count > rstate->estimate_filter) {
rstate->filter_count = rstate->estimate_filter;
filter_estimate -= rstate->resistance_avg;
}
total_estimate = filter_estimate + new_estimate;
rstate->resistance_avg = total_estimate / rstate->filter_count;
}
static int batt_res_load_data(struct batt_res *rstate,
struct power_supply *fg_psy)
{
u16 resistance_avg = 0, filter_count = 0;
int ret;
ret = gbms_storage_read(GBMS_TAG_RAVG, &resistance_avg,
sizeof(resistance_avg));
if (ret < 0) {
pr_err("failed to get resistance_avg(%d)\n", ret);
goto error_done;
}
ret = gbms_storage_read(GBMS_TAG_RFCN, &filter_count,
sizeof(filter_count));
if (ret < 0) {
pr_err("failed to get resistance filt_count(%d)\n", ret);
goto error_done;
}
/* no value in storage: start now (or start over) */
if (resistance_avg == 0xffff || filter_count == 0xffff) {
resistance_avg = 0;
filter_count = 0;
}
error_done:
rstate->resistance_avg = resistance_avg;
rstate->filter_count = filter_count;
return 0;
}
/*
* accumulate and resistance when SOC is between ravg_soc_low and ravg_soc_high
* and temperature is in the right range. Discard the new sample if the device
* is disconencted.
* hold mutex_unlock(&batt_drv->chg_lock);
*/
static void batt_res_work(struct batt_drv *batt_drv)
{
struct batt_res *rstate = &batt_drv->health_data.bhi_data.res_state;
const int soc = ssoc_get_real(&batt_drv->ssoc_state);
struct power_supply *fg_psy = batt_drv->fg_psy;
int ret, temp, resistance;
if (soc >= rstate->ravg_soc_high) {
/* done: recalculate resistance_avg and save it */
if (rstate->sample_count > 0) {
batt_res_update(rstate);
ret = batt_ravg_write(rstate->resistance_avg,
rstate->filter_count);
if (ret == 0)
batt_res_dump_logs(rstate);
}
/* loose the new data when it cannot save */
batt_res_state_set(rstate, false);
return;
}
/* wait for it */
if (soc < rstate->ravg_soc_low)
return;
/* do not collect samples when temperature is outside the range */
temp = GPSY_GET_INT_PROP(fg_psy, POWER_SUPPLY_PROP_TEMP, &ret);
if (ret < 0 || temp < rstate->res_temp_low || temp > rstate->res_temp_high)
return;
/* resistance in mOhm, skip read errors */
resistance = GPSY_GET_INT_PROP(fg_psy, GBMS_PROP_RESISTANCE, &ret);
if (ret < 0)
return;
/* accumulate samples if temperature and SOC are within range */
rstate->sample_accumulator += resistance / 100;
rstate->sample_count++;
pr_debug("RAVG: sample:%d[%d], filt_cnt:%d\n",
rstate->sample_accumulator, rstate->sample_count,
rstate->filter_count);
}
/* ------------------------------------------------------------------------- */
static void batt_log_csi_info(struct batt_drv *batt_drv)
{
struct csi_stats *csi_stats = &batt_drv->csi_stats;
const bool same_type_and_status =
csi_stats->csi_current_type == batt_drv->csi_current_type &&
csi_stats->csi_current_status == batt_drv->csi_current_status;
int current_speed = batt_drv->csi_current_speed < 0 ? 0 :
batt_drv->csi_current_speed;
const ktime_t right_now = get_boot_sec();
int ssoc = -1;
if (chg_state_is_disconnected(&batt_drv->chg_state))
goto log_and_done;
ssoc = ssoc_get_capacity(&batt_drv->ssoc_state);
if (ssoc == csi_stats->ssoc && same_type_and_status) {
const ktime_t elap = right_now - csi_stats->last_update;
csi_stats->last_update = right_now;
/* accumulate only positive*/
if (batt_drv->csi_current_speed < 0)
return;
if (current_speed < csi_stats->csi_speed_min)
csi_stats->csi_speed_min = current_speed;
else if (current_speed > csi_stats->csi_speed_max)
csi_stats->csi_speed_max = current_speed;
csi_stats->speed_sum += current_speed * elap;
csi_stats->csi_time_sum += elap;
return;
}
log_and_done:
csi_stats->csi_current_status = batt_drv->csi_current_status;
csi_stats->csi_current_type = batt_drv->csi_current_type;
if (csi_stats->ssoc != -1) {
const int csi_speed_avg = csi_stats->csi_time_sum == 0 ?
csi_stats->speed_sum :
(csi_stats->speed_sum / csi_stats->csi_time_sum);
gbms_logbuffer_prlog(batt_drv->ttf_stats.ttf_log, LOGLEVEL_INFO, 0, LOGLEVEL_DEBUG,
"CSI ssoc=%d min=%d max=%d avg=%d type=%d status=%d",
csi_stats->ssoc,
csi_stats->csi_speed_min, csi_stats->csi_speed_max,
csi_speed_avg,
csi_stats->csi_current_type,
csi_stats->csi_current_status);
}
/* ssoc == -1 on disconnect */
if (ssoc == -1)
current_speed = 0;
csi_stats->ssoc = ssoc;
csi_stats->csi_speed_min = current_speed;
csi_stats->csi_speed_max = current_speed;
csi_stats->csi_time_sum = 0;
csi_stats->speed_sum = current_speed;
csi_stats->last_update = right_now;
}
static int csi_status_cb(struct gvotable_election *el, const char *reason,
void *value)
{
struct batt_drv *batt_drv = gvotable_get_data(el);
int status = GVOTABLE_PTR_TO_INT(value);
if (!batt_drv || batt_drv->csi_current_status == status)
return 0;
batt_drv->csi_current_status = status;
batt_log_csi_info(batt_drv);
if (batt_drv->psy)
power_supply_changed(batt_drv->psy);
return 0;
}
static int csi_type_cb(struct gvotable_election *el, const char *reason,
void *value)
{
struct batt_drv *batt_drv = gvotable_get_data(el);
int type = GVOTABLE_PTR_TO_INT(value);
if (!batt_drv || batt_drv->csi_current_type == type)
return 0;
batt_drv->csi_current_type = type;
batt_log_csi_info(batt_drv);
if (batt_drv->psy)
power_supply_changed(batt_drv->psy);
return 0;
}
/* all reset on disconnect */
static void batt_update_csi_type(struct batt_drv *batt_drv)
{
const bool is_disconnected = chg_state_is_disconnected(&batt_drv->chg_state);
const bool is_trickle = batt_drv->ssoc_state.bd_trickle_cnt > 0;
const bool is_ac = batt_drv->msc_state == MSC_HEALTH ||
batt_drv->msc_state == MSC_HEALTH_PAUSE ||
batt_drv->msc_state == MSC_HEALTH_ALWAYS_ON;
if (!batt_drv->csi_type_votable) {
batt_drv->csi_type_votable =
gvotable_election_get_handle(VOTABLE_CSI_TYPE);
if (!batt_drv->csi_type_votable)
return;
}
/* normal or full if connected, nothing otherwise */
gvotable_cast_long_vote(batt_drv->csi_type_votable, "CSI_TYPE_CONNECTED",
is_disconnected ? CSI_TYPE_None : CSI_TYPE_Normal,
true);
/* SW JEITA */
gvotable_cast_long_vote(batt_drv->csi_type_votable, "CSI_TYPE_JEITA",
CSI_TYPE_JEITA,
!is_disconnected && batt_drv->jeita_stop_charging == 1);
/* Longlife is set on TEMP, DWELL and TRICKLE */
gvotable_cast_long_vote(batt_drv->csi_type_votable, "CSI_TYPE_TRICKLE",
CSI_TYPE_LongLife,
!is_disconnected && is_trickle);
/* Adaptive charging, individually */
gvotable_cast_long_vote(batt_drv->csi_type_votable, "CSI_TYPE_AC",
CSI_TYPE_Adaptive,
!is_disconnected && is_ac);
/* CSI_TYPE_Fault is permanent TODO: check single cell disconnect */
gvotable_cast_long_vote(batt_drv->csi_type_votable, "CSI_TYPE_SINGLE_CELL",
CSI_TYPE_Fault, false);
}
static bool batt_csi_check_ad_qual(const struct batt_drv *chg_drv)
{
return false; /* TODO */
}
/*
* these are absolute values: an underpowered adapter is a problem when
* charging speed falls under 80%.
*/
static bool batt_csi_check_ad_power(const union gbms_ce_adapter_details *ad)
{
const int ad_mw = (ad->ad_voltage * ad->ad_amperage) * 10000;
int limit_mw = 9000 * 2000; /* 18 Watts: it changes with the device */
switch (ad->ad_type) {
case CHG_EV_ADAPTER_TYPE_USB:
case CHG_EV_ADAPTER_TYPE_USB_SDP:
case CHG_EV_ADAPTER_TYPE_USB_CDP:
case CHG_EV_ADAPTER_TYPE_USB_ACA:
case CHG_EV_ADAPTER_TYPE_USB_C:
case CHG_EV_ADAPTER_TYPE_USB_PD:
case CHG_EV_ADAPTER_TYPE_USB_PD_DRP:
case CHG_EV_ADAPTER_TYPE_USB_PD_PPS:
case CHG_EV_ADAPTER_TYPE_USB_BRICKID:
case CHG_EV_ADAPTER_TYPE_USB_HVDCP:
case CHG_EV_ADAPTER_TYPE_USB_HVDCP3:
break;
case CHG_EV_ADAPTER_TYPE_WLC:
case CHG_EV_ADAPTER_TYPE_WLC_EPP:
case CHG_EV_ADAPTER_TYPE_WLC_SPP:
limit_mw = 7500;
break;
default:
break;
}
return ad_mw < limit_mw;
}
/*
* COLD and HOT are only at the limits, we might want to flag anything that is
* not the reference tier instead.
*/
static void batt_update_csi_status(struct batt_drv *batt_drv)
{
const struct gbms_chg_profile *profile = &batt_drv->chg_profile;
const int temp_hot_idx = profile->temp_nb_limits - 1;
const bool is_cold = batt_drv->batt_temp < profile->temp_limits[0];
const bool is_hot = batt_drv->batt_temp >= profile->temp_limits[temp_hot_idx];
const bool is_trickle = batt_drv->ssoc_state.bd_trickle_cnt > 0;
const bool is_disconnected = chg_state_is_disconnected(&batt_drv->chg_state);
const union gbms_ce_adapter_details *ad = &batt_drv->ce_data.adapter_details;
if (!batt_drv->csi_status_votable) {
batt_drv->csi_status_votable =
gvotable_election_get_handle(VOTABLE_CSI_STATUS);
if (!batt_drv->csi_status_votable)
return;
}
gvotable_cast_long_vote(batt_drv->csi_status_votable, "CSI_STATUS_CHG",
CSI_STATUS_Charging, !is_disconnected);
/*
* discharging when the battery current is negative. There will likely
* be a more specific reason (e.g System_* or Adapter_* or one of
* Defender_*).
*/
gvotable_cast_long_vote(batt_drv->csi_status_votable, "CSI_STATUS_DSG",
CSI_STATUS_NotCharging,
!is_disconnected && batt_drv->msc_state == MSC_DSG);
gvotable_cast_long_vote(batt_drv->csi_status_votable, "CSI_STATUS_100",
CSI_STATUS_Charging,
!is_disconnected && batt_drv->chg_done);
/* looks at absolute power, it could look also look at golden adapter */
gvotable_cast_long_vote(batt_drv->csi_status_votable, "CSI_STATUS_ADA_POWR",
CSI_STATUS_Adapter_Power,
!is_disconnected && !batt_drv->chg_done &&
batt_csi_check_ad_power(ad));
/* Adapter quality looks at input voltage and current */
gvotable_cast_long_vote(batt_drv->csi_status_votable, "CSI_STATUS_ADA_QUAL",
CSI_STATUS_Adapter_Quality,
!is_disconnected && batt_csi_check_ad_qual(batt_drv));
/* Charging Status Health_Cold */
gvotable_cast_long_vote(batt_drv->csi_status_votable, "CSI_STATUS_COLD",
CSI_STATUS_Health_Cold,
!is_disconnected && is_cold);
/* Charging Status Health_Hot */
gvotable_cast_long_vote(batt_drv->csi_status_votable, "CSI_STATUS_HOT",
CSI_STATUS_Health_Hot,
!is_disconnected && is_hot);
/* Charging Status Defender_Trickle */
gvotable_cast_long_vote(batt_drv->csi_status_votable, "CSI_STATUS_DEFEND_TRICKLE",
CSI_STATUS_Defender_Trickle,
!is_disconnected && is_trickle);
}
#define CSI_CHG_SPEED_MAX 100
#define CSI_CHG_SPEED_MIN 0
/*
* slowing down due to batt_drv->temp_idx != from reference is reported
* in status as CSI_STATUS_COLD or CSI_STATUS_HOT.
*
* cc_max = GBMS_CCCM_LIMITS(profile, batt_drv->temp_idx, batt_drv->vbatt_idx);
* if (cc_max && cc_max < nominal_demand)
* nominal_demand = cc_max;
*/
static int batt_calc_charging_speed(struct batt_drv *batt_drv)
{
const struct gbms_chg_profile *profile = &batt_drv->chg_profile;
const int soc = ssoc_get_capacity(&batt_drv->ssoc_state);
const int chg_type = batt_drv->chg_state.f.chg_type;
int cc_max, vbatt_idx, ibatt, nominal_demand;
int chg_speed = -1;
if (chg_state_is_disconnected(&batt_drv->chg_state))
return -1;
if (batt_drv->fake_charging_speed)
return batt_drv->fake_charging_speed;
/* if the battery is the limit, speed is 100% */
if (chg_type == POWER_SUPPLY_CHARGE_TYPE_TAPER)
return 100;
/* Get average current via tiers. */
vbatt_idx = ttf_pwr_vtier_idx(&batt_drv->ttf_stats, soc);
/* Wait 1 min to get avg_ibat */
ibatt = ttf_pwr_ibatt(&batt_drv->ce_data.tier_stats[vbatt_idx]);
if (ibatt == 0)
return -1;
/* Get nominal demand current via ttf table */
nominal_demand = ttf_ref_cc(&batt_drv->ttf_stats, soc);
if (nominal_demand < 0)
return -1;
/*
* Adjust demand to battery temperature when batt_drv->temp_idx is
* different from the reference. Here status will either be *_COLD
* or *_HOT.
*/
cc_max = GBMS_CCCM_LIMITS(profile, batt_drv->temp_idx, batt_drv->vbatt_idx);
if (cc_max && cc_max < nominal_demand)
nominal_demand = cc_max;
chg_speed = ibatt * 100 / nominal_demand;
/* bound in [0,100] */
if (chg_speed > CSI_CHG_SPEED_MAX)
chg_speed = CSI_CHG_SPEED_MAX;
else if (chg_speed < CSI_CHG_SPEED_MIN)
chg_speed = CSI_CHG_SPEED_MIN;
return chg_speed;
}
static void batt_update_csi_info(struct batt_drv *batt_drv)
{
int charging_speed;
batt_update_csi_type(batt_drv);
batt_update_csi_status(batt_drv);
charging_speed = batt_calc_charging_speed(batt_drv);
if (batt_drv->csi_current_speed != charging_speed) {
batt_drv->csi_current_speed = charging_speed;
batt_log_csi_info(batt_drv);
}
}
/* ------------------------------------------------------------------------- */
/* NOTE: should not reset always_on_soc */
static inline void batt_reset_rest_state(struct batt_chg_health *chg_health)
{
chg_health->rest_cc_max = -1;
chg_health->rest_fv_uv = -1;
/* Keep negative deadlines (they mean user has disabled via settings)
* NOTE: CHG_DEADLINE_DIALOG needs to be applied only for the current
* session. Therefore, it should be cleared on disconnect.
*/
if (chg_health->rest_deadline < 0 &&
chg_health->rest_deadline != CHG_DEADLINE_DIALOG) {
chg_health->rest_state = CHG_HEALTH_USER_DISABLED;
} else {
chg_health->rest_state = CHG_HEALTH_INACTIVE;
chg_health->rest_deadline = 0;
}
chg_health->dry_run_deadline = 0;
chg_health->active_time = 0;
}
/* should not reset rl state */
static inline void batt_reset_chg_drv_state(struct batt_drv *batt_drv)
{
/* the wake assertion will be released on disconnect and on SW JEITA */
if (batt_drv->hold_taper_ws) {
batt_drv->hold_taper_ws = false;
__pm_relax(batt_drv->taper_ws);
}
/* polling */
batt_drv->batt_fast_update_cnt = 0;
batt_drv->ttf_debounce = 1;
batt_drv->fg_status = POWER_SUPPLY_STATUS_UNKNOWN;
batt_drv->chg_done = false;
/* algo */
batt_drv->temp_idx = -1;
batt_drv->vbatt_idx = -1;
batt_drv->fv_uv = -1;
batt_drv->cc_max = -1;
batt_drv->msc_update_interval = -1;
batt_drv->jeita_stop_charging = -1;
/* timers */
batt_drv->checked_cv_cnt = 0;
batt_drv->checked_ov_cnt = 0;
batt_drv->checked_tier_switch_cnt = 0;
/* stats and logs */
batt_drv->msc_state = -1;
batt_drv->last_log_cnt = 0;
/* health */
batt_reset_rest_state(&batt_drv->chg_health);
/* fan level */
fan_level_reset(batt_drv);
}
/*
* software JEITA, disable charging when outside the charge table.
* NOTE: ->jeita_stop_charging is either -1 (init or reset), 1 (disable) or 0
* TODO: need to be able to disable (leave to HW)
*/
static bool msc_logic_soft_jeita(struct batt_drv *batt_drv, int temp)
{
const struct gbms_chg_profile *profile = &batt_drv->chg_profile;
if (temp < profile->temp_limits[0] ||
temp >= profile->temp_limits[profile->temp_nb_limits - 1]) {
if (batt_drv->jeita_stop_charging < 0) {
batt_drv->jeita_stop_charging = 1;
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_JEITA temp=%d off limits, do not enable charging\n",
temp);
} else if (batt_drv->jeita_stop_charging == 0) {
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_JEITA temp=%d off limits, disabling charging\n",
temp);
}
return true;
}
return false;
}
/* TODO: only change batt_drv->checked_ov_cnt, an */
static int msc_logic_irdrop(struct batt_drv *batt_drv,
int vbatt, int ibatt, int temp_idx,
int *vbatt_idx, int *fv_uv,
int *update_interval)
{
const struct gbms_chg_profile *profile = &batt_drv->chg_profile;
const int vtier = profile->volt_limits[*vbatt_idx];
const int chg_type = batt_drv->chg_state.f.chg_type;
const int utv_margin = profile->cv_range_accuracy;
const int otv_margin = profile->cv_otv_margin;
const int switch_cnt = profile->cv_tier_switch_cnt;
int vchg = batt_drv->chg_state.f.vchrg;
int msc_state = MSC_NONE;
bool match_enable;
if (batt_drv->chg_state.f.flags & GBMS_CS_FLAG_NOCOMP)
vchg = 0;
match_enable = vchg != 0;
if ((vbatt - vtier) > otv_margin) {
/* OVER: vbatt over vtier for more than margin */
const int cc_max = GBMS_CCCM_LIMITS(profile, temp_idx,
*vbatt_idx);
/*
* pullback when over tier voltage, fast poll, penalty
* on TAPER_RAISE and no cv debounce (so will consider
* switching voltage tiers if the current is right).
* NOTE: lowering voltage might cause a small drop in
* current (we should remain under next tier)
*/
*fv_uv = gbms_msc_round_fv_uv(profile, vtier,
*fv_uv - profile->fv_uv_resolution);
if (*fv_uv < vtier)
*fv_uv = vtier;
*update_interval = profile->cv_update_interval;
batt_drv->checked_ov_cnt = profile->cv_tier_ov_cnt;
batt_drv->checked_cv_cnt = 0;
if (batt_drv->checked_tier_switch_cnt > 0 || !match_enable) {
/* no pullback, next tier if already counting */
msc_state = MSC_VSWITCH;
*vbatt_idx = batt_drv->vbatt_idx + 1;
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_VSWITCH vt=%d vb=%d ibatt=%d me=%d\n",
vtier, vbatt, ibatt, match_enable);
} else if (-ibatt == cc_max) {
/* pullback, double penalty if at full current */
msc_state = MSC_VOVER;
batt_drv->checked_ov_cnt *= 2;
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_VOVER vt=%d vb=%d ibatt=%d fv_uv=%d->%d\n",
vtier, vbatt, ibatt,
batt_drv->fv_uv, *fv_uv);
} else {
/* simple pullback */
msc_state = MSC_PULLBACK;
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_PULLBACK vt=%d vb=%d ibatt=%d fv_uv=%d->%d\n",
vtier, vbatt, ibatt,
batt_drv->fv_uv, *fv_uv);
}
/*
* might get here after windup because algo will track the
* voltage drop caused from load as IRDROP.
* TODO: make sure that being current limited clear
* the taper condition.
*/
} else if (chg_type == POWER_SUPPLY_CHARGE_TYPE_FAST) {
/*
* FAST: usual compensation (vchrg is vqcom)
* NOTE: there is a race in reading from charger and
* data might not be consistent (b/110318684)
* NOTE: could add PID loop for management of thermals
*/
const int vchrg_ua = vchg * 1000;
msc_state = MSC_FAST;
/* invalid or 0 vchg disable IDROP compensation */
if (vchrg_ua <= 0) {
/* could keep it steady instead */
*fv_uv = vtier;
} else if (vchrg_ua > vbatt) {
*fv_uv = gbms_msc_round_fv_uv(profile, vtier,
vtier + (vchrg_ua - vbatt));
}
/* no tier switch in fast charge (TODO unless close to tier) */
if (batt_drv->checked_cv_cnt == 0)
batt_drv->checked_cv_cnt = 1;
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_FAST vt=%d vb=%d ib=%d fv_uv=%d->%d vchrg=%d cv_cnt=%d\n",
vtier, vbatt, ibatt, batt_drv->fv_uv, *fv_uv,
batt_drv->chg_state.f.vchrg,
batt_drv->checked_cv_cnt);
} else if (chg_type == POWER_SUPPLY_CHARGE_TYPE_TRICKLE) {
/*
* Precharge: charging current/voltage are limited in
* hardware, no point in applying irdrop compensation.
* Just wait for battery voltage to raise over the
* precharge to fast charge threshold.
*/
msc_state = MSC_TYPE;
/* no tier switching in trickle */
if (batt_drv->checked_cv_cnt == 0)
batt_drv->checked_cv_cnt = 1;
batt_prlog(BATT_PRLOG_ALWAYS, "MSC_PRE vt=%d vb=%d fv_uv=%d chg_type=%d\n",
vtier, vbatt, *fv_uv, chg_type);
} else if (chg_type != POWER_SUPPLY_CHARGE_TYPE_TAPER) {
const int type_margin = utv_margin;
/*
* Not fast, taper or precharge: in *_UNKNOWN and *_NONE.
* Set checked_cv_cnt=0 when voltage is withing utv_margin of
* vtier (tune marging) to force checking current and avoid
* early termination for lack of headroom. Carry on at the
* same update_interval otherwise.
*/
msc_state = MSC_TYPE;
if (vbatt > (vtier - type_margin)) {
*update_interval = profile->cv_update_interval;
batt_drv->checked_cv_cnt = 0;
} else {
batt_drv->checked_cv_cnt = 1;
}
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_TYPE vt=%d margin=%d cv_cnt=%d vb=%d fv_uv=%d chg_type=%d\n",
vtier, type_margin, batt_drv->checked_cv_cnt, vbatt,
*fv_uv, chg_type);
} else if (batt_drv->checked_ov_cnt) {
/*
* TAPER_DLY: countdown to raise fv_uv and/or check
* for tier switch, will keep steady...
*/
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_DLY vt=%d vb=%d fv_uv=%d margin=%d cv_cnt=%d, ov_cnt=%d\n",
vtier, vbatt, *fv_uv, profile->cv_range_accuracy,
batt_drv->checked_cv_cnt,
batt_drv->checked_ov_cnt);
msc_state = MSC_DLY;
batt_drv->checked_ov_cnt -= 1;
*update_interval = profile->cv_update_interval;
} else if ((vtier - vbatt) < utv_margin) {
const bool log_level = batt_drv->msc_state != MSC_STEADY &&
batt_drv->msc_state != MSC_RSTC;
/* TAPER_STEADY: close enough to tier */
msc_state = MSC_STEADY;
*update_interval = profile->cv_update_interval;
batt_prlog(batt_prlog_level(log_level),
"MSC_STEADY vt=%d vb=%d fv_uv=%d margin=%d\n",
vtier, vbatt, *fv_uv,
profile->cv_range_accuracy);
} else if (batt_drv->checked_tier_switch_cnt >= (switch_cnt - 1)) {
/*
* TAPER_TIERCNTING: prepare to switch to next tier
* so not allow to raise vfloat to prevent battery
* voltage over than tier
*/
msc_state = MSC_TIERCNTING;
*update_interval = profile->cv_update_interval;
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_TIERCNTING vt=%d vb=%d fv_uv=%d margin=%d\n",
vtier, vbatt, *fv_uv,
profile->cv_range_accuracy);
} else if (match_enable) {
/*
* TAPER_RAISE: under tier vlim, raise one click &
* debounce taper (see above handling of STEADY)
*/
msc_state = MSC_RAISE;
*fv_uv = gbms_msc_round_fv_uv(profile, vtier,
*fv_uv + profile->fv_uv_resolution);
*update_interval = profile->cv_update_interval;
/* debounce next taper voltage adjustment */
batt_drv->checked_cv_cnt = profile->cv_debounce_cnt;
batt_prlog(BATT_PRLOG_ALWAYS, "MSC_RAISE vt=%d vb=%d fv_uv=%d->%d\n",
vtier, vbatt, batt_drv->fv_uv, *fv_uv);
} else {
msc_state = MSC_STEADY;
batt_prlog(BATT_PRLOG_DEBUG, "MSC_DISB vt=%d vb=%d fv_uv=%d->%d\n",
vtier, vbatt, batt_drv->fv_uv, *fv_uv);
}
return msc_state;
}
/* battery health based charging on SOC */
static enum chg_health_state msc_health_active(const struct batt_drv *batt_drv)
{
int ssoc, ssoc_threshold = -1;
ssoc_threshold = CHG_HEALTH_REST_SOC(&batt_drv->chg_health);
if (ssoc_threshold < 0)
return CHG_HEALTH_INACTIVE;
ssoc = ssoc_get_capacity(&batt_drv->ssoc_state);
if (ssoc >= ssoc_threshold)
return CHG_HEALTH_ACTIVE;
return CHG_HEALTH_ENABLED;
}
#define HEALTH_PAUSE_DEBOUNCE 180
#define HEALTH_PAUSE_MAX_SSOC 95
#define HEALTH_PAUSE_TIME 3
static bool msc_health_pause(struct batt_drv *batt_drv, const ktime_t ttf,
const ktime_t now,
const enum chg_health_state rest_state) {
const struct gbms_charging_event *ce_data = &batt_drv->ce_data;
const struct gbms_ce_tier_stats *h = &ce_data->health_stats;
struct batt_chg_health *rest = &batt_drv->chg_health;
const ktime_t deadline = rest->rest_deadline;
const ktime_t safety_margin = (ktime_t)batt_drv->health_safety_margin;
/* Note: We only capture ACTIVE time in health stats */
const ktime_t elap_h = h->time_fast + h->time_taper + h->time_other;
const int ssoc = ssoc_get_capacity(&batt_drv->ssoc_state);
/*
* the safety marging cannot be less than 0 (it would subtract time from TTF and would
* cause AC to never meet 100% in time). Use 0<= to disable PAUSE.
*/
if (safety_margin <= 0)
return false;
/*
* Expected behavior:
* 1. ACTIVE: small current run a while for ttf
* 2. PAUSE: when time is enough to pause
* 3. ACTIVE: when time out and back to ACTIVE charge
*/
if (rest_state != CHG_HEALTH_ACTIVE && rest_state != CHG_HEALTH_PAUSE)
return false;
/*
* ssoc: transfer in high soc impact charge full condition, disable pause
* behavior in high soc
*/
if (ssoc > HEALTH_PAUSE_MAX_SSOC)
return false;
/*
* elap_h: running active for a while wait status and current stable
* need to re-check before re-enter pause, so we need to minus previous
* health active time (rest->active_time) for next HEALTH_PAUSE_DEBOUNCE
*/
if (elap_h - rest->active_time < HEALTH_PAUSE_DEBOUNCE)
return false;
/* prevent enter <---> leave PAUSE too many times */
if (rest->active_time > (HEALTH_PAUSE_TIME * HEALTH_PAUSE_DEBOUNCE))
return false;
/* check if time meets the PAUSE condition or not */
if (ttf > 0 && deadline > now + ttf + safety_margin)
return true;
/* record time for next pause check */
rest->active_time = elap_h;
return false;
}
/*
* for logging, userspace should use
* deadline == 0 on fast replug (leave initial deadline ok)
* deadline == -1 when the feature is disabled
* if charge health was active/enabled, set to -2
* deadline == absolute requested deadline (if always_on is set)
* return true if there was a change
*/
static bool batt_health_set_chg_deadline(struct batt_chg_health *chg_health,
long long deadline_s)
{
enum chg_health_state rest_state = chg_health->rest_state;
bool new_deadline;
/* disabled in settings */
if (deadline_s < 0) {
new_deadline = chg_health->rest_deadline != deadline_s;
chg_health->rest_state = CHG_HEALTH_USER_DISABLED;
/* disabled with notification; assumes that the dialog exists
* only if there is a >0 deadline.
*/
if (deadline_s == CHG_DEADLINE_DIALOG)
chg_health->rest_deadline = CHG_DEADLINE_DIALOG;
else if (chg_health->rest_deadline > 0) /* was active */
chg_health->rest_deadline = CHG_DEADLINE_SETTING_STOP;
else
chg_health->rest_deadline = CHG_DEADLINE_SETTING;
/* disabled with replug */
} else if (deadline_s == 0) {
new_deadline = chg_health->rest_deadline != deadline_s;
/* ->rest_deadline will be reset to 0 on disconnect */
/* Don't disable A/C if already done */
if (chg_health->rest_state != CHG_HEALTH_DONE)
chg_health->rest_state = CHG_HEALTH_USER_DISABLED;
} else { /* enabled from any previous state */
const ktime_t rest_deadline = get_boot_sec() + deadline_s;
/* ->always_on SOC overrides the deadline */
new_deadline = chg_health->rest_deadline != rest_deadline;
chg_health->rest_state = CHG_HEALTH_ENABLED;
chg_health->rest_deadline = rest_deadline;
}
return new_deadline || rest_state != chg_health->rest_state;
}
/* cc_max in ua: capacity in mAh, rest_rate in deciPct */
static int msc_logic_health_get_rate(const struct batt_chg_health *rest,
int capacity_ma)
{
return capacity_ma * rest->rest_rate * 10;
}
/* health based charging trade charging speed for battery cycle life. */
static bool msc_logic_health(struct batt_drv *batt_drv)
{
const struct gbms_chg_profile *profile = &batt_drv->chg_profile;
struct batt_chg_health *rest = &batt_drv->chg_health;
const ktime_t deadline = rest->rest_deadline;
enum chg_health_state rest_state = rest->rest_state;
const bool aon_enabled = rest->always_on_soc != -1;
const ktime_t now = get_boot_sec();
int fv_uv = -1, cc_max = -1;
bool changed = false;
ktime_t ttf = 0;
int ret;
/* move to ENABLED if INACTIVE when aon_enabled is set */
if (aon_enabled && rest_state == CHG_HEALTH_INACTIVE)
rest_state = CHG_HEALTH_ENABLED;
/*
* on disconnect batt_reset_rest_state() will set rest_state to
* CHG_HEALTH_USER_DISABLED if the deadline is negative.
*/
if (rest_state == CHG_HEALTH_CCLVL_DISABLED ||
rest_state == CHG_HEALTH_BD_DISABLED ||
rest_state == CHG_HEALTH_USER_DISABLED ||
rest_state == CHG_HEALTH_DISABLED ||
rest_state == CHG_HEALTH_INACTIVE)
goto done_no_op;
/* Keeps AC enabled after DONE */
if (rest_state == CHG_HEALTH_DONE)
goto done_exit;
/* disable AC because we are running custom charging levels */
if (batt_drv->chg_state.f.flags & GBMS_CS_FLAG_CCLVL) {
rest_state = CHG_HEALTH_CCLVL_DISABLED;
goto done_exit;
}
/* disable AC because BD-TEMP triggered */
if (batt_drv->batt_health == POWER_SUPPLY_HEALTH_OVERHEAT) {
rest_state = CHG_HEALTH_BD_DISABLED;
goto done_exit;
}
/*
* ret < 0 right after plug-in or when the device is discharging due
* to a large sysload or an underpowered adapter (or both). Current
* strategy leaves everything as is (hoping) that the load is temporary.
* The estimate will be negative when BD is triggered and during the
* debounce period.
*/
ret = batt_ttf_estimate(&ttf, batt_drv);
if (ret < 0)
return false;
/* estimate is 0 at 100%: set to done and keep AC enabled in RL */
if (ttf == 0) {
rest_state = CHG_HEALTH_DONE;
goto done_exit;
}
/*
* rest_state here is either ENABLED or ACTIVE, transition to DISABLED
* when the deadline cannot be met with the current rate. set a new
* deadline or reset always_on_soc to re-enable AC for this session.
* NOTE: A device with AON enabled might (will) receive a deadline if
* plugged in within the AC window: ignore it.
* NOTE: cannot have a negative deadline with rest_state different
* from CHG_HEALTH_USER_DISABLED.
* TODO: consider adding a margin or debounce it.
*/
if (aon_enabled == false && rest_state == CHG_HEALTH_ACTIVE &&
deadline > 0 && ttf != -1 && now + ttf > deadline) {
rest_state = CHG_HEALTH_DISABLED;
goto done_exit;
}
/* Decide enter PAUSE state or not by time if not set ACA */
if (aon_enabled == false &&
msc_health_pause(batt_drv, ttf, now, rest_state)) {
rest_state = CHG_HEALTH_PAUSE;
goto done_exit;
}
/*
* rest_state here is either ENABLED or ACTIVE,
* NOTE: State might transition from _ACTIVE to _ENABLED after a
* discharge cycle that makes the battery fall under the threshold.
* State will transition back to _ENABLED after some time unless
* the deadline is met.
*/
rest_state = msc_health_active(batt_drv);
done_exit:
if (rest_state == CHG_HEALTH_ACTIVE || rest_state == CHG_HEALTH_DONE) {
const int capacity_ma = batt_drv->battery_capacity;
cc_max = msc_logic_health_get_rate(rest, capacity_ma);
/*
* default FV_UV to the last charge tier since fv_uv will be
* set to that on _DONE.
* NOTE this might need to be adjusted for the actual charge
* tiers that have nonzero charging current
*/
fv_uv = profile->volt_limits[profile->volt_nb_limits - 1];
/* TODO: make sure that we wakeup when we are close to ttf */
} else if (rest_state == CHG_HEALTH_PAUSE) {
/*
* pause charging behavior when the the deadline is longer than
* expected charge time. return back to CHG_HEALTH_ACTIVE and
* start health charge when now + ttf + margine close to deadline
*/
cc_max = 0;
}
done_no_op:
/* send a power supply event when rest_state changes */
changed = rest->rest_state != rest_state;
/* msc_logic_* will vote on cc_max and fv_uv. */
rest->rest_cc_max = cc_max;
rest->rest_fv_uv = fv_uv;
if (!changed)
return false;
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_HEALTH: now=%lld deadline=%lld aon_soc=%d ttf=%lld state=%d->%d fv_uv=%d, cc_max=%d"
" safety_margin=%d active_time:%lld\n",
now, rest->rest_deadline, rest->always_on_soc, ttf,
rest->rest_state, rest_state, fv_uv, cc_max,
batt_drv->health_safety_margin, rest->active_time);
logbuffer_log(batt_drv->ttf_stats.ttf_log,
"MSC_HEALTH: now=%lld deadline=%lld aon_soc=%d ttf=%lld state=%d->%d fv_uv=%d, cc_max=%d"
" safety_margin=%d active_time:%lld",
now, rest->rest_deadline, rest->always_on_soc,
ttf, rest->rest_state, rest_state, fv_uv, cc_max,
batt_drv->health_safety_margin, rest->active_time);
rest->rest_state = rest_state;
memcpy(&batt_drv->ce_data.ce_health, &batt_drv->chg_health,
sizeof(batt_drv->ce_data.ce_health));
return true;
}
static int msc_pm_hold(int msc_state)
{
int pm_state = -1;
switch (msc_state) {
case MSC_RAISE:
case MSC_VOVER:
case MSC_PULLBACK:
pm_state = 1; /* __pm_stay_awake */
break;
case MSC_SEED:
case MSC_DSG:
case MSC_VSWITCH:
case MSC_NEXT:
case MSC_LAST:
case MSC_RSTC:
case MSC_HEALTH:
case MSC_HEALTH_PAUSE:
case MSC_HEALTH_ALWAYS_ON:
case MSC_WAIT:
case MSC_FAST:
case MSC_NYET:
case MSC_STEADY:
pm_state = 0; /* pm_relax */
break;
default:
pr_debug("hold not defined for msc_state=%d\n", msc_state);
pm_state = 0; /* pm_relax */
break;
}
return pm_state;
}
/* same as design when under the grace period */
static u32 aacr_get_reference_capacity(const struct batt_drv *batt_drv, int cycle_count)
{
const int design_capacity = batt_drv->battery_capacity;
const int aacr_cycle_grace = batt_drv->aacr_cycle_grace;
const int aacr_cycle_max = batt_drv->aacr_cycle_max;
int fade10;
fade10 = gbms_aacr_fade10(&batt_drv->chg_profile, cycle_count);
if (fade10 >= 0) {
/* use interpolation between known points */
} else if (aacr_cycle_max && (cycle_count > aacr_cycle_grace)) {
/* or use slope from ->aacr_cycle_grace for 20% @ ->aacr_cycle_max */
fade10 = (200 * (cycle_count - aacr_cycle_grace)) /
(aacr_cycle_max - aacr_cycle_grace);
pr_debug("%s: aacr_cycle_max=%d, cycle_count=%d fade10=%d\n",
__func__, aacr_cycle_max, cycle_count, fade10);
} else {
fade10 = 0;
}
return design_capacity - (design_capacity * fade10 / 1000);
}
/* 80% of design_capacity min, design_capacity in grace, aacr or negative */
static int aacr_get_capacity_at_cycle(const struct batt_drv *batt_drv, int cycle_count)
{
const int design_capacity = batt_drv->battery_capacity; /* mAh */
const int min_capacity = (batt_drv->battery_capacity * 80) / 100;
int reference_capacity, full_cap_nom, full_capacity;
struct power_supply *fg_psy = batt_drv->fg_psy;
int aacr_capacity;
/* batt_drv->cycle_count might be negative */
if (cycle_count <= batt_drv->aacr_cycle_grace)
return design_capacity;
/* peg at 80% of design when over limit (if set) */
if (batt_drv->aacr_cycle_max && (cycle_count >= batt_drv->aacr_cycle_max))
return min_capacity;
reference_capacity = aacr_get_reference_capacity(batt_drv, cycle_count);
if (reference_capacity <= 0)
return design_capacity;
/* full_cap_nom in uAh, need to scale to mAh */
full_cap_nom = GPSY_GET_PROP(fg_psy, POWER_SUPPLY_PROP_CHARGE_FULL);
if (full_cap_nom < 0)
return full_cap_nom;
full_capacity = min(min(full_cap_nom / 1000, design_capacity), reference_capacity);
aacr_capacity = max(full_capacity, min_capacity);
aacr_capacity = (aacr_capacity / 50) * 50; /* 50mAh, ~1% capacity */
pr_debug("%s: design=%d reference=%d full_cap_nom=%d, full=%d aacr=%d\n",
__func__, design_capacity, reference_capacity, full_cap_nom,
full_capacity, aacr_capacity);
return aacr_capacity;
}
/* design_capacity when not enabled, never a negative value */
static u32 aacr_get_capacity(struct batt_drv *batt_drv)
{
int capacity = batt_drv->battery_capacity;
int cycle_count;
if (batt_drv->fake_aacr_cc)
cycle_count = batt_drv->fake_aacr_cc;
else
cycle_count = batt_drv->cycle_count;
if (batt_drv->aacr_state == BATT_AACR_DISABLED)
goto exit_done;
if (cycle_count <= batt_drv->aacr_cycle_grace) {
batt_drv->aacr_state = BATT_AACR_UNDER_CYCLES;
} else {
int aacr_capacity;
aacr_capacity = aacr_get_capacity_at_cycle(batt_drv, cycle_count);
if (aacr_capacity < 0) {
batt_drv->aacr_state = BATT_AACR_INVALID_CAP;
} else {
batt_drv->aacr_state = BATT_AACR_ENABLED;
capacity = aacr_capacity;
}
}
exit_done:
return (u32)capacity;
}
/* BHI -------------------------------------------------------------------- */
/* GBMS_PROP_CAPACITY_FADE_RATE access this via GBMS_TAG_HCNT */
static int hist_get_index(int cycle_count, const struct batt_drv *batt_drv)
{
/* wait for history to be initialized */
if (batt_drv->hist_data_max_cnt <= 0 || cycle_count <= 0)
return -ENODATA;
return cycle_count / batt_drv->hist_delta_cycle_cnt;
}
static int bhi_cap_data_update(struct bhi_data *bhi_data, struct batt_drv *batt_drv)
{
struct power_supply *fg_psy = batt_drv->fg_psy;
int cap_fade;
/* GBMS_PROP_CAPACITY_FADE_RATE is in percent */
cap_fade = GPSY_GET_PROP(fg_psy, GBMS_PROP_CAPACITY_FADE_RATE);
if (cap_fade < 0)
return -ENODATA;
if (cap_fade > 100)
cap_fade = 100;
bhi_data->capacity_fade = cap_fade;
pr_debug("%s: cap_fade=%d, cycle_count=%d\n", __func__,
bhi_data->capacity_fade, bhi_data->cycle_count);
return 0;
}
/*
* NOTE: make sure that the FG and this code use the same reference value for
* capacity. Also GBMS_PROP_CAPACITY_FADE_RATE is in percent.
*
*/
static int bhi_health_get_capacity(int algo, const struct bhi_data *bhi_data)
{
return bhi_data->capacity_design * (100 - bhi_data->capacity_fade);
}
/* The limit for capacity is 80% of design */
static int bhi_calc_cap_index(int algo, const struct bhi_data *bhi_data)
{
int capacity_health, index;
if (algo == BHI_ALGO_DISABLED)
return BHI_ALGO_FULL_HEALTH;
if (!bhi_data->capacity_design)
return -ENODATA;
capacity_health = bhi_health_get_capacity(algo, bhi_data);
/*
* TODO: for BHI_ALGO_ACHI_B compare to aacr capacity
* aacr_capacity = aacr_get_capacity_at_cycle(batt_drv, cycle_count);
*
* TODO: compare to google_capacity?
* ret = gbms_storage_read(GBMS_TAG_GCFE, &gcap sizeof(gcap));
*/
if (capacity_health > bhi_data->capacity_design)
capacity_health = bhi_data->capacity_design;
index = (capacity_health * BHI_ALGO_FULL_HEALTH) / bhi_data->capacity_design;
pr_debug("%s: algo=%d index=%d ch=%d, cd=%d, cf=%d\n", __func__,
algo, index, capacity_health, bhi_data->capacity_design,
bhi_data->capacity_fade);
return index;
}
/* read and qualify the battery initial impedance */
static int bhi_imp_read_ai(struct bhi_data *bhi_data, struct power_supply *fg_psy)
{
int act_impedance;
/* use ravg if the filter is full? */
act_impedance = batt_ravg_value(&bhi_data->res_state);
/* TODO: qualify with filter length */
return act_impedance;
}
/* hold mutex_unlock(&batt_drv->chg_lock); */
static int bhi_imp_data_update(struct bhi_data *bhi_data, struct power_supply *fg_psy)
{
const int use_ravg = true;
int act_impedance = bhi_data->act_impedance;
int cur_impedance;
if (!act_impedance) {
act_impedance = GPSY_GET_PROP(fg_psy, GBMS_PROP_HEALTH_ACT_IMPEDANCE);
if (act_impedance == -EINVAL) {
int ret;
act_impedance = use_ravg ? bhi_imp_read_ai(bhi_data, fg_psy) :
GPSY_GET_PROP(fg_psy, GBMS_PROP_HEALTH_IMPEDANCE);
if (act_impedance <= 0)
goto exit_done;
ret = GPSY_SET_PROP(fg_psy, GBMS_PROP_HEALTH_ACT_IMPEDANCE,
act_impedance);
if (ret < 0)
goto exit_done;
}
if (act_impedance < 0)
goto exit_done;
/* primed, saved */
bhi_data->act_impedance = act_impedance;
return 0;
}
cur_impedance = batt_ravg_value(&bhi_data->res_state);
/*
* Can delegate to the FG with:
* cur_impedance = GPSY_GET_PROP(fg_psy, GBMS_PROP_HEALTH_IMPEDANCE);
* if (cur_impedance < 0)
* goto exit_done;
*/
/* max in this session. Use average maybe? */
if (cur_impedance > bhi_data->cur_impedance)
bhi_data->cur_impedance = cur_impedance;
exit_done:
pr_debug("%s: cur_impedance=%d, act_impedance=%d\n", __func__,
cur_impedance, act_impedance);
return 0;
}
/* pick the impedance from the algo */
static int bhi_health_get_impedance(int algo, const struct bhi_data *bhi_data)
{
u32 cur_impedance;
switch (algo) {
case BHI_ALGO_DISABLED:
case BHI_ALGO_CYCLE_COUNT:
case BHI_ALGO_ACHI_RAVG:
case BHI_ALGO_ACHI_RAVG_B:
case BHI_ALGO_MIX_N_MATCH:
cur_impedance = batt_ravg_value(&bhi_data->res_state);
break;
default:
return 0;
}
if (cur_impedance <= 0)
cur_impedance = bhi_data->act_impedance;
return cur_impedance;
}
static int bhi_calc_imp_index(int algo, const struct bhi_data *bhi_data)
{
u32 cur_impedance;
int imp_index;
if (!bhi_data->act_impedance)
return BHI_ALGO_FULL_HEALTH;
cur_impedance = bhi_health_get_impedance(algo, bhi_data);
if (cur_impedance == 0)
return BHI_ALGO_FULL_HEALTH;
/*
* TODO: on algo==*_B bounds check cur_impedance against res10
* before calculating the impedance index.
*/
/* The limit is 2x of activation. */
imp_index = (2 * bhi_data->act_impedance - cur_impedance) * BHI_ALGO_FULL_HEALTH /
bhi_data->act_impedance;
if (imp_index < 0)
imp_index = 0;
pr_debug("%s: algo=%d index=%d current=%d, activation=%d\n", __func__,
algo, imp_index, cur_impedance, bhi_data->act_impedance);
return imp_index;
}
static int bhi_calc_sd_total(const struct swelling_data *sd)
{
int i, swell_total = 0;
ktime_t time_at;
for (i = 0; i < BATT_TEMP_RECORD_THR ; i++) {
time_at = sd->chg[i] / 3600;
time_at += sd->dischg[i] / 3600;
// TODO: use weights for temperature and soc
// eg. sd->temp_thr[i]/10, sd->soc_thr[i],
swell_total += time_at;
}
return swell_total;
}
static int bhi_calc_sd_index(int algo, const struct bhi_data *bhi_data)
{
pr_debug("%s: algo=%d index=%d\n", __func__, algo, bhi_data->ccbin_index);
return bhi_data->ccbin_index;
}
static int bhi_calc_health_index(int algo, int cap_index, int imp_index, int sd_index)
{
int ratio, index;
int w_ci = 0;
int w_ii = 0;
int w_sd = 0;
switch (algo) {
case BHI_ALGO_DISABLED:
return BHI_ALGO_FULL_HEALTH;
case BHI_ALGO_CYCLE_COUNT:
/* TODO: skip all, just look at cycle count */
return BHI_ALGO_FULL_HEALTH;
case BHI_ALGO_ACHI:
case BHI_ALGO_ACHI_B:
w_ci = 100;
w_ii = 0;
w_sd = 0;
break;
case BHI_ALGO_ACHI_RAVG:
case BHI_ALGO_ACHI_RAVG_B:
w_ci = 95;
w_ii = 5;
w_sd = 0;
break;
case BHI_ALGO_MIX_N_MATCH:
/* TODO: use the weights in health_data */
w_ci = 90;
w_ii = 10;
w_sd = 5;
break;
default:
return -EINVAL;
}
if (cap_index < 0)
w_ci = 0;
if (imp_index < 0)
w_ii = 0;
if (sd_index < 0)
w_sd = 0;
/* TODO: check single cell disconnect */
ratio = w_ci + w_ii + w_sd;
if (ratio > 100)
return -ERANGE;
if (!ratio)
return 100;
index = (cap_index * w_ci + imp_index * w_ii + sd_index * w_sd) / ratio;
pr_debug("%s: algo=%d index=%d cap_index=%d/%d imp_index=%d/%d sd_index=%d/%d\n",
__func__, algo, index, cap_index, w_ci, imp_index, w_ii, sd_index, w_sd);
return index;
}
static enum bhi_status bhi_calc_health_status(int algo, int health_index,
const struct health_data *data)
{
enum bhi_status health_status;
if (algo == BHI_ALGO_DISABLED)
return BH_UNKNOWN;
if (health_index < 0)
health_status = BH_UNKNOWN;
else if (health_index <= data->need_rep_threshold)
health_status = BH_NEEDS_REPLACEMENT;
else if (health_index <= data->marginal_threshold)
health_status = BH_MARGINAL;
else
health_status = BH_NOMINAL;
return health_status;
}
static int batt_bhi_data_save(struct batt_drv *batt_drv)
{
/* TODO: load save health status, index, cap index, imp index */
/* TODO: save current impedance if not using RAVG */
return 0;
}
static int batt_bhi_data_load(struct batt_drv *batt_drv)
{
/* TODO: load last health status, index, cap index, imp index */
/* TODO: prime current impedance if not using RAVG */
return 0;
}
/* call holding mutex_lock(&batt_drv->chg_lock) */
static int batt_bhi_stats_update(struct batt_drv *batt_drv)
{
struct health_data *health_data = &batt_drv->health_data;
struct power_supply *fg_psy = batt_drv->fg_psy;
const int bhi_algo = health_data->bhi_algo;
enum bhi_status status;
bool changed = false;
int age, index;
/* age (and cycle count* might be used in the calc */
age = GPSY_GET_PROP(fg_psy, GBMS_PROP_BATTERY_AGE);
if (age < 0)
return -EIO;
health_data->bhi_data.battery_age = age;
/* cycle count is cached */
health_data->bhi_data.cycle_count = batt_drv->cycle_count;
index = bhi_calc_cap_index(bhi_algo, &health_data->bhi_data);
if (index < 0)
index = BHI_ALGO_FULL_HEALTH;
changed |= health_data->bhi_cap_index != index;
health_data->bhi_cap_index = index;
index = bhi_calc_imp_index(bhi_algo, &health_data->bhi_data);
if (index < 0)
index = BHI_ALGO_FULL_HEALTH;
changed |= health_data->bhi_imp_index != index;
health_data->bhi_imp_index = index;
index = bhi_calc_sd_index(bhi_algo, &health_data->bhi_data);
if (index < 0)
index = BHI_ALGO_FULL_HEALTH;
changed |= health_data->bhi_sd_index != index;
health_data->bhi_sd_index = index;
index = bhi_calc_health_index(bhi_algo,
health_data->bhi_cap_index,
health_data->bhi_imp_index,
health_data->bhi_sd_index);
if (index < 0)
index = BHI_ALGO_FULL_HEALTH;
changed |= health_data->bhi_index != index;
health_data->bhi_index = index;
status = bhi_calc_health_status(bhi_algo, index, health_data);
changed |= health_data->bhi_status != status;
health_data->bhi_status = status;
pr_debug("%s: algo=%d status=%d bhi=%d cap_index=%d, imp_index=%d sd_index=%d (%d)\n", __func__,
bhi_algo, health_data->bhi_status, health_data->bhi_index,
health_data->bhi_cap_index, health_data->bhi_imp_index,
health_data->bhi_sd_index, changed);
if (changed) {
int ret;
/* TODO: send a power supply event? */
ret = batt_bhi_data_save(batt_drv);
if (ret < 0)
pr_err("BHI: cannot save data (%d)\n", ret);
}
return changed;
}
/*
* calculate the ratio of the time spent at under the soc_limit vs the time
* spent over the soc_limit in percent.
* call holding mutex_lock(&batt_drv->chg_lock);
*/
static int bhi_cycle_count_residency(struct gbatt_ccbin_data *ccd , int soc_limit)
{
int i, under = 0, over = 0;
for (i = 0; i < GBMS_CCBIN_BUCKET_COUNT; i++) {
if (ccd->count[i] == 0xFFFF)
continue;
if (i < soc_limit)
under += ccd->count[i];
else
over += ccd->count[i];
}
pr_debug("%s: under=%d, over=%d limit=%d\n", __func__, under, over, soc_limit);
return (under * BHI_ALGO_FULL_HEALTH) / (under + over);
}
/* call holding mutex_lock(&batt_drv->chg_lock) */
static int batt_bhi_stats_update_all(struct batt_drv *batt_drv)
{
struct health_data *health_data = &batt_drv->health_data;
int ret;
/* swell probability: cc residecy needs ccd->lock */
batt_drv->health_data.bhi_data.ccbin_index =
bhi_cycle_count_residency(&batt_drv->cc_data, BHI_CCBIN_INDEX_LIMIT);
/* swell cumulative needs a new lock */
batt_drv->health_data.bhi_data.swell_cumulative =
bhi_calc_sd_total(&batt_drv->sd);
pr_debug("BHI: limit=%d%% ccbin_index=%d swell_total=%d\n",
BHI_CCBIN_INDEX_LIMIT,
batt_drv->health_data.bhi_data.ccbin_index,
batt_drv->health_data.bhi_data.swell_cumulative);
/* impedance should be pretty recent */
ret = bhi_imp_data_update(&health_data->bhi_data, batt_drv->fg_psy);
if (ret < 0)
pr_err("bhi imp data not available (%d)\n", ret);
/* bhi_capacity_index on disconnect */
ret = bhi_cap_data_update(&batt_drv->health_data.bhi_data, batt_drv);
if (ret < 0)
pr_err("bhi cap data not available (%d)\n", ret);
batt_bhi_stats_update(batt_drv);
return 0;
}
/* ------------------------------------------------------------------------ */
/* TODO: factor msc_logic_irdop from the logic about tier switch */
static int msc_logic(struct batt_drv *batt_drv)
{
bool sw_jeita;
int msc_state = MSC_NONE;
struct power_supply *fg_psy = batt_drv->fg_psy;
struct gbms_chg_profile *profile = &batt_drv->chg_profile;
int vbatt_idx = batt_drv->vbatt_idx, fv_uv = batt_drv->fv_uv, temp_idx;
int temp, ibatt, vbatt, ioerr;
int update_interval = MSC_DEFAULT_UPDATE_INTERVAL;
const ktime_t now = get_boot_sec();
ktime_t elap = now - batt_drv->ce_data.last_update;
bool changed;
temp = GPSY_GET_INT_PROP(fg_psy, POWER_SUPPLY_PROP_TEMP, &ioerr);
if (ioerr < 0)
return -EIO;
/*
* driver state is (was) reset when we hit the SW jeita limit.
* NOTE: resetting driver state will release the wake assertion
*/
sw_jeita = msc_logic_soft_jeita(batt_drv, temp);
if (sw_jeita) {
/* reset batt_drv->jeita_stop_charging to -1 */
if (batt_drv->jeita_stop_charging == 0)
batt_reset_chg_drv_state(batt_drv);
return 0;
} else if (batt_drv->jeita_stop_charging) {
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_JEITA temp=%d ok, enabling charging\n",
temp);
batt_drv->jeita_stop_charging = 0;
}
ibatt = GPSY_GET_INT_PROP(fg_psy, POWER_SUPPLY_PROP_CURRENT_NOW,
&ioerr);
if (ioerr < 0)
return -EIO;
vbatt = GPSY_GET_PROP(fg_psy, POWER_SUPPLY_PROP_VOLTAGE_NOW);
if (vbatt < 0)
return -EIO;
/*
* Multi Step Charging with IRDROP compensation when vchrg is != 0
* vbatt_idx = batt_drv->vbatt_idx, fv_uv = batt_drv->fv_uv
*/
temp_idx = gbms_msc_temp_idx(profile, temp);
if (temp_idx != batt_drv->temp_idx || batt_drv->fv_uv == -1 ||
batt_drv->vbatt_idx == -1) {
msc_state = MSC_SEED;
/* seed voltage and charging table only on connect, book 0 time */
if (batt_drv->vbatt_idx == -1)
vbatt_idx = gbms_msc_voltage_idx(profile, vbatt);
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_SEED temp=%d vb=%d temp_idx:%d->%d, vbatt_idx:%d->%d\n",
temp, vbatt, batt_drv->temp_idx, temp_idx,
batt_drv->vbatt_idx, vbatt_idx);
/* Debounce tier switch only when not already switching */
if (batt_drv->checked_tier_switch_cnt == 0)
batt_drv->checked_cv_cnt = profile->cv_debounce_cnt;
} else if (ibatt > 0) {
const int vtier = profile->volt_limits[vbatt_idx];
const bool log_level = batt_drv->msc_state != MSC_DSG ||
batt_drv->cc_max != 0;
/*
* Track battery voltage if discharging is due to system load,
* low ILIM or lack of headroom; stop charging work and reset
* batt_drv state() when discharging is due to disconnect.
* NOTE: POWER_SUPPLY_PROP_STATUS return *_DISCHARGING only on
* disconnect.
* NOTE: same vbat_idx will not change fv_uv
*/
msc_state = MSC_DSG;
vbatt_idx = gbms_msc_voltage_idx(profile, vbatt);
batt_prlog(batt_prlog_level(log_level),
"MSC_DSG vbatt_idx:%d->%d vt=%d fv_uv=%d vb=%d ib=%d cv_cnt=%d ov_cnt=%d\n",
batt_drv->vbatt_idx, vbatt_idx, vtier, fv_uv, vbatt, ibatt,
batt_drv->checked_cv_cnt, batt_drv->checked_ov_cnt);
} else if (batt_drv->vbatt_idx == profile->volt_nb_limits - 1) {
const int chg_type = batt_drv->chg_state.f.chg_type;
const int vtier = profile->volt_limits[vbatt_idx];
int log_level;
/*
* will not adjust charger voltage only in the configured
* last tier.
* NOTE: might not be the "real" last tier since can I have
* tiers with max charge current == 0.
* NOTE: should I use a voltage limit instead?
*/
if (chg_type == POWER_SUPPLY_CHARGE_TYPE_FAST) {
msc_state = MSC_FAST;
} else if (chg_type != POWER_SUPPLY_CHARGE_TYPE_TAPER) {
msc_state = MSC_TYPE;
} else {
msc_state = MSC_LAST;
}
log_level = batt_prlog_level(batt_drv->msc_state != msc_state);
if (log_level != BATT_PRLOG_ALWAYS && msc_state == MSC_LAST) {
if (batt_drv->last_log_cnt > 0)
batt_drv->last_log_cnt--;
if (batt_drv->last_log_cnt == 0) {
batt_drv->last_log_cnt = BATT_PRLOG_LAST_LOG_COUNT;
log_level = batt_prlog_level(true);
}
}
batt_prlog(log_level, "MSC_LAST vt=%d fv_uv=%d vb=%d ib=%d\n",
vtier, fv_uv, vbatt, ibatt);
} else {
const int tier_idx = batt_drv->vbatt_idx;
const int vtier = profile->volt_limits[vbatt_idx];
const int switch_cnt = profile->cv_tier_switch_cnt;
const int cc_next_max = GBMS_CCCM_LIMITS(profile, temp_idx,
vbatt_idx + 1);
/* book elapsed time to previous tier & msc_irdrop_state */
msc_state = msc_logic_irdrop(batt_drv,
vbatt, ibatt, temp_idx,
&vbatt_idx, &fv_uv,
&update_interval);
if (msc_pm_hold(msc_state) == 1 && !batt_drv->hold_taper_ws) {
__pm_stay_awake(batt_drv->taper_ws);
batt_drv->hold_taper_ws = true;
}
mutex_lock(&batt_drv->stats_lock);
batt_chg_stats_tier(&batt_drv->ce_data.tier_stats[tier_idx],
batt_drv->msc_irdrop_state, elap);
batt_drv->msc_irdrop_state = msc_state;
mutex_unlock(&batt_drv->stats_lock);
/*
* Basic multi step charging: switch to next tier when ibatt
* is under next tier cc_max.
*/
if (batt_drv->checked_cv_cnt > 0) {
/* debounce period on tier switch */
batt_drv->checked_cv_cnt -= 1;
batt_prlog(batt_prlog_level(msc_state != MSC_FAST),
"MSC_WAIT s:%d->%d vt=%d fv_uv=%d vb=%d ib=%d cv_cnt=%d ov_cnt=%d t_cnt=%d\n",
msc_state, MSC_WAIT, vtier, fv_uv, vbatt, ibatt,
batt_drv->checked_cv_cnt, batt_drv->checked_ov_cnt,
batt_drv->checked_tier_switch_cnt);
if (-ibatt > cc_next_max)
batt_drv->checked_tier_switch_cnt = 0;
msc_state = MSC_WAIT;
} else if (-ibatt > cc_next_max) {
/* current over next tier, reset tier switch count */
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_RSTC s:%d->%d vt=%d fv_uv=%d vb=%d ib=%d cc_next_max=%d t_cnt=%d->0\n",
msc_state, MSC_RSTC, vtier, fv_uv, vbatt, ibatt, cc_next_max,
batt_drv->checked_tier_switch_cnt);
batt_drv->checked_tier_switch_cnt = 0;
msc_state = MSC_RSTC;
} else if (batt_drv->checked_tier_switch_cnt >= switch_cnt) {
/* next tier, fv_uv detemined at MSC_SET */
vbatt_idx = batt_drv->vbatt_idx + 1;
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_NEXT s:%d->%d tier vb=%d ib=%d vbatt_idx=%d->%d\n",
msc_state, MSC_NEXT, vbatt, ibatt,
batt_drv->vbatt_idx, vbatt_idx);
msc_state = MSC_NEXT;
} else {
/* current under next tier, +1 on tier switch count */
batt_drv->checked_tier_switch_cnt++;
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_NYET s:%d->%d vt=%d vb=%d ib=%d cc_next_max=%d t_cnt=%d\n",
msc_state, MSC_NYET, vtier, vbatt, ibatt, cc_next_max,
batt_drv->checked_tier_switch_cnt);
msc_state = MSC_NYET;
}
}
if (msc_pm_hold(msc_state) == 0 && batt_drv->hold_taper_ws) {
batt_drv->hold_taper_ws = false;
__pm_relax(batt_drv->taper_ws);
}
/* need a new fv_uv only on a new voltage tier. */
if (vbatt_idx != batt_drv->vbatt_idx) {
fv_uv = profile->volt_limits[vbatt_idx];
batt_drv->checked_tier_switch_cnt = 0;
batt_drv->checked_ov_cnt = 0;
}
/*
* book elapsed time to previous tier & msc_state
* NOTE: temp_idx != -1 but batt_drv->msc_state could be -1
*/
mutex_lock(&batt_drv->stats_lock);
if (vbatt_idx != -1 && vbatt_idx < profile->volt_nb_limits) {
int tier_idx = batt_chg_vbat2tier(batt_drv->vbatt_idx);
/* this is the seed after the connect */
if (tier_idx == -1) {
tier_idx = batt_chg_vbat2tier(vbatt_idx);
elap = 0;
}
batt_chg_stats_update(batt_drv, temp_idx, tier_idx,
ibatt / 1000, temp,
elap);
}
batt_drv->msc_state = msc_state;
batt_drv->ce_data.last_update = now;
mutex_unlock(&batt_drv->stats_lock);
changed = batt_drv->temp_idx != temp_idx ||
batt_drv->vbatt_idx != vbatt_idx ||
batt_drv->fv_uv != fv_uv;
batt_prlog(batt_prlog_level(changed),
"MSC_LOGIC temp_idx:%d->%d, vbatt_idx:%d->%d, fv=%d->%d, ui=%d->%d cv_cnt=%d ov_cnt=%d\n",
batt_drv->temp_idx, temp_idx, batt_drv->vbatt_idx, vbatt_idx,
batt_drv->fv_uv, fv_uv, batt_drv->cc_max, update_interval,
batt_drv->checked_cv_cnt, batt_drv->checked_ov_cnt);
/* next update */
batt_drv->msc_update_interval = update_interval;
batt_drv->vbatt_idx = vbatt_idx;
batt_drv->temp_idx = temp_idx;
batt_drv->cc_max = GBMS_CCCM_LIMITS(profile, temp_idx, vbatt_idx);
batt_drv->topoff = profile->topoff_limits[temp_idx];
batt_drv->fv_uv = fv_uv;
return 0;
}
/* no ssoc_delta when in overheat */
static int ssoc_get_delta(struct batt_drv *batt_drv)
{
const bool overheat = batt_drv->batt_health ==
POWER_SUPPLY_HEALTH_OVERHEAT;
return overheat ? 0 : qnum_fromint(batt_drv->ssoc_state.ssoc_delta);
}
/* TODO: handle the whole state buck_enable state */
static void ssoc_change_state(struct batt_ssoc_state *ssoc_state, bool ben)
{
const ktime_t now = get_boot_sec();
if (!ben) {
ssoc_state->disconnect_time = now;
} else if (ssoc_state->disconnect_time) {
const u32 trickle_reset = ssoc_state->bd_trickle_reset_sec;
const long long elap = now - ssoc_state->disconnect_time;
if (trickle_reset && elap > trickle_reset)
ssoc_state->bd_trickle_cnt = 0;
pr_debug("MSC_BD: bd_trickle_cnt=%d dsc_time=%lld elap=%lld\n",
ssoc_state->bd_trickle_cnt,
ssoc_state->disconnect_time,
elap);
ssoc_state->disconnect_time = 0;
}
ssoc_state->buck_enabled = ben;
}
static void bd_trickle_reset(struct batt_ssoc_state *ssoc_state,
struct gbms_charging_event *ce_data)
{
ssoc_state->bd_trickle_cnt = 0;
ssoc_state->disconnect_time = 0;
/* Set to false in cev_stats_init */
ce_data->bd_clear_trickle = true;
}
static void batt_prlog_din(union gbms_charger_state *chg_state, int log_level)
{
batt_prlog(log_level,
"MSC_DIN chg_state=%lx f=0x%x chg_s=%s chg_t=%s vchg=%d icl=%d\n",
(unsigned long)chg_state->v,
chg_state->f.flags,
gbms_chg_status_s(chg_state->f.chg_status),
gbms_chg_type_s(chg_state->f.chg_type),
chg_state->f.vchrg,
chg_state->f.icl);
}
static void google_battery_dump_profile(const struct gbms_chg_profile *profile)
{
char *buff;
buff = kzalloc(GBMS_CHG_ALG_BUF, GFP_KERNEL);
if (buff) {
gbms_dump_chg_profile(buff, GBMS_CHG_ALG_BUF, profile);
pr_info("%s", buff);
kfree(buff);
}
}
/* cell fault: disconnect of one of the battery cells */
static bool batt_cell_fault_detect(struct batt_bpst *bpst_state)
{
int bpst_sbd_status;
/*
* fake bpst_sbd_status by "echo 1 > /d/bpst/bpst_sbd_status"
* TODO: will implement the code from the algo in b/203019566
*/
bpst_sbd_status = bpst_state->bpst_sbd_status;
bpst_state->bpst_sbd_status = 0;
return !!bpst_sbd_status && !bpst_state->bpst_detect_disable;
}
static int batt_bpst_detect_begin(struct batt_bpst *bpst_state)
{
const int bpst_count_threshold = bpst_state->bpst_count_threshold;
u8 data;
int ret;
if (bpst_state->bpst_detect_disable)
return 0;
ret = gbms_storage_read(GBMS_TAG_BPST, &data, sizeof(data));
if (ret < 0)
return -EINVAL;
if (data == 0xff) {
data = 0;
ret = gbms_storage_write(GBMS_TAG_BPST, &data, sizeof(data));
if (ret < 0)
return -EINVAL;
}
bpst_state->bpst_count = data;
if (bpst_count_threshold > 0) {
bpst_state->bpst_cell_fault = (data >= (u8)bpst_count_threshold);
pr_debug("%s: MSC_BPST: single battery disconnect %d\n",
__func__, bpst_state->bpst_cell_fault);
}
pr_debug("%s: MSC_BPST: %d in connected\n", __func__, data);
return 0;
}
static int batt_bpst_detect_update(struct batt_drv *batt_drv)
{
struct batt_bpst *bpst_state = &batt_drv->bpst_state;
const u8 data = bpst_state->bpst_count + 1;
int ret;
if (data < 0xff) {
ret = gbms_storage_write(GBMS_TAG_BPST, &data, sizeof(data));
if (ret < 0)
return -EINVAL;
}
pr_debug("%s: MSC_BPST: %d in disconnected\n", __func__, data);
return 0;
}
static int batt_bpst_reset(struct batt_bpst *bpst_state)
{
if (bpst_state->bpst_enable) {
u8 data = 0;
return gbms_storage_write(GBMS_TAG_BPST, &data, sizeof(data));
}
return 0;
}
#define BATT_BPST_DEFAULT_CHG_RATE 100
static int batt_init_bpst_profile(struct batt_drv *batt_drv)
{
struct batt_bpst *bpst_state = &batt_drv->bpst_state;
struct device_node *node = batt_drv->device->of_node;
int ret;
/* set cell_fault initial status */
bpst_state->bpst_cell_fault = false;
bpst_state->bpst_enable = of_property_read_bool(node, "google,bpst-enable");
if (!bpst_state->bpst_enable)
return -EINVAL;
ret = of_property_read_u32(node, "google,bpst-chg-rate", &bpst_state->bpst_chg_rate);
if (ret < 0)
bpst_state->bpst_chg_rate = BATT_BPST_DEFAULT_CHG_RATE;
return 0;
}
/* call holding mutex_lock(&batt_drv->chg_lock); */
static int batt_chg_logic(struct batt_drv *batt_drv)
{
int rc, err = 0;
bool jeita_stop;
bool changed = false;
const bool disable_votes = batt_drv->disable_votes;
const int ssoc = ssoc_get_capacity(&batt_drv->ssoc_state);
union gbms_charger_state *chg_state = &batt_drv->chg_state;
int log_vote_level = BATT_PRLOG_DEBUG;
if (!batt_drv->chg_profile.cccm_limits)
return -EINVAL;
__pm_stay_awake(batt_drv->msc_ws);
batt_prlog_din(chg_state, BATT_PRLOG_ALWAYS);
/* disconnect! */
if (chg_state_is_disconnected(chg_state)) {
const qnum_t ssoc_delta = ssoc_get_delta(batt_drv);
if (batt_drv->ssoc_state.buck_enabled == 0)
goto msc_logic_exit;
/* here on: disconnect */
batt_log_csi_info(batt_drv);
batt_chg_stats_pub(batt_drv, "disconnect", false, false);
/* change curve before changing the state. */
ssoc_change_curve(&batt_drv->ssoc_state, ssoc_delta,
SSOC_UIC_TYPE_DSG);
batt_drv->chg_health.rest_deadline = 0;
batt_reset_chg_drv_state(batt_drv);
batt_update_cycle_count(batt_drv);
batt_rl_reset(batt_drv);
/* trigger google_capacity learning. */
err = GPSY_SET_PROP(batt_drv->fg_psy,
GBMS_PROP_BATT_CE_CTRL,
false);
if (err < 0)
pr_err("Cannot set the BATT_CE_CTRL.\n");
/* TODO: move earlier and include the change to the curve */
ssoc_change_state(&batt_drv->ssoc_state, 0);
changed = true;
/* update bpst */
mutex_lock(&batt_drv->bpst_state.lock);
if (batt_drv->bpst_state.bpst_enable) {
bool cell_fault_detect = batt_cell_fault_detect(&batt_drv->bpst_state);
if (cell_fault_detect) {
rc = batt_bpst_detect_update(batt_drv);
pr_info("MSC_BPST: cell_fault_detect in disconnected(%d)\n", rc);
}
}
mutex_unlock(&batt_drv->bpst_state.lock);
/* google_resistance: update and stop accumulation. */
batt_res_work(batt_drv);
batt_res_state_set(&batt_drv->health_data.bhi_data.res_state, false);
batt_bhi_stats_update_all(batt_drv);
goto msc_logic_done;
}
/*
* here when connected to power supply
* The following block one only on start.
*/
if (batt_drv->ssoc_state.buck_enabled <= 0) {
struct bhi_data *bhi_data = &batt_drv->health_data.bhi_data;
struct device_node *node = batt_drv->device->of_node;
const qnum_t ssoc_delta = ssoc_get_delta(batt_drv);
u32 capacity;
/*
* FIX: BatteryDefenderUI needs use a different curve because
* bd->bd_voltage_trigger needs now to be 100%. In alternative
* we use the regular charge curve and show that charging stop
* BEFORE reaching 100%. This is similar to what we do if BD
* trigger over bd->bd_voltage_trigger BUT under SSOC=100%
*/
ssoc_change_curve(&batt_drv->ssoc_state, ssoc_delta,
SSOC_UIC_TYPE_CHG);
/* google_resistance is calculated while charging */
if (bhi_data->res_state.estimate_filter)
batt_res_state_set(&bhi_data->res_state, true);
capacity = aacr_get_capacity(batt_drv);
if (capacity != batt_drv->chg_profile.capacity_ma) {
gbms_init_chg_table(&batt_drv->chg_profile, node, capacity);
google_battery_dump_profile(&batt_drv->chg_profile);
}
batt_chg_stats_start(batt_drv);
err = GPSY_SET_PROP(batt_drv->fg_psy, GBMS_PROP_BATT_CE_CTRL, true);
if (err < 0)
pr_err("Cannot set the BATT_CE_CTRL (%d)\n", err);
/* released in battery_work() */
__pm_stay_awake(batt_drv->poll_ws);
batt_drv->batt_fast_update_cnt = BATT_WORK_FAST_RETRY_CNT;
mod_delayed_work(system_wq, &batt_drv->batt_work,
msecs_to_jiffies(BATT_WORK_FAST_RETRY_MS));
/* TODO: move earlier and include the change to the curve */
ssoc_change_state(&batt_drv->ssoc_state, 1);
changed = true;
/* start bpst detect */
mutex_lock(&batt_drv->bpst_state.lock);
if (batt_drv->bpst_state.bpst_enable) {
rc = batt_bpst_detect_begin(&batt_drv->bpst_state);
if (rc < 0)
pr_err("MSC_BPST: Cannot start bpst detect\n");
}
mutex_unlock(&batt_drv->bpst_state.lock);
}
/*
* enter RL in DISCHARGE on charger DONE and enter RL in RECHARGE on
* battery FULL (i.e. SSOC==100%). charger DONE forces the discharge
* curve while RECHARGE will not modify the current curve.
*/
if ((batt_drv->chg_state.f.flags & GBMS_CS_FLAG_DONE) != 0) {
changed = batt_rl_enter(&batt_drv->ssoc_state,
BATT_RL_STATUS_DISCHARGE);
batt_drv->chg_done = true;
} else if (batt_drv->batt_full) {
changed = batt_rl_enter(&batt_drv->ssoc_state,
BATT_RL_STATUS_RECHARGE);
}
err = msc_logic(batt_drv);
if (err < 0) {
/* NOTE: google charger will poll again. */
batt_drv->msc_update_interval = -1;
batt_prlog(BATT_PRLOG_ALWAYS,
"MSC_DOUT ERROR=%d fv_uv=%d cc_max=%d update_interval=%d\n",
err, batt_drv->fv_uv, batt_drv->cc_max,
batt_drv->msc_update_interval);
goto msc_logic_exit;
}
/*
* TODO: might need to behave in a different way when health based
* charging is active
*/
changed |= msc_logic_health(batt_drv);
if (CHG_HEALTH_REST_IS_AON(&batt_drv->chg_health, ssoc)) {
batt_drv->msc_state = MSC_HEALTH_ALWAYS_ON;
batt_drv->fv_uv = 0;
} else if (CHG_HEALTH_REST_IS_ACTIVE(&batt_drv->chg_health)) {
batt_drv->msc_state = MSC_HEALTH;
/* make sure using rest_fv_uv when HEALTH_ACTIVE */
batt_drv->fv_uv = 0;
} else if (CHG_HEALTH_REST_IS_PAUSE(&batt_drv->chg_health)) {
batt_drv->msc_state = MSC_HEALTH_PAUSE;
}
msc_logic_done:
/* set ->cc_max = 0 on RL and SW_JEITA, no vote on interval in RL_DSG */
if (batt_drv->ssoc_state.rl_status == BATT_RL_STATUS_DISCHARGE) {
log_vote_level = batt_prlog_level(batt_drv->cc_max != 0);
batt_drv->msc_update_interval = -1;
batt_drv->cc_max = 0;
}
jeita_stop = batt_drv->jeita_stop_charging == 1;
if (jeita_stop) {
log_vote_level = batt_prlog_level(batt_drv->cc_max != 0);
batt_drv->cc_max = 0;
}
/* Fan level can be updated only during power transfer */
if (batt_drv->fan_level_votable) {
int level = fan_calculate_level(batt_drv);
gvotable_cast_int_vote(batt_drv->fan_level_votable,
"MSC_BATT", level, true);
pr_debug("MSC_FAN_LVL: level=%d\n", level);
}
if (changed)
log_vote_level = BATT_PRLOG_ALWAYS;
batt_prlog(log_vote_level,
"%s msc_state=%d cv_cnt=%d ov_cnt=%d rl_sts=%d temp_idx:%d, vbatt_idx:%d fv_uv=%d cc_max=%d update_interval=%d\n",
(disable_votes) ? "MSC_DOUT" : "MSC_VOTE",
batt_drv->msc_state,
batt_drv->checked_cv_cnt, batt_drv->checked_ov_cnt,
batt_drv->ssoc_state.rl_status,
batt_drv->temp_idx, batt_drv->vbatt_idx,
batt_drv->fv_uv, batt_drv->cc_max,
batt_drv->msc_update_interval);
/*
* google_charger has voted(<=0) on msc_interval_votable and the
* votes on fcc and fv_uv will not be applied until google_charger
* votes a non-zero value.
*
* SW_JEITA: ->jeita_stop_charging != 0
* . ->msc_update_interval = -1 , fv_uv = -1 and ->cc_max = 0
* . vote(0) on ->fcc_votable with SW_JEITA_VOTER
* BATT_RL: rl_status == BATT_RL_STATUS_DISCHARGE
* . ->msc_update_interval = -1 , fv_uv = -1 and ->cc_max = 0
* . vote(0) on ->fcc_votable with SW_JEITA_VOTER
*
* Votes for MSC_LOGIC_VOTER will be all disabled.
*/
if (!batt_drv->fv_votable)
batt_drv->fv_votable =
gvotable_election_get_handle(VOTABLE_MSC_FV);
if (batt_drv->fv_votable) {
const int rest_fv_uv = batt_drv->chg_health.rest_fv_uv;
gvotable_cast_int_vote(batt_drv->fv_votable,
MSC_LOGIC_VOTER, batt_drv->fv_uv,
!disable_votes && (batt_drv->fv_uv > 0));
gvotable_cast_int_vote(batt_drv->fv_votable,
MSC_HEALTH_VOTER, rest_fv_uv,
!disable_votes && (rest_fv_uv > 0));
}
if (!batt_drv->fcc_votable)
batt_drv->fcc_votable =
gvotable_election_get_handle(VOTABLE_MSC_FCC);
if (batt_drv->fcc_votable) {
enum batt_rl_status rl_status = batt_drv->ssoc_state.rl_status;
const int rest_cc_max = batt_drv->chg_health.rest_cc_max;
struct batt_bpst *bpst_state = &batt_drv->bpst_state;
/* while in RL => ->cc_max != -1 && ->fv_uv != -1 */
gvotable_cast_int_vote(batt_drv->fcc_votable, RL_STATE_VOTER, 0,
!disable_votes &&
(rl_status == BATT_RL_STATUS_DISCHARGE));
/* jeita_stop_charging != 0 => ->fv_uv = -1 && cc_max == -1 */
gvotable_cast_int_vote(batt_drv->fcc_votable, SW_JEITA_VOTER, 0,
!disable_votes && jeita_stop);
/* health based charging */
gvotable_cast_int_vote(batt_drv->fcc_votable,
MSC_HEALTH_VOTER, rest_cc_max,
!disable_votes && (rest_cc_max != -1));
gvotable_cast_int_vote(batt_drv->fcc_votable,
MSC_LOGIC_VOTER, batt_drv->cc_max,
!disable_votes &&
(batt_drv->cc_max != -1));
/* bpst detection */
if (bpst_state->bpst_detect_disable || bpst_state->bpst_cell_fault) {
const int chg_rate = batt_drv->bpst_state.bpst_chg_rate;
const int bpst_cc_max = (batt_drv->cc_max == -1) ? batt_drv->cc_max
: ((batt_drv->cc_max * chg_rate) / 100);
gvotable_cast_int_vote(batt_drv->fcc_votable,
BPST_DETECT_VOTER, bpst_cc_max,
!disable_votes &&
(bpst_cc_max != -1));
}
}
if (!batt_drv->msc_interval_votable)
batt_drv->msc_interval_votable =
gvotable_election_get_handle(VOTABLE_MSC_INTERVAL);
if (batt_drv->msc_interval_votable)
gvotable_cast_int_vote(batt_drv->msc_interval_votable,
MSC_LOGIC_VOTER,
batt_drv->msc_update_interval,
!disable_votes &&
(batt_drv->msc_update_interval != -1));
batt_update_csi_info(batt_drv);
msc_logic_exit:
if (changed) {
dump_ssoc_state(&batt_drv->ssoc_state, batt_drv->ssoc_log);
if (batt_drv->psy)
power_supply_changed(batt_drv->psy);
}
__pm_relax(batt_drv->msc_ws);
return err;
}
static struct device_node *batt_id_node(struct batt_drv *batt_drv)
{
struct device_node *config_node = batt_drv->device->of_node;
struct device_node *child_node;
int ret = 0;
u32 batt_id, gbatt_id;
ret = gbms_storage_read(GBMS_TAG_BRID, &batt_id, sizeof(batt_id));
if (ret < 0) {
pr_warn("Failed to get batt_id (%d)\n", ret);
return config_node;
}
for_each_child_of_node(config_node, child_node) {
ret = of_property_read_u32(child_node, "google,batt-id",
&gbatt_id);
if (ret != 0)
continue;
if (batt_id == gbatt_id)
return child_node;
}
return config_node;
}
/* charge profile not in battery */
static int batt_init_chg_profile(struct batt_drv *batt_drv)
{
struct gbms_chg_profile *profile = &batt_drv->chg_profile;
struct device_node *node = batt_drv->device->of_node;
int ret = 0;
/* handle retry */
if (!profile->cccm_limits) {
ret = gbms_init_chg_profile(profile, node);
if (ret < 0)
return -EINVAL;
}
/* this is in mAh */
ret = of_property_read_u32(node, "google,chg-battery-capacity",
&batt_drv->battery_capacity);
if (ret < 0)
pr_warn("read chg-battery-capacity from gauge\n");
/*
* use battery FULL design when is not specified in DT. When battery is
* not present use default capacity from DT (if present) or disable
* charging altogether.
*/
if (batt_drv->battery_capacity == 0) {
u32 fc = 0;
struct power_supply *fg_psy = batt_drv->fg_psy;
if (batt_drv->batt_present) {
fc = GPSY_GET_PROP(fg_psy, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN);
if (fc == -EAGAIN)
return -EPROBE_DEFER;
if (fc > 0) {
pr_info("successfully read charging profile:\n");
/* convert uA to mAh*/
batt_drv->battery_capacity = fc / 1000;
}
}
if (batt_drv->battery_capacity == 0) {
struct device_node *node = batt_drv->device->of_node;
ret = of_property_read_u32(node,
"google,chg-battery-default-capacity",
&batt_drv->battery_capacity);
if (ret < 0)
pr_warn("battery not present, no default capacity, zero charge table\n");
else
pr_warn("battery not present, using default capacity\n");
}
}
/* TODO: dump the AACR table if supported */
ret = gbms_read_aacr_limits(profile, batt_id_node(batt_drv));
if (ret == 0)
pr_info("AACR: supported\n");
/* aacr tables enable AACR by default UNLESS explicitly disabled */
ret = of_property_read_bool(node, "google,aacr-disable");
if (!ret && profile->aacr_nb_limits)
batt_drv->aacr_state = BATT_AACR_ENABLED;
/* NOTE: with NG charger tolerance is applied from "charger" */
gbms_init_chg_table(profile, node, aacr_get_capacity(batt_drv));
return 0;
}
/* ------------------------------------------------------------------------- */
/* call holding mutex_unlock(&ccd->lock); */
static int batt_cycle_count_store(struct gbatt_ccbin_data *ccd)
{
int ret;
ret = gbms_storage_write(GBMS_TAG_BCNT, ccd->count, sizeof(ccd->count));
if (ret < 0 && ret != -ENOENT) {
pr_err("failed to set bin_counts ret=%d\n", ret);
return ret;
}
return 0;
}
/* call holding mutex_unlock(&ccd->lock); */
static int batt_cycle_count_load(struct gbatt_ccbin_data *ccd)
{
int ret, i;
ret = gbms_storage_read(GBMS_TAG_BCNT, ccd->count, sizeof(ccd->count));
if (ret < 0 && ret != -ENOENT) {
pr_err("failed to get bin_counts ret=%d\n", ret);
return ret;
}
for (i = 0; i < GBMS_CCBIN_BUCKET_COUNT; i++)
if (ccd->count[i] == 0xFFFF)
ccd->count[i] = 0;
ccd->prev_soc = -1;
return 0;
}
/* update only when SSOC is increasing, not need to check charging */
static void batt_cycle_count_update(struct batt_drv *batt_drv, int soc)
{
struct gbatt_ccbin_data *ccd = &batt_drv->cc_data;
if (soc < 0 || soc > 100)
return;
mutex_lock(&ccd->lock);
if (ccd->prev_soc != -1 && soc > ccd->prev_soc) {
int bucket, cnt;
for (cnt = soc ; cnt > ccd->prev_soc ; cnt--) {
/* cnt decremented by 1 for bucket symmetry */
bucket = (cnt - 1) * GBMS_CCBIN_BUCKET_COUNT / 100;
ccd->count[bucket]++;
}
/* NOTE: could store on FULL or disconnect instead */
(void)batt_cycle_count_store(ccd);
}
ccd->prev_soc = soc;
mutex_unlock(&ccd->lock);
}
/* ------------------------------------------------------------------------- */
#ifdef CONFIG_DEBUG_FS
static ssize_t cycle_counts_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int ret;
mutex_lock(&batt_drv->cc_data.lock);
ret = gbms_cycle_count_sscan(batt_drv->cc_data.count, buf);
if (ret == 0) {
ret = batt_cycle_count_store(&batt_drv->cc_data);
if (ret < 0)
pr_err("cannot store bin count ret=%d\n", ret);
}
if (ret == 0)
ret = count;
mutex_unlock(&batt_drv->cc_data.lock);
return ret;
}
static ssize_t cycle_counts_show(struct device *dev,
struct device_attribute *attr,
char *buff)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int len;
mutex_lock(&batt_drv->cc_data.lock);
len = gbms_cycle_count_cstr(buff, PAGE_SIZE, batt_drv->cc_data.count);
mutex_unlock(&batt_drv->cc_data.lock);
return len;
}
static const DEVICE_ATTR_RW(cycle_counts);
static ssize_t resistance_show(struct device *dev,
struct device_attribute *attr,
char *buff)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int value;
value = GPSY_GET_PROP(batt_drv->fg_psy, GBMS_PROP_RESISTANCE);
return scnprintf(buff, PAGE_SIZE, "%d\n", value);
}
static const DEVICE_ATTR_RO(resistance);
static ssize_t resistance_avg_show(struct device *dev,
struct device_attribute *attr,
char *buff)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
/* resistance_avg is scaled */
return scnprintf(buff, PAGE_SIZE, "%d\n",
batt_ravg_value(&batt_drv->health_data.bhi_data.res_state));
}
static const DEVICE_ATTR_RO(resistance_avg);
static ssize_t charge_full_estimate_show(struct device *dev,
struct device_attribute *attr,
char *buff)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int value;
value = GPSY_GET_PROP(batt_drv->fg_psy, GBMS_PROP_CHARGE_FULL_ESTIMATE);
return scnprintf(buff, PAGE_SIZE, "%d\n", value);
}
static const DEVICE_ATTR_RO(charge_full_estimate);
static int cycle_count_bins_store(void *data, u64 val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
int ret;
mutex_lock(&batt_drv->cc_data.lock);
ret = batt_cycle_count_store(&batt_drv->cc_data);
if (ret < 0)
pr_err("cannot store bin count ret=%d\n", ret);
mutex_unlock(&batt_drv->cc_data.lock);
return ret;
}
static int cycle_count_bins_reload(void *data, u64 *val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
int ret;
mutex_lock(&batt_drv->cc_data.lock);
ret = batt_cycle_count_load(&batt_drv->cc_data);
if (ret < 0)
pr_err("cannot restore bin count ret=%d\n", ret);
mutex_unlock(&batt_drv->cc_data.lock);
*val = ret;
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(cycle_count_bins_sync_fops,
cycle_count_bins_reload,
cycle_count_bins_store, "%llu\n");
static int debug_get_ssoc_gdf(void *data, u64 *val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
*val = batt_drv->ssoc_state.ssoc_gdf;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debug_ssoc_gdf_fops, debug_get_ssoc_gdf, NULL, "%llu\n");
static int debug_get_ssoc_uic(void *data, u64 *val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
*val = batt_drv->ssoc_state.ssoc_uic;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debug_ssoc_uic_fops, debug_get_ssoc_uic, NULL, "%llu\n");
static int debug_get_ssoc_rls(void *data, u64 *val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
mutex_lock(&batt_drv->chg_lock);
*val = batt_drv->ssoc_state.rl_status;
mutex_unlock(&batt_drv->chg_lock);
return 0;
}
static int debug_set_ssoc_rls(void *data, u64 val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
if (val < 0 || val > 2)
return -EINVAL;
mutex_lock(&batt_drv->chg_lock);
batt_drv->ssoc_state.rl_status = val;
if (!batt_drv->fcc_votable)
batt_drv->fcc_votable =
gvotable_election_get_handle(VOTABLE_MSC_FCC);
if (batt_drv->fcc_votable)
gvotable_cast_int_vote(batt_drv->fcc_votable, RL_STATE_VOTER, 0,
batt_drv->ssoc_state.rl_status ==
BATT_RL_STATUS_DISCHARGE);
mutex_unlock(&batt_drv->chg_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debug_ssoc_rls_fops,
debug_get_ssoc_rls, debug_set_ssoc_rls, "%llu\n");
static ssize_t debug_get_ssoc_uicurve(struct file *filp,
char __user *buf,
size_t count, loff_t *ppos)
{
struct batt_drv *batt_drv = (struct batt_drv *)filp->private_data;
char tmp[UICURVE_BUF_SZ] = { 0 };
mutex_lock(&batt_drv->chg_lock);
ssoc_uicurve_cstr(tmp, sizeof(tmp), batt_drv->ssoc_state.ssoc_curve);
mutex_unlock(&batt_drv->chg_lock);
return simple_read_from_buffer(buf, count, ppos, tmp, strlen(tmp));
}
static ssize_t debug_set_ssoc_uicurve(struct file *filp,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct batt_drv *batt_drv = (struct batt_drv *)filp->private_data;
int ret, curve_type;
char buf[8];
ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
if (!ret)
return -EFAULT;
mutex_lock(&batt_drv->chg_lock);
/* FIX: BatteryDefenderUI doesn't really handle this yet */
curve_type = (int)simple_strtoull(buf, NULL, 10);
if (curve_type >= -1 && curve_type <= 1)
ssoc_change_curve(&batt_drv->ssoc_state, 0, curve_type);
else
ret = -EINVAL;
mutex_unlock(&batt_drv->chg_lock);
if (ret == 0)
ret = count;
return 0;
}
BATTERY_DEBUG_ATTRIBUTE(debug_ssoc_uicurve_cstr_fops,
debug_get_ssoc_uicurve,
debug_set_ssoc_uicurve);
static int debug_force_psy_update(void *data, u64 val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
if (!batt_drv->psy)
return -EINVAL;
power_supply_changed(batt_drv->psy);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debug_force_psy_update_fops,
NULL, debug_force_psy_update, "%llu\n");
/* Adaptive Charging */
static int debug_chg_health_rest_rate_read(void *data, u64 *val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
if (!batt_drv->psy)
return -EINVAL;
*val = batt_drv->chg_health.rest_rate;
return 0;
}
/* Adaptive Charging */
static int debug_chg_health_rest_rate_write(void *data, u64 val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
if (!batt_drv->psy)
return -EINVAL;
batt_drv->chg_health.rest_rate = val;
return 0;
}
/* Adaptive Charging */
DEFINE_SIMPLE_ATTRIBUTE(debug_chg_health_rest_rate_fops,
debug_chg_health_rest_rate_read,
debug_chg_health_rest_rate_write, "%llu\n");
/* Adaptive Charging */
static int debug_chg_health_thr_soc_read(void *data, u64 *val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
if (!batt_drv->psy)
return -EINVAL;
*val = batt_drv->chg_health.rest_soc;
return 0;
}
/* Adaptive Charging */
static int debug_chg_health_thr_soc_write(void *data, u64 val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
if (!batt_drv->psy)
return -EINVAL;
batt_drv->chg_health.rest_soc = val;
return 0;
}
/* Adaptive Charging */
DEFINE_SIMPLE_ATTRIBUTE(debug_chg_health_thr_soc_fops,
debug_chg_health_thr_soc_read,
debug_chg_health_thr_soc_write, "%llu\n");
/* Adaptive Charging */
static int debug_chg_health_set_stage(void *data, u64 val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
if (!batt_drv->psy)
return -EINVAL;
switch (val) {
case CHG_HEALTH_DISABLED:
case CHG_HEALTH_INACTIVE:
case CHG_HEALTH_ENABLED:
case CHG_HEALTH_ACTIVE:
case CHG_HEALTH_DONE:
break;
default:
return -EINVAL;
}
batt_drv->chg_health.rest_state = val;
return 0;
}
/* Adaptive Charging */
DEFINE_SIMPLE_ATTRIBUTE(debug_chg_health_stage_fops, NULL,
debug_chg_health_set_stage, "%llu\n");
/* debug variable */
static int raw_profile_cycles;
static ssize_t debug_get_chg_raw_profile(struct file *filp,
char __user *buf,
size_t count, loff_t *ppos)
{
struct batt_drv *batt_drv = (struct batt_drv *)filp->private_data;
char *tmp;
int len;
tmp = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
if (raw_profile_cycles) {
struct gbms_chg_profile profile;
int count;
len = gbms_init_chg_profile(&profile, batt_drv->device->of_node);
if (len < 0)
goto exit_done;
/* len is the capacity */
len = aacr_get_capacity_at_cycle(batt_drv, raw_profile_cycles);
if (len <= 0) {
gbms_free_chg_profile(&profile);
goto exit_done;
}
count = scnprintf(tmp, PAGE_SIZE, "AACR Profile at %d cycles\n",
raw_profile_cycles);
gbms_init_chg_table(&profile, batt_drv->device->of_node, len);
gbms_dump_chg_profile(&tmp[count], PAGE_SIZE - count, &profile);
gbms_free_chg_profile(&profile);
} else {
gbms_dump_chg_profile(tmp, PAGE_SIZE, &batt_drv->chg_profile);
}
len = simple_read_from_buffer(buf, count, ppos, tmp, strlen(tmp));
exit_done:
kfree(tmp);
return len;
}
static ssize_t debug_set_chg_raw_profile(struct file *filp,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
int ret = 0, val;
char buf[8];
ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
if (!ret)
return -EFAULT;
buf[ret] = '\0';
ret = kstrtoint(buf, 0, &val);
if (ret < 0)
return ret;
raw_profile_cycles = val;
return count;
}
BATTERY_DEBUG_ATTRIBUTE(debug_chg_raw_profile_fops,
debug_get_chg_raw_profile,
debug_set_chg_raw_profile);
static ssize_t debug_get_power_metrics(struct file *filp, char __user *buf,
size_t count, loff_t *ppos)
{
struct batt_drv *batt_drv = (struct batt_drv *)filp->private_data;
char *tmp;
int idx, len = 0;
tmp = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
for(idx = 0; idx < POWER_METRICS_MAX_DATA; idx++) {
len += scnprintf(&tmp[len], PAGE_SIZE - len, "%2d: %8ld/%8ld - %5lld\n", idx,
batt_drv->power_metrics.data[idx].voltage,
batt_drv->power_metrics.data[idx].charge_count,
batt_drv->power_metrics.data[idx].time);
}
len = simple_read_from_buffer(buf, count, ppos, tmp, strlen(tmp));
kfree(tmp);
return len;
}
BATTERY_DEBUG_ATTRIBUTE(debug_power_metrics_fops, debug_get_power_metrics, NULL);
static int debug_bpst_sbd_status_read(void *data, u64 *val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
*val = batt_drv->bpst_state.bpst_sbd_status;
return 0;
}
static int debug_bpst_sbd_status_write(void *data, u64 val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
if (val < 0 || val > 1)
return -EINVAL;
mutex_lock(&batt_drv->bpst_state.lock);
batt_drv->bpst_state.bpst_sbd_status = val;
mutex_unlock(&batt_drv->bpst_state.lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debug_bpst_sbd_status_fops,
debug_bpst_sbd_status_read,
debug_bpst_sbd_status_write, "%llu\n");
static int debug_ravg_fops_write(void *data, u64 val)
{
struct batt_drv *batt_drv = (struct batt_drv *)data;
struct batt_res *res_state = &batt_drv->health_data.bhi_data.res_state;
int resistance_avg = val / 100, filter_count = 1;
int ret;
mutex_lock(&batt_drv->chg_lock);
batt_res_state_set(res_state, false);
res_state->resistance_avg = resistance_avg;
res_state->filter_count = filter_count;
/* reset storage to defaults */
if (val == 0) {
resistance_avg = 0xffff;
filter_count = 0xffff;
}
ret = batt_ravg_write(resistance_avg, filter_count);
pr_info("RAVG: update val=%d, resistance_avg=%x filter_count=%x (%d)\n",
(int)val, resistance_avg, filter_count, ret);
mutex_unlock(&batt_drv->chg_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debug_ravg_fops, NULL, debug_ravg_fops_write, "%llu\n");
#endif
/* ------------------------------------------------------------------------- */
static ssize_t debug_get_fake_temp(struct file *filp,
char __user *buf,
size_t count, loff_t *ppos)
{
struct batt_drv *batt_drv = (struct batt_drv *)filp->private_data;
char tmp[8];
mutex_lock(&batt_drv->chg_lock);
scnprintf(tmp, sizeof(tmp), "%d\n", batt_drv->fake_temp);
mutex_unlock(&batt_drv->chg_lock);
return simple_read_from_buffer(buf, count, ppos, tmp, strlen(tmp));
}
static ssize_t debug_set_fake_temp(struct file *filp,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct batt_drv *batt_drv = (struct batt_drv *)filp->private_data;
int ret = 0, val;
char buf[8];
ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
if (!ret)
return -EFAULT;
buf[ret] = '\0';
ret = kstrtoint(buf, 0, &val);
if (ret < 0)
return ret;
mutex_lock(&batt_drv->chg_lock);
batt_drv->fake_temp = val;
mutex_unlock(&batt_drv->chg_lock);
return count;
}
BATTERY_DEBUG_ATTRIBUTE(debug_fake_temp_fops, debug_get_fake_temp,
debug_set_fake_temp);
static enum batt_paired_state
batt_reset_pairing_state(const struct batt_drv *batt_drv)
{
char dev_info[GBMS_DINF_LEN];
int ret = 0;
memset(dev_info, 0xff, sizeof(dev_info));
ret = gbms_storage_write(GBMS_TAG_DINF, dev_info, sizeof(dev_info));
if (ret < 0)
return -EIO;
return 0;
}
static ssize_t debug_set_pairing_state(struct file *filp,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct batt_drv *batt_drv = (struct batt_drv *)filp->private_data;
int ret = 0, val;
char buf[8];
ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
if (ret <= 0)
return ret;
buf[ret] = '\0';
ret = kstrtoint(buf, 0, &val);
if (ret < 0)
return ret;
mutex_lock(&batt_drv->chg_lock);
if (val == BATT_PAIRING_ENABLED) {
batt_drv->pairing_state = BATT_PAIRING_ENABLED;
mod_delayed_work(system_wq, &batt_drv->batt_work, 0);
} else if (val == BATT_PAIRING_RESET) {
/* send a paring enable to re-pair OR reboot */
ret = batt_reset_pairing_state(batt_drv);
if (ret == 0)
batt_drv->pairing_state = BATT_PAIRING_DISABLED;
else
count = -EIO;
} else {
count = -EINVAL;
}
mutex_unlock(&batt_drv->chg_lock);
return count;
}
BATTERY_DEBUG_ATTRIBUTE(debug_pairing_fops, 0, debug_set_pairing_state);
/* TODO: add write to stop/start collection, erase history etc. */
static ssize_t debug_get_blf_state(struct file *filp, char __user *buf,
size_t count, loff_t *ppos)
{
struct batt_drv *batt_drv = (struct batt_drv *)filp->private_data;
char tmp[8];
mutex_lock(&batt_drv->chg_lock);
scnprintf(tmp, sizeof(tmp), "%d\n", batt_drv->blf_state);
mutex_unlock(&batt_drv->chg_lock);
return simple_read_from_buffer(buf, count, ppos, tmp, strlen(tmp));
}
BATTERY_DEBUG_ATTRIBUTE(debug_blf_state_fops, debug_get_blf_state, 0);
/* TODO: add writes to restart pairing (i.e. provide key) */
static ssize_t batt_pairing_state_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int len;
mutex_lock(&batt_drv->chg_lock);
len = scnprintf(buf, PAGE_SIZE, "%d\n", batt_drv->pairing_state);
mutex_unlock(&batt_drv->chg_lock);
return len;
}
static const DEVICE_ATTR(pairing_state, 0444, batt_pairing_state_show, NULL);
static ssize_t batt_ctl_chg_stats_actual(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv =(struct batt_drv *)
power_supply_get_drvdata(psy);
if (count < 1)
return -ENODATA;
switch (buf[0]) {
case 'p': /* publish data to qual */
case 'P': /* force publish data to qual */
batt_chg_stats_pub(batt_drv, "debug cmd", buf[0] == 'P', false);
break;
default:
count = -EINVAL;
break;
}
return count;
}
static ssize_t batt_show_chg_stats_actual(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv =(struct batt_drv *)
power_supply_get_drvdata(psy);
int len;
mutex_lock(&batt_drv->stats_lock);
len = batt_chg_stats_cstr(buf, PAGE_SIZE, &batt_drv->ce_data, false);
mutex_unlock(&batt_drv->stats_lock);
return len;
}
static const DEVICE_ATTR(charge_stats_actual, 0664,
batt_show_chg_stats_actual,
batt_ctl_chg_stats_actual);
static ssize_t batt_ctl_chg_stats(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv =(struct batt_drv *)
power_supply_get_drvdata(psy);
if (count < 1)
return -ENODATA;
mutex_lock(&batt_drv->stats_lock);
switch (buf[0]) {
case 0:
case '0': /* invalidate current qual */
cev_stats_init(&batt_drv->ce_qual, &batt_drv->chg_profile);
break;
}
mutex_unlock(&batt_drv->stats_lock);
return count;
}
/* regular and health stats */
static ssize_t batt_chg_qual_stats_cstr(char *buff, int size,
struct gbms_charging_event *ce_qual,
bool verbose)
{
ssize_t len = 0;
len += batt_chg_stats_cstr(&buff[len], size - len, ce_qual, verbose);
if (ce_qual->ce_health.rest_state != CHG_HEALTH_INACTIVE)
len += batt_health_stats_cstr(&buff[len], size - len,
ce_qual, verbose);
return len;
}
static ssize_t batt_show_chg_stats(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv =(struct batt_drv *)
power_supply_get_drvdata(psy);
struct gbms_charging_event *ce_qual = &batt_drv->ce_qual;
int len = -ENODATA;
mutex_lock(&batt_drv->stats_lock);
if (ce_qual->last_update - ce_qual->first_update)
len = batt_chg_qual_stats_cstr(buf, PAGE_SIZE, ce_qual, false);
mutex_unlock(&batt_drv->stats_lock);
return len;
}
static const DEVICE_ATTR(charge_stats, 0664, batt_show_chg_stats,
batt_ctl_chg_stats);
/* show current/active and qual data */
static ssize_t batt_show_chg_details(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv =(struct batt_drv *)
power_supply_get_drvdata(psy);
struct gbms_charging_event *ce_data = &batt_drv->ce_data;
const bool qual_valid = (batt_drv->ce_qual.last_update -
batt_drv->ce_qual.first_update) != 0;
int len = 0;
mutex_lock(&batt_drv->stats_lock);
/* this is the current one */
len += batt_chg_stats_cstr(&buf[len], PAGE_SIZE - len, ce_data, true);
/*
* stats are accumulated in ce_data->health_stats, rest_* fields
* are set on stats_close()
*/
if (batt_drv->chg_health.rest_state != CHG_HEALTH_INACTIVE) {
const struct gbms_ce_tier_stats *h = &batt_drv->ce_data.health_stats;
const struct gbms_ce_tier_stats *p = &batt_drv->ce_data.health_pause_stats;
const long elap_h = h->time_fast + h->time_taper + h->time_other;
const long elap_p = p->time_fast + p->time_taper + p->time_other;
const ktime_t now = get_boot_sec();
int vti;
vti = batt_chg_health_vti(&batt_drv->chg_health);
len += scnprintf(&buf[len], PAGE_SIZE - len,
"\nH: %d %d %ld %ld %lld %lld %d",
batt_drv->chg_health.rest_state,
vti, elap_h, elap_p, now,
batt_drv->chg_health.rest_deadline,
batt_drv->chg_health.always_on_soc);
/* NOTE: vtier_idx is -1, can also check elap */
if (h->soc_in != -1)
len += batt_chg_tier_stats_cstr(&buf[len],
PAGE_SIZE - len, h, !!elap_h);
if (p->soc_in != -1)
len += batt_chg_tier_stats_cstr(&buf[len],
PAGE_SIZE - len, p, !!elap_p);
}
len += scnprintf(&buf[len], PAGE_SIZE - len, "\n");
/* this was the last one (if present) */
if (qual_valid) {
len += batt_chg_qual_stats_cstr(&buf[len], PAGE_SIZE - len,
&batt_drv->ce_qual, true);
len += scnprintf(&buf[len], PAGE_SIZE - len, "\n");
}
mutex_unlock(&batt_drv->stats_lock);
return len;
}
static const DEVICE_ATTR(charge_details, 0444, batt_show_chg_details,
NULL);
/* tier and soc details */
static ssize_t batt_show_ttf_details(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = (struct batt_drv *)
power_supply_get_drvdata(psy);
struct batt_ttf_stats *ttf_stats;
int len;
if (!batt_drv->ssoc_state.buck_enabled)
return -ENODATA;
ttf_stats = kzalloc(sizeof(*ttf_stats), GFP_KERNEL);
if (!ttf_stats)
return -ENOMEM;
mutex_lock(&batt_drv->stats_lock);
/* update a private copy of ttf stats */
ttf_stats_update(ttf_stats_dup(ttf_stats, &batt_drv->ttf_stats),
&batt_drv->ce_data, false);
mutex_unlock(&batt_drv->stats_lock);
len = ttf_dump_details(buf, PAGE_SIZE, ttf_stats,
batt_drv->ce_data.last_soc);
kfree(ttf_stats);
return len;
}
static const DEVICE_ATTR(ttf_details, 0444, batt_show_ttf_details, NULL);
/* house stats */
static ssize_t batt_show_ttf_stats(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv =(struct batt_drv *)
power_supply_get_drvdata(psy);
const int verbose = true;
int i, len = 0;
mutex_lock(&batt_drv->stats_lock);
for (i = 0; i < GBMS_STATS_TIER_COUNT; i++)
len += ttf_tier_cstr(&buf[len], PAGE_SIZE,
&batt_drv->ttf_stats.tier_stats[i]);
len += scnprintf(&buf[len], PAGE_SIZE - len, "\n");
if (verbose)
len += ttf_soc_cstr(&buf[len], PAGE_SIZE - len,
&batt_drv->ttf_stats.soc_stats,
0, 99);
mutex_unlock(&batt_drv->stats_lock);
return len;
}
/* userspace restore the TTF data with this */
static ssize_t batt_ctl_ttf_stats(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int res;
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv =(struct batt_drv *)
power_supply_get_drvdata(psy);
if (count < 1)
return -ENODATA;
if (!batt_drv->ssoc_state.buck_enabled)
return -ENODATA;
mutex_lock(&batt_drv->stats_lock);
switch (buf[0]) {
case 'u':
case 'U': /* force update */
ttf_stats_update(&batt_drv->ttf_stats, &batt_drv->ce_data,
(buf[0] == 'U'));
break;
default:
/* TODO: userspace restore of the data */
res = ttf_stats_sscan(&batt_drv->ttf_stats, buf, count);
if (res < 0)
count = res;
break;
}
mutex_unlock(&batt_drv->stats_lock);
return count;
}
static const DEVICE_ATTR(ttf_stats, 0664, batt_show_ttf_stats,
batt_ctl_ttf_stats);
/* ------------------------------------------------------------------------- */
static ssize_t chg_health_show_stage(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = (struct batt_drv *)
power_supply_get_drvdata(psy);
const char *s = "Inactive";
mutex_lock(&batt_drv->chg_lock);
switch (batt_drv->chg_health.rest_state) {
case CHG_HEALTH_DISABLED:
s = "Disabled";
break;
case CHG_HEALTH_ENABLED:
s = "Enabled";
break;
case CHG_HEALTH_PAUSE:
case CHG_HEALTH_ACTIVE:
s = "Active";
break;
case CHG_HEALTH_DONE:
s = "Done";
break;
default:
break;
}
mutex_unlock(&batt_drv->chg_lock);
return scnprintf(buf, PAGE_SIZE, "%s\n", s);
}
static const DEVICE_ATTR(charge_stage, 0444, chg_health_show_stage, NULL);
static ssize_t chg_health_charge_limit_get(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv =(struct batt_drv *)
power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n",
batt_drv->chg_health.always_on_soc);
}
/* setting disable (deadline = -1) or replug (deadline == 0) will disable */
static ssize_t chg_health_charge_limit_set(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv =(struct batt_drv *)
power_supply_get_drvdata(psy);
const int always_on_soc = simple_strtol(buf, NULL, 10);
enum chg_health_state rest_state;
/* Always enable AC when SOC is over trigger */
if (always_on_soc < -1 || always_on_soc > 99)
return -EINVAL;
mutex_lock(&batt_drv->chg_lock);
/*
* There are interesting overlaps with the AC standard behavior since
* the aon limit can be set at any time (and while AC limit is active)
* TODO: fully document the state machine
*/
rest_state = batt_drv->chg_health.rest_state;
if (always_on_soc != -1) {
switch (rest_state) {
case CHG_HEALTH_DISABLED: /* didn't meet deadline */
case CHG_HEALTH_INACTIVE: /* deadline was not provided */
rest_state = CHG_HEALTH_ENABLED;
break;
default:
/* _DONE, _ENABLED, _ACTIVE, _USER_DISABLED */
break;
}
} else if (batt_drv->chg_health.always_on_soc != -1) {
switch (rest_state) {
case CHG_HEALTH_ENABLED: /* waiting for always_on_soc */
case CHG_HEALTH_ACTIVE: /* activated at always_on_soc */
if (batt_drv->chg_health.rest_deadline > 0)
rest_state = CHG_HEALTH_ENABLED;
else
rest_state = CHG_HEALTH_INACTIVE;
break;
default:
/* _DONE, _DISABLED, _USER_DISABLED */
break;
}
}
batt_drv->chg_health.always_on_soc = always_on_soc;
batt_drv->chg_health.rest_state = rest_state;
mutex_unlock(&batt_drv->chg_lock);
power_supply_changed(batt_drv->psy);
return count;
}
static DEVICE_ATTR(charge_limit, 0660, chg_health_charge_limit_get,
chg_health_charge_limit_set);
static ssize_t batt_show_chg_deadline(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv =(struct batt_drv *)
power_supply_get_drvdata(psy);
const struct batt_chg_health *rest = &batt_drv->chg_health;
const bool aon_enabled = rest->always_on_soc != -1;
const ktime_t now = get_boot_sec();
long long deadline = 0;
ktime_t ttf = 0;
int ret = 0;
mutex_lock(&batt_drv->chg_lock);
/*
* = (rest_deadline <= 0) means state is either Inactive or Disabled
* = (rest_deadline < now) means state is either Done or Disabled
*
* State becomes Disabled from Enabled or Active when/if msc_logic()
* determines that the device cannot reach full before the deadline.
*
* UI checks for:
* (stage == 'Active' || stage == 'Enabled') && deadline > 0
*/
deadline = batt_drv->chg_health.rest_deadline;
/* ACA: show time to full when ACA triggered */
if (aon_enabled && rest->rest_state == CHG_HEALTH_ACTIVE) {
ret = batt_ttf_estimate(&ttf, batt_drv);
if (ret < 0)
pr_debug("unable to get ttf (%d)\n", ret);
else
deadline = now + ttf;
}
if (deadline > 0 && deadline > now)
deadline -= now;
else if (deadline > 0)
deadline = 0;
mutex_unlock(&batt_drv->chg_lock);
/*
* deadline < 0 feature disabled. deadline = 0 expired or disabled for
* this session, deadline > 0 time to deadline otherwise.
*/
return scnprintf(buf, PAGE_SIZE, "%lld\n", (long long)deadline);
}
/* userspace restore the TTF data with this */
static ssize_t batt_set_chg_deadline(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv =(struct batt_drv *)
power_supply_get_drvdata(psy);
long long deadline_s;
bool changed;
/* API works in seconds */
deadline_s = simple_strtoll(buf, NULL, 10);
mutex_lock(&batt_drv->chg_lock);
/* Let deadline < 0 pass to set stats */
if (!batt_drv->ssoc_state.buck_enabled && deadline_s >= 0) {
mutex_unlock(&batt_drv->chg_lock);
return -EINVAL;
}
changed = batt_health_set_chg_deadline(&batt_drv->chg_health,
deadline_s);
mutex_unlock(&batt_drv->chg_lock);
if (changed)
power_supply_changed(batt_drv->psy);
pr_info("MSC_HEALTH deadline_s=%lld deadline at %lld\n",
deadline_s, batt_drv->chg_health.rest_deadline);
logbuffer_log(batt_drv->ttf_stats.ttf_log,
"MSC_HEALTH: deadline_s=%ld deadline at %ld",
deadline_s, batt_drv->chg_health.rest_deadline);
return count;
}
static const DEVICE_ATTR(charge_deadline, 0664, batt_show_chg_deadline,
batt_set_chg_deadline);
static ssize_t charge_deadline_dryrun_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv =
(struct batt_drv *)power_supply_get_drvdata(psy);
long long deadline_s;
/* API works in seconds */
deadline_s = simple_strtoll(buf, NULL, 10);
mutex_lock(&batt_drv->chg_lock);
if (!batt_drv->ssoc_state.buck_enabled || deadline_s < 0) {
mutex_unlock(&batt_drv->chg_lock);
return -EINVAL;
}
batt_drv->chg_health.dry_run_deadline = get_boot_sec() + deadline_s;
mutex_unlock(&batt_drv->chg_lock);
return count;
}
static DEVICE_ATTR_WO(charge_deadline_dryrun);
enum batt_ssoc_status {
BATT_SSOC_STATUS_UNKNOWN = 0,
BATT_SSOC_STATUS_CONNECTED = 1,
BATT_SSOC_STATUS_DISCONNECTED = 2,
BATT_SSOC_STATUS_FULL = 3,
};
static ssize_t ssoc_details_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
struct batt_ssoc_state *ssoc_state = &batt_drv->ssoc_state;
int len = 0;
enum batt_ssoc_status status = BATT_SSOC_STATUS_UNKNOWN;
char buff[UICURVE_BUF_SZ] = { 0 };
mutex_lock(&batt_drv->chg_lock);
if (ssoc_state->buck_enabled == 0) {
status = BATT_SSOC_STATUS_DISCONNECTED;
} else if (ssoc_state->buck_enabled == 1) {
if (batt_drv->batt_full)
status = BATT_SSOC_STATUS_FULL;
else
status = BATT_SSOC_STATUS_CONNECTED;
}
len = scnprintf(
buf, sizeof(ssoc_state->ssoc_state_cstr),
"soc: l=%d%% gdf=%d.%02d uic=%d.%02d rl=%d.%02d\n"
"curve:%s\n"
"status: ct=%d rl=%d s=%d\n",
ssoc_get_capacity(ssoc_state), qnum_toint(ssoc_state->ssoc_gdf),
qnum_fracdgt(ssoc_state->ssoc_gdf),
qnum_toint(ssoc_state->ssoc_uic),
qnum_fracdgt(ssoc_state->ssoc_uic),
qnum_toint(ssoc_state->ssoc_rl),
qnum_fracdgt(ssoc_state->ssoc_rl),
ssoc_uicurve_cstr(buff, sizeof(buff), ssoc_state->ssoc_curve),
ssoc_state->ssoc_curve_type, ssoc_state->rl_status, status);
mutex_unlock(&batt_drv->chg_lock);
return len;
}
static const DEVICE_ATTR_RO(ssoc_details);
static ssize_t show_bd_trickle_enable(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n",
batt_drv->ssoc_state.bd_trickle_enable);
}
static ssize_t set_bd_trickle_enable(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int ret = 0, val;
ret = kstrtoint(buf, 0, &val);
if (ret < 0)
return ret;
batt_drv->ssoc_state.bd_trickle_enable = !!val;
return count;
}
static DEVICE_ATTR(bd_trickle_enable, 0660,
show_bd_trickle_enable, set_bd_trickle_enable);
static ssize_t show_bd_trickle_cnt(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n",
batt_drv->ssoc_state.bd_trickle_cnt);
}
static ssize_t set_bd_trickle_cnt(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int ret = 0, val;
ret = kstrtoint(buf, 0, &val);
if (ret < 0)
return ret;
batt_drv->ssoc_state.bd_trickle_cnt = val;
return count;
}
static DEVICE_ATTR(bd_trickle_cnt, 0660,
show_bd_trickle_cnt, set_bd_trickle_cnt);
static ssize_t show_bd_trickle_recharge_soc(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n",
batt_drv->ssoc_state.bd_trickle_recharge_soc);
}
#define BD_RL_SOC_FULL 100
#define BD_RL_SOC_LOW 50
static ssize_t set_bd_trickle_recharge_soc(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int ret = 0, val;
ret = kstrtoint(buf, 0, &val);
if (ret < 0)
return ret;
if ((val >= BD_RL_SOC_FULL) || (val < BD_RL_SOC_LOW))
return count;
batt_drv->ssoc_state.bd_trickle_recharge_soc = val;
return count;
}
static DEVICE_ATTR(bd_trickle_recharge_soc, 0660,
show_bd_trickle_recharge_soc, set_bd_trickle_recharge_soc);
static ssize_t show_bd_trickle_dry_run(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n",
batt_drv->ssoc_state.bd_trickle_dry_run);
}
static ssize_t set_bd_trickle_dry_run(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int ret = 0, val;
ret = kstrtoint(buf, 0, &val);
if (ret < 0)
return ret;
batt_drv->ssoc_state.bd_trickle_dry_run = val ? true : false;
return count;
}
static DEVICE_ATTR(bd_trickle_dry_run, 0660,
show_bd_trickle_dry_run, set_bd_trickle_dry_run);
static ssize_t show_bd_trickle_reset_sec(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n",
batt_drv->ssoc_state.bd_trickle_reset_sec);
}
static ssize_t set_bd_trickle_reset_sec(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
unsigned int val;
int ret = 0;
ret = kstrtouint(buf, 0, &val);
if (ret < 0)
return ret;
batt_drv->ssoc_state.bd_trickle_reset_sec = val;
return count;
}
static DEVICE_ATTR(bd_trickle_reset_sec, 0660,
show_bd_trickle_reset_sec, set_bd_trickle_reset_sec);
static ssize_t bd_clear_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int ret = 0, val = 0;
ret = kstrtoint(buf, 0, &val);
if (ret < 0)
return ret;
if (val)
bd_trickle_reset(&batt_drv->ssoc_state, &batt_drv->ce_data);
return count;
}
static DEVICE_ATTR_WO(bd_clear);
static ssize_t batt_show_time_to_ac(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv =(struct batt_drv *)
power_supply_get_drvdata(psy);
const int soc = CHG_HEALTH_REST_SOC(&batt_drv->chg_health);
qnum_t soc_raw = ssoc_get_capacity_raw(&batt_drv->ssoc_state);
qnum_t soc_health = qnum_fromint(soc);
ktime_t estimate;
int rc;
rc = ttf_soc_estimate(&estimate, &batt_drv->ttf_stats,
&batt_drv->ce_data, soc_raw,
soc_health - qnum_rconst(SOC_ROUND_BASE));
if (rc < 0)
estimate = -1;
if (estimate == -1)
return -ERANGE;
return scnprintf(buf, PAGE_SIZE, "%lld\n", (long long)estimate);
}
static const DEVICE_ATTR(time_to_ac, 0444, batt_show_time_to_ac, NULL);
static ssize_t batt_show_ac_soc(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv =(struct batt_drv *)
power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n",
CHG_HEALTH_REST_SOC(&batt_drv->chg_health));
}
static const DEVICE_ATTR(ac_soc, 0444, batt_show_ac_soc, NULL);
static ssize_t batt_show_charger_state(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "0x%llx\n", batt_drv->chg_state.v);
}
static const DEVICE_ATTR(charger_state, 0444, batt_show_charger_state, NULL);
static ssize_t batt_show_charge_type(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n", batt_drv->chg_state.f.chg_type);
}
static const DEVICE_ATTR(charge_type, 0444, batt_show_charge_type, NULL);
static ssize_t batt_show_constant_charge_current(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n", batt_drv->cc_max);
}
static const DEVICE_ATTR(constant_charge_current, 0444,
batt_show_constant_charge_current, NULL);
static ssize_t batt_show_constant_charge_voltage(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n", batt_drv->fv_uv);
}
static const DEVICE_ATTR(constant_charge_voltage, 0444,
batt_show_constant_charge_voltage, NULL);
static ssize_t fan_level_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count) {
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int ret = 0;
int level;
ret = kstrtoint(buf, 0, &level);
if (ret < 0)
return ret;
if ((level < FAN_LVL_UNKNOWN) || (level > FAN_LVL_ALARM))
return -ERANGE;
batt_drv->fan_level = level;
/* always send a power supply event when forcing the value */
if (batt_drv->psy)
power_supply_changed(batt_drv->psy);
return count;
}
static ssize_t fan_level_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int result = 0;
if (batt_drv->fan_level == -1 && batt_drv->fan_level_votable)
result = gvotable_get_current_int_vote(
batt_drv->fan_level_votable);
else
result = batt_drv->fan_level;
return scnprintf(buf, PAGE_SIZE, "%d\n", result);
}
static const DEVICE_ATTR_RW(fan_level);
static ssize_t show_health_safety_margin(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n",
batt_drv->health_safety_margin);
}
static ssize_t set_health_safety_margin(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int ret = 0, val;
ret = kstrtoint(buf, 0, &val);
if (ret < 0)
return ret;
/*
* less than 0 is not accaptable: we will not reach full in time.
* set to 0 to disable PAUSE but keep AC charge
*/
if (val < 0)
val = 0;
batt_drv->health_safety_margin = val;
return count;
}
static DEVICE_ATTR(health_safety_margin, 0660,
show_health_safety_margin, set_health_safety_margin);
/* BPST ------------------------------------------------------------------- */
static ssize_t bpst_reset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
struct batt_bpst *bpst_state = &batt_drv->bpst_state;
int ret = 0, val = 0;
ret = kstrtoint(buf, 0, &val);
if (ret < 0)
return ret;
if (val) {
ret = batt_bpst_reset(bpst_state);
if (ret < 0)
pr_err("%s: MSC_BPST: Cannot reset GBMS_TAG_BPST (%d)\n", __func__, ret);
}
return count;
}
static DEVICE_ATTR_WO(bpst_reset);
static ssize_t show_bpst_detect_disable(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n",
batt_drv->bpst_state.bpst_detect_disable);
}
static ssize_t set_bpst_detect_disable(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int ret = 0, val;
ret = kstrtoint(buf, 0, &val);
if (ret < 0)
return ret;
mutex_lock(&batt_drv->bpst_state.lock);
batt_drv->bpst_state.bpst_detect_disable = !!val;
mutex_unlock(&batt_drv->bpst_state.lock);
if (batt_drv->psy)
power_supply_changed(batt_drv->psy);
return count;
}
static DEVICE_ATTR(bpst_detect_disable, 0660,
show_bpst_detect_disable, set_bpst_detect_disable);
/* AACR ------------------------------------------------------------------- */
static ssize_t aacr_state_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count) {
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int state, ret = 0;
ret = kstrtoint(buf, 0, &state);
if (ret < 0)
return ret;
if ((state != BATT_AACR_DISABLED) && (state != BATT_AACR_ENABLED))
return -ERANGE;
if (batt_drv->aacr_state == state)
return count;
batt_drv->aacr_state = state;
return count;
}
static ssize_t aacr_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n", batt_drv->aacr_state);
}
static const DEVICE_ATTR_RW(aacr_state);
static ssize_t aacr_cycle_grace_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int value, ret = 0;
ret = kstrtoint(buf, 0, &value);
if (ret < 0)
return ret;
batt_drv->aacr_cycle_grace = value;
return count;
}
static ssize_t aacr_cycle_grace_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n", batt_drv->aacr_cycle_grace);
}
static const DEVICE_ATTR_RW(aacr_cycle_grace);
static ssize_t aacr_cycle_max_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int value, ret = 0;
ret = kstrtoint(buf, 0, &value);
if (ret < 0)
return ret;
batt_drv->aacr_cycle_max = value;
return count;
}
static ssize_t aacr_cycle_max_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n", batt_drv->aacr_cycle_max);
}
static const DEVICE_ATTR_RW(aacr_cycle_max);
/* Swelling --------------------------------------------------------------- */
static ssize_t swelling_data_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
struct swelling_data *sd = &batt_drv->sd;
int len = 0, i;
len += scnprintf(&buf[len], PAGE_SIZE - len,
"temp/soc\tcharge(s)\tdischarge(s)\n");
for (i = 0; i < BATT_TEMP_RECORD_THR ; i++) {
len += scnprintf(&buf[len], PAGE_SIZE - len,
"%d/%d\t%llu\t%llu\n",
sd->temp_thr[i]/10, sd->soc_thr[i],
sd->chg[i], sd->dischg[i]);
}
return len;
}
static const DEVICE_ATTR_RO(swelling_data);
/* BHI --------------------------------------------------------------------- */
static ssize_t health_index_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n",
BHI_ROUND_INDEX(batt_drv->health_data.bhi_index));
}
static const DEVICE_ATTR_RO(health_index);
static ssize_t health_status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n", batt_drv->health_data.bhi_status);
}
static const DEVICE_ATTR_RO(health_status);
static ssize_t health_impedance_index_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n",
BHI_ROUND_INDEX(batt_drv->health_data.bhi_imp_index));
}
static const DEVICE_ATTR_RO(health_impedance_index);
static ssize_t health_capacity_index_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n",
BHI_ROUND_INDEX(batt_drv->health_data.bhi_cap_index));
}
static const DEVICE_ATTR_RO(health_capacity_index);
static ssize_t health_index_stats_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
struct bhi_data *bhi_data = &batt_drv->health_data.bhi_data;
struct health_data *health_data = &batt_drv->health_data;
int len = 0, i;
mutex_lock(&batt_drv->chg_lock);
for (i = 0; i < BHI_ALGO_MAX; i++) {
int health_index, health_status, cap_index, imp_index, sd_index;
cap_index = bhi_calc_cap_index(i, bhi_data);
imp_index = bhi_calc_imp_index(i, bhi_data);
sd_index = bhi_calc_sd_index(i, bhi_data);
health_index = bhi_calc_health_index(i, cap_index, imp_index, sd_index);
if (health_index < 0)
continue;
health_status = bhi_calc_health_status(i, BHI_ROUND_INDEX(health_index), health_data);
len += scnprintf(&buf[len], PAGE_SIZE - len,
"%d: %d, %d,%d,%d %d,%d,%d %d,%d\n",
i, health_status,
BHI_ROUND_INDEX(health_index),
BHI_ROUND_INDEX(cap_index),
BHI_ROUND_INDEX(imp_index),
bhi_data->swell_cumulative,
bhi_health_get_capacity(i, bhi_data),
bhi_health_get_impedance(i, bhi_data),
bhi_data->battery_age,
bhi_data->cycle_count);
}
mutex_unlock(&batt_drv->chg_lock);
return len;
}
static const DEVICE_ATTR_RO(health_index_stats);
static ssize_t health_algo_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int value, ret;
ret = kstrtoint(buf, 0, &value);
if (ret < 0)
return ret;
mutex_lock(&batt_drv->chg_lock);
batt_drv->health_data.bhi_algo = value;
ret = batt_bhi_stats_update_all(batt_drv);
mutex_unlock(&batt_drv->chg_lock);
if (ret < 0)
return ret;
return count;
}
static ssize_t health_algo_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n", batt_drv->health_data.bhi_algo);
}
static const DEVICE_ATTR_RW(health_algo);
/* CSI --------------------------------------------------------------------- */
static ssize_t charging_speed_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
int value, ret;
ret = kstrtoint(buf, 0, &value);
if (ret < 0)
return ret;
pr_info("fake_charging_speed: %d -> %d\n", batt_drv->fake_charging_speed, value);
batt_drv->fake_charging_speed = value;
return count;
}
static ssize_t charging_speed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n", batt_drv->csi_current_speed);
}
static const DEVICE_ATTR_RW(charging_speed);
static ssize_t power_metrics_polling_rate_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
unsigned int value, ret = 0;
ret = kstrtouint(buf, 0, &value);
if (ret < 0)
return ret;
if (value <= 0)
return -EINVAL;
batt_drv->power_metrics.polling_rate = value;
return count;
}
static ssize_t power_metrics_polling_rate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n", batt_drv->power_metrics.polling_rate);
}
static const DEVICE_ATTR_RW(power_metrics_polling_rate);
static ssize_t power_metrics_interval_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
unsigned int value, ret = 0;
const int polling_rate = batt_drv->power_metrics.polling_rate;
ret = kstrtouint(buf, 0, &value);
if (ret < 0)
return ret;
if ((value >= polling_rate * POWER_METRICS_MAX_DATA) || value < polling_rate)
return -EINVAL;
batt_drv->power_metrics.interval = value;
return count;
}
static ssize_t power_metrics_interval_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%d\n", batt_drv->power_metrics.interval);
}
static const DEVICE_ATTR_RW(power_metrics_interval);
static long power_metrics_delta_cc(struct batt_drv *batt_drv, int idx1, int idx2)
{
return batt_drv->power_metrics.data[idx1].charge_count -
batt_drv->power_metrics.data[idx2].charge_count;
}
static long power_metrics_avg_vbat(struct batt_drv *batt_drv, int idx1, int idx2)
{
unsigned long v1 = batt_drv->power_metrics.data[idx1].voltage;
unsigned long v2 = batt_drv->power_metrics.data[idx2].voltage;
return (v1 + v2) / 2;
}
static long power_metrics_delta_time(struct batt_drv *batt_drv, int idx1, int idx2)
{
return batt_drv->power_metrics.data[idx1].time -
batt_drv->power_metrics.data[idx2].time;
}
static ssize_t power_metrics_power_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
const unsigned int polling_rate = batt_drv->power_metrics.polling_rate;
const unsigned int interval = batt_drv->power_metrics.interval;
const unsigned int pm_idx = batt_drv->power_metrics.idx;
unsigned int step, idx, idx_prev, i;
long cc, vbat, time, time_prev;
long power_avg = 0;
step = interval / polling_rate;
if (step == 0)
return scnprintf(buf, PAGE_SIZE, "Error interval.\n");
idx_prev = pm_idx;
for (i = 1; i <= step; i++) {
if (i > pm_idx)
idx = pm_idx + POWER_METRICS_MAX_DATA - i;
else
idx = pm_idx - i;
if (batt_drv->power_metrics.data[idx].voltage == 0)
return scnprintf(buf, PAGE_SIZE, "Not enough data.\n");
if (power_metrics_delta_time(batt_drv, idx_prev, idx) <= 0)
return scnprintf(buf, PAGE_SIZE, "Time stamp error.\n");
time = power_metrics_delta_time(batt_drv, pm_idx, idx);
if (time < interval) {
/* P += (dCC * V / dT) * (dT / interval) */
cc = power_metrics_delta_cc(batt_drv, idx_prev, idx);
vbat = power_metrics_avg_vbat(batt_drv, idx_prev, idx);
power_avg += (cc * vbat) / interval;
idx_prev = idx;
continue;
}
if (i == 1) {
/* P = dCC * V / dT */
cc = power_metrics_delta_cc(batt_drv, pm_idx, idx);
vbat = power_metrics_avg_vbat(batt_drv, pm_idx, idx);
power_avg = cc * vbat / time;
} else {
/* P += (dCC * V / dT) * (the left time to interval / interval) */
cc = power_metrics_delta_cc(batt_drv, idx_prev, idx);
vbat = power_metrics_avg_vbat(batt_drv, idx_prev, idx);
time = power_metrics_delta_time(batt_drv, idx_prev, idx);
time_prev = power_metrics_delta_time(batt_drv, pm_idx, idx_prev);
power_avg += (cc * vbat * (interval - time_prev) / time ) / interval;
}
break;
}
return scnprintf(buf, PAGE_SIZE, "%ld\n", power_avg / 1000000);
}
static const DEVICE_ATTR_RO(power_metrics_power);
static ssize_t power_metrics_current_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
const unsigned int polling_rate = batt_drv->power_metrics.polling_rate;
const unsigned int interval = batt_drv->power_metrics.interval;
const unsigned int pm_idx = batt_drv->power_metrics.idx;
unsigned int step, idx, idx_prev, i;
long cc, time, time_prev;
long current_avg = 0;
step = interval / polling_rate;
if (step == 0)
return scnprintf(buf, PAGE_SIZE, "Error interval.\n");
idx_prev = pm_idx;
for (i = 1; i <= step; i++) {
if (i > pm_idx)
idx = pm_idx + POWER_METRICS_MAX_DATA - i;
else
idx = pm_idx - i;
if (batt_drv->power_metrics.data[idx].voltage == 0)
return scnprintf(buf, PAGE_SIZE, "Not enough data.\n");
if (power_metrics_delta_time(batt_drv, idx_prev, idx) <= 0)
return scnprintf(buf, PAGE_SIZE, "Time stamp error.\n");
time = power_metrics_delta_time(batt_drv, pm_idx, idx);
if (time < interval) {
/* I += (dCC / dT) * (dT / interval) */
cc = power_metrics_delta_cc(batt_drv, idx_prev, idx);
current_avg += cc / interval;
idx_prev = idx;
continue;
}
if (i == 1) {
/* I = dCC / dT */
cc = power_metrics_delta_cc(batt_drv, pm_idx, idx);
current_avg = cc / time;
} else {
/* I += (dCC / dT) * (the left time to interval / interval) */
cc = power_metrics_delta_cc(batt_drv, idx_prev, idx);
time = power_metrics_delta_time(batt_drv, idx_prev, idx);
time_prev = power_metrics_delta_time(batt_drv, pm_idx, idx_prev);
current_avg += (cc * (interval - time_prev) / time) / interval;
}
break;
}
return scnprintf(buf, PAGE_SIZE, "%ld\n", current_avg);
}
static const DEVICE_ATTR_RO(power_metrics_current);
static ssize_t dev_sn_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
memcpy(batt_drv->dev_sn, buf, strlen(buf));
return count;
}
static ssize_t dev_sn_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy = container_of(dev, struct power_supply, dev);
struct batt_drv *batt_drv = power_supply_get_drvdata(psy);
return scnprintf(buf, PAGE_SIZE, "%s\n", batt_drv->dev_sn);
}
static const DEVICE_ATTR_RW(dev_sn);
/* ------------------------------------------------------------------------- */
static int batt_init_fs(struct batt_drv *batt_drv)
{
struct dentry *de = NULL;
int ret;
/* stats */
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_charge_stats);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create charge_stats\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_charge_stats_actual);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create charge_stats_actual\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_charge_details);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create charge_details\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_ssoc_details);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create ssoc_details\n");
/* adaptive charging */
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_charge_deadline);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create chg_deadline\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_charge_stage);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create charge_stage\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_charge_limit);
if (ret != 0)
dev_err(&batt_drv->psy->dev, "Failed to create charge_limit\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_time_to_ac);
if (ret != 0)
dev_err(&batt_drv->psy->dev, "Failed to create time_to_ac\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_ac_soc);
if (ret != 0)
dev_err(&batt_drv->psy->dev, "Failed to create ac_soc\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_charge_deadline_dryrun);
if (ret != 0)
dev_err(&batt_drv->psy->dev, "Failed to create chg_deadline_dryrun\n");
/* time to full */
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_ttf_stats);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create ttf_stats\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_ttf_details);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create ttf_details\n");
/* TRICKLE-DEFEND */
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_bd_trickle_enable);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create bd_trickle_enable\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_bd_trickle_cnt);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create bd_trickle_cnt\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_bd_trickle_recharge_soc);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create bd_trickle_recharge_soc\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_bd_trickle_dry_run);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create bd_trickle_dry_run\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_bd_trickle_reset_sec);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create bd_trickle_reset_sec\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_bd_clear);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create bd_clear\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_pairing_state);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create pairing_state\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_cycle_counts);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create cycle_counts\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_charge_full_estimate);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create chage_full_estimate\n");
/* google_resistance and resistance */
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_resistance_avg);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create resistance_avg\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_resistance);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create resistance\n");
/* monitoring */
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_charger_state);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create charger state\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_charge_type);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create charge_type\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_constant_charge_current);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create constant charge current\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_constant_charge_voltage);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create constant charge voltage\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_fan_level);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create fan level\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_health_safety_margin);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create health safety margin\n");
/* aacr */
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_aacr_state);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create aacr state\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_aacr_cycle_grace);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create aacr cycle grace\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_aacr_cycle_max);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create aacr cycle max\n");
/* health and health index */
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_swelling_data);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create swelling_data\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_health_index);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create health index\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_health_status);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create health status\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_health_capacity_index);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create health capacity index\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_health_index_stats);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create health index stats\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_health_impedance_index);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create health perf index\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_health_algo);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create health algo\n");
/* csi */
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_charging_speed);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create charging speed\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_power_metrics_polling_rate);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create power_metrics_polling_rate\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_power_metrics_interval);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create power_metrics_interval\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_power_metrics_power);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create power_metrics_power\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_power_metrics_current);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create power_metrics_current\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_dev_sn);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create dev sn\n");
de = debugfs_create_dir("google_battery", 0);
if (IS_ERR_OR_NULL(de))
return 0;
debugfs_create_u32("debug_level", 0644, de, &debug_printk_prlog);
debugfs_create_file("cycle_count_sync", 0600, de, batt_drv,
&cycle_count_bins_sync_fops);
debugfs_create_file("ssoc_gdf", 0644, de, batt_drv, &debug_ssoc_gdf_fops);
debugfs_create_file("ssoc_uic", 0644, de, batt_drv, &debug_ssoc_uic_fops);
debugfs_create_file("ssoc_rls", 0444, de, batt_drv, &debug_ssoc_rls_fops);
debugfs_create_file("ssoc_uicurve", 0644, de, batt_drv,
&debug_ssoc_uicurve_cstr_fops);
debugfs_create_file("force_psy_update", 0400, de, batt_drv,
&debug_force_psy_update_fops);
debugfs_create_file("pairing_state", 0200, de, batt_drv, &debug_pairing_fops);
debugfs_create_file("temp", 0400, de, batt_drv, &debug_fake_temp_fops);
debugfs_create_u32("battery_present", 0600, de,
&batt_drv->fake_battery_present);
/* history */
debugfs_create_file("blf_state", 0400, de, batt_drv, &debug_blf_state_fops);
debugfs_create_u32("blf_collect_now", 0600, de, &batt_drv->blf_collect_now);
/* defender */
debugfs_create_u32("fake_capacity", 0600, de,
&batt_drv->fake_capacity);
/* aacr test */
debugfs_create_u32("fake_aacr_cc", 0600, de,
&batt_drv->fake_aacr_cc);
/* health charging (adaptive charging) */
debugfs_create_file("chg_health_thr_soc", 0600, de, batt_drv,
&debug_chg_health_thr_soc_fops);
debugfs_create_file("chg_health_rest_rate", 0600, de, batt_drv,
&debug_chg_health_rest_rate_fops);
debugfs_create_file("chg_health_stage", 0600, de, batt_drv,
&debug_chg_health_stage_fops);
/* charging table */
debugfs_create_file("chg_raw_profile", 0644, de, batt_drv,
&debug_chg_raw_profile_fops);
/* battery virtual sensor*/
debugfs_create_u32("batt_vs_w", 0600, de, &batt_drv->batt_vs_w);
/* power metrics */
debugfs_create_file("power_metrics", 0400, de, batt_drv, &debug_power_metrics_fops);
/* bhi fullcapnom count */
debugfs_create_u32("bhi_w_ci", 0644, de, &batt_drv->health_data.bhi_w_ci);
debugfs_create_u32("bhi_w_pi", 0644, de, &batt_drv->health_data.bhi_w_ci);
debugfs_create_u32("bhi_w_sd", 0644, de, &batt_drv->health_data.bhi_w_ci);
debugfs_create_u32("act_impedance", 0644, de,
&batt_drv->health_data.bhi_data.act_impedance);
/* google_resistance, tuning */
debugfs_create_u32("ravg_temp_low", 0644, de,
&batt_drv->health_data.bhi_data.res_state.res_temp_low);
debugfs_create_u32("ravg_temp_high", 0644, de,
&batt_drv->health_data.bhi_data.res_state.res_temp_high);
debugfs_create_u32("ravg_soc_low", 0644, de,
&batt_drv->health_data.bhi_data.res_state.ravg_soc_low);
debugfs_create_u32("ravg_soc_high", 0644, de,
&batt_drv->health_data.bhi_data.res_state.ravg_soc_high);
debugfs_create_file("ravg", 0400, de, batt_drv, &debug_ravg_fops);
return 0;
}
/* bpst detection */
static int batt_bpst_init_fs(struct batt_drv *batt_drv)
{
struct dentry *de = NULL;
int ret;
if (!batt_drv->bpst_state.bpst_enable)
return 0;
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_bpst_reset);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create bpst_reset\n");
ret = device_create_file(&batt_drv->psy->dev, &dev_attr_bpst_detect_disable);
if (ret)
dev_err(&batt_drv->psy->dev, "Failed to create bpst_detect_disable\n");
de = debugfs_create_dir("bpst", 0);
if (IS_ERR_OR_NULL(de))
return 0;
debugfs_create_file("bpst_sbd_status", 0600, de, batt_drv,
&debug_bpst_sbd_status_fops);
debugfs_create_u32("bpst_count_threshold", 0600, de,
&batt_drv->bpst_state.bpst_count_threshold);
debugfs_create_u32("bpst_chg_rate", 0600, de,
&batt_drv->bpst_state.bpst_chg_rate);
return 0;
}
/* ------------------------------------------------------------------------- */
/* could also use battery temperature, age */
static bool gbatt_check_dead_battery(const struct batt_drv *batt_drv)
{
return ssoc_get_capacity(&batt_drv->ssoc_state) == 0;
}
#define SSOC_LEVEL_FULL SSOC_SPOOF
#define SSOC_LEVEL_HIGH 80
#define SSOC_LEVEL_NORMAL 30
#define SSOC_LEVEL_LOW 0
/*
* could also use battery temperature, age.
* NOTE: this implementation looks at the SOC% but it might be looking to
* other quantities or flags.
* NOTE: CRITICAL_LEVEL implies BATTERY_DEAD but BATTERY_DEAD doesn't imply
* CRITICAL.
*/
static int gbatt_get_capacity_level(struct batt_ssoc_state *ssoc_state,
int fg_status)
{
const int soc = ssoc_get_real(ssoc_state);
int capacity_level;
if (soc >= SSOC_LEVEL_FULL) {
capacity_level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
} else if (soc > SSOC_LEVEL_HIGH) {
capacity_level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
} else if (soc > SSOC_LEVEL_NORMAL) {
capacity_level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
} else if (soc > SSOC_LEVEL_LOW) {
capacity_level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
} else if (ssoc_state->buck_enabled == 0) {
capacity_level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
} else if (ssoc_state->buck_enabled == -1) {
/* only at startup, this should not happen */
capacity_level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
} else if (fg_status == POWER_SUPPLY_STATUS_DISCHARGING ||
fg_status == POWER_SUPPLY_STATUS_UNKNOWN) {
capacity_level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
} else {
capacity_level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
}
return capacity_level;
}
static int gbatt_get_temp(const struct batt_drv *batt_drv, int *temp)
{
int err = 0;
union power_supply_propval val;
if (batt_drv->fake_temp) {
*temp = batt_drv->fake_temp;
} else if (!batt_drv->fg_psy) {
err = -EINVAL;
} else {
err = power_supply_get_property(batt_drv->fg_psy,
POWER_SUPPLY_PROP_TEMP, &val);
if (err == 0)
*temp = val.intval;
}
return err;
}
static void bat_log_ttf_estimate(const char *label, int ssoc,
struct batt_drv *batt_drv)
{
int cc, err;
ktime_t res = 0;
err = batt_ttf_estimate(&res, batt_drv);
if (err < 0) {
logbuffer_log(batt_drv->ttf_stats.ttf_log,
"%s ssoc=%d time=%ld err=%d",
(label) ? label : "", ssoc, get_boot_sec(), err);
return;
}
cc = GPSY_GET_PROP(batt_drv->fg_psy, POWER_SUPPLY_PROP_CHARGE_COUNTER);
logbuffer_log(batt_drv->ttf_stats.ttf_log,
"%s ssoc=%d cc=%d time=%ld %d:%d:%d (est=%ld, max_ratio=%d)",
(label) ? label : "", ssoc, cc / 1000, get_boot_sec(),
res / 3600, (res % 3600) / 60, (res % 3600) % 60,
res, err);
}
static int batt_do_md5(const u8 *data, unsigned int len, u8 *result)
{
struct crypto_shash *tfm;
struct shash_desc *shash;
int size, ret = 0;
tfm = crypto_alloc_shash("md5", 0, 0);
if (IS_ERR(tfm)) {
pr_err("Error MD5 transform: %ld\n", PTR_ERR(tfm));
return PTR_ERR(tfm);
}
size = sizeof(struct shash_desc) + crypto_shash_descsize(tfm);
shash = kmalloc(size, GFP_KERNEL);
if (!shash)
return -ENOMEM;
shash->tfm = tfm;
ret = crypto_shash_digest(shash, data, len, result);
kfree(shash);
crypto_free_shash(tfm);
return ret;
}
/* called with a lock on ->chg_lock */
static enum batt_paired_state batt_check_pairing_state(struct batt_drv *batt_drv)
{
char dev_info[GBMS_DINF_LEN];
char mfg_info[GBMS_MINF_LEN];
u8 *dev_info_check = batt_drv->dev_info_check;
int ret, len;
len = strlen(batt_drv->dev_sn);
/* No dev_sn, return current state */
if (len == 0)
return batt_drv->pairing_state;
ret = gbms_storage_read(GBMS_TAG_DINF, dev_info, GBMS_DINF_LEN);
if (ret < 0) {
pr_err("Read device pairing info failed, ret=%d\n", ret);
return BATT_PAIRING_READ_ERROR;
}
if (batt_drv->dev_info_check[0] == 0) {
char data[DEV_SN_LENGTH + GBMS_MINF_LEN];
ret = gbms_storage_read(GBMS_TAG_MINF, mfg_info, GBMS_MINF_LEN);
if (ret < 0) {
pr_err("read mfg info. fail, ret=%d\n", ret);
return BATT_PAIRING_READ_ERROR;
}
memcpy(data, batt_drv->dev_sn, len);
memcpy(&data[len], mfg_info, GBMS_MINF_LEN);
ret = batt_do_md5(data, len + GBMS_MINF_LEN, dev_info_check);
if (ret < 0) {
pr_err("execute batt_do_md5 fail, ret=%d\n", ret);
return BATT_PAIRING_MISMATCH;
}
}
/* new battery: pair the battery to this device */
if (dev_info[0] == 0xFF) {
ret = gbms_storage_write(GBMS_TAG_DINF, dev_info_check, GBMS_DINF_LEN);
if (ret < 0) {
pr_err("Pairing to this device failed, ret=%d\n", ret);
return BATT_PAIRING_WRITE_ERROR;
}
/* recycled battery */
} else if (strncmp(dev_info, dev_info_check, strlen(dev_info_check))) {
pr_warn("Battery paired to a different device\n");
return BATT_PAIRING_MISMATCH;
}
return BATT_PAIRING_PAIRED;
}
/* TODO: handle history collection, use storage */
static int batt_hist_data_collect(void *h, int idx)
{
int cnt;
cnt = gbms_storage_read(GBMS_TAG_CLHI, h, 0);
if (cnt > 0)
cnt = gbms_storage_write_data(GBMS_TAG_HIST, h, cnt, idx);
return cnt;
}
/* TODO: handle history collection, use storage */
static void batt_hist_free_data(void *p)
{
if (p)
kfree(p);
}
/* save data in hours */
#define SAVE_UNIT 3600
static void gbatt_save_sd(struct swelling_data *sd)
{
u16 sd_saved[BATT_SD_SAVE_SIZE];
bool update_save_data = false;
int i, j, ret = 0;
/* Change seconds to hours */
for (i = 0; i < BATT_TEMP_RECORD_THR; i++) {
j = i + SD_DISCHG_START;
sd_saved[i] = sd->chg[i] / SAVE_UNIT < BATT_SD_MAX_HOURS ?
sd->chg[i] / SAVE_UNIT : BATT_SD_MAX_HOURS;
sd_saved[j] = sd->dischg[i] / SAVE_UNIT < BATT_SD_MAX_HOURS ?
sd->dischg[i] / SAVE_UNIT : BATT_SD_MAX_HOURS;
if (sd_saved[i] > sd->saved[i] ||
sd_saved[j] > sd->saved[j]) {
sd->saved[i] = sd_saved[i];
sd->saved[j] = sd_saved[j];
update_save_data = true;
}
}
if (!update_save_data)
return;
ret = gbms_storage_write(GBMS_TAG_STRD, &sd->saved, sizeof(sd->saved));
if (ret < 0)
pr_warn("Failed to save swelling data, ret=%d\n", ret);
}
static void gbatt_record_over_temp(struct batt_drv *batt_drv)
{
struct swelling_data *sd = &batt_drv->sd;
struct batt_ssoc_state *ssoc_state = &batt_drv->ssoc_state;
const bool charge = batt_drv->fg_status == POWER_SUPPLY_STATUS_CHARGING ||
(batt_drv->fg_status == POWER_SUPPLY_STATUS_FULL &&
!batt_drv->chg_done);
const int temp = batt_drv->batt_temp;
const int soc = ssoc_get_real(ssoc_state);
const ktime_t now = get_boot_sec();
const ktime_t elap = now - sd->last_update;
bool update_data = false;
int i;
for (i = 0; i < BATT_TEMP_RECORD_THR; i++) {
/*
* thresholds table:
* | i | 0 | 1 | 2 |
* |----------|--------|--------|--------|
* | temp_thr | 30degC | 35degC | 40degC |
* | soc_thr | 90% | 90% | 95% |
*/
if (temp < sd->temp_thr[i] || soc < sd->soc_thr[i])
continue;
if (charge)
sd->chg[i] += elap;
else
sd->dischg[i] += elap;
update_data = true;
}
if (update_data)
gbatt_save_sd(&batt_drv->sd);
sd->last_update = now;
}
static int gbatt_save_capacity(struct batt_ssoc_state *ssoc_state)
{
const int ui_soc = ssoc_get_capacity(ssoc_state);
const int gdf_soc = ssoc_get_real(ssoc_state);
int ret = 0, save_now;
if (!ssoc_state->save_soc_available)
return ret;
if (ui_soc == gdf_soc)
save_now = 0;
else
save_now = ui_soc;
if (ssoc_state->save_soc != (u16)save_now) {
ssoc_state->save_soc = (u16)save_now;
ret = gbms_storage_write(GBMS_TAG_RSOC, &ssoc_state->save_soc,
sizeof(ssoc_state->save_soc));
}
return ret;
}
/* battery history data collection */
static int batt_history_data_work(struct batt_drv *batt_drv)
{
int cycle_cnt, idx, ret;
/* TODO: google_battery caches cycle count, should use that */
cycle_cnt = GPSY_GET_PROP(batt_drv->fg_psy,
POWER_SUPPLY_PROP_CYCLE_COUNT);
if (cycle_cnt < 0)
return -EIO;
if (batt_drv->blf_collect_now) {
pr_info("MSC_HIST cycle_cnt:%d->%d saved_cnt=%d\n",
cycle_cnt, batt_drv->blf_collect_now,
batt_drv->hist_data_saved_cnt);
cycle_cnt = batt_drv->blf_collect_now;
batt_drv->hist_data_saved_cnt = cycle_cnt - 1;
batt_drv->blf_collect_now = 0;
}
if (cycle_cnt <= batt_drv->hist_data_saved_cnt)
return 0;
idx = cycle_cnt / batt_drv->hist_delta_cycle_cnt;
/* check if the cycle_cnt is valid */
if (idx >= batt_drv->hist_data_max_cnt)
return -ENOENT;
ret = batt_hist_data_collect(batt_drv->hist_data, idx);
if (ret < 0)
return ret;
batt_drv->hist_data_saved_cnt = cycle_cnt;
pr_info("MSC_HIST Update data with cnt:%d\n", cycle_cnt);
return 0;
}
/* TODO: read from the HIST tag */
#define BATT_ONE_HIST_LEN 12
static int google_battery_init_hist_work(struct batt_drv *batt_drv )
{
const int one_hist_len = BATT_ONE_HIST_LEN; /* TODO: read from the tag */
int cnt;
/*
* Determine the max number of history entries
* NOTE: gbms_storage will return -EPROBE_DEFER during init
*/
cnt = gbms_storage_read_data(GBMS_TAG_HIST, NULL, 0, 0);
if (cnt == -EPROBE_DEFER)
return -EAGAIN;
if (cnt <= 0) {
pr_err("MSC_HIST collect history data not available (%d)\n", cnt);
batt_drv->blf_state = BATT_LFCOLLECT_NOT_AVAILABLE;
return -ENODATA;
}
batt_drv->hist_data = kzalloc(one_hist_len, GFP_KERNEL);
if (!batt_drv->hist_data) {
pr_err("MSC_HIST cannot allocate buffer of size=%d\n",
one_hist_len);
batt_drv->blf_state = BATT_LFCOLLECT_NOT_AVAILABLE;
} else {
batt_drv->blf_state = BATT_LFCOLLECT_COLLECT;
batt_drv->hist_data_max_cnt = cnt;
batt_drv->hist_data_saved_cnt = -1;
}
pr_info("MSC_HIST init_hist_work done, state:%d, cnt:%d",
batt_drv->blf_state, cnt);
return 0;
}
/*
* poll the battery, run SOC%, dead battery, critical.
* scheduled from psy_changed and from timer
*/
#define UPDATE_INTERVAL_AT_FULL_FACTOR 4
static void google_battery_work(struct work_struct *work)
{
struct batt_drv *batt_drv =
container_of(work, struct batt_drv, batt_work.work);
struct power_supply *fg_psy = batt_drv->fg_psy;
struct batt_ssoc_state *ssoc_state = &batt_drv->ssoc_state;
int update_interval = batt_drv->batt_update_interval;
const int prev_ssoc = ssoc_get_capacity(ssoc_state);
int present, fg_status, batt_temp, ret;
bool notify_psy_changed = false;
pr_debug("battery work item\n");
__pm_stay_awake(batt_drv->batt_ws);
/* chg_lock protect msc_logic */
mutex_lock(&batt_drv->chg_lock);
present = GPSY_GET_PROP(fg_psy, POWER_SUPPLY_PROP_PRESENT);
if (present && !batt_drv->batt_present) {
pr_debug("%s: change of battery state %d->%d\n",
__func__, batt_drv->batt_present, present);
batt_drv->batt_present = true;
notify_psy_changed = true;
} else if (!present && batt_drv->batt_present) {
pr_debug("%s: change of battery state %d->%d\n",
__func__, batt_drv->batt_present, present);
batt_drv->batt_present = false;
/* add debounce? */
notify_psy_changed = true;
mutex_unlock(&batt_drv->chg_lock);
goto reschedule;
}
fg_status = GPSY_GET_INT_PROP(fg_psy, POWER_SUPPLY_PROP_STATUS, &ret);
if (ret < 0) {
mutex_unlock(&batt_drv->chg_lock);
goto reschedule;
}
/* batt_lock protect SSOC code etc. */
mutex_lock(&batt_drv->batt_lock);
/* TODO: poll rate should be min between ->batt_update_interval and
* whatever ssoc_work() decides (typically rls->rl_delta_max_time)
*/
ret = ssoc_work(ssoc_state, fg_psy);
if (ret < 0) {
update_interval = BATT_WORK_ERROR_RETRY_MS;
} else {
bool full;
int ssoc, level;
/* handle charge/recharge */
batt_rl_update_status(batt_drv);
ssoc = ssoc_get_capacity(ssoc_state);
if (prev_ssoc != ssoc) {
pr_debug("%s: change of ssoc %d->%d\n", __func__,
prev_ssoc, ssoc);
if (ssoc > prev_ssoc)
bat_log_ttf_estimate("SSOC", ssoc, batt_drv);
dump_ssoc_state(ssoc_state, batt_drv->ssoc_log);
batt_log_csi_info(batt_drv);
notify_psy_changed = true;
}
/* TODO(b/138860602): clear ->chg_done to enforce the
* same behavior during the transition 99 -> 100 -> Full
*/
level = gbatt_get_capacity_level(&batt_drv->ssoc_state,
fg_status);
if (level != batt_drv->capacity_level) {
pr_debug("%s: change of capacity level %d->%d\n",
__func__, batt_drv->capacity_level,
level);
batt_drv->capacity_level = level;
notify_psy_changed = true;
}
if (batt_drv->dead_battery) {
batt_drv->dead_battery = gbatt_check_dead_battery(batt_drv);
if (!batt_drv->dead_battery) {
pr_debug("%s: dead_battery 1->0\n", __func__);
notify_psy_changed = true;
}
}
/* fuel gauge triggered recharge logic. */
full = (ssoc == SSOC_FULL);
if (full && !batt_drv->batt_full) {
bat_log_ttf_estimate("Full", ssoc, batt_drv);
batt_chg_stats_pub(batt_drv, "100%", false, true);
}
batt_drv->batt_full = full;
/* update resistance all the time and capacity on disconnect */
ret = bhi_imp_data_update(&batt_drv->health_data.bhi_data, fg_psy);
if (ret < 0 && ret != -ENODATA)
pr_warn("cannot update perf index ret=%d\n", ret);
/* restore SSOC after reboot */
ret = gbatt_save_capacity(&batt_drv->ssoc_state);
if (ret < 0)
pr_warn("write save_soc fail, ret=%d\n", ret);
/* debounce fg_status changes at 100% */
if (fg_status != batt_drv->fg_status) {
pr_debug("%s: ssoc=%d full=%d change of fg_status %d->%d\n",
__func__, ssoc, full, batt_drv->fg_status, fg_status);
if (!full)
notify_psy_changed = true;
}
/* slow down the updates at full */
if (full && batt_drv->chg_done)
update_interval *= UPDATE_INTERVAL_AT_FULL_FACTOR;
}
/* notifications for this are debounced */
batt_drv->fg_status = fg_status;
/* TODO: poll other data here if needed */
ret = gbatt_get_temp(batt_drv, &batt_temp);
if (ret == 0 && batt_temp != batt_drv->batt_temp) {
const int limit = batt_drv->batt_update_high_temp_threshold;
batt_drv->batt_temp = batt_temp;
if (batt_drv->batt_temp > limit) {
pr_debug("%s: temperature over limit %d > %d\n",
__func__, batt_temp, limit);
notify_psy_changed = true;
}
}
if (batt_drv->sd.is_enable)
gbatt_record_over_temp(batt_drv);
mutex_unlock(&batt_drv->batt_lock);
/*
* wait for timeout or state equal to CHARGING, FULL or UNKNOWN
* (which will likely not happen) even on ssoc error. msc_logic
* hold poll_ws wakelock during this time.
* Delay the estimates for time to full for BATT_WORK_DEBOUNCE_RETRY_MS
* after the device start charging.
*/
if (batt_drv->batt_fast_update_cnt) {
if (fg_status != POWER_SUPPLY_STATUS_DISCHARGING &&
fg_status != POWER_SUPPLY_STATUS_NOT_CHARGING) {
batt_drv->batt_fast_update_cnt = 0;
update_interval = BATT_WORK_DEBOUNCE_RETRY_MS;
} else {
update_interval = BATT_WORK_FAST_RETRY_MS;
batt_drv->batt_fast_update_cnt -= 1;
}
} else if (batt_drv->ttf_debounce) {
batt_drv->ttf_debounce = 0;
bat_log_ttf_estimate("Start", prev_ssoc, batt_drv);
}
/* acquired in msc_logic */
if (batt_drv->batt_fast_update_cnt == 0)
__pm_relax(batt_drv->poll_ws);
/* set a connect */
if (batt_drv->health_data.bhi_data.res_state.estimate_requested)
batt_res_work(batt_drv);
/* check only once and when/if the pairing state is reset */
if (batt_drv->pairing_state == BATT_PAIRING_ENABLED) {
enum batt_paired_state state;
state = batt_check_pairing_state(batt_drv);
switch (state) {
/* somethig is wrong with eeprom comms, HW problem? */
case BATT_PAIRING_READ_ERROR:
break;
/* somethig is wrong with eeprom, HW problem? */
case BATT_PAIRING_WRITE_ERROR:
break;
default:
batt_drv->pairing_state = state;
break;
}
}
mutex_unlock(&batt_drv->chg_lock);
/* TODO: we might not need to do this all the time */
batt_cycle_count_update(batt_drv, ssoc_get_real(ssoc_state));
reschedule:
if (notify_psy_changed)
power_supply_changed(batt_drv->psy);
if (batt_drv->blf_state == BATT_LFCOLLECT_ENABLED) {
ret = google_battery_init_hist_work(batt_drv);
if (ret == -EAGAIN)
update_interval = BATT_WORK_DEBOUNCE_RETRY_MS;
if (batt_drv->blf_state == BATT_LFCOLLECT_COLLECT) {
ret = batt_history_data_work(batt_drv);
if (ret < 0)
pr_err("BHI: cannot prime history (%d)\n", ret);
mutex_lock(&batt_drv->chg_lock);
ret = batt_bhi_stats_update_all(batt_drv);
if (ret < 0)
pr_err("BHI: cannot init stats (%d)\n", ret);
mutex_unlock(&batt_drv->chg_lock);
}
}
if (batt_drv->blf_state == BATT_LFCOLLECT_COLLECT) {
ret = batt_history_data_work(batt_drv);
if (ret == -ENOENT) {
batt_drv->blf_state = BATT_LFCOLLECT_NOT_AVAILABLE;
pr_info("MSC_HIST Battery data collection disabled\n");
} else if (ret < 0) {
pr_debug("MSC_HIST cannot collect battery data %d\n", ret);
}
}
if (update_interval) {
pr_debug("rerun battery work in %d ms\n", update_interval);
schedule_delayed_work(&batt_drv->batt_work,
msecs_to_jiffies(update_interval));
}
__pm_relax(batt_drv->batt_ws);
}
static void power_metrics_data_work(struct work_struct *work)
{
struct batt_drv *batt_drv = container_of(work, struct batt_drv,
power_metrics.work.work);
const unsigned int idx = batt_drv->power_metrics.idx;
unsigned long cc, vbat;
unsigned int next_work = batt_drv->power_metrics.polling_rate * 1000;
ktime_t now = get_boot_sec();
if (!batt_drv->fg_psy)
goto error;
cc = GPSY_GET_PROP(batt_drv->fg_psy, POWER_SUPPLY_PROP_CHARGE_COUNTER);
vbat = GPSY_GET_PROP(batt_drv->fg_psy, POWER_SUPPLY_PROP_VOLTAGE_NOW);
if ((cc < 0) || (vbat < 0)) {
if ((cc == -EAGAIN) || (vbat == -EAGAIN))
next_work = 100;
goto error;
}
if ((idx == 0) && (batt_drv->power_metrics.data[idx].voltage == 0))
batt_drv->power_metrics.idx = 0;
else
batt_drv->power_metrics.idx++;
if (batt_drv->power_metrics.idx >= POWER_METRICS_MAX_DATA)
batt_drv->power_metrics.idx = 0;
batt_drv->power_metrics.data[batt_drv->power_metrics.idx].charge_count = cc;
batt_drv->power_metrics.data[batt_drv->power_metrics.idx].voltage = vbat;
batt_drv->power_metrics.data[batt_drv->power_metrics.idx].time = now;
error:
schedule_delayed_work(&batt_drv->power_metrics.work, msecs_to_jiffies(next_work));
}
/* ------------------------------------------------------------------------- */
/*
* Keep the number of properties under UEVENT_NUM_ENVP (minus # of
* standard uevent variables) i.e 26.
*
* Removed the following from sysnodes
* GBMS_PROP_ADAPTER_DETAILS gbms
* POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT gbms
* POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE gbms
*
* POWER_SUPPLY_PROP_CHARGE_TYPE,
* POWER_SUPPLY_PROP_CURRENT_AVG,
* POWER_SUPPLY_PROP_VOLTAGE_AVG,
* POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
* POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
* POWER_SUPPLY_PROP_VOLTAGE_OCV,
*/
static enum power_supply_property gbatt_battery_props[] = {
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_CHARGE_COUNTER,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CURRENT_AVG,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_SERIAL_NUMBER,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, /* No need for this? */
POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
POWER_SUPPLY_PROP_VOLTAGE_NOW, /* 23 */
POWER_SUPPLY_PROP_VOLTAGE_OCV,
/* hard limit to 26 */
};
static bool temp_defend_dry_run(struct gvotable_election *temp_dryrun_votable)
{
bool dry_run = 1;
if (!temp_dryrun_votable)
temp_dryrun_votable =
gvotable_election_get_handle(VOTABLE_TEMP_DRYRUN);
if (temp_dryrun_votable)
dry_run = !!gvotable_get_current_int_vote(temp_dryrun_votable);
return dry_run;
}
/*
* status is:
* . _UNKNOWN during init
* . _DISCHARGING when not connected
* when connected to a power supply status is
* . _FULL (until disconnect) after the charger flags DONE if SSOC=100%
* . _CHARGING if FG reports _FULL but SSOC < 100% (should not happen)
* . _CHARGING if FG reports _NOT_CHARGING
* . _NOT_CHARGING if FG report _DISCHARGING
* . same as FG state otherwise
*/
static int gbatt_get_status(struct batt_drv *batt_drv,
union power_supply_propval *val)
{
int err, ssoc;
if (batt_drv->ssoc_state.buck_enabled == 0) {
val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
return 0;
}
if (batt_drv->ssoc_state.buck_enabled == -1) {
val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
return 0;
}
/* ->buck_enabled = 1, from here ownward device is connected */
if (batt_drv->batt_health == POWER_SUPPLY_HEALTH_OVERHEAT &&
!temp_defend_dry_run(batt_drv->temp_dryrun_votable)) {
val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
return 0;
}
if (batt_drv->msc_state == MSC_HEALTH_PAUSE) {
/* Expect AC to discharge in PAUSE. However, UI must persist */
val->intval = POWER_SUPPLY_STATUS_CHARGING;
return 0;
}
if (!batt_drv->fg_psy)
return -EINVAL;
ssoc = ssoc_get_capacity(&batt_drv->ssoc_state);
/* FULL when the charger said so and SSOC == 100% */
if (batt_drv->chg_done && ssoc == SSOC_FULL) {
val->intval = POWER_SUPPLY_STATUS_FULL;
return 0;
}
err = power_supply_get_property(batt_drv->fg_psy,
POWER_SUPPLY_PROP_STATUS,
val);
if (err != 0)
return err;
if (val->intval == POWER_SUPPLY_STATUS_FULL) {
/* not full unless the charger says so */
if (!batt_drv->chg_done)
val->intval = POWER_SUPPLY_STATUS_CHARGING;
/* NOTE: FG driver could flag FULL before GDF is at 100% when
* gauge is not tuned or when capacity estimates are wrong.
*/
if (ssoc != SSOC_FULL)
val->intval = POWER_SUPPLY_STATUS_CHARGING;
} else if (val->intval == POWER_SUPPLY_STATUS_NOT_CHARGING) {
/* smooth transition between charging and full */
val->intval = POWER_SUPPLY_STATUS_CHARGING;
} else if (val->intval == POWER_SUPPLY_STATUS_DISCHARGING) {
/* connected and discharging is NOT charging */
val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
}
return 0;
}
/* lock batt_drv->batt_lock */
static int gbatt_get_capacity(struct batt_drv *batt_drv)
{
struct batt_ssoc_state *ssoc_state = &batt_drv->ssoc_state;
int capacity;
if (batt_drv->fake_capacity >= 0 && batt_drv->fake_capacity <= 100)
capacity = batt_drv->fake_capacity;
else
capacity = ssoc_get_capacity(ssoc_state);
return capacity;
}
static void gbatt_reset_curve(struct batt_drv *batt_drv, int ssoc_cap)
{
struct batt_ssoc_state *ssoc_state = &batt_drv->ssoc_state;
const qnum_t cap = qnum_fromint(ssoc_cap);
const qnum_t gdf = ssoc_state->ssoc_gdf;
enum ssoc_uic_type type;
if (gdf < cap) {
type = SSOC_UIC_TYPE_DSG;
} else {
type = SSOC_UIC_TYPE_CHG;
}
pr_info("reset curve at gdf=%d.%d cap=%d.%d type=%d\n",
qnum_toint(gdf), qnum_fracdgt(gdf),
qnum_toint(cap), qnum_fracdgt(cap),
type);
/* current is the drop point on the discharge curve */
ssoc_change_curve_at_gdf(ssoc_state, gdf, cap, type);
ssoc_work(ssoc_state, batt_drv->fg_psy);
dump_ssoc_state(ssoc_state, batt_drv->ssoc_log);
}
/* splice the curve at point when the SSOC is removed */
static void gbatt_set_capacity(struct batt_drv *batt_drv, int capacity)
{
if (capacity < 0)
capacity = -EINVAL;
if (batt_drv->batt_health != POWER_SUPPLY_HEALTH_OVERHEAT) {
/* just set the value if not in overheat */
} else if (capacity < 0 && batt_drv->fake_capacity >= 0) {
gbatt_reset_curve(batt_drv, batt_drv->fake_capacity);
} else if (capacity > 0) {
/* TODO: convergence to the new capacity? */
}
batt_drv->fake_capacity = capacity;
}
static int gbatt_set_health(struct batt_drv *batt_drv, int health)
{
if (health > POWER_SUPPLY_HEALTH_HOT ||
health < POWER_SUPPLY_HEALTH_UNKNOWN)
return -EINVAL;
batt_drv->batt_health = health;
/* disable health charging if in overheat */
if (health == POWER_SUPPLY_HEALTH_OVERHEAT)
msc_logic_health(batt_drv);
return 0;
}
#define RESTORE_SOC_THRESHOLD 5
static int gbatt_restore_capacity(struct batt_drv *batt_drv)
{
struct batt_ssoc_state *ssoc_state = &batt_drv->ssoc_state;
int ret = 0, save_soc, gdf_soc;
ret = gbms_storage_read(GBMS_TAG_RSOC, &ssoc_state->save_soc,
sizeof(ssoc_state->save_soc));
if (ret < 0)
return ret;
if (ssoc_state->save_soc) {
save_soc = (int)ssoc_state->save_soc;
gdf_soc = qnum_toint(ssoc_state->ssoc_gdf);
pr_info("save_soc:%d, gdf:%d", save_soc, gdf_soc);
if ((save_soc < gdf_soc) ||
(save_soc - gdf_soc) > RESTORE_SOC_THRESHOLD)
return ret;
gbatt_reset_curve(batt_drv, save_soc);
}
return ret;
}
#define TTF_REPORT_MAX_RATIO 300
static int gbatt_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct batt_drv *batt_drv = (struct batt_drv *)
power_supply_get_drvdata(psy);
int rc, err = 0;
pm_runtime_get_sync(batt_drv->device);
if (!batt_drv->init_complete || !batt_drv->resume_complete) {
pm_runtime_put_sync(batt_drv->device);
return -EAGAIN;
}
pm_runtime_put_sync(batt_drv->device);
switch (psp) {
case GBMS_PROP_ADAPTER_DETAILS:
val->intval = batt_drv->ce_data.adapter_details.v;
break;
case GBMS_PROP_DEAD_BATTERY:
val->intval = batt_drv->dead_battery;
break;
/*
* ng charging:
* 1) write to GBMS_PROP_CHARGE_CHARGER_STATE,
* 2) read POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT and
* POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE
*/
case GBMS_PROP_CHARGE_CHARGER_STATE:
val->intval = batt_drv->chg_state.v;
break;
case POWER_SUPPLY_PROP_CYCLE_COUNT:
if (batt_drv->cycle_count < 0)
err = batt_drv->cycle_count;
else
val->intval = batt_drv->cycle_count;
break;
case POWER_SUPPLY_PROP_CAPACITY:
mutex_lock(&batt_drv->batt_lock);
val->intval = gbatt_get_capacity(batt_drv);
mutex_unlock(&batt_drv->batt_lock);
break;
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
if (batt_drv->fake_capacity >= 0 &&
batt_drv->fake_capacity <= 100)
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
else
val->intval = batt_drv->capacity_level;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
mutex_lock(&batt_drv->chg_lock);
val->intval = batt_drv->cc_max;
mutex_unlock(&batt_drv->chg_lock);
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
mutex_lock(&batt_drv->chg_lock);
val->intval = batt_drv->fv_uv;
mutex_unlock(&batt_drv->chg_lock);
break;
/*
* POWER_SUPPLY_PROP_CHARGE_DONE comes from the charger BUT battery
* has also an idea about it.
* mutex_lock(&batt_drv->chg_lock);
* val->intval = batt_drv->chg_done;
* mutex_unlock(&batt_drv->chg_lock);
*/
/*
* compat: POWER_SUPPLY_PROP_CHARGE_TYPE comes from the charger so
* using the last value reported from the CHARGER. This (of course)
* means that NG charging needs to be enabled.
*/
case POWER_SUPPLY_PROP_CHARGE_TYPE:
mutex_lock(&batt_drv->chg_lock);
val->intval = batt_drv->chg_state.f.chg_type;
mutex_unlock(&batt_drv->chg_lock);
break;
case POWER_SUPPLY_PROP_STATUS:
err = gbatt_get_status(batt_drv, val);
break;
/* health */
case POWER_SUPPLY_PROP_HEALTH:
if (batt_drv->batt_health == POWER_SUPPLY_HEALTH_OVERHEAT &&
temp_defend_dry_run(batt_drv->temp_dryrun_votable)) {
val->intval = POWER_SUPPLY_HEALTH_GOOD;
} else if (batt_drv->batt_health !=
POWER_SUPPLY_HEALTH_UNKNOWN) {
val->intval = batt_drv->batt_health;
} else if (!batt_drv->fg_psy) {
val->intval = POWER_SUPPLY_HEALTH_UNKNOWN;
} else {
rc = power_supply_get_property(batt_drv->fg_psy,
psp, val);
if (rc < 0)
val->intval = POWER_SUPPLY_HEALTH_UNKNOWN;
batt_drv->soh = val->intval;
}
if (batt_drv->report_health != val->intval) {
/* Log health change for debug */
logbuffer_log(batt_drv->ttf_stats.ttf_log,
"h:%d->%d batt_health:%d dry_run:%d soh:%d",
batt_drv->report_health, val->intval, batt_drv->batt_health,
temp_defend_dry_run(batt_drv->temp_dryrun_votable),
batt_drv->soh);
batt_drv->report_health = val->intval;
}
break;
/* cannot set err, negative estimate will revert to HAL */
case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW: {
ktime_t res;
int max_ratio;
max_ratio = batt_ttf_estimate(&res, batt_drv);
if (max_ratio >= TTF_REPORT_MAX_RATIO) {
val->intval = 0;
} else if (max_ratio >= 0) {
if (res < 0)
res = 0;
val->intval = res;
} else if (!batt_drv->fg_psy) {
val->intval = -1;
} else {
rc = power_supply_get_property(batt_drv->fg_psy,
psp, val);
if (rc < 0)
val->intval = -1;
}
} break;
case POWER_SUPPLY_PROP_TEMP:
err = gbatt_get_temp(batt_drv, &val->intval);
break;
case POWER_SUPPLY_PROP_CURRENT_AVG:
case POWER_SUPPLY_PROP_CURRENT_NOW:
if (!batt_drv->fg_psy)
return -EINVAL;
err = power_supply_get_property(batt_drv->fg_psy, psp, val);
if (err == 0)
val->intval = -val->intval;
break;
/* Can force the state here */
case POWER_SUPPLY_PROP_PRESENT:
if (batt_drv->fake_battery_present != -1) {
val->intval = batt_drv->fake_battery_present;
} else if (batt_drv->fg_psy) {
/* TODO: use the cached value? */
rc = power_supply_get_property(batt_drv->fg_psy,
psp, val);
if (rc < 0)
val->intval = 0;
} else {
err = -EINVAL;
}
break;
case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
if (batt_drv->topoff)
val->intval = batt_drv->topoff;
else
val->intval = -1;
break;
default:
if (!batt_drv->fg_psy)
return -EINVAL;
err = power_supply_get_property(batt_drv->fg_psy, psp, val);
break;
}
if (err < 0) {
pr_debug("gbatt: get_prop cannot read psp=%d\n", psp);
return err;
}
return 0;
}
static int gbatt_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct batt_drv *batt_drv = (struct batt_drv *)
power_supply_get_drvdata(psy);
int ret = 0;
pm_runtime_get_sync(batt_drv->device);
if (!batt_drv->init_complete || !batt_drv->resume_complete) {
pm_runtime_put_sync(batt_drv->device);
return -EAGAIN;
}
pm_runtime_put_sync(batt_drv->device);
switch (psp) {
case GBMS_PROP_ADAPTER_DETAILS:
mutex_lock(&batt_drv->stats_lock);
batt_drv->ce_data.adapter_details.v = val->intval;
mutex_unlock(&batt_drv->stats_lock);
break;
/* NG Charging, where it all begins */
case GBMS_PROP_CHARGE_CHARGER_STATE:
mutex_lock(&batt_drv->chg_lock);
batt_drv->chg_state.v = gbms_propval_int64val(val);
ret = batt_chg_logic(batt_drv);
mutex_unlock(&batt_drv->chg_lock);
break;
case POWER_SUPPLY_PROP_CAPACITY:
mutex_lock(&batt_drv->chg_lock);
if (val->intval != batt_drv->fake_capacity) {
gbatt_set_capacity(batt_drv, val->intval);
if (batt_drv->psy)
power_supply_changed(batt_drv->psy);
}
mutex_unlock(&batt_drv->chg_lock);
break;
case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
if (val->intval <= 0)
batt_drv->ttf_stats.ttf_fake = -1;
else
batt_drv->ttf_stats.ttf_fake = val->intval;
pr_info("time_to_full = %lld\n", batt_drv->ttf_stats.ttf_fake);
if (batt_drv->psy)
power_supply_changed(batt_drv->psy);
break;
case POWER_SUPPLY_PROP_HEALTH:
mutex_lock(&batt_drv->chg_lock);
if (batt_drv->batt_health != val->intval) {
ret = gbatt_set_health(batt_drv, val->intval);
if (ret == 0 && batt_drv->psy)
power_supply_changed(batt_drv->psy);
}
mutex_unlock(&batt_drv->chg_lock);
break;
default:
ret = -EINVAL;
break;
}
if (ret < 0) {
pr_debug("gbatt: get_prop cannot write psp=%d\n", psp);
return ret;
}
return 0;
}
static int gbatt_property_is_writeable(struct power_supply *psy,
enum power_supply_property psp)
{
switch (psp) {
case GBMS_PROP_CHARGE_CHARGER_STATE:
case POWER_SUPPLY_PROP_CAPACITY:
case GBMS_PROP_ADAPTER_DETAILS:
case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
case POWER_SUPPLY_PROP_HEALTH:
return 1;
default:
break;
}
return 0;
}
static struct power_supply_desc gbatt_psy_desc = {
.name = "battery",
.type = POWER_SUPPLY_TYPE_BATTERY,
.get_property = gbatt_get_property,
.set_property = gbatt_set_property,
.property_is_writeable = gbatt_property_is_writeable,
.properties = gbatt_battery_props,
.num_properties = ARRAY_SIZE(gbatt_battery_props),
};
/* ------------------------------------------------------------------------ */
static int batt_init_sd(struct swelling_data *sd)
{
int ret, i, j;
if (!sd->is_enable)
return 0;
ret = gbms_storage_read(GBMS_TAG_STRD, &sd->saved,
sizeof(sd->saved));
if (ret < 0)
return ret;
if (sd->saved[SD_CHG_START] == 0xFFFF) {
/* Empty EEPROM, initial sd_saved */
for (i = 0; i < BATT_SD_SAVE_SIZE; i++)
sd->saved[i] = 0;
} else {
/* Available data, restore */
for (i = 0; i < BATT_TEMP_RECORD_THR; i++) {
j = i + SD_DISCHG_START;
sd->chg[i] = sd->saved[i] * SAVE_UNIT;
sd->dischg[i] = sd->saved[j] * SAVE_UNIT;
}
}
return ret;
}
/* bhi_init */
static int batt_bhi_init(struct batt_drv *batt_drv)
{
struct health_data *health_data = &batt_drv->health_data;
int ret;
/* see enum bhi_algo */
ret = of_property_read_u32(batt_drv->device->of_node, "google,bhi-algo-ver",
&health_data->bhi_algo);
if (ret < 0)
health_data->bhi_algo = BHI_ALGO_DISABLED;
/* default weights */
ret = of_property_read_u32(batt_drv->device->of_node, "google,bhi-w_ci",
&health_data->bhi_w_ci);
if (ret < 0)
health_data->bhi_w_ci = 100;
ret = of_property_read_u32(batt_drv->device->of_node, "google,bhi-w_pi",
&health_data->bhi_w_pi);
if (ret < 0)
health_data->bhi_w_pi = 0;
ret = of_property_read_u32(batt_drv->device->of_node, "google,bhi-w_sd",
&health_data->bhi_w_sd);
if (ret < 0)
health_data->bhi_w_sd = 0;
/* default thresholds */
ret = of_property_read_u32(batt_drv->device->of_node, "google,bhi-status-marginal",
&health_data->marginal_threshold);
if (ret < 0)
health_data->marginal_threshold = BHI_MARGINAL_THRESHOLD_DEFAULT;
ret = of_property_read_u32(batt_drv->device->of_node, "google,bhi-status-need-rep",
&health_data->need_rep_threshold);
if (ret < 0)
health_data->need_rep_threshold = BHI_NEED_REP_THRESHOLD_DEFAULT;
/* design is the value used to build the charge table */
health_data->bhi_data.capacity_design = batt_drv->battery_capacity;
return 0;
}
static int batt_prop_iter(int index, gbms_tag_t *tag, void *ptr)
{
static gbms_tag_t keys[] = {GBMS_TAG_HCNT};
const int count = ARRAY_SIZE(keys);
if (index >= 0 && index < count) {
*tag = keys[index];
return 0;
}
return -ENOENT;
}
static int batt_prop_read(gbms_tag_t tag, void *buff, size_t size, void *ptr)
{
struct batt_drv *batt_drv = ptr;
int index, ret = 0;
switch (tag) {
case GBMS_TAG_HCNT:
if (size != sizeof(u16))
return -ERANGE;
/* history needs to be enabled for this */
index = hist_get_index(batt_drv->hist_data_saved_cnt, batt_drv);
if (index < 0)
return index;
*(u16 *)buff = index;
break;
default:
ret = -ENOENT;
break;
}
return ret;
}
static struct gbms_storage_desc batt_prop_dsc = {
.iter = batt_prop_iter,
.read = batt_prop_read,
};
static void google_battery_init_work(struct work_struct *work)
{
struct batt_drv *batt_drv = container_of(work, struct batt_drv,
init_work.work);
struct device_node *node = batt_drv->device->of_node;
struct power_supply *fg_psy = batt_drv->fg_psy;
const char *batt_vs_tz_name = NULL;
int ret = 0;
batt_rl_reset(batt_drv);
batt_drv->dead_battery = true; /* clear in batt_work() */
batt_drv->capacity_level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
batt_drv->ssoc_state.buck_enabled = -1;
batt_drv->hold_taper_ws = false;
batt_drv->fake_temp = 0;
batt_drv->fake_battery_present = -1;
batt_reset_chg_drv_state(batt_drv);
mutex_init(&batt_drv->chg_lock);
mutex_init(&batt_drv->batt_lock);
mutex_init(&batt_drv->stats_lock);
mutex_init(&batt_drv->cc_data.lock);
mutex_init(&batt_drv->bpst_state.lock);
if (!batt_drv->fg_psy) {
fg_psy = power_supply_get_by_name(batt_drv->fg_psy_name);
if (!fg_psy) {
pr_info("failed to get \"%s\" power supply, retrying...\n",
batt_drv->fg_psy_name);
goto retry_init_work;
}
batt_drv->fg_psy = fg_psy;
}
if (!batt_drv->batt_present) {
ret = GPSY_GET_PROP(fg_psy, POWER_SUPPLY_PROP_PRESENT);
if (ret == -EAGAIN)
goto retry_init_work;
batt_drv->batt_present = (ret > 0);
if (!batt_drv->batt_present)
pr_warn("battery not present (ret=%d)\n", ret);
}
ret = of_property_read_u32(node, "google,recharge-soc-threshold",
&batt_drv->ssoc_state.rl_soc_threshold);
if (ret < 0)
batt_drv->ssoc_state.rl_soc_threshold =
DEFAULT_BATT_DRV_RL_SOC_THRESHOLD;
ret = of_property_read_u32(node, "google,bd-trickle-recharge-soc",
&batt_drv->ssoc_state.bd_trickle_recharge_soc);
if (ret < 0)
batt_drv->ssoc_state.bd_trickle_recharge_soc =
DEFAULT_BD_TRICKLE_RL_SOC_THRESHOLD;
batt_drv->ssoc_state.bd_trickle_dry_run = false;
ret = of_property_read_u32(node, "google,bd-trickle-reset-sec",
&batt_drv->ssoc_state.bd_trickle_reset_sec);
if (ret < 0)
batt_drv->ssoc_state.bd_trickle_reset_sec =
DEFAULT_BD_TRICKLE_RESET_SEC;
batt_drv->ssoc_state.bd_trickle_enable =
of_property_read_bool(node, "google,bd-trickle-enable");
ret = of_property_read_u32(node, "google,ssoc-delta",
&batt_drv->ssoc_state.ssoc_delta);
if (ret < 0)
batt_drv->ssoc_state.ssoc_delta = SSOC_DELTA;
ret = of_property_read_u32(node, "google,health-safety-margin",
&batt_drv->health_safety_margin);
if (ret < 0)
batt_drv->health_safety_margin = DEFAULT_HEALTH_SAFETY_MARGIN;
ret = of_property_read_u32_array(node, "google,temp-record-thr",
batt_drv->sd.temp_thr,
BATT_TEMP_RECORD_THR);
if (ret == 0) {
ret = of_property_read_u32_array(node, "google,soc-record-thr",
batt_drv->sd.soc_thr,
BATT_TEMP_RECORD_THR);
if (ret == 0)
batt_drv->sd.is_enable = true;
}
ret = batt_init_sd(&batt_drv->sd);
if (ret < 0) {
pr_err("Unable to read swelling data, ret=%d\n", ret);
batt_drv->sd.is_enable = false;
}
/* init bpst setting */
ret = batt_init_bpst_profile(batt_drv);
if (ret < 0)
pr_err("bpst profile disabled, ret=%d\n", ret);
/* cycle count is cached: read here bc SSOC, chg_profile might use it */
batt_update_cycle_count(batt_drv);
ret = ssoc_init(&batt_drv->ssoc_state, node, fg_psy);
if (ret < 0 && batt_drv->batt_present)
goto retry_init_work;
dump_ssoc_state(&batt_drv->ssoc_state, batt_drv->ssoc_log);
ret = gbatt_restore_capacity(batt_drv);
if (ret < 0)
pr_warn("unable to restore capacity, ret=%d\n", ret);
else
batt_drv->ssoc_state.save_soc_available = true;
/* could read EEPROM and history here */
/* chg_profile will use cycle_count when aacr is enabled */
ret = batt_init_chg_profile(batt_drv);
if (ret == -EPROBE_DEFER)
goto retry_init_work;
if (ret < 0) {
pr_err("charging profile disabled, ret=%d\n", ret);
} else if (batt_drv->battery_capacity) {
google_battery_dump_profile(&batt_drv->chg_profile);
}
cev_stats_init(&batt_drv->ce_data, &batt_drv->chg_profile);
cev_stats_init(&batt_drv->ce_qual, &batt_drv->chg_profile);
batt_drv->fg_nb.notifier_call = psy_changed;
ret = power_supply_reg_notifier(&batt_drv->fg_nb);
if (ret < 0)
pr_err("cannot register power supply notifer, ret=%d\n",
ret);
batt_drv->batt_ws = wakeup_source_register(NULL, gbatt_psy_desc.name);
batt_drv->taper_ws = wakeup_source_register(NULL, "Taper");
batt_drv->poll_ws = wakeup_source_register(NULL, "Poll");
batt_drv->msc_ws = wakeup_source_register(NULL, "MSC");
if (!batt_drv->batt_ws || !batt_drv->taper_ws ||
!batt_drv->poll_ws || !batt_drv->msc_ws)
pr_err("failed to register wakeup sources\n");
mutex_lock(&batt_drv->cc_data.lock);
ret = batt_cycle_count_load(&batt_drv->cc_data);
if (ret < 0)
pr_err("cannot restore bin count ret=%d\n", ret);
mutex_unlock(&batt_drv->cc_data.lock);
batt_drv->fake_capacity = (batt_drv->batt_present) ? -EINVAL
: DEFAULT_BATT_FAKE_CAPACITY;
/* charging configuration */
ret = of_property_read_u32(node, "google,update-interval",
&batt_drv->batt_update_interval);
if (ret < 0)
batt_drv->batt_update_interval = DEFAULT_BATT_UPDATE_INTERVAL;
/* high temperature notify configuration */
ret = of_property_read_u32(batt_drv->device->of_node,
"google,update-high-temp-threshold",
&batt_drv->batt_update_high_temp_threshold);
if (ret < 0)
batt_drv->batt_update_high_temp_threshold =
DEFAULT_HIGH_TEMP_UPDATE_THRESHOLD;
/* charge statistics */
ret = of_property_read_u32(node, "google,chg-stats-qual-time",
&batt_drv->chg_sts_qual_time);
if (ret < 0)
batt_drv->chg_sts_qual_time =
DEFAULT_CHG_STATS_MIN_QUAL_TIME;
ret = of_property_read_u32(node, "google,chg-stats-delta-soc",
&batt_drv->chg_sts_delta_soc);
if (ret < 0)
batt_drv->chg_sts_delta_soc =
DEFAULT_CHG_STATS_MIN_DELTA_SOC;
/* time to full */
ret = ttf_stats_init(&batt_drv->ttf_stats, batt_drv->device,
batt_drv->battery_capacity);
if (ret < 0)
pr_info("time to full not available\n");
/* TTF log is used report more things nowadays */
batt_drv->ttf_stats.ttf_log = logbuffer_register("ttf");
if (IS_ERR(batt_drv->ttf_stats.ttf_log)) {
ret = PTR_ERR(batt_drv->ttf_stats.ttf_log);
dev_err(batt_drv->device, "failed to create ttf_log, ret=%d\n", ret);
batt_drv->ttf_stats.ttf_log = NULL;
}
/* RAVG: google_resistance */
ret = batt_res_load_data(&batt_drv->health_data.bhi_data.res_state,
batt_drv->fg_psy);
if (ret < 0)
dev_warn(batt_drv->device, "RAVG not available (%d)\n", ret);
batt_res_dump_logs(&batt_drv->health_data.bhi_data.res_state);
/* health based charging, triggers */
batt_drv->chg_health.always_on_soc = -1;
ret = of_property_read_u32(batt_drv->device->of_node,
"google,chg-rest-soc",
&batt_drv->chg_health.rest_soc);
if (ret < 0)
batt_drv->chg_health.rest_soc = -1;
ret = of_property_read_u32(batt_drv->device->of_node,
"google,chg-rest-rate",
&batt_drv->chg_health.rest_rate);
if (ret < 0)
batt_drv->chg_health.rest_rate = 0;
/* override setting google,battery-roundtrip = 0 in device tree */
batt_drv->disable_votes =
of_property_read_bool(node, "google,disable-votes");
if (batt_drv->disable_votes)
pr_info("battery votes disabled\n");
/* pairing battery vs. device */
if (of_property_read_bool(node, "google,eeprom-pairing"))
batt_drv->pairing_state = BATT_PAIRING_ENABLED;
else
batt_drv->pairing_state = BATT_PAIRING_DISABLED;
/* use delta cycle count to adjust collecting period */
ret = of_property_read_u32(batt_drv->device->of_node,
"google,history-delta-cycle-count",
&batt_drv->hist_delta_cycle_cnt);
if (ret < 0)
batt_drv->hist_delta_cycle_cnt = HCC_DEFAULT_DELTA_CYCLE_CNT;
/* battery virtual sensor */
ret = of_property_read_string(batt_drv->device->of_node,
"google,batt-vs-tz-name",
&batt_vs_tz_name);
if (ret == 0) {
batt_drv->batt_vs_tz =
thermal_zone_device_register(batt_vs_tz_name, 0, 0,
batt_drv, &batt_vs_tz_ops, NULL, 0, 0);
if (IS_ERR(batt_drv->batt_vs_tz)) {
pr_err("batt_vs tz register failed. err:%ld\n",
PTR_ERR(batt_drv->batt_vs_tz));
batt_drv->batt_vs_tz = NULL;
} else {
thermal_zone_device_update(batt_drv->batt_vs_tz, THERMAL_DEVICE_UP);
}
batt_drv->batt_vs_w = 88;
pr_info("google,batt-vs-tz-name is %s\n", batt_vs_tz_name);
}
/* debugfs */
(void)batt_init_fs(batt_drv);
/* single battery disconnect */
(void)batt_bpst_init_fs(batt_drv);
/* these don't require nvm storage */
ret = gbms_storage_register(&batt_prop_dsc, "battery", batt_drv);
if (ret == -EBUSY)
ret = 0;
/* use delta cycle count != 0 to enable collecting history */
if (batt_drv->hist_delta_cycle_cnt)
batt_drv->blf_state = BATT_LFCOLLECT_ENABLED;
/* google_battery expose history via a standard device */
batt_drv->history = gbms_storage_create_device("battery_history",
GBMS_TAG_HIST);
if (!batt_drv->history)
pr_err("history not available\n");
/* BHI: might need RAVG and battery history */
ret = batt_bhi_init(batt_drv);
if (ret < 0) {
dev_warn(batt_drv->device, "BHI: not supported (%d)\n", ret);
} else {
/* reload the last estimates, */
ret = batt_bhi_data_load(batt_drv);
if (ret < 0)
dev_err(batt_drv->device, "BHI: invalid data, starting fresh (%d)\n", ret);
}
/* power metrics */
schedule_delayed_work(&batt_drv->power_metrics.work,
msecs_to_jiffies(batt_drv->power_metrics.polling_rate * 1000));
pr_info("google_battery init_work done\n");
batt_drv->init_complete = true;
batt_drv->resume_complete = true;
schedule_delayed_work(&batt_drv->batt_work, 0);
return;
retry_init_work:
schedule_delayed_work(&batt_drv->init_work,
msecs_to_jiffies(BATT_DELAY_INIT_MS));
}
static struct thermal_zone_of_device_ops google_battery_tz_ops = {
.get_temp = google_battery_tz_get_cycle_count,
};
static int batt_ravg_init(struct batt_res *res_state, struct device_node *node)
{
int ret;
if (of_property_read_bool(node, "google,no-ravg"))
return -ENOENT;
/* Resistance Estimation configuration */
ret = of_property_read_u32(node, "google,res-temp-hi",
&res_state->res_temp_high);
if (ret < 0)
res_state->res_temp_high = DEFAULT_RES_TEMP_HIGH;
ret = of_property_read_u32(node, "google,res-temp-lo",
&res_state->res_temp_low);
if (ret < 0)
res_state->res_temp_low = DEFAULT_RES_TEMP_LOW;
ret = of_property_read_u32(node, "google,res-soc-thresh",
&res_state->ravg_soc_high);
if (ret < 0)
res_state->ravg_soc_high = DEFAULT_RAVG_SOC_HIGH;
ret = of_property_read_u32(node, "google,ravg-soc-low",
&res_state->ravg_soc_low);
if (ret < 0)
res_state->ravg_soc_low = DEFAULT_RAVG_SOC_LOW;
ret = of_property_read_u32(node, "google,res-filt-length",
&res_state->estimate_filter);
if (ret < 0)
res_state->estimate_filter = DEFAULT_RES_FILT_LEN;
return 0;
}
static int google_battery_probe(struct platform_device *pdev)
{
const char *fg_psy_name, *psy_name = NULL;
struct batt_drv *batt_drv;
int ret;
struct power_supply_config psy_cfg = {};
batt_drv = devm_kzalloc(&pdev->dev, sizeof(*batt_drv), GFP_KERNEL);
if (!batt_drv)
return -ENOMEM;
batt_drv->device = &pdev->dev;
ret = of_property_read_string(pdev->dev.of_node, "google,fg-psy-name",
&fg_psy_name);
if (ret != 0) {
pr_err("cannot read google,fg-psy-name, ret=%d\n", ret);
return -EINVAL;
}
batt_drv->fg_psy_name = devm_kstrdup(&pdev->dev, fg_psy_name,
GFP_KERNEL);
if (!batt_drv->fg_psy_name)
return -ENOMEM;
/* change name and type for debug/test */
if (of_property_read_bool(pdev->dev.of_node, "google,psy-type-unknown"))
gbatt_psy_desc.type = POWER_SUPPLY_TYPE_UNKNOWN;
ret = of_property_read_string(pdev->dev.of_node,
"google,psy-name", &psy_name);
if (ret == 0) {
gbatt_psy_desc.name =
devm_kstrdup(&pdev->dev, psy_name, GFP_KERNEL);
}
INIT_DELAYED_WORK(&batt_drv->init_work, google_battery_init_work);
INIT_DELAYED_WORK(&batt_drv->batt_work, google_battery_work);
INIT_DELAYED_WORK(&batt_drv->power_metrics.work, power_metrics_data_work);
platform_set_drvdata(pdev, batt_drv);
psy_cfg.drv_data = batt_drv;
psy_cfg.of_node = pdev->dev.of_node;
batt_drv->psy = devm_power_supply_register(batt_drv->device,
&gbatt_psy_desc, &psy_cfg);
if (IS_ERR(batt_drv->psy)) {
ret = PTR_ERR(batt_drv->psy);
if (ret == -EPROBE_DEFER)
return -EPROBE_DEFER;
/* TODO: fail with -ENODEV */
dev_err(batt_drv->device,
"Couldn't register as power supply, ret=%d\n", ret);
}
batt_drv->ssoc_log = logbuffer_register("ssoc");
if (IS_ERR(batt_drv->ssoc_log)) {
ret = PTR_ERR(batt_drv->ssoc_log);
dev_err(batt_drv->device,
"failed to create ssoc_log, ret=%d\n", ret);
batt_drv->ssoc_log = NULL;
}
/* RAVG: google_resistance */
ret = batt_ravg_init(&batt_drv->health_data.bhi_data.res_state,
pdev->dev.of_node);
if (ret < 0)
dev_info(batt_drv->device, "RAVG: not available\n");
batt_drv->tz_dev = thermal_zone_of_sensor_register(batt_drv->device,
0, batt_drv, &google_battery_tz_ops);
if (IS_ERR(batt_drv->tz_dev)) {
pr_err("battery tz register failed. err:%ld\n",
PTR_ERR(batt_drv->tz_dev));
ret = PTR_ERR(batt_drv->tz_dev);
batt_drv->tz_dev = NULL;
} else {
thermal_zone_device_update(batt_drv->tz_dev, THERMAL_DEVICE_UP);
}
batt_drv->fan_level = -1;
batt_drv->fan_last_level = -1;
batt_drv->fan_level_votable =
gvotable_create_int_election(NULL, gvotable_comparator_int_max,
fan_level_cb, batt_drv);
if (IS_ERR_OR_NULL(batt_drv->fan_level_votable)) {
ret = PTR_ERR(batt_drv->fan_level_votable);
dev_err(batt_drv->device, "Fail to create fan_level_votable\n");
batt_drv->fan_level_votable = NULL;
} else {
gvotable_set_vote2str(batt_drv->fan_level_votable,
gvotable_v2s_int);
gvotable_election_set_name(batt_drv->fan_level_votable,
VOTABLE_FAN_LEVEL);
gvotable_cast_long_vote(batt_drv->fan_level_votable,
"DEFAULT", FAN_LVL_UNKNOWN, true);
}
/* charge speed interface: status and type */
batt_drv->csi_status_votable =
gvotable_create_int_election(NULL, gvotable_comparator_int_min,
csi_status_cb, batt_drv);
if (IS_ERR_OR_NULL(batt_drv->csi_status_votable)) {
ret = PTR_ERR(batt_drv->csi_status_votable);
batt_drv->csi_status_votable = NULL;
}
gvotable_set_default(batt_drv->csi_status_votable, (void *)CSI_STATUS_UNKNOWN);
gvotable_set_vote2str(batt_drv->csi_status_votable, gvotable_v2s_int);
gvotable_election_set_name(batt_drv->csi_status_votable, VOTABLE_CSI_STATUS);
batt_drv->csi_type_votable =
gvotable_create_int_election(NULL, gvotable_comparator_int_min,
csi_type_cb, batt_drv);
if (IS_ERR_OR_NULL(batt_drv->csi_type_votable)) {
ret = PTR_ERR(batt_drv->csi_type_votable);
batt_drv->csi_type_votable = NULL;
}
gvotable_set_default(batt_drv->csi_type_votable, (void *)CSI_TYPE_UNKNOWN);
gvotable_set_vote2str(batt_drv->csi_type_votable, gvotable_v2s_int);
gvotable_election_set_name(batt_drv->csi_type_votable, VOTABLE_CSI_TYPE);
/* AACR server side */
batt_drv->aacr_cycle_grace = AACR_START_CYCLE_DEFAULT;
batt_drv->aacr_cycle_max = AACR_MAX_CYCLE_DEFAULT;
batt_drv->aacr_state = BATT_AACR_DISABLED;
/* give time to fg driver to start */
schedule_delayed_work(&batt_drv->init_work,
msecs_to_jiffies(BATT_DELAY_INIT_MS));
/* power metrics */
batt_drv->power_metrics.polling_rate = 30;
batt_drv->power_metrics.interval = 120;
return 0;
}
static int google_battery_remove(struct platform_device *pdev)
{
struct batt_drv *batt_drv = platform_get_drvdata(pdev);
if (!batt_drv)
return 0;
if (batt_drv->ssoc_log)
logbuffer_unregister(batt_drv->ssoc_log);
if (batt_drv->ttf_stats.ttf_log)
logbuffer_unregister(batt_drv->ttf_stats.ttf_log);
if (batt_drv->tz_dev)
thermal_zone_of_sensor_unregister(batt_drv->device,
batt_drv->tz_dev);
if (batt_drv->history)
gbms_storage_cleanup_device(batt_drv->history);
if (batt_drv->fg_psy)
power_supply_put(batt_drv->fg_psy);
batt_hist_free_data(batt_drv->hist_data);
gbms_free_chg_profile(&batt_drv->chg_profile);
wakeup_source_unregister(batt_drv->msc_ws);
wakeup_source_unregister(batt_drv->batt_ws);
wakeup_source_unregister(batt_drv->taper_ws);
wakeup_source_unregister(batt_drv->poll_ws);
gvotable_destroy_election(batt_drv->fan_level_votable);
gvotable_destroy_election(batt_drv->csi_status_votable);
gvotable_destroy_election(batt_drv->csi_type_votable);
batt_drv->fan_level_votable = NULL;
batt_drv->csi_status_votable = NULL;
batt_drv->csi_type_votable = NULL;
return 0;
}
#ifdef SUPPORT_PM_SLEEP
static int gbatt_pm_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct batt_drv *batt_drv = platform_get_drvdata(pdev);
pm_runtime_get_sync(batt_drv->device);
batt_drv->resume_complete = false;
pm_runtime_put_sync(batt_drv->device);
return 0;
}
static int gbatt_pm_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct batt_drv *batt_drv = platform_get_drvdata(pdev);
pm_runtime_get_sync(batt_drv->device);
batt_drv->resume_complete = true;
pm_runtime_put_sync(batt_drv->device);
mod_delayed_work(system_wq, &batt_drv->batt_work, 0);
return 0;
}
static const struct dev_pm_ops gbatt_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(gbatt_pm_suspend, gbatt_pm_resume)
};
#endif
static const struct of_device_id google_charger_of_match[] = {
{.compatible = "google,battery"},
{},
};
MODULE_DEVICE_TABLE(of, google_charger_of_match);
static struct platform_driver google_battery_driver = {
.driver = {
.name = "google,battery",
.owner = THIS_MODULE,
.of_match_table = google_charger_of_match,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
#ifdef SUPPORT_PM_SLEEP
.pm = &gbatt_pm_ops,
#endif
},
.probe = google_battery_probe,
.remove = google_battery_remove,
};
module_platform_driver(google_battery_driver);
MODULE_DESCRIPTION("Google Battery Driver");
MODULE_AUTHOR("AleX Pelosi <apelosi@google.com>");
MODULE_LICENSE("GPL");