blob: 10c15fadc9593f6d3db389d38862ac68a0188d06 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2018 Google LLC
*/
#define _GNU_SOURCE
#include <alloca.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <lz4.h>
#include <poll.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <zstd.h>
#include <sys/inotify.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/xattr.h>
#include <sys/statvfs.h>
#include <linux/random.h>
#include <linux/stat.h>
#include <linux/unistd.h>
#include <openssl/pem.h>
#include <openssl/x509.h>
#include <kselftest.h>
#include <include/uapi/linux/fsverity.h>
#include "utils.h"
/* Can't include uapi/linux/fs.h because it clashes with mount.h */
#define FS_IOC_GETFLAGS _IOR('f', 1, long)
#define FS_VERITY_FL 0x00100000 /* Verity protected inode */
#define TEST_SKIP 2
#define TEST_FAILURE 1
#define TEST_SUCCESS 0
#define INCFS_ROOT_INODE 0
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define le16_to_cpu(x) (x)
#define le32_to_cpu(x) (x)
#define le64_to_cpu(x) (x)
#else
#error Big endian not supported!
#endif
struct {
int file;
int test;
bool verbose;
} options;
#define TESTCOND(condition) \
do { \
if (!(condition)) { \
ksft_print_msg("%s failed %d\n", \
__func__, __LINE__); \
goto out; \
} else if (options.verbose) \
ksft_print_msg("%s succeeded %d\n", \
__func__, __LINE__); \
} while (false)
#define TEST(statement, condition) \
do { \
statement; \
TESTCOND(condition); \
} while (false)
#define TESTEQUAL(statement, res) \
TESTCOND((statement) == (res))
#define TESTNE(statement, res) \
TESTCOND((statement) != (res))
#define TESTSYSCALL(statement) \
do { \
int res = statement; \
\
if (res) \
ksft_print_msg("Failed: %s (%d)\n", \
strerror(errno), errno); \
TESTEQUAL(res, 0); \
} while (false)
void print_bytes(const void *data, size_t size)
{
const uint8_t *bytes = data;
int i;
for (i = 0; i < size; ++i) {
if (i % 0x10 == 0)
printf("%08x:", i);
printf("%02x ", (unsigned int) bytes[i]);
if (i % 0x10 == 0x0f)
printf("\n");
}
if (i % 0x10 != 0)
printf("\n");
}
struct hash_block {
char data[INCFS_DATA_FILE_BLOCK_SIZE];
};
struct test_signature {
void *data;
size_t size;
char add_data[100];
size_t add_data_size;
};
struct test_file {
int index;
incfs_uuid_t id;
char *name;
off_t size;
char root_hash[INCFS_MAX_HASH_SIZE];
struct hash_block *mtree;
int mtree_block_count;
struct test_signature sig;
unsigned char *verity_sig;
size_t verity_sig_size;
};
struct test_files_set {
struct test_file *files;
int files_count;
};
struct linux_dirent64 {
uint64_t d_ino;
int64_t d_off;
unsigned short d_reclen;
unsigned char d_type;
char d_name[0];
} __packed;
struct test_files_set get_test_files_set(void)
{
static struct test_file files[] = {
{ .index = 0, .name = "file_one_byte", .size = 1 },
{ .index = 1,
.name = "file_one_block",
.size = INCFS_DATA_FILE_BLOCK_SIZE },
{ .index = 2,
.name = "file_one_and_a_half_blocks",
.size = INCFS_DATA_FILE_BLOCK_SIZE +
INCFS_DATA_FILE_BLOCK_SIZE / 2 },
{ .index = 3,
.name = "file_three",
.size = 300 * INCFS_DATA_FILE_BLOCK_SIZE + 3 },
{ .index = 4,
.name = "file_four",
.size = 400 * INCFS_DATA_FILE_BLOCK_SIZE + 7 },
{ .index = 5,
.name = "file_five",
.size = 500 * INCFS_DATA_FILE_BLOCK_SIZE + 7 },
{ .index = 6,
.name = "file_six",
.size = 600 * INCFS_DATA_FILE_BLOCK_SIZE + 7 },
{ .index = 7,
.name = "file_seven",
.size = 700 * INCFS_DATA_FILE_BLOCK_SIZE + 7 },
{ .index = 8,
.name = "file_eight",
.size = 800 * INCFS_DATA_FILE_BLOCK_SIZE + 7 },
{ .index = 9,
.name = "file_nine",
.size = 900 * INCFS_DATA_FILE_BLOCK_SIZE + 7 },
{ .index = 10, .name = "file_big", .size = 500 * 1024 * 1024 }
};
if (options.file)
return (struct test_files_set) {
.files = files + options.file - 1,
.files_count = 1,
};
return (struct test_files_set){ .files = files,
.files_count = ARRAY_SIZE(files) };
}
struct test_files_set get_small_test_files_set(void)
{
static struct test_file files[] = {
{ .index = 0, .name = "file_one_byte", .size = 1 },
{ .index = 1,
.name = "file_one_block",
.size = INCFS_DATA_FILE_BLOCK_SIZE },
{ .index = 2,
.name = "file_one_and_a_half_blocks",
.size = INCFS_DATA_FILE_BLOCK_SIZE +
INCFS_DATA_FILE_BLOCK_SIZE / 2 },
{ .index = 3,
.name = "file_three",
.size = 300 * INCFS_DATA_FILE_BLOCK_SIZE + 3 },
{ .index = 4,
.name = "file_four",
.size = 400 * INCFS_DATA_FILE_BLOCK_SIZE + 7 }
};
return (struct test_files_set){ .files = files,
.files_count = ARRAY_SIZE(files) };
}
static int get_file_block_seed(int file, int block)
{
return 7919 * file + block;
}
static loff_t min(loff_t a, loff_t b)
{
return a < b ? a : b;
}
static int ilog2(size_t n)
{
int l = 0;
while (n > 1) {
++l;
n >>= 1;
}
return l;
}
static pid_t flush_and_fork(void)
{
fflush(stdout);
return fork();
}
static void print_error(char *msg)
{
ksft_print_msg("%s: %s\n", msg, strerror(errno));
}
static int wait_for_process(pid_t pid)
{
int status;
int wait_res;
wait_res = waitpid(pid, &status, 0);
if (wait_res <= 0) {
print_error("Can't wait for the child");
return -EINVAL;
}
if (!WIFEXITED(status)) {
ksft_print_msg("Unexpected child status pid=%d\n", pid);
return -EINVAL;
}
status = WEXITSTATUS(status);
if (status != 0)
return status;
return 0;
}
static void rnd_buf(uint8_t *data, size_t len, unsigned int seed)
{
int i;
for (i = 0; i < len; i++) {
seed = 1103515245 * seed + 12345;
data[i] = (uint8_t)(seed >> (i % 13));
}
}
char *bin2hex(char *dst, const void *src, size_t count)
{
const unsigned char *_src = src;
static const char hex_asc[] = "0123456789abcdef";
while (count--) {
unsigned char x = *_src++;
*dst++ = hex_asc[(x & 0xf0) >> 4];
*dst++ = hex_asc[(x & 0x0f)];
}
*dst = 0;
return dst;
}
static char *get_index_filename(const char *mnt_dir, incfs_uuid_t id)
{
char path[FILENAME_MAX];
char str_id[1 + 2 * sizeof(id)];
bin2hex(str_id, id.bytes, sizeof(id.bytes));
snprintf(path, ARRAY_SIZE(path), "%s/.index/%s", mnt_dir, str_id);
return strdup(path);
}
static char *get_incomplete_filename(const char *mnt_dir, incfs_uuid_t id)
{
char path[FILENAME_MAX];
char str_id[1 + 2 * sizeof(id)];
bin2hex(str_id, id.bytes, sizeof(id.bytes));
snprintf(path, ARRAY_SIZE(path), "%s/.incomplete/%s", mnt_dir, str_id);
return strdup(path);
}
int open_file_by_id(const char *mnt_dir, incfs_uuid_t id, bool use_ioctl)
{
char *path = get_index_filename(mnt_dir, id);
int cmd_fd = open_commands_file(mnt_dir);
int fd = open(path, O_RDWR | O_CLOEXEC);
struct incfs_permit_fill permit_fill = {
.file_descriptor = fd,
};
int error = 0;
if (fd < 0) {
print_error("Can't open file by id.");
error = -errno;
goto out;
}
if (use_ioctl && ioctl(cmd_fd, INCFS_IOC_PERMIT_FILL, &permit_fill)) {
print_error("Failed to call PERMIT_FILL");
error = -errno;
goto out;
}
if (ioctl(fd, INCFS_IOC_PERMIT_FILL, &permit_fill) != -1) {
print_error(
"Successfully called PERMIT_FILL on non pending_read file");
return -errno;
goto out;
}
out:
free(path);
close(cmd_fd);
if (error) {
close(fd);
return error;
}
return fd;
}
int get_file_attr(const char *mnt_dir, incfs_uuid_t id, char *value, int size)
{
char *path = get_index_filename(mnt_dir, id);
int res;
res = getxattr(path, INCFS_XATTR_METADATA_NAME, value, size);
if (res < 0)
res = -errno;
free(path);
return res;
}
static bool same_id(incfs_uuid_t *id1, incfs_uuid_t *id2)
{
return !memcmp(id1->bytes, id2->bytes, sizeof(id1->bytes));
}
ssize_t ZSTD_compress_default(char *data, char *comp_data, size_t data_size,
size_t comp_size)
{
return ZSTD_compress(comp_data, comp_size, data, data_size, 1);
}
static int emit_test_blocks(const char *mnt_dir, struct test_file *file,
int blocks[], int count)
{
uint8_t data[INCFS_DATA_FILE_BLOCK_SIZE];
uint8_t comp_data[2 * INCFS_DATA_FILE_BLOCK_SIZE];
int block_count = (count > 32) ? 32 : count;
int data_buf_size = 2 * INCFS_DATA_FILE_BLOCK_SIZE * block_count;
uint8_t *data_buf = malloc(data_buf_size);
uint8_t *current_data = data_buf;
uint8_t *data_end = data_buf + data_buf_size;
struct incfs_fill_block *block_buf =
calloc(block_count, sizeof(struct incfs_fill_block));
struct incfs_fill_blocks fill_blocks = {
.count = block_count,
.fill_blocks = ptr_to_u64(block_buf),
};
ssize_t write_res = 0;
int fd = -1;
int error = 0;
int i = 0;
int blocks_written = 0;
for (i = 0; i < block_count; i++) {
int block_index = blocks[i];
bool compress_zstd = (file->index + block_index) % 4 == 2;
bool compress_lz4 = (file->index + block_index) % 4 == 0;
int seed = get_file_block_seed(file->index, block_index);
off_t block_offset =
((off_t)block_index) * INCFS_DATA_FILE_BLOCK_SIZE;
size_t block_size = 0;
if (block_offset > file->size) {
error = -EINVAL;
break;
}
if (file->size - block_offset >
INCFS_DATA_FILE_BLOCK_SIZE)
block_size = INCFS_DATA_FILE_BLOCK_SIZE;
else
block_size = file->size - block_offset;
rnd_buf(data, block_size, seed);
if (compress_lz4) {
size_t comp_size = LZ4_compress_default((char *)data,
(char *)comp_data, block_size,
ARRAY_SIZE(comp_data));
if (comp_size <= 0) {
error = -EBADMSG;
break;
}
if (current_data + comp_size > data_end) {
error = -ENOMEM;
break;
}
memcpy(current_data, comp_data, comp_size);
block_size = comp_size;
block_buf[i].compression = COMPRESSION_LZ4;
} else if (compress_zstd) {
size_t comp_size = ZSTD_compress(comp_data,
ARRAY_SIZE(comp_data), data, block_size,
1);
if (comp_size <= 0) {
error = -EBADMSG;
break;
}
if (current_data + comp_size > data_end) {
error = -ENOMEM;
break;
}
memcpy(current_data, comp_data, comp_size);
block_size = comp_size;
block_buf[i].compression = COMPRESSION_ZSTD;
} else {
if (current_data + block_size > data_end) {
error = -ENOMEM;
break;
}
memcpy(current_data, data, block_size);
block_buf[i].compression = COMPRESSION_NONE;
}
block_buf[i].block_index = block_index;
block_buf[i].data_len = block_size;
block_buf[i].data = ptr_to_u64(current_data);
current_data += block_size;
}
if (!error) {
fd = open_file_by_id(mnt_dir, file->id, false);
if (fd < 0) {
error = -errno;
goto out;
}
write_res = ioctl(fd, INCFS_IOC_FILL_BLOCKS, &fill_blocks);
if (write_res >= 0) {
ksft_print_msg("Wrote to file via normal fd error\n");
error = -EPERM;
goto out;
}
close(fd);
fd = open_file_by_id(mnt_dir, file->id, true);
if (fd < 0) {
error = -errno;
goto out;
}
write_res = ioctl(fd, INCFS_IOC_FILL_BLOCKS, &fill_blocks);
if (write_res < 0)
error = -errno;
else
blocks_written = write_res;
}
if (error) {
ksft_print_msg(
"Writing data block error. Write returned: %d. Error:%s\n",
write_res, strerror(-error));
}
out:
free(block_buf);
free(data_buf);
close(fd);
return (error < 0) ? error : blocks_written;
}
static int emit_test_block(const char *mnt_dir, struct test_file *file,
int block_index)
{
int res = emit_test_blocks(mnt_dir, file, &block_index, 1);
if (res == 0)
return -EINVAL;
if (res == 1)
return 0;
return res;
}
static void shuffle(int array[], int count, unsigned int seed)
{
int i;
for (i = 0; i < count - 1; i++) {
int items_left = count - i;
int shuffle_index;
int v;
seed = 1103515245 * seed + 12345;
shuffle_index = i + seed % items_left;
v = array[shuffle_index];
array[shuffle_index] = array[i];
array[i] = v;
}
}
static int emit_test_file_data(const char *mount_dir, struct test_file *file)
{
int i;
int block_cnt = 1 + (file->size - 1) / INCFS_DATA_FILE_BLOCK_SIZE;
int *block_indexes = NULL;
int result = 0;
int blocks_written = 0;
if (file->size == 0)
return 0;
block_indexes = calloc(block_cnt, sizeof(*block_indexes));
for (i = 0; i < block_cnt; i++)
block_indexes[i] = i;
shuffle(block_indexes, block_cnt, file->index);
for (i = 0; i < block_cnt; i += blocks_written) {
blocks_written = emit_test_blocks(mount_dir, file,
block_indexes + i, block_cnt - i);
if (blocks_written < 0) {
result = blocks_written;
goto out;
}
if (blocks_written == 0) {
result = -EIO;
goto out;
}
}
out:
free(block_indexes);
return result;
}
static loff_t read_whole_file(const char *filename)
{
int fd = -1;
loff_t result;
loff_t bytes_read = 0;
uint8_t buff[16 * 1024];
fd = open(filename, O_RDONLY | O_CLOEXEC);
if (fd <= 0)
return fd;
while (1) {
int read_result = read(fd, buff, ARRAY_SIZE(buff));
if (read_result < 0) {
print_error("Error during reading from a file.");
result = -errno;
goto cleanup;
} else if (read_result == 0)
break;
bytes_read += read_result;
}
result = bytes_read;
cleanup:
close(fd);
return result;
}
static int read_test_file(uint8_t *buf, size_t len, char *filename,
int block_idx)
{
int fd = -1;
int result;
int bytes_read = 0;
size_t bytes_to_read = len;
off_t offset = ((off_t)block_idx) * INCFS_DATA_FILE_BLOCK_SIZE;
fd = open(filename, O_RDONLY | O_CLOEXEC);
if (fd <= 0)
return fd;
if (lseek(fd, offset, SEEK_SET) != offset) {
print_error("Seek error");
return -errno;
}
while (bytes_read < bytes_to_read) {
int read_result =
read(fd, buf + bytes_read, bytes_to_read - bytes_read);
if (read_result < 0) {
result = -errno;
goto cleanup;
} else if (read_result == 0)
break;
bytes_read += read_result;
}
result = bytes_read;
cleanup:
close(fd);
return result;
}
static char *create_backing_dir(const char *mount_dir)
{
struct stat st;
char backing_dir_name[255];
snprintf(backing_dir_name, ARRAY_SIZE(backing_dir_name), "%s-src",
mount_dir);
if (stat(backing_dir_name, &st) == 0) {
if (S_ISDIR(st.st_mode)) {
int error = delete_dir_tree(backing_dir_name);
if (error) {
ksft_print_msg(
"Can't delete existing backing dir. %d\n",
error);
return NULL;
}
} else {
if (unlink(backing_dir_name)) {
print_error("Can't clear backing dir");
return NULL;
}
}
}
if (mkdir(backing_dir_name, 0777)) {
if (errno != EEXIST) {
print_error("Can't open/create backing dir");
return NULL;
}
}
return strdup(backing_dir_name);
}
static int validate_test_file_content_with_seed(const char *mount_dir,
struct test_file *file,
unsigned int shuffle_seed)
{
int error = -1;
char *filename = concat_file_name(mount_dir, file->name);
off_t size = file->size;
loff_t actual_size = get_file_size(filename);
int block_cnt = 1 + (size - 1) / INCFS_DATA_FILE_BLOCK_SIZE;
int *block_indexes = NULL;
int i;
block_indexes = alloca(sizeof(int) * block_cnt);
for (i = 0; i < block_cnt; i++)
block_indexes[i] = i;
if (shuffle_seed != 0)
shuffle(block_indexes, block_cnt, shuffle_seed);
if (actual_size != size) {
ksft_print_msg(
"File size doesn't match. name: %s expected size:%ld actual size:%ld\n",
filename, size, actual_size);
error = -1;
goto failure;
}
for (i = 0; i < block_cnt; i++) {
int block_idx = block_indexes[i];
uint8_t expected_block[INCFS_DATA_FILE_BLOCK_SIZE];
uint8_t actual_block[INCFS_DATA_FILE_BLOCK_SIZE];
int seed = get_file_block_seed(file->index, block_idx);
size_t bytes_to_compare = min(
(off_t)INCFS_DATA_FILE_BLOCK_SIZE,
size - ((off_t)block_idx) * INCFS_DATA_FILE_BLOCK_SIZE);
int read_result =
read_test_file(actual_block, INCFS_DATA_FILE_BLOCK_SIZE,
filename, block_idx);
if (read_result < 0) {
ksft_print_msg(
"Error reading block %d from file %s. Error: %s\n",
block_idx, filename, strerror(-read_result));
error = read_result;
goto failure;
}
rnd_buf(expected_block, INCFS_DATA_FILE_BLOCK_SIZE, seed);
if (memcmp(expected_block, actual_block, bytes_to_compare)) {
ksft_print_msg(
"File contents don't match. name: %s block:%d\n",
file->name, block_idx);
error = -2;
goto failure;
}
}
free(filename);
return 0;
failure:
free(filename);
return error;
}
static int validate_test_file_content(const char *mount_dir,
struct test_file *file)
{
return validate_test_file_content_with_seed(mount_dir, file, 0);
}
static int data_producer(const char *mount_dir, struct test_files_set *test_set)
{
int ret = 0;
int timeout_ms = 1000;
struct incfs_pending_read_info prs[100] = {};
int prs_size = ARRAY_SIZE(prs);
int fd = open_commands_file(mount_dir);
if (fd < 0)
return -errno;
while ((ret = wait_for_pending_reads(fd, timeout_ms, prs, prs_size)) >
0) {
int read_count = ret;
int i;
for (i = 0; i < read_count; i++) {
int j = 0;
struct test_file *file = NULL;
for (j = 0; j < test_set->files_count; j++) {
bool same = same_id(&(test_set->files[j].id),
&(prs[i].file_id));
if (same) {
file = &test_set->files[j];
break;
}
}
if (!file) {
ksft_print_msg(
"Unknown file in pending reads.\n");
break;
}
ret = emit_test_block(mount_dir, file,
prs[i].block_index);
if (ret < 0) {
ksft_print_msg("Emitting test data error: %s\n",
strerror(-ret));
break;
}
}
}
close(fd);
return ret;
}
static int data_producer2(const char *mount_dir,
struct test_files_set *test_set)
{
int ret = 0;
int timeout_ms = 1000;
struct incfs_pending_read_info2 prs[100] = {};
int prs_size = ARRAY_SIZE(prs);
int fd = open_commands_file(mount_dir);
if (fd < 0)
return -errno;
while ((ret = wait_for_pending_reads2(fd, timeout_ms, prs, prs_size)) >
0) {
int read_count = ret;
int i;
for (i = 0; i < read_count; i++) {
int j = 0;
struct test_file *file = NULL;
for (j = 0; j < test_set->files_count; j++) {
bool same = same_id(&(test_set->files[j].id),
&(prs[i].file_id));
if (same) {
file = &test_set->files[j];
break;
}
}
if (!file) {
ksft_print_msg(
"Unknown file in pending reads.\n");
break;
}
ret = emit_test_block(mount_dir, file,
prs[i].block_index);
if (ret < 0) {
ksft_print_msg("Emitting test data error: %s\n",
strerror(-ret));
break;
}
}
}
close(fd);
return ret;
}
static int build_mtree(struct test_file *file)
{
char data[INCFS_DATA_FILE_BLOCK_SIZE] = {};
const int digest_size = SHA256_DIGEST_SIZE;
const int hash_per_block = INCFS_DATA_FILE_BLOCK_SIZE / digest_size;
int block_count = 0;
int hash_block_count = 0;
int total_tree_block_count = 0;
int tree_lvl_index[INCFS_MAX_MTREE_LEVELS] = {};
int tree_lvl_count[INCFS_MAX_MTREE_LEVELS] = {};
int levels_count = 0;
int i, level;
if (file->size == 0)
return 0;
block_count = 1 + (file->size - 1) / INCFS_DATA_FILE_BLOCK_SIZE;
hash_block_count = block_count;
for (i = 0; hash_block_count > 1; i++) {
hash_block_count = (hash_block_count + hash_per_block - 1)
/ hash_per_block;
tree_lvl_count[i] = hash_block_count;
total_tree_block_count += hash_block_count;
}
levels_count = i;
for (i = 0; i < levels_count; i++) {
int prev_lvl_base = (i == 0) ? total_tree_block_count :
tree_lvl_index[i - 1];
tree_lvl_index[i] = prev_lvl_base - tree_lvl_count[i];
}
file->mtree_block_count = total_tree_block_count;
if (block_count == 1) {
int seed = get_file_block_seed(file->index, 0);
memset(data, 0, INCFS_DATA_FILE_BLOCK_SIZE);
rnd_buf((uint8_t *)data, file->size, seed);
sha256(data, INCFS_DATA_FILE_BLOCK_SIZE, file->root_hash);
return 0;
}
file->mtree = calloc(total_tree_block_count, sizeof(*file->mtree));
/* Build level 0 hashes. */
for (i = 0; i < block_count; i++) {
off_t offset = i * INCFS_DATA_FILE_BLOCK_SIZE;
size_t block_size = INCFS_DATA_FILE_BLOCK_SIZE;
int block_index = tree_lvl_index[0] +
i / hash_per_block;
int block_off = (i % hash_per_block) * digest_size;
int seed = get_file_block_seed(file->index, i);
char *hash_ptr = file->mtree[block_index].data + block_off;
if (file->size - offset < block_size) {
block_size = file->size - offset;
memset(data, 0, INCFS_DATA_FILE_BLOCK_SIZE);
}
rnd_buf((uint8_t *)data, block_size, seed);
sha256(data, INCFS_DATA_FILE_BLOCK_SIZE, hash_ptr);
}
/* Build higher levels of hash tree. */
for (level = 1; level < levels_count; level++) {
int prev_lvl_base = tree_lvl_index[level - 1];
int prev_lvl_count = tree_lvl_count[level - 1];
for (i = 0; i < prev_lvl_count; i++) {
int block_index =
i / hash_per_block + tree_lvl_index[level];
int block_off = (i % hash_per_block) * digest_size;
char *hash_ptr =
file->mtree[block_index].data + block_off;
sha256(file->mtree[i + prev_lvl_base].data,
INCFS_DATA_FILE_BLOCK_SIZE, hash_ptr);
}
}
/* Calculate root hash from the top block */
sha256(file->mtree[0].data,
INCFS_DATA_FILE_BLOCK_SIZE, file->root_hash);
return 0;
}
static int load_hash_tree(const char *mount_dir, struct test_file *file)
{
int err;
int i;
int fd;
struct incfs_fill_blocks fill_blocks = {
.count = file->mtree_block_count,
};
struct incfs_fill_block *fill_block_array =
calloc(fill_blocks.count, sizeof(struct incfs_fill_block));
if (fill_blocks.count == 0)
return 0;
if (!fill_block_array)
return -ENOMEM;
fill_blocks.fill_blocks = ptr_to_u64(fill_block_array);
for (i = 0; i < fill_blocks.count; i++) {
fill_block_array[i] = (struct incfs_fill_block){
.block_index = i,
.data_len = INCFS_DATA_FILE_BLOCK_SIZE,
.data = ptr_to_u64(file->mtree[i].data),
.flags = INCFS_BLOCK_FLAGS_HASH
};
}
fd = open_file_by_id(mount_dir, file->id, false);
if (fd < 0) {
err = errno;
goto failure;
}
err = ioctl(fd, INCFS_IOC_FILL_BLOCKS, &fill_blocks);
close(fd);
if (err >= 0) {
err = -EPERM;
goto failure;
}
fd = open_file_by_id(mount_dir, file->id, true);
if (fd < 0) {
err = errno;
goto failure;
}
err = ioctl(fd, INCFS_IOC_FILL_BLOCKS, &fill_blocks);
close(fd);
if (err < fill_blocks.count)
err = errno;
else
err = 0;
failure:
free(fill_block_array);
return err;
}
static int cant_touch_index_test(const char *mount_dir)
{
char *file_name = "test_file";
int file_size = 123;
incfs_uuid_t file_id;
char *index_path = concat_file_name(mount_dir, ".index");
char *subdir = concat_file_name(index_path, "subdir");
char *dst_name = concat_file_name(mount_dir, "something");
char *filename_in_index = NULL;
char *file_path = concat_file_name(mount_dir, file_name);
char *backing_dir;
int cmd_fd = -1;
int err;
backing_dir = create_backing_dir(mount_dir);
if (!backing_dir)
goto failure;
/* Mount FS and release the backing file. */
if (mount_fs(mount_dir, backing_dir, 50) != 0)
goto failure;
free(backing_dir);
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
err = mkdir(subdir, 0777);
if (err == 0 || errno != EBUSY) {
print_error("Shouldn't be able to crate subdir in index\n");
goto failure;
}
err = rmdir(index_path);
if (err == 0 || errno != EBUSY) {
print_error(".index directory should not be removed\n");
goto failure;
}
err = emit_file(cmd_fd, ".index", file_name, &file_id,
file_size, NULL);
if (err != -EBUSY) {
print_error("Shouldn't be able to crate a file in index\n");
goto failure;
}
err = emit_file(cmd_fd, NULL, file_name, &file_id,
file_size, NULL);
if (err < 0)
goto failure;
filename_in_index = get_index_filename(mount_dir, file_id);
err = unlink(filename_in_index);
if (err == 0 || errno != EBUSY) {
print_error("Shouldn't be delete from index\n");
goto failure;
}
err = rename(filename_in_index, dst_name);
if (err == 0 || errno != EBUSY) {
print_error("Shouldn't be able to move from index\n");
goto failure;
}
free(filename_in_index);
filename_in_index = concat_file_name(index_path, "abc");
err = link(file_path, filename_in_index);
if (err == 0 || errno != EBUSY) {
print_error("Shouldn't be able to link inside index\n");
goto failure;
}
err = rename(index_path, dst_name);
if (err == 0 || errno != EBUSY) {
print_error("Shouldn't rename .index directory\n");
goto failure;
}
close(cmd_fd);
free(subdir);
free(index_path);
free(dst_name);
free(filename_in_index);
if (umount(mount_dir) != 0) {
print_error("Can't unmout FS");
goto failure;
}
return TEST_SUCCESS;
failure:
free(subdir);
free(dst_name);
free(index_path);
free(filename_in_index);
close(cmd_fd);
umount(mount_dir);
return TEST_FAILURE;
}
static bool iterate_directory(const char *dir_to_iterate, bool root,
int file_count)
{
struct expected_name {
const char *name;
bool root_only;
bool found;
} names[] = {
{INCFS_LOG_FILENAME, true, false},
{INCFS_PENDING_READS_FILENAME, true, false},
{INCFS_BLOCKS_WRITTEN_FILENAME, true, false},
{".index", true, false},
{".incomplete", true, false},
{"..", false, false},
{".", false, false},
};
bool pass = true, found;
int i;
/* Test directory iteration */
int fd = open(dir_to_iterate, O_RDONLY | O_DIRECTORY | O_CLOEXEC);
if (fd < 0) {
print_error("Can't open directory\n");
return false;
}
for (;;) {
/* Enough space for one dirent - no name over 30 */
char buf[sizeof(struct linux_dirent64) + NAME_MAX];
struct linux_dirent64 *dirent = (struct linux_dirent64 *) buf;
int nread;
int i;
for (i = 0; i < NAME_MAX; ++i) {
nread = syscall(__NR_getdents64, fd, buf,
sizeof(struct linux_dirent64) + i);
if (nread >= 0)
break;
if (errno != EINVAL)
break;
}
if (nread == 0)
break;
if (nread < 0) {
print_error("Error iterating directory\n");
pass = false;
goto failure;
}
/* Expected size is rounded up to 8 byte boundary. Not sure if
* this is universal truth or just happenstance, but useful test
* for the moment
*/
if (nread != (((sizeof(struct linux_dirent64)
+ strlen(dirent->d_name) + 1) + 7) & ~7)) {
print_error("Wrong dirent size");
pass = false;
goto failure;
}
found = false;
for (i = 0; i < sizeof(names) / sizeof(*names); ++i)
if (!strcmp(dirent->d_name, names[i].name)) {
if (names[i].root_only && !root) {
print_error("Root file error");
pass = false;
goto failure;
}
if (names[i].found) {
print_error("File appears twice");
pass = false;
goto failure;
}
names[i].found = true;
found = true;
break;
}
if (!found)
--file_count;
}
for (i = 0; i < sizeof(names) / sizeof(*names); ++i) {
if (!names[i].found)
if (root || !names[i].root_only) {
print_error("Expected file not present");
pass = false;
goto failure;
}
}
if (file_count) {
print_error("Wrong number of files\n");
pass = false;
goto failure;
}
failure:
close(fd);
return pass;
}
static int basic_file_ops_test(const char *mount_dir)
{
struct test_files_set test = get_test_files_set();
const int file_num = test.files_count;
char *subdir1 = concat_file_name(mount_dir, "subdir1");
char *subdir2 = concat_file_name(mount_dir, "subdir2");
char *backing_dir;
int cmd_fd = -1;
int i, err;
backing_dir = create_backing_dir(mount_dir);
if (!backing_dir)
goto failure;
/* Mount FS and release the backing file. */
if (mount_fs(mount_dir, backing_dir, 50) != 0)
goto failure;
free(backing_dir);
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
err = mkdir(subdir1, 0777);
if (err < 0 && errno != EEXIST) {
print_error("Can't create subdir1\n");
goto failure;
}
err = mkdir(subdir2, 0777);
if (err < 0 && errno != EEXIST) {
print_error("Can't create subdir2\n");
goto failure;
}
/* Create all test files in subdir1 directory */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
loff_t size;
char *file_path = concat_file_name(subdir1, file->name);
err = emit_file(cmd_fd, "subdir1", file->name, &file->id,
file->size, NULL);
if (err < 0)
goto failure;
size = get_file_size(file_path);
free(file_path);
if (size != file->size) {
ksft_print_msg("Wrong size %lld of %s.\n",
size, file->name);
goto failure;
}
}
if (!iterate_directory(subdir1, false, file_num))
goto failure;
/* Link the files to subdir2 */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
char *src_name = concat_file_name(subdir1, file->name);
char *dst_name = concat_file_name(subdir2, file->name);
loff_t size;
err = link(src_name, dst_name);
if (err < 0) {
print_error("Can't move file\n");
goto failure;
}
size = get_file_size(dst_name);
if (size != file->size) {
ksft_print_msg("Wrong size %lld of %s.\n",
size, file->name);
goto failure;
}
free(src_name);
free(dst_name);
}
/* Move the files from subdir2 to the mount dir */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
char *src_name = concat_file_name(subdir2, file->name);
char *dst_name = concat_file_name(mount_dir, file->name);
loff_t size;
err = rename(src_name, dst_name);
if (err < 0) {
print_error("Can't move file\n");
goto failure;
}
size = get_file_size(dst_name);
if (size != file->size) {
ksft_print_msg("Wrong size %lld of %s.\n",
size, file->name);
goto failure;
}
free(src_name);
free(dst_name);
}
/* +2 because there are 2 subdirs */
if (!iterate_directory(mount_dir, true, file_num + 2))
goto failure;
/* Open and close all files from the mount dir */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
char *path = concat_file_name(mount_dir, file->name);
int fd;
fd = open(path, O_RDWR | O_CLOEXEC);
free(path);
if (fd <= 0) {
print_error("Can't open file");
goto failure;
}
if (close(fd)) {
print_error("Can't close file");
goto failure;
}
}
/* Delete all files from the mount dir */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
char *path = concat_file_name(mount_dir, file->name);
err = unlink(path);
free(path);
if (err < 0) {
print_error("Can't unlink file");
goto failure;
}
}
err = delete_dir_tree(subdir1);
if (err) {
ksft_print_msg("Error deleting subdir1 %d", err);
goto failure;
}
err = rmdir(subdir2);
if (err) {
print_error("Error deleting subdir2");
goto failure;
}
close(cmd_fd);
cmd_fd = -1;
if (umount(mount_dir) != 0) {
print_error("Can't unmout FS");
goto failure;
}
return TEST_SUCCESS;
failure:
close(cmd_fd);
umount(mount_dir);
return TEST_FAILURE;
}
static int dynamic_files_and_data_test(const char *mount_dir)
{
struct test_files_set test = get_test_files_set();
const int file_num = test.files_count;
const int missing_file_idx = 5;
int cmd_fd = -1;
char *backing_dir;
int i;
backing_dir = create_backing_dir(mount_dir);
if (!backing_dir)
goto failure;
/* Mount FS and release the backing file. */
if (mount_fs(mount_dir, backing_dir, 50) != 0)
goto failure;
free(backing_dir);
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
/* Check that test files don't exist in the filesystem. */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
char *filename = concat_file_name(mount_dir, file->name);
if (access(filename, F_OK) != -1) {
ksft_print_msg(
"File %s somehow already exists in a clean FS.\n",
filename);
goto failure;
}
free(filename);
}
/* Write test data into the command file. */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
int res;
res = emit_file(cmd_fd, NULL, file->name, &file->id,
file->size, NULL);
if (res < 0) {
ksft_print_msg("Error %s emiting file %s.\n",
strerror(-res), file->name);
goto failure;
}
/* Skip writing data to one file so we can check */
/* that it's missing later. */
if (i == missing_file_idx)
continue;
res = emit_test_file_data(mount_dir, file);
if (res) {
ksft_print_msg("Error %s emiting data for %s.\n",
strerror(-res), file->name);
goto failure;
}
}
/* Validate contents of the FS */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
if (i == missing_file_idx) {
/* No data has been written to this file. */
/* Check for read error; */
uint8_t buf;
char *filename =
concat_file_name(mount_dir, file->name);
int res = read_test_file(&buf, 1, filename, 0);
free(filename);
if (res > 0) {
ksft_print_msg(
"Data present, even though never writtern.\n");
goto failure;
}
if (res != -ETIME) {
ksft_print_msg("Wrong error code: %d.\n", res);
goto failure;
}
} else {
if (validate_test_file_content(mount_dir, file) < 0)
goto failure;
}
}
close(cmd_fd);
cmd_fd = -1;
if (umount(mount_dir) != 0) {
print_error("Can't unmout FS");
goto failure;
}
return TEST_SUCCESS;
failure:
close(cmd_fd);
umount(mount_dir);
return TEST_FAILURE;
}
static int concurrent_reads_and_writes_test(const char *mount_dir)
{
struct test_files_set test = get_test_files_set();
const int file_num = test.files_count;
/* Validate each file from that many child processes. */
const int child_multiplier = 3;
int cmd_fd = -1;
char *backing_dir;
int status;
int i;
pid_t producer_pid;
pid_t *child_pids = alloca(child_multiplier * file_num * sizeof(pid_t));
backing_dir = create_backing_dir(mount_dir);
if (!backing_dir)
goto failure;
/* Mount FS and release the backing file. */
if (mount_fs(mount_dir, backing_dir, 500) != 0)
goto failure;
free(backing_dir);
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
/* Tell FS about the files, without actually providing the data. */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
int res;
res = emit_file(cmd_fd, NULL, file->name, &file->id,
file->size, NULL);
if (res)
goto failure;
}
/* Start child processes acessing data in the files */
for (i = 0; i < file_num * child_multiplier; i++) {
struct test_file *file = &test.files[i / child_multiplier];
pid_t child_pid = flush_and_fork();
if (child_pid == 0) {
/* This is a child process, do the data validation. */
int ret = validate_test_file_content_with_seed(
mount_dir, file, i);
if (ret >= 0) {
/* Zero exit status if data is valid. */
exit(0);
}
/* Positive status if validation error found. */
exit(-ret);
} else if (child_pid > 0) {
child_pids[i] = child_pid;
} else {
print_error("Fork error");
goto failure;
}
}
producer_pid = flush_and_fork();
if (producer_pid == 0) {
int ret;
/*
* This is a child that should provide data to
* pending reads.
*/
ret = data_producer(mount_dir, &test);
exit(-ret);
} else {
status = wait_for_process(producer_pid);
if (status != 0) {
ksft_print_msg("Data produces failed. %d(%s) ", status,
strerror(status));
goto failure;
}
}
/* Check that all children has finished with 0 exit status */
for (i = 0; i < file_num * child_multiplier; i++) {
struct test_file *file = &test.files[i / child_multiplier];
status = wait_for_process(child_pids[i]);
if (status != 0) {
ksft_print_msg(
"Validation for the file %s failed with code %d (%s)\n",
file->name, status, strerror(status));
goto failure;
}
}
/* Check that there are no pending reads left */
{
struct incfs_pending_read_info prs[1] = {};
int timeout = 0;
int read_count = wait_for_pending_reads(cmd_fd, timeout, prs,
ARRAY_SIZE(prs));
if (read_count) {
ksft_print_msg(
"Pending reads pending when all data written\n");
goto failure;
}
}
close(cmd_fd);
cmd_fd = -1;
if (umount(mount_dir) != 0) {
print_error("Can't unmout FS");
goto failure;
}
return TEST_SUCCESS;
failure:
close(cmd_fd);
umount(mount_dir);
return TEST_FAILURE;
}
static int work_after_remount_test(const char *mount_dir)
{
struct test_files_set test = get_test_files_set();
const int file_num = test.files_count;
const int file_num_stage1 = file_num / 2;
const int file_num_stage2 = file_num;
char *backing_dir = NULL;
int i = 0;
int cmd_fd = -1;
backing_dir = create_backing_dir(mount_dir);
if (!backing_dir)
goto failure;
/* Mount FS and release the backing file. */
if (mount_fs(mount_dir, backing_dir, 50) != 0)
goto failure;
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
/* Write first half of the data into the command file. (stage 1) */
for (i = 0; i < file_num_stage1; i++) {
struct test_file *file = &test.files[i];
if (emit_file(cmd_fd, NULL, file->name, &file->id,
file->size, NULL))
goto failure;
if (emit_test_file_data(mount_dir, file))
goto failure;
}
/* Unmount and mount again, to see that data is persistent. */
close(cmd_fd);
cmd_fd = -1;
if (umount(mount_dir) != 0) {
print_error("Can't unmout FS");
goto failure;
}
if (mount_fs(mount_dir, backing_dir, 50) != 0)
goto failure;
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
/* Write the second half of the data into the command file. (stage 2) */
for (; i < file_num_stage2; i++) {
struct test_file *file = &test.files[i];
int res = emit_file(cmd_fd, NULL, file->name, &file->id,
file->size, NULL);
if (res)
goto failure;
if (emit_test_file_data(mount_dir, file))
goto failure;
}
/* Validate contents of the FS */
for (i = 0; i < file_num_stage2; i++) {
struct test_file *file = &test.files[i];
if (validate_test_file_content(mount_dir, file) < 0)
goto failure;
}
/* Delete all files */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
char *filename = concat_file_name(mount_dir, file->name);
char *filename_in_index = get_index_filename(mount_dir,
file->id);
if (access(filename, F_OK) != 0) {
ksft_print_msg("File %s is not visible.\n", filename);
goto failure;
}
if (access(filename_in_index, F_OK) != 0) {
ksft_print_msg("File %s is not visible.\n",
filename_in_index);
goto failure;
}
unlink(filename);
if (access(filename, F_OK) != -1) {
ksft_print_msg("File %s is still present.\n", filename);
goto failure;
}
if (access(filename_in_index, F_OK) != -1) {
ksft_print_msg("File %s is still present.\n",
filename_in_index);
goto failure;
}
free(filename);
free(filename_in_index);
}
/* Unmount and mount again, to see that deleted files stay deleted. */
close(cmd_fd);
cmd_fd = -1;
if (umount(mount_dir) != 0) {
print_error("Can't unmout FS");
goto failure;
}
if (mount_fs(mount_dir, backing_dir, 50) != 0)
goto failure;
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
/* Validate all deleted files are still deleted. */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
char *filename = concat_file_name(mount_dir, file->name);
if (access(filename, F_OK) != -1) {
ksft_print_msg("File %s is still visible.\n", filename);
goto failure;
}
free(filename);
}
/* Final unmount */
close(cmd_fd);
free(backing_dir);
cmd_fd = -1;
if (umount(mount_dir) != 0) {
print_error("Can't unmout FS");
goto failure;
}
return TEST_SUCCESS;
failure:
close(cmd_fd);
free(backing_dir);
umount(mount_dir);
return TEST_FAILURE;
}
static int attribute_test(const char *mount_dir)
{
char file_attr[] = "metadata123123";
char attr_buf[INCFS_MAX_FILE_ATTR_SIZE] = {};
int cmd_fd = -1;
incfs_uuid_t file_id;
int attr_res = 0;
char *backing_dir;
backing_dir = create_backing_dir(mount_dir);
if (!backing_dir)
goto failure;
/* Mount FS and release the backing file. */
if (mount_fs(mount_dir, backing_dir, 50) != 0)
goto failure;
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
if (emit_file(cmd_fd, NULL, "file", &file_id, 12, file_attr))
goto failure;
/* Test attribute values */
attr_res = get_file_attr(mount_dir, file_id, attr_buf,
ARRAY_SIZE(attr_buf));
if (attr_res != strlen(file_attr)) {
ksft_print_msg("Get file attr error: %d\n", attr_res);
goto failure;
}
if (strcmp(attr_buf, file_attr) != 0) {
ksft_print_msg("Incorrect file attr value: '%s'", attr_buf);
goto failure;
}
/* Unmount and mount again, to see that attributes are persistent. */
close(cmd_fd);
cmd_fd = -1;
if (umount(mount_dir) != 0) {
print_error("Can't unmout FS");
goto failure;
}
if (mount_fs(mount_dir, backing_dir, 50) != 0)
goto failure;
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
/* Test attribute values again after remount*/
attr_res = get_file_attr(mount_dir, file_id, attr_buf,
ARRAY_SIZE(attr_buf));
if (attr_res != strlen(file_attr)) {
ksft_print_msg("Get dir attr error: %d\n", attr_res);
goto failure;
}
if (strcmp(attr_buf, file_attr) != 0) {
ksft_print_msg("Incorrect file attr value: '%s'", attr_buf);
goto failure;
}
/* Final unmount */
close(cmd_fd);
free(backing_dir);
cmd_fd = -1;
if (umount(mount_dir) != 0) {
print_error("Can't unmout FS");
goto failure;
}
return TEST_SUCCESS;
failure:
close(cmd_fd);
free(backing_dir);
umount(mount_dir);
return TEST_FAILURE;
}
static int child_procs_waiting_for_data_test(const char *mount_dir)
{
struct test_files_set test = get_test_files_set();
const int file_num = test.files_count;
int cmd_fd = -1;
int i;
pid_t *child_pids = alloca(file_num * sizeof(pid_t));
char *backing_dir;
backing_dir = create_backing_dir(mount_dir);
if (!backing_dir)
goto failure;
/* Mount FS and release the backing file. (10s wait time) */
if (mount_fs(mount_dir, backing_dir, 10000) != 0)
goto failure;
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
/* Tell FS about the files, without actually providing the data. */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
emit_file(cmd_fd, NULL, file->name, &file->id,
file->size, NULL);
}
/* Start child processes acessing data in the files */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
pid_t child_pid = flush_and_fork();
if (child_pid == 0) {
/* This is a child process, do the data validation. */
int ret = validate_test_file_content(mount_dir, file);
if (ret >= 0) {
/* Zero exit status if data is valid. */
exit(0);
}
/* Positive status if validation error found. */
exit(-ret);
} else if (child_pid > 0) {
child_pids[i] = child_pid;
} else {
print_error("Fork error");
goto failure;
}
}
/* Write test data into the command file. */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
if (emit_test_file_data(mount_dir, file))
goto failure;
}
/* Check that all children has finished with 0 exit status */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
int status = wait_for_process(child_pids[i]);
if (status != 0) {
ksft_print_msg(
"Validation for the file %s failed with code %d (%s)\n",
file->name, status, strerror(status));
goto failure;
}
}
close(cmd_fd);
free(backing_dir);
cmd_fd = -1;
if (umount(mount_dir) != 0) {
print_error("Can't unmout FS");
goto failure;
}
return TEST_SUCCESS;
failure:
close(cmd_fd);
free(backing_dir);
umount(mount_dir);
return TEST_FAILURE;
}
static int multiple_providers_test(const char *mount_dir)
{
struct test_files_set test = get_test_files_set();
const int file_num = test.files_count;
const int producer_count = 5;
int cmd_fd = -1;
int status;
int i;
pid_t *producer_pids = alloca(producer_count * sizeof(pid_t));
char *backing_dir;
backing_dir = create_backing_dir(mount_dir);
if (!backing_dir)
goto failure;
/* Mount FS and release the backing file. (10s wait time) */
if (mount_fs_opt(mount_dir, backing_dir,
"read_timeout_ms=10000,report_uid", false) != 0)
goto failure;
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
/* Tell FS about the files, without actually providing the data. */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
if (emit_file(cmd_fd, NULL, file->name, &file->id,
file->size, NULL) < 0)
goto failure;
}
/* Start producer processes */
for (i = 0; i < producer_count; i++) {
pid_t producer_pid = flush_and_fork();
if (producer_pid == 0) {
int ret;
/*
* This is a child that should provide data to
* pending reads.
*/
ret = data_producer2(mount_dir, &test);
exit(-ret);
} else if (producer_pid > 0) {
producer_pids[i] = producer_pid;
} else {
print_error("Fork error");
goto failure;
}
}
/* Validate FS content */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
char *filename = concat_file_name(mount_dir, file->name);
loff_t read_result = read_whole_file(filename);
free(filename);
if (read_result != file->size) {
ksft_print_msg(
"Error validating file %s. Result: %ld\n",
file->name, read_result);
goto failure;
}
}
/* Check that all producers has finished with 0 exit status */
for (i = 0; i < producer_count; i++) {
status = wait_for_process(producer_pids[i]);
if (status != 0) {
ksft_print_msg("Producer %d failed with code (%s)\n", i,
strerror(status));
goto failure;
}
}
close(cmd_fd);
free(backing_dir);
cmd_fd = -1;
if (umount(mount_dir) != 0) {
print_error("Can't unmout FS");
goto failure;
}
return TEST_SUCCESS;
failure:
close(cmd_fd);
free(backing_dir);
umount(mount_dir);
return TEST_FAILURE;
}
static int validate_hash_tree(const char *mount_dir, struct test_file *file)
{
int result = TEST_FAILURE;
char *filename = NULL;
int fd = -1;
unsigned char *buf;
int i, err;
TEST(filename = concat_file_name(mount_dir, file->name), filename);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TEST(buf = malloc(INCFS_DATA_FILE_BLOCK_SIZE * 8), buf);
for (i = 0; i < file->mtree_block_count; ) {
int blocks_to_read = i % 7 + 1;
struct fsverity_read_metadata_arg args = {
.metadata_type = FS_VERITY_METADATA_TYPE_MERKLE_TREE,
.offset = i * INCFS_DATA_FILE_BLOCK_SIZE,
.length = blocks_to_read * INCFS_DATA_FILE_BLOCK_SIZE,
.buf_ptr = ptr_to_u64(buf),
};
TEST(err = ioctl(fd, FS_IOC_READ_VERITY_METADATA, &args),
err == min(args.length, (file->mtree_block_count - i) *
INCFS_DATA_FILE_BLOCK_SIZE));
TESTEQUAL(memcmp(buf, file->mtree[i].data, err), 0);
i += blocks_to_read;
}
result = TEST_SUCCESS;
out:
free(buf);
close(fd);
free(filename);
return result;
}
static int hash_tree_test(const char *mount_dir)
{
int result = TEST_FAILURE;
char *backing_dir;
struct test_files_set test = get_test_files_set();
const int file_num = test.files_count;
const int corrupted_file_idx = 5;
int i = 0;
int cmd_fd = -1;
backing_dir = create_backing_dir(mount_dir);
if (!backing_dir)
goto failure;
/* Mount FS and release the backing file. */
if (mount_fs(mount_dir, backing_dir, 50) != 0)
goto failure;
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
/* Write hashes and data. */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
int res;
build_mtree(file);
res = crypto_emit_file(cmd_fd, NULL, file->name, &file->id,
file->size, file->root_hash,
file->sig.add_data);
if (i == corrupted_file_idx) {
/* Corrupt third blocks hash */
file->mtree[0].data[2 * SHA256_DIGEST_SIZE] ^= 0xff;
}
if (emit_test_file_data(mount_dir, file))
goto failure;
res = load_hash_tree(mount_dir, file);
if (res) {
ksft_print_msg("Can't load hashes for %s. error: %s\n",
file->name, strerror(-res));
goto failure;
}
}
/* Validate data */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
if (i == corrupted_file_idx) {
uint8_t data[INCFS_DATA_FILE_BLOCK_SIZE];
char *filename =
concat_file_name(mount_dir, file->name);
int res;
res = read_test_file(data, INCFS_DATA_FILE_BLOCK_SIZE,
filename, 2);
free(filename);
if (res != -EBADMSG) {
ksft_print_msg("Hash violation missed1. %d\n",
res);
goto failure;
}
} else if (validate_test_file_content(mount_dir, file) < 0)
goto failure;
else if (validate_hash_tree(mount_dir, file) < 0)
goto failure;
}
/* Unmount and mount again, to that hashes are persistent. */
close(cmd_fd);
cmd_fd = -1;
if (umount(mount_dir) != 0) {
print_error("Can't unmout FS");
goto failure;
}
if (mount_fs(mount_dir, backing_dir, 50) != 0)
goto failure;
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
/* Validate data again */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
if (i == corrupted_file_idx) {
uint8_t data[INCFS_DATA_FILE_BLOCK_SIZE];
char *filename =
concat_file_name(mount_dir, file->name);
int res;
res = read_test_file(data, INCFS_DATA_FILE_BLOCK_SIZE,
filename, 2);
free(filename);
if (res != -EBADMSG) {
ksft_print_msg("Hash violation missed2. %d\n",
res);
goto failure;
}
} else if (validate_test_file_content(mount_dir, file) < 0)
goto failure;
}
result = TEST_SUCCESS;
failure:
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
free(file->mtree);
}
close(cmd_fd);
free(backing_dir);
umount(mount_dir);
return result;
}
enum expected_log { FULL_LOG, NO_LOG, PARTIAL_LOG };
static int validate_logs(const char *mount_dir, int log_fd,
struct test_file *file,
enum expected_log expected_log,
bool report_uid, bool expect_data)
{
int result = TEST_FAILURE;
uint8_t data[INCFS_DATA_FILE_BLOCK_SIZE];
struct incfs_pending_read_info prs[2048] = {};
struct incfs_pending_read_info2 prs2[2048] = {};
struct incfs_pending_read_info *previous_record = NULL;
int prs_size = ARRAY_SIZE(prs);
int block_count = 1 + (file->size - 1) / INCFS_DATA_FILE_BLOCK_SIZE;
int expected_read_count, read_count, block_index, read_index;
char *filename = NULL;
int fd = -1;
TEST(filename = concat_file_name(mount_dir, file->name), filename);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
if (block_count > prs_size)
block_count = prs_size;
expected_read_count = block_count;
for (block_index = 0; block_index < block_count; block_index++) {
int result = pread(fd, data, sizeof(data),
INCFS_DATA_FILE_BLOCK_SIZE * block_index);
/* Make some read logs of type SAME_FILE_NEXT_BLOCK */
if (block_index % 100 == 10)
usleep(20000);
/* Skip some blocks to make logs of type SAME_FILE */
if (block_index % 10 == 5) {
++block_index;
--expected_read_count;
}
if (expect_data)
TESTCOND(result > 0);
if (!expect_data)
TESTEQUAL(result, -1);
}
if (report_uid)
read_count = wait_for_pending_reads2(log_fd,
expected_log == NO_LOG ? 10 : 0,
prs2, prs_size);
else
read_count = wait_for_pending_reads(log_fd,
expected_log == NO_LOG ? 10 : 0,
prs, prs_size);
if (expected_log == NO_LOG)
TESTEQUAL(read_count, 0);
if (expected_log == PARTIAL_LOG)
TESTCOND(read_count > 0 &&
read_count <= expected_read_count);
if (expected_log == FULL_LOG)
TESTEQUAL(read_count, expected_read_count);
/* If read less than expected, advance block_index appropriately */
for (block_index = 0, read_index = 0;
read_index < expected_read_count - read_count;
block_index++, read_index++)
if (block_index % 10 == 5)
++block_index;
for (read_index = 0; read_index < read_count;
block_index++, read_index++) {
struct incfs_pending_read_info *record = report_uid ?
(struct incfs_pending_read_info *) &prs2[read_index] :
&prs[read_index];
TESTCOND(same_id(&record->file_id, &file->id));
TESTEQUAL(record->block_index, block_index);
TESTNE(record->timestamp_us, 0);
if (previous_record)
TESTEQUAL(record->serial_number,
previous_record->serial_number + 1);
previous_record = record;
if (block_index % 10 == 5)
++block_index;
}
result = TEST_SUCCESS;
out:
close(fd);
free(filename);
return result;
}
static int read_log_test(const char *mount_dir)
{
int result = TEST_FAILURE;
struct test_files_set test = get_test_files_set();
const int file_num = test.files_count;
int i = 0;
int cmd_fd = -1, log_fd = -1;
char *backing_dir = NULL;
/* Create files */
TEST(backing_dir = create_backing_dir(mount_dir), backing_dir);
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir,
"readahead=0,report_uid,read_timeout_ms=0",
false), 0);
TEST(cmd_fd = open_commands_file(mount_dir), cmd_fd != -1);
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
TESTEQUAL(emit_file(cmd_fd, NULL, file->name, &file->id,
file->size, NULL), 0);
}
close(cmd_fd);
cmd_fd = -1;
/* Validate logs */
TEST(log_fd = open_log_file(mount_dir), log_fd != -1);
for (i = 0; i < file_num; i++)
TESTEQUAL(validate_logs(mount_dir, log_fd, &test.files[i],
FULL_LOG, true, false), 0);
/* Unmount and mount again without report_uid */
close(log_fd);
log_fd = -1;
TESTEQUAL(umount(mount_dir), 0);
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir,
"readahead=0,read_timeout_ms=0", false), 0);
TEST(log_fd = open_log_file(mount_dir), log_fd != -1);
for (i = 0; i < file_num; i++)
TESTEQUAL(validate_logs(mount_dir, log_fd, &test.files[i],
FULL_LOG, false, false), 0);
/* No read log to make sure poll doesn't crash */
close(log_fd);
log_fd = -1;
TESTEQUAL(umount(mount_dir), 0);
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir,
"readahead=0,rlog_pages=0,read_timeout_ms=0",
false), 0);
TEST(log_fd = open_log_file(mount_dir), log_fd != -1);
for (i = 0; i < file_num; i++)
TESTEQUAL(validate_logs(mount_dir, log_fd, &test.files[i],
NO_LOG, false, false), 0);
/* Remount and check that logs start working again */
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir,
"readahead=0,rlog_pages=1,read_timeout_ms=0",
true), 0);
for (i = 0; i < file_num; i++)
TESTEQUAL(validate_logs(mount_dir, log_fd, &test.files[i],
PARTIAL_LOG, false, false), 0);
/* Remount and check that logs continue working */
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir,
"readahead=0,rlog_pages=4,read_timeout_ms=0",
true), 0);
for (i = 0; i < file_num; i++)
TESTEQUAL(validate_logs(mount_dir, log_fd, &test.files[i],
FULL_LOG, false, false), 0);
/* Check logs work with data */
for (i = 0; i < file_num; i++) {
TESTEQUAL(emit_test_file_data(mount_dir, &test.files[i]), 0);
TESTEQUAL(validate_logs(mount_dir, log_fd, &test.files[i],
FULL_LOG, false, true), 0);
}
/* Final unmount */
close(log_fd);
log_fd = -1;
TESTEQUAL(umount(mount_dir), 0);
result = TEST_SUCCESS;
out:
close(cmd_fd);
close(log_fd);
free(backing_dir);
umount(mount_dir);
return result;
}
static int emit_partial_test_file_data(const char *mount_dir,
struct test_file *file)
{
int i, j;
int block_cnt = 1 + (file->size - 1) / INCFS_DATA_FILE_BLOCK_SIZE;
int *block_indexes = NULL;
int result = 0;
int blocks_written = 0;
int bw_fd = -1;
char buffer[20];
struct pollfd pollfd;
long blocks_written_total, blocks_written_new_total;
if (file->size == 0)
return 0;
bw_fd = open_blocks_written_file(mount_dir);
if (bw_fd == -1)
return -errno;
result = read(bw_fd, buffer, sizeof(buffer));
if (result <= 0) {
result = -EIO;
goto out;
}
buffer[result] = 0;
blocks_written_total = strtol(buffer, NULL, 10);
result = 0;
pollfd = (struct pollfd) {
.fd = bw_fd,
.events = POLLIN,
};
result = poll(&pollfd, 1, 0);
if (result) {
result = -EIO;
goto out;
}
/* Emit 2 blocks, skip 2 blocks etc*/
block_indexes = calloc(block_cnt, sizeof(*block_indexes));
for (i = 0, j = 0; i < block_cnt; ++i)
if ((i & 2) == 0) {
block_indexes[j] = i;
++j;
}
for (i = 0; i < j; i += blocks_written) {
blocks_written = emit_test_blocks(mount_dir, file,
block_indexes + i, j - i);
if (blocks_written < 0) {
result = blocks_written;
goto out;
}
if (blocks_written == 0) {
result = -EIO;
goto out;
}
result = poll(&pollfd, 1, 0);
if (result != 1 || pollfd.revents != POLLIN) {
result = -EIO;
goto out;
}
result = read(bw_fd, buffer, sizeof(buffer));
buffer[result] = 0;
blocks_written_new_total = strtol(buffer, NULL, 10);
if (blocks_written_new_total - blocks_written_total
!= blocks_written) {
result = -EIO;
goto out;
}
blocks_written_total = blocks_written_new_total;
result = 0;
}
out:
free(block_indexes);
close(bw_fd);
return result;
}
static int validate_ranges(const char *mount_dir, struct test_file *file)
{
int block_cnt = 1 + (file->size - 1) / INCFS_DATA_FILE_BLOCK_SIZE;
char *filename = concat_file_name(mount_dir, file->name);
int fd;
struct incfs_filled_range ranges[128];
struct incfs_get_filled_blocks_args fba = {
.range_buffer = ptr_to_u64(ranges),
.range_buffer_size = sizeof(ranges),
};
int error = TEST_SUCCESS;
int i;
int range_cnt;
int cmd_fd = -1;
struct incfs_permit_fill permit_fill;
fd = open(filename, O_RDONLY | O_CLOEXEC);
free(filename);
if (fd <= 0)
return TEST_FAILURE;
error = ioctl(fd, INCFS_IOC_GET_FILLED_BLOCKS, &fba);
if (error != -1 || errno != EPERM) {
ksft_print_msg("INCFS_IOC_GET_FILLED_BLOCKS not blocked\n");
error = -EPERM;
goto out;
}
cmd_fd = open_commands_file(mount_dir);
permit_fill.file_descriptor = fd;
if (ioctl(cmd_fd, INCFS_IOC_PERMIT_FILL, &permit_fill)) {
print_error("INCFS_IOC_PERMIT_FILL failed");
return -EPERM;
goto out;
}
error = ioctl(fd, INCFS_IOC_GET_FILLED_BLOCKS, &fba);
if (error && errno != ERANGE)
goto out;
if (error && errno == ERANGE && block_cnt < 509)
goto out;
if (!error && block_cnt >= 509) {
error = -ERANGE;
goto out;
}
if (fba.total_blocks_out != block_cnt) {
error = -EINVAL;
goto out;
}
if (fba.data_blocks_out != block_cnt) {
error = -EINVAL;
goto out;
}
range_cnt = (block_cnt + 3) / 4;
if (range_cnt > 128)
range_cnt = 128;
if (range_cnt != fba.range_buffer_size_out / sizeof(*ranges)) {
error = -ERANGE;
goto out;
}
error = TEST_SUCCESS;
for (i = 0; i < fba.range_buffer_size_out / sizeof(*ranges) - 1; ++i)
if (ranges[i].begin != i * 4 || ranges[i].end != i * 4 + 2) {
error = -EINVAL;
goto out;
}
if (ranges[i].begin != i * 4 ||
(ranges[i].end != i * 4 + 1 && ranges[i].end != i * 4 + 2)) {
error = -EINVAL;
goto out;
}
for (i = 0; i < 64; ++i) {
fba.start_index = i * 2;
fba.end_index = i * 2 + 2;
error = ioctl(fd, INCFS_IOC_GET_FILLED_BLOCKS, &fba);
if (error)
goto out;
if (fba.total_blocks_out != block_cnt) {
error = -EINVAL;
goto out;
}
if (fba.start_index >= block_cnt) {
if (fba.index_out != fba.start_index) {
error = -EINVAL;
goto out;
}
break;
}
if (i % 2) {
if (fba.range_buffer_size_out != 0) {
error = -EINVAL;
goto out;
}
} else {
if (fba.range_buffer_size_out != sizeof(*ranges)) {
error = -EINVAL;
goto out;
}
if (ranges[0].begin != i * 2) {
error = -EINVAL;
goto out;
}
if (ranges[0].end != i * 2 + 1 &&
ranges[0].end != i * 2 + 2) {
error = -EINVAL;
goto out;
}
}
}
out:
close(fd);
close(cmd_fd);
return error;
}
static int get_blocks_test(const char *mount_dir)
{
char *backing_dir;
int cmd_fd = -1;
int i;
struct test_files_set test = get_test_files_set();
const int file_num = test.files_count;
backing_dir = create_backing_dir(mount_dir);
if (!backing_dir)
goto failure;
if (mount_fs_opt(mount_dir, backing_dir, "readahead=0", false) != 0)
goto failure;
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
/* Write data. */
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
if (emit_file(cmd_fd, NULL, file->name, &file->id, file->size,
NULL))
goto failure;
if (emit_partial_test_file_data(mount_dir, file))
goto failure;
}
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
if (validate_ranges(mount_dir, file))
goto failure;
/*
* The smallest files are filled completely, so this checks that
* the fast get_filled_blocks path is not causing issues
*/
if (validate_ranges(mount_dir, file))
goto failure;
}
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
return TEST_SUCCESS;
failure:
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
return TEST_FAILURE;
}
static int emit_partial_test_file_hash(const char *mount_dir,
struct test_file *file)
{
int err;
int fd;
struct incfs_fill_blocks fill_blocks = {
.count = 1,
};
struct incfs_fill_block *fill_block_array =
calloc(fill_blocks.count, sizeof(struct incfs_fill_block));
uint8_t data[INCFS_DATA_FILE_BLOCK_SIZE];
if (file->size <= 4096 / 32 * 4096)
return 0;
if (!fill_block_array)
return -ENOMEM;
fill_blocks.fill_blocks = ptr_to_u64(fill_block_array);
rnd_buf(data, sizeof(data), 0);
fill_block_array[0] =
(struct incfs_fill_block){ .block_index = 1,
.data_len =
INCFS_DATA_FILE_BLOCK_SIZE,
.data = ptr_to_u64(data),
.flags = INCFS_BLOCK_FLAGS_HASH };
fd = open_file_by_id(mount_dir, file->id, true);
if (fd < 0) {
err = errno;
goto failure;
}
err = ioctl(fd, INCFS_IOC_FILL_BLOCKS, &fill_blocks);
close(fd);
if (err < fill_blocks.count)
err = errno;
else
err = 0;
failure:
free(fill_block_array);
return err;
}
static int validate_hash_ranges(const char *mount_dir, struct test_file *file)
{
int block_cnt = 1 + (file->size - 1) / INCFS_DATA_FILE_BLOCK_SIZE;
char *filename = concat_file_name(mount_dir, file->name);
int fd;
struct incfs_filled_range ranges[128];
struct incfs_get_filled_blocks_args fba = {
.range_buffer = ptr_to_u64(ranges),
.range_buffer_size = sizeof(ranges),
};
int error = TEST_SUCCESS;
int file_blocks = (file->size + INCFS_DATA_FILE_BLOCK_SIZE - 1) /
INCFS_DATA_FILE_BLOCK_SIZE;
int cmd_fd = -1;
struct incfs_permit_fill permit_fill;
if (file->size <= 4096 / 32 * 4096)
return 0;
fd = open(filename, O_RDONLY | O_CLOEXEC);
free(filename);
if (fd <= 0)
return TEST_FAILURE;
error = ioctl(fd, INCFS_IOC_GET_FILLED_BLOCKS, &fba);
if (error != -1 || errno != EPERM) {
ksft_print_msg("INCFS_IOC_GET_FILLED_BLOCKS not blocked\n");
error = -EPERM;
goto out;
}
cmd_fd = open_commands_file(mount_dir);
permit_fill.file_descriptor = fd;
if (ioctl(cmd_fd, INCFS_IOC_PERMIT_FILL, &permit_fill)) {
print_error("INCFS_IOC_PERMIT_FILL failed");
return -EPERM;
goto out;
}
error = ioctl(fd, INCFS_IOC_GET_FILLED_BLOCKS, &fba);
if (error)
goto out;
if (fba.total_blocks_out <= block_cnt) {
error = -EINVAL;
goto out;
}
if (fba.data_blocks_out != block_cnt) {
error = -EINVAL;
goto out;
}
if (fba.range_buffer_size_out != sizeof(struct incfs_filled_range)) {
error = -EINVAL;
goto out;
}
if (ranges[0].begin != file_blocks + 1 ||
ranges[0].end != file_blocks + 2) {
error = -EINVAL;
goto out;
}
out:
close(cmd_fd);
close(fd);
return error;
}
static int get_hash_blocks_test(const char *mount_dir)
{
char *backing_dir;
int cmd_fd = -1;
int i;
struct test_files_set test = get_test_files_set();
const int file_num = test.files_count;
backing_dir = create_backing_dir(mount_dir);
if (!backing_dir)
goto failure;
if (mount_fs_opt(mount_dir, backing_dir, "readahead=0", false) != 0)
goto failure;
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
if (crypto_emit_file(cmd_fd, NULL, file->name, &file->id,
file->size, file->root_hash,
file->sig.add_data))
goto failure;
if (emit_partial_test_file_hash(mount_dir, file))
goto failure;
}
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
if (validate_hash_ranges(mount_dir, file))
goto failure;
}
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
return TEST_SUCCESS;
failure:
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
return TEST_FAILURE;
}
#define THREE_GB (3LL * 1024 * 1024 * 1024)
#define FOUR_GB (4LL * 1024 * 1024 * 1024) /* Have 1GB of margin */
static int large_file_test(const char *mount_dir)
{
char *backing_dir;
int cmd_fd = -1;
int i;
int result = TEST_FAILURE, ret;
uint8_t data[INCFS_DATA_FILE_BLOCK_SIZE] = {};
int block_count = THREE_GB / INCFS_DATA_FILE_BLOCK_SIZE;
struct incfs_fill_block *block_buf =
calloc(block_count, sizeof(struct incfs_fill_block));
struct incfs_fill_blocks fill_blocks = {
.count = block_count,
.fill_blocks = ptr_to_u64(block_buf),
};
incfs_uuid_t id;
int fd = -1;
struct statvfs svfs;
unsigned long long free_disksz;
ret = statvfs(mount_dir, &svfs);
if (ret) {
ksft_print_msg("Can't get disk size. Skipping %s...\n", __func__);
return TEST_SKIP;
}
free_disksz = (unsigned long long)svfs.f_bavail * svfs.f_bsize;
if (FOUR_GB > free_disksz) {
ksft_print_msg("Not enough free disk space (%lldMB). Skipping %s...\n",
free_disksz >> 20, __func__);
return TEST_SKIP;
}
backing_dir = create_backing_dir(mount_dir);
if (!backing_dir)
goto failure;
if (mount_fs_opt(mount_dir, backing_dir, "readahead=0", false) != 0)
goto failure;
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
if (emit_file(cmd_fd, NULL, "very_large_file", &id,
(uint64_t)block_count * INCFS_DATA_FILE_BLOCK_SIZE,
NULL) < 0)
goto failure;
for (i = 0; i < block_count; i++) {
block_buf[i].compression = COMPRESSION_NONE;
block_buf[i].block_index = i;
block_buf[i].data_len = INCFS_DATA_FILE_BLOCK_SIZE;
block_buf[i].data = ptr_to_u64(data);
}
fd = open_file_by_id(mount_dir, id, true);
if (fd < 0)
goto failure;
if (ioctl(fd, INCFS_IOC_FILL_BLOCKS, &fill_blocks) != block_count)
goto failure;
if (emit_file(cmd_fd, NULL, "very_very_large_file", &id, 1LL << 40,
NULL) < 0)
goto failure;
result = TEST_SUCCESS;
failure:
close(fd);
close(cmd_fd);
unlink("very_large_file");
umount(mount_dir);
free(backing_dir);
return result;
}
static int validate_mapped_file(const char *orig_name, const char *name,
size_t size, size_t offset)
{
struct stat st;
int orig_fd = -1, fd = -1;
size_t block;
int result = TEST_FAILURE;
if (stat(name, &st)) {
ksft_print_msg("Failed to stat %s with error %s\n",
name, strerror(errno));
goto failure;
}
if (size != st.st_size) {
ksft_print_msg("Mismatched file sizes for file %s - expected %llu, got %llu\n",
name, size, st.st_size);
goto failure;
}
fd = open(name, O_RDONLY | O_CLOEXEC);
if (fd == -1) {
ksft_print_msg("Failed to open %s with error %s\n", name,
strerror(errno));
goto failure;
}
orig_fd = open(orig_name, O_RDONLY | O_CLOEXEC);
if (orig_fd == -1) {
ksft_print_msg("Failed to open %s with error %s\n", orig_name,
strerror(errno));
goto failure;
}
for (block = 0; block < size; block += INCFS_DATA_FILE_BLOCK_SIZE) {
uint8_t orig_data[INCFS_DATA_FILE_BLOCK_SIZE];
uint8_t data[INCFS_DATA_FILE_BLOCK_SIZE];
ssize_t orig_read, mapped_read;
orig_read = pread(orig_fd, orig_data,
INCFS_DATA_FILE_BLOCK_SIZE, block + offset);
mapped_read = pread(fd, data, INCFS_DATA_FILE_BLOCK_SIZE,
block);
if (orig_read < mapped_read ||
mapped_read != min(size - block,
INCFS_DATA_FILE_BLOCK_SIZE)) {
ksft_print_msg("Failed to read enough data: %llu %llu %llu %lld %lld\n",
block, size, offset, orig_read,
mapped_read);
goto failure;
}
if (memcmp(orig_data, data, mapped_read)) {
ksft_print_msg("Data doesn't match: %llu %llu %llu %lld %lld\n",
block, size, offset, orig_read,
mapped_read);
goto failure;
}
}
result = TEST_SUCCESS;
failure:
close(orig_fd);
close(fd);
return result;
}
static int mapped_file_test(const char *mount_dir)
{
char *backing_dir;
int result = TEST_FAILURE;
int cmd_fd = -1;
int i;
struct test_files_set test = get_test_files_set();
const int file_num = test.files_count;
backing_dir = create_backing_dir(mount_dir);
if (!backing_dir)
goto failure;
if (mount_fs_opt(mount_dir, backing_dir, "readahead=0", false) != 0)
goto failure;
cmd_fd = open_commands_file(mount_dir);
if (cmd_fd < 0)
goto failure;
for (i = 0; i < file_num; ++i) {
struct test_file *file = &test.files[i];
size_t blocks = file->size / INCFS_DATA_FILE_BLOCK_SIZE;
size_t mapped_offset = blocks / 4 *
INCFS_DATA_FILE_BLOCK_SIZE;
size_t mapped_size = file->size / 4 * 3 - mapped_offset;
struct incfs_create_mapped_file_args mfa;
char mapped_file_name[FILENAME_MAX];
char orig_file_path[PATH_MAX];
char mapped_file_path[PATH_MAX];
if (emit_file(cmd_fd, NULL, file->name, &file->id, file->size,
NULL) < 0)
goto failure;
if (emit_test_file_data(mount_dir, file))
goto failure;
if (snprintf(mapped_file_name, ARRAY_SIZE(mapped_file_name),
"%s.mapped", file->name) < 0)
goto failure;
mfa = (struct incfs_create_mapped_file_args) {
.size = mapped_size,
.mode = 0664,
.file_name = ptr_to_u64(mapped_file_name),
.source_file_id = file->id,
.source_offset = mapped_offset,
};
result = ioctl(cmd_fd, INCFS_IOC_CREATE_MAPPED_FILE, &mfa);
if (result) {
ksft_print_msg(
"Failed to create mapped file with error %d\n",
result);
goto failure;
}
result = snprintf(orig_file_path,
ARRAY_SIZE(orig_file_path), "%s/%s",
mount_dir, file->name);
if (result < 0 || result >= ARRAY_SIZE(mapped_file_path)) {
result = TEST_FAILURE;
goto failure;
}
result = snprintf(mapped_file_path,
ARRAY_SIZE(mapped_file_path), "%s/%s",
mount_dir, mapped_file_name);
if (result < 0 || result >= ARRAY_SIZE(mapped_file_path)) {
result = TEST_FAILURE;
goto failure;
}
result = validate_mapped_file(orig_file_path, mapped_file_path,
mapped_size, mapped_offset);
if (result)
goto failure;
}
failure:
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
return result;
}
static const char v1_file[] = {
/* Header */
/* 0x00: Magic number */
0x49, 0x4e, 0x43, 0x46, 0x53, 0x00, 0x00, 0x00,
/* 0x08: Version */
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x10: Header size */
0x38, 0x00,
/* 0x12: Block size */
0x00, 0x10,
/* 0x14: Flags */
0x00, 0x00, 0x00, 0x00,
/* 0x18: First md offset */
0x46, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x20: File size */
0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x28: UUID */
0x8c, 0x7d, 0xd9, 0x22, 0xad, 0x47, 0x49, 0x4f,
0xc0, 0x2c, 0x38, 0x8e, 0x12, 0xc0, 0x0e, 0xac,
/* 0x38: Attribute */
0x6d, 0x65, 0x74, 0x61, 0x64, 0x61, 0x74, 0x61,
0x31, 0x32, 0x33, 0x31, 0x32, 0x33,
/* Attribute md record */
/* 0x46: Type */
0x02,
/* 0x47: Size */
0x25, 0x00,
/* 0x49: CRC */
0x9a, 0xef, 0xef, 0x72,
/* 0x4d: Next md offset */
0x75, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x55: Prev md offset */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x5d: fa_offset */
0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x65: fa_size */
0x0e, 0x00,
/* 0x67: fa_crc */
0xfb, 0x5e, 0x72, 0x89,
/* Blockmap table */
/* 0x6b: First 10-byte entry */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* Blockmap md record */
/* 0x75: Type */
0x01,
/* 0x76: Size */
0x23, 0x00,
/* 0x78: CRC */
0x74, 0x45, 0xd3, 0xb9,
/* 0x7c: Next md offset */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x84: Prev md offset */
0x46, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x8c: blockmap offset */
0x6b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x94: blockmap count */
0x01, 0x00, 0x00, 0x00,
};
static int compatibility_test(const char *mount_dir)
{
static const char *name = "file";
int result = TEST_FAILURE;
char *backing_dir = NULL;
char *filename = NULL;
int fd = -1;
uint64_t size = 0x0c;
TEST(backing_dir = create_backing_dir(mount_dir), backing_dir);
TEST(filename = concat_file_name(backing_dir, name), filename);
TEST(fd = open(filename, O_CREAT | O_WRONLY | O_CLOEXEC, 0777),
fd != -1);
TESTEQUAL(write(fd, v1_file, sizeof(v1_file)), sizeof(v1_file));
TESTEQUAL(fsetxattr(fd, INCFS_XATTR_SIZE_NAME, &size, sizeof(size), 0),
0);
TESTEQUAL(mount_fs(mount_dir, backing_dir, 50), 0);
free(filename);
TEST(filename = concat_file_name(mount_dir, name), filename);
close(fd);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
result = TEST_SUCCESS;
out:
close(fd);
umount(mount_dir);
free(backing_dir);
free(filename);
return result;
}
static int zero_blocks_written_count(int fd, uint32_t data_blocks_written,
uint32_t hash_blocks_written)
{
int test_result = TEST_FAILURE;
uint64_t offset;
uint8_t type;
uint32_t bw;
/* Get first md record */
TESTEQUAL(pread(fd, &offset, sizeof(offset), 24), sizeof(offset));
/* Find status md record */
for (;;) {
TESTNE(offset, 0);
TESTEQUAL(pread(fd, &type, sizeof(type), le64_to_cpu(offset)),
sizeof(type));
if (type == 4)
break;
TESTEQUAL(pread(fd, &offset, sizeof(offset),
le64_to_cpu(offset) + 7),
sizeof(offset));
}
/* Read blocks_written */
offset = le64_to_cpu(offset);
TESTEQUAL(pread(fd, &bw, sizeof(bw), offset + 23), sizeof(bw));
TESTEQUAL(le32_to_cpu(bw), data_blocks_written);
TESTEQUAL(pread(fd, &bw, sizeof(bw), offset + 27), sizeof(bw));
TESTEQUAL(le32_to_cpu(bw), hash_blocks_written);
/* Write out zero */
bw = 0;
TESTEQUAL(pwrite(fd, &bw, sizeof(bw), offset + 23), sizeof(bw));
TESTEQUAL(pwrite(fd, &bw, sizeof(bw), offset + 27), sizeof(bw));
test_result = TEST_SUCCESS;
out:
return test_result;
}
static int validate_block_count(const char *mount_dir, const char *backing_dir,
struct test_file *file,
int total_data_blocks, int filled_data_blocks,
int total_hash_blocks, int filled_hash_blocks)
{
char *filename = NULL;
char *backing_filename = NULL;
int fd = -1;
struct incfs_get_block_count_args bca = {};
int test_result = TEST_FAILURE;
struct incfs_filled_range ranges[128];
struct incfs_get_filled_blocks_args fba = {
.range_buffer = ptr_to_u64(ranges),
.range_buffer_size = sizeof(ranges),
};
int cmd_fd = -1;
struct incfs_permit_fill permit_fill;
TEST(filename = concat_file_name(mount_dir, file->name), filename);
TEST(backing_filename = concat_file_name(backing_dir, file->name),
backing_filename);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TESTEQUAL(ioctl(fd, INCFS_IOC_GET_BLOCK_COUNT, &bca), 0);
TESTEQUAL(bca.total_data_blocks_out, total_data_blocks);
TESTEQUAL(bca.filled_data_blocks_out, filled_data_blocks);
TESTEQUAL(bca.total_hash_blocks_out, total_hash_blocks);
TESTEQUAL(bca.filled_hash_blocks_out, filled_hash_blocks);
close(fd);
TESTEQUAL(umount(mount_dir), 0);
TEST(fd = open(backing_filename, O_RDWR | O_CLOEXEC), fd != -1);
TESTEQUAL(zero_blocks_written_count(fd, filled_data_blocks,
filled_hash_blocks),
TEST_SUCCESS);
close(fd);
fd = -1;
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir, "readahead=0", false),
0);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TESTEQUAL(ioctl(fd, INCFS_IOC_GET_BLOCK_COUNT, &bca), 0);
TESTEQUAL(bca.total_data_blocks_out, total_data_blocks);
TESTEQUAL(bca.filled_data_blocks_out, 0);
TESTEQUAL(bca.total_hash_blocks_out, total_hash_blocks);
TESTEQUAL(bca.filled_hash_blocks_out, 0);
TEST(cmd_fd = open_commands_file(mount_dir), cmd_fd != -1);
permit_fill.file_descriptor = fd;
TESTEQUAL(ioctl(cmd_fd, INCFS_IOC_PERMIT_FILL, &permit_fill), 0);
do {
ioctl(fd, INCFS_IOC_GET_FILLED_BLOCKS, &fba);
fba.start_index = fba.index_out + 1;
} while (fba.index_out < fba.total_blocks_out);
TESTEQUAL(ioctl(fd, INCFS_IOC_GET_BLOCK_COUNT, &bca), 0);
TESTEQUAL(bca.total_data_blocks_out, total_data_blocks);
TESTEQUAL(bca.filled_data_blocks_out, filled_data_blocks);
TESTEQUAL(bca.total_hash_blocks_out, total_hash_blocks);
TESTEQUAL(bca.filled_hash_blocks_out, filled_hash_blocks);
test_result = TEST_SUCCESS;
out:
close(cmd_fd);
close(fd);
free(filename);
free(backing_filename);
return test_result;
}
static int validate_data_block_count(const char *mount_dir,
const char *backing_dir,
struct test_file *file)
{
const int total_data_blocks = 1 + (file->size - 1) /
INCFS_DATA_FILE_BLOCK_SIZE;
const int filled_data_blocks = (total_data_blocks + 1) / 2;
int test_result = TEST_FAILURE;
char *filename = NULL;
char *incomplete_filename = NULL;
struct stat stat_buf_incomplete, stat_buf_file;
int fd = -1;
struct incfs_get_block_count_args bca = {};
int i;
TEST(filename = concat_file_name(mount_dir, file->name), filename);
TEST(incomplete_filename = get_incomplete_filename(mount_dir, file->id),
incomplete_filename);
TESTEQUAL(stat(filename, &stat_buf_file), 0);
TESTEQUAL(stat(incomplete_filename, &stat_buf_incomplete), 0);
TESTEQUAL(stat_buf_file.st_ino, stat_buf_incomplete.st_ino);
TESTEQUAL(stat_buf_file.st_nlink, 3);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TESTEQUAL(ioctl(fd, INCFS_IOC_GET_BLOCK_COUNT, &bca), 0);
TESTEQUAL(bca.total_data_blocks_out, total_data_blocks);
TESTEQUAL(bca.filled_data_blocks_out, 0);
TESTEQUAL(bca.total_hash_blocks_out, 0);
TESTEQUAL(bca.filled_hash_blocks_out, 0);
for (i = 0; i < total_data_blocks; i += 2)
TESTEQUAL(emit_test_block(mount_dir, file, i), 0);
TESTEQUAL(ioctl(fd, INCFS_IOC_GET_BLOCK_COUNT, &bca), 0);
TESTEQUAL(bca.total_data_blocks_out, total_data_blocks);
TESTEQUAL(bca.filled_data_blocks_out, filled_data_blocks);
TESTEQUAL(bca.total_hash_blocks_out, 0);
TESTEQUAL(bca.filled_hash_blocks_out, 0);
close(fd);
fd = -1;
TESTEQUAL(validate_block_count(mount_dir, backing_dir, file,
total_data_blocks, filled_data_blocks,
0, 0),
0);
for (i = 1; i < total_data_blocks; i += 2)
TESTEQUAL(emit_test_block(mount_dir, file, i), 0);
TESTEQUAL(stat(incomplete_filename, &stat_buf_incomplete), -1);
TESTEQUAL(errno, ENOENT);
test_result = TEST_SUCCESS;
out:
close(fd);
free(incomplete_filename);
free(filename);
return test_result;
}
static int data_block_count_test(const char *mount_dir)
{
int result = TEST_FAILURE;
char *backing_dir;
int cmd_fd = -1;
int i;
struct test_files_set test = get_test_files_set();
TEST(backing_dir = create_backing_dir(mount_dir), backing_dir);
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir, "readahead=0", false),
0);
for (i = 0; i < test.files_count; ++i) {
struct test_file *file = &test.files[i];
TEST(cmd_fd = open_commands_file(mount_dir), cmd_fd != -1);
TESTEQUAL(emit_file(cmd_fd, NULL, file->name, &file->id,
file->size, NULL),
0);
close(cmd_fd);
cmd_fd = -1;
TESTEQUAL(validate_data_block_count(mount_dir, backing_dir,
file),
0);
}
result = TEST_SUCCESS;
out:
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
return result;
}
static int validate_hash_block_count(const char *mount_dir,
const char *backing_dir,
struct test_file *file)
{
const int digest_size = SHA256_DIGEST_SIZE;
const int hash_per_block = INCFS_DATA_FILE_BLOCK_SIZE / digest_size;
const int total_data_blocks = 1 + (file->size - 1) /
INCFS_DATA_FILE_BLOCK_SIZE;
int result = TEST_FAILURE;
int hash_layer = total_data_blocks;
int total_hash_blocks = 0;
int filled_hash_blocks;
char *filename = NULL;
int fd = -1;
struct incfs_get_block_count_args bca = {};
while (hash_layer > 1) {
hash_layer = (hash_layer + hash_per_block - 1) / hash_per_block;
total_hash_blocks += hash_layer;
}
filled_hash_blocks = total_hash_blocks > 1 ? 1 : 0;
TEST(filename = concat_file_name(mount_dir, file->name), filename);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TESTEQUAL(ioctl(fd, INCFS_IOC_GET_BLOCK_COUNT, &bca), 0);
TESTEQUAL(bca.total_data_blocks_out, total_data_blocks);
TESTEQUAL(bca.filled_data_blocks_out, 0);
TESTEQUAL(bca.total_hash_blocks_out, total_hash_blocks);
TESTEQUAL(bca.filled_hash_blocks_out, 0);
TESTEQUAL(emit_partial_test_file_hash(mount_dir, file), 0);
TESTEQUAL(ioctl(fd, INCFS_IOC_GET_BLOCK_COUNT, &bca), 0);
TESTEQUAL(bca.total_data_blocks_out, total_data_blocks);
TESTEQUAL(bca.filled_data_blocks_out, 0);
TESTEQUAL(bca.total_hash_blocks_out, total_hash_blocks);
TESTEQUAL(bca.filled_hash_blocks_out, filled_hash_blocks);
close(fd);
fd = -1;
if (filled_hash_blocks)
TESTEQUAL(validate_block_count(mount_dir, backing_dir, file,
total_data_blocks, 0,
total_hash_blocks, filled_hash_blocks),
0);
result = TEST_SUCCESS;
out:
close(fd);
free(filename);
return result;
}
static int hash_block_count_test(const char *mount_dir)
{
int result = TEST_FAILURE;
char *backing_dir;
int cmd_fd = -1;
int i;
struct test_files_set test = get_test_files_set();
TEST(backing_dir = create_backing_dir(mount_dir), backing_dir);
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir, "readahead=0", false),
0);
for (i = 0; i < test.files_count; i++) {
struct test_file *file = &test.files[i];
TEST(cmd_fd = open_commands_file(mount_dir), cmd_fd != -1);
TESTEQUAL(crypto_emit_file(cmd_fd, NULL, file->name, &file->id,
file->size, file->root_hash,
file->sig.add_data),
0);
close(cmd_fd);
cmd_fd = -1;
TESTEQUAL(validate_hash_block_count(mount_dir, backing_dir,
&test.files[i]),
0);
}
result = TEST_SUCCESS;
out:
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
return result;
}
static int is_close(struct timespec *start, int expected_ms)
{
const int allowed_variance = 100;
int result = TEST_FAILURE;
struct timespec finish;
int diff;
TESTEQUAL(clock_gettime(CLOCK_MONOTONIC, &finish), 0);
diff = (finish.tv_sec - start->tv_sec) * 1000 +
(finish.tv_nsec - start->tv_nsec) / 1000000;
TESTCOND(diff >= expected_ms - allowed_variance);
TESTCOND(diff <= expected_ms + allowed_variance);
result = TEST_SUCCESS;
out:
return result;
}
static int per_uid_read_timeouts_test(const char *mount_dir)
{
struct test_file file = {
.name = "file",
.size = 16 * INCFS_DATA_FILE_BLOCK_SIZE
};
int result = TEST_FAILURE;
char *backing_dir = NULL;
int pid = -1;
int cmd_fd = -1;
char *filename = NULL;
int fd = -1;
struct timespec start;
char buffer[4096];
struct incfs_per_uid_read_timeouts purt_get[1];
struct incfs_get_read_timeouts_args grt = {
ptr_to_u64(purt_get),
sizeof(purt_get)
};
struct incfs_per_uid_read_timeouts purt_set[] = {
{
.uid = 0,
.min_time_us = 1000000,
.min_pending_time_us = 2000000,
.max_pending_time_us = 3000000,
},
};
struct incfs_set_read_timeouts_args srt = {
ptr_to_u64(purt_set),
sizeof(purt_set)
};
int status;
TEST(backing_dir = create_backing_dir(mount_dir), backing_dir);
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir,
"read_timeout_ms=1000,readahead=0", false), 0);
TEST(cmd_fd = open_commands_file(mount_dir), cmd_fd != -1);
TESTEQUAL(emit_file(cmd_fd, NULL, file.name, &file.id, file.size,
NULL), 0);
TEST(filename = concat_file_name(mount_dir, file.name), filename);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TESTEQUAL(fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC), 0);
/* Default mount options read failure is 1000 */
TESTEQUAL(clock_gettime(CLOCK_MONOTONIC, &start), 0);
TESTEQUAL(pread(fd, buffer, sizeof(buffer), 0), -1);
TESTEQUAL(is_close(&start, 1000), 0);
grt.timeouts_array_size = 0;
TESTEQUAL(ioctl(cmd_fd, INCFS_IOC_GET_READ_TIMEOUTS, &grt), 0);
TESTEQUAL(grt.timeouts_array_size_out, 0);
/* Set it to 3000 */
TESTEQUAL(ioctl(cmd_fd, INCFS_IOC_SET_READ_TIMEOUTS, &srt), 0);
TESTEQUAL(clock_gettime(CLOCK_MONOTONIC, &start), 0);
TESTEQUAL(pread(fd, buffer, sizeof(buffer), 0), -1);
TESTEQUAL(is_close(&start, 3000), 0);
TESTEQUAL(ioctl(cmd_fd, INCFS_IOC_GET_READ_TIMEOUTS, &grt), -1);
TESTEQUAL(errno, E2BIG);
TESTEQUAL(grt.timeouts_array_size_out, sizeof(purt_get));
grt.timeouts_array_size = sizeof(purt_get);
TESTEQUAL(ioctl(cmd_fd, INCFS_IOC_GET_READ_TIMEOUTS, &grt), 0);
TESTEQUAL(grt.timeouts_array_size_out, sizeof(purt_get));
TESTEQUAL(purt_get[0].uid, purt_set[0].uid);
TESTEQUAL(purt_get[0].min_time_us, purt_set[0].min_time_us);
TESTEQUAL(purt_get[0].min_pending_time_us,
purt_set[0].min_pending_time_us);
TESTEQUAL(purt_get[0].max_pending_time_us,
purt_set[0].max_pending_time_us);
/* Still 1000 in UID 2 */
TESTEQUAL(clock_gettime(CLOCK_MONOTONIC, &start), 0);
TEST(pid = fork(), pid != -1);
if (pid == 0) {
TESTEQUAL(setuid(2), 0);
TESTEQUAL(pread(fd, buffer, sizeof(buffer), 0), -1);
exit(0);
}
TESTNE(wait(&status), -1);
TESTEQUAL(WEXITSTATUS(status), 0);
TESTEQUAL(is_close(&start, 1000), 0);
/* Set it to default */
purt_set[0].max_pending_time_us = UINT32_MAX;
TESTEQUAL(ioctl(cmd_fd, INCFS_IOC_SET_READ_TIMEOUTS, &srt), 0);
TESTEQUAL(clock_gettime(CLOCK_MONOTONIC, &start), 0);
TESTEQUAL(pread(fd, buffer, sizeof(buffer), 0), -1);
TESTEQUAL(is_close(&start, 1000), 0);
/* Test min read time */
TESTEQUAL(emit_test_block(mount_dir, &file, 0), 0);
TESTEQUAL(clock_gettime(CLOCK_MONOTONIC, &start), 0);
TESTEQUAL(pread(fd, buffer, sizeof(buffer), 0), sizeof(buffer));
TESTEQUAL(is_close(&start, 1000), 0);
/* Test min pending time */
purt_set[0].uid = 2;
TESTEQUAL(ioctl(cmd_fd, INCFS_IOC_SET_READ_TIMEOUTS, &srt), 0);
TESTEQUAL(clock_gettime(CLOCK_MONOTONIC, &start), 0);
TEST(pid = fork(), pid != -1);
if (pid == 0) {
TESTEQUAL(setuid(2), 0);
TESTEQUAL(pread(fd, buffer, sizeof(buffer), sizeof(buffer)),
sizeof(buffer));
exit(0);
}
sleep(1);
TESTEQUAL(emit_test_block(mount_dir, &file, 1), 0);
TESTNE(wait(&status), -1);
TESTEQUAL(WEXITSTATUS(status), 0);
TESTEQUAL(is_close(&start, 2000), 0);
/* Clear timeouts */
srt.timeouts_array_size = 0;
TESTEQUAL(ioctl(cmd_fd, INCFS_IOC_SET_READ_TIMEOUTS, &srt), 0);
grt.timeouts_array_size = 0;
TESTEQUAL(ioctl(cmd_fd, INCFS_IOC_GET_READ_TIMEOUTS, &grt), 0);
TESTEQUAL(grt.timeouts_array_size_out, 0);
result = TEST_SUCCESS;
out:
close(fd);
if (pid == 0)
exit(result);
free(filename);
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
return result;
}
#define DIRS 3
static int inotify_test(const char *mount_dir)
{
const char *mapped_file_name = "mapped_name";
struct test_file file = {
.name = "file",
.size = 16 * INCFS_DATA_FILE_BLOCK_SIZE
};
int result = TEST_FAILURE;
char *backing_dir = NULL, *index_dir = NULL, *incomplete_dir = NULL;
char *file_name = NULL;
int cmd_fd = -1;
int notify_fd = -1;
int wds[DIRS];
char buffer[DIRS * (sizeof(struct inotify_event) + NAME_MAX + 1)];
char *ptr = buffer;
struct inotify_event *event;
struct inotify_event *events[DIRS] = {};
const char *names[DIRS] = {};
int res;
char id[sizeof(incfs_uuid_t) * 2 + 1];
struct incfs_create_mapped_file_args mfa;
/* File creation triggers inotify events in .index and .incomplete? */
TEST(backing_dir = create_backing_dir(mount_dir), backing_dir);
TEST(index_dir = concat_file_name(mount_dir, ".index"), index_dir);
TEST(incomplete_dir = concat_file_name(mount_dir, ".incomplete"),
incomplete_dir);
TESTEQUAL(mount_fs(mount_dir, backing_dir, 50), 0);
TEST(cmd_fd = open_commands_file(mount_dir), cmd_fd != -1);
TEST(notify_fd = inotify_init1(IN_NONBLOCK | IN_CLOEXEC),
notify_fd != -1);
TEST(wds[0] = inotify_add_watch(notify_fd, mount_dir,
IN_CREATE | IN_DELETE),
wds[0] != -1);
TEST(wds[1] = inotify_add_watch(notify_fd, index_dir,
IN_CREATE | IN_DELETE),
wds[1] != -1);
TEST(wds[2] = inotify_add_watch(notify_fd, incomplete_dir,
IN_CREATE | IN_DELETE),
wds[2] != -1);
TESTEQUAL(emit_file(cmd_fd, NULL, file.name, &file.id, file.size,
NULL), 0);
TEST(res = read(notify_fd, buffer, sizeof(buffer)), res != -1);
while (ptr < buffer + res) {
int i;
event = (struct inotify_event *) ptr;
TESTCOND(ptr + sizeof(*event) <= buffer + res);
for (i = 0; i < DIRS; ++i)
if (event->wd == wds[i]) {
TESTEQUAL(events[i], NULL);
events[i] = event;
ptr += sizeof(*event);
names[i] = ptr;
ptr += events[i]->len;
TESTCOND(ptr <= buffer + res);
break;
}
TESTCOND(i < DIRS);
}
TESTNE(events[0], NULL);
TESTNE(events[1], NULL);
TESTNE(events[2], NULL);
bin2hex(id, file.id.bytes, sizeof(incfs_uuid_t));
TESTEQUAL(events[0]->mask, IN_CREATE);
TESTEQUAL(events[1]->mask, IN_CREATE);
TESTEQUAL(events[2]->mask, IN_CREATE);
TESTEQUAL(strcmp(names[0], file.name), 0);
TESTEQUAL(strcmp(names[1], id), 0);
TESTEQUAL(strcmp(names[2], id), 0);
/* Creating a mapped file triggers inotify event */
mfa = (struct incfs_create_mapped_file_args) {
.size = INCFS_DATA_FILE_BLOCK_SIZE,
.mode = 0664,
.file_name = ptr_to_u64(mapped_file_name),
.source_file_id = file.id,
.source_offset = INCFS_DATA_FILE_BLOCK_SIZE,
};
TEST(res = ioctl(cmd_fd, INCFS_IOC_CREATE_MAPPED_FILE, &mfa),
res != -1);
TEST(res = read(notify_fd, buffer, sizeof(buffer)), res != -1);
event = (struct inotify_event *) buffer;
TESTEQUAL(event->wd, wds[0]);
TESTEQUAL(event->mask, IN_CREATE);
TESTEQUAL(strcmp(event->name, mapped_file_name), 0);
/* File completion triggers inotify event in .incomplete? */
TESTEQUAL(emit_test_file_data(mount_dir, &file), 0);
TEST(res = read(notify_fd, buffer, sizeof(buffer)), res != -1);
event = (struct inotify_event *) buffer;
TESTEQUAL(event->wd, wds[2]);
TESTEQUAL(event->mask, IN_DELETE);
TESTEQUAL(strcmp(event->name, id), 0);
/* File unlinking triggers inotify event in .index? */
TEST(file_name = concat_file_name(mount_dir, file.name), file_name);
TESTEQUAL(unlink(file_name), 0);
TEST(res = read(notify_fd, buffer, sizeof(buffer)), res != -1);
memset(events, 0, sizeof(events));
memset(names, 0, sizeof(names));
for (ptr = buffer; ptr < buffer + res;) {
event = (struct inotify_event *) ptr;
int i;
TESTCOND(ptr + sizeof(*event) <= buffer + res);
for (i = 0; i < DIRS; ++i)
if (event->wd == wds[i]) {
TESTEQUAL(events[i], NULL);
events[i] = event;
ptr += sizeof(*event);
names[i] = ptr;
ptr += events[i]->len;
TESTCOND(ptr <= buffer + res);
break;
}
TESTCOND(i < DIRS);
}
TESTNE(events[0], NULL);
TESTNE(events[1], NULL);
TESTEQUAL(events[2], NULL);
TESTEQUAL(events[0]->mask, IN_DELETE);
TESTEQUAL(events[1]->mask, IN_DELETE);
TESTEQUAL(strcmp(names[0], file.name), 0);
TESTEQUAL(strcmp(names[1], id), 0);
result = TEST_SUCCESS;
out:
free(file_name);
close(notify_fd);
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
free(index_dir);
free(incomplete_dir);
return result;
}
static EVP_PKEY *create_key(void)
{
EVP_PKEY *pkey = NULL;
RSA *rsa = NULL;
BIGNUM *bn = NULL;
pkey = EVP_PKEY_new();
if (!pkey)
goto fail;
bn = BN_new();
BN_set_word(bn, RSA_F4);
rsa = RSA_new();
if (!rsa)
goto fail;
RSA_generate_key_ex(rsa, 4096, bn, NULL);
EVP_PKEY_assign_RSA(pkey, rsa);
BN_free(bn);
return pkey;
fail:
BN_free(bn);
EVP_PKEY_free(pkey);
return NULL;
}
static X509 *get_cert(EVP_PKEY *key)
{
X509 *x509 = NULL;
X509_NAME *name = NULL;
x509 = X509_new();
if (!x509)
return NULL;
ASN1_INTEGER_set(X509_get_serialNumber(x509), 1);
X509_gmtime_adj(X509_get_notBefore(x509), 0);
X509_gmtime_adj(X509_get_notAfter(x509), 31536000L);
X509_set_pubkey(x509, key);
name = X509_get_subject_name(x509);
X509_NAME_add_entry_by_txt(name, "C", MBSTRING_ASC,
(const unsigned char *)"US", -1, -1, 0);
X509_NAME_add_entry_by_txt(name, "ST", MBSTRING_ASC,
(const unsigned char *)"CA", -1, -1, 0);
X509_NAME_add_entry_by_txt(name, "L", MBSTRING_ASC,
(const unsigned char *)"San Jose", -1, -1, 0);
X509_NAME_add_entry_by_txt(name, "O", MBSTRING_ASC,
(const unsigned char *)"Example", -1, -1, 0);
X509_NAME_add_entry_by_txt(name, "OU", MBSTRING_ASC,
(const unsigned char *)"Org", -1, -1, 0);
X509_NAME_add_entry_by_txt(name, "CN", MBSTRING_ASC,
(const unsigned char *)"www.example.com", -1, -1, 0);
X509_set_issuer_name(x509, name);
if (!X509_sign(x509, key, EVP_sha256()))
return NULL;
return x509;
}
static int sign(EVP_PKEY *key, X509 *cert, const char *data, size_t len,
unsigned char **sig, size_t *sig_len)
{
const int pkcs7_flags = PKCS7_BINARY | PKCS7_NOATTR | PKCS7_PARTIAL |
PKCS7_DETACHED;
const EVP_MD *md = EVP_sha256();
int result = TEST_FAILURE;
BIO *bio = NULL;
PKCS7 *p7 = NULL;
unsigned char *bio_buffer;
TEST(bio = BIO_new_mem_buf(data, len), bio);
TEST(p7 = PKCS7_sign(NULL, NULL, NULL, bio, pkcs7_flags), p7);
TESTNE(PKCS7_sign_add_signer(p7, cert, key, md, pkcs7_flags), 0);
TESTEQUAL(PKCS7_final(p7, bio, pkcs7_flags), 1);
TEST(*sig_len = i2d_PKCS7(p7, NULL), *sig_len);
TEST(bio_buffer = malloc(*sig_len), bio_buffer);
*sig = bio_buffer;
TEST(*sig_len = i2d_PKCS7(p7, &bio_buffer), *sig_len);
TESTEQUAL(PKCS7_verify(p7, NULL, NULL, bio, NULL,
pkcs7_flags | PKCS7_NOVERIFY | PKCS7_NOSIGS), 1);
result = TEST_SUCCESS;
out:
PKCS7_free(p7);
BIO_free(bio);
return result;
}
static int verity_installed(const char *mount_dir, int cmd_fd, bool *installed)
{
int result = TEST_FAILURE;
char *filename = NULL;
int fd = -1;
struct test_file *file = &get_test_files_set().files[0];
TESTEQUAL(emit_file(cmd_fd, NULL, file->name, &file->id, file->size,
NULL), 0);
TEST(filename = concat_file_name(mount_dir, file->name), filename);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TESTEQUAL(ioctl(fd, FS_IOC_ENABLE_VERITY, NULL), -1);
*installed = errno != EOPNOTSUPP;
result = TEST_SUCCESS;
out:
close(fd);
if (filename)
remove(filename);
free(filename);
return result;
}
static int enable_verity(const char *mount_dir, struct test_file *file,
EVP_PKEY *key, X509 *cert, bool use_signatures)
{
int result = TEST_FAILURE;
char *filename = NULL;
int fd = -1;
struct fsverity_enable_arg fear = {
.version = 1,
.hash_algorithm = FS_VERITY_HASH_ALG_SHA256,
.block_size = INCFS_DATA_FILE_BLOCK_SIZE,
.sig_size = 0,
.sig_ptr = 0,
};
struct {
__u8 version; /* must be 1 */
__u8 hash_algorithm; /* Merkle tree hash algorithm */
__u8 log_blocksize; /* log2 of size of data and tree blocks */
__u8 salt_size; /* size of salt in bytes; 0 if none */
__le32 sig_size; /* must be 0 */
__le64 data_size; /* size of file the Merkle tree is built over */
__u8 root_hash[64]; /* Merkle tree root hash */
__u8 salt[32]; /* salt prepended to each hashed block */
__u8 __reserved[144]; /* must be 0's */
} __packed fsverity_descriptor = {
.version = 1,
.hash_algorithm = 1,
.log_blocksize = 12,
.data_size = file->size,
};
struct {
char magic[8]; /* must be "FSVerity" */
__le16 digest_algorithm;
__le16 digest_size;
__u8 digest[32];
} __packed fsverity_signed_digest = {
.digest_algorithm = 1,
.digest_size = 32
};
unsigned char *sig = NULL;
size_t sig_size = 0;
uint64_t flags;
struct statx statxbuf = {};
memcpy(fsverity_signed_digest.magic, "FSVerity", 8);
TEST(filename = concat_file_name(mount_dir, file->name), filename);
TESTEQUAL(syscall(__NR_statx, AT_FDCWD, filename, 0, STATX_ALL,
&statxbuf), 0);
TESTEQUAL(statxbuf.stx_attributes_mask & STATX_ATTR_VERITY,
STATX_ATTR_VERITY);
TESTEQUAL(statxbuf.stx_attributes & STATX_ATTR_VERITY, 0);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TESTEQUAL(ioctl(fd, FS_IOC_GETFLAGS, &flags), 0);
TESTEQUAL(flags & FS_VERITY_FL, 0);
/* First try to enable verity with random digest */
if (key) {
TESTEQUAL(sign(key, cert, (void *)&fsverity_signed_digest,
sizeof(fsverity_signed_digest), &sig, &sig_size),
0);
fear.sig_size = sig_size;
fear.sig_ptr = ptr_to_u64(sig);
TESTEQUAL(ioctl(fd, FS_IOC_ENABLE_VERITY, &fear), -1);
}
/* Now try with correct digest */
memcpy(fsverity_descriptor.root_hash, file->root_hash, 32);
sha256((char *)&fsverity_descriptor, sizeof(fsverity_descriptor),
(char *)fsverity_signed_digest.digest);
if (ioctl(fd, FS_IOC_ENABLE_VERITY, NULL) == -1 &&
errno == EOPNOTSUPP) {
result = TEST_SUCCESS;
goto out;
}
free(sig);
sig = NULL;
if (key)
TESTEQUAL(sign(key, cert, (void *)&fsverity_signed_digest,
sizeof(fsverity_signed_digest),
&sig, &sig_size),
0);
if (use_signatures) {
fear.sig_size = sig_size;
file->verity_sig_size = sig_size;
fear.sig_ptr = ptr_to_u64(sig);
file->verity_sig = sig;
sig = NULL;
} else {
fear.sig_size = 0;
fear.sig_ptr = 0;
}
TESTEQUAL(ioctl(fd, FS_IOC_ENABLE_VERITY, &fear), 0);
result = TEST_SUCCESS;
out:
free(sig);
close(fd);
free(filename);
return result;
}
static int memzero(const unsigned char *buf, size_t size)
{
size_t i;
for (i = 0; i < size; ++i)
if (buf[i])
return -1;
return 0;
}
static int validate_verity(const char *mount_dir, struct test_file *file)
{
int result = TEST_FAILURE;
char *filename = concat_file_name(mount_dir, file->name);
int fd = -1;
uint64_t flags;
struct fsverity_digest *digest;
struct statx statxbuf = {};
struct fsverity_read_metadata_arg frma = {};
uint8_t *buf = NULL;
struct fsverity_descriptor desc;
TEST(digest = malloc(sizeof(struct fsverity_digest) +
INCFS_MAX_HASH_SIZE), digest != NULL);
TEST(filename = concat_file_name(mount_dir, file->name), filename);
TESTEQUAL(syscall(__NR_statx, AT_FDCWD, filename, 0, STATX_ALL,
&statxbuf), 0);
TESTEQUAL(statxbuf.stx_attributes & STATX_ATTR_VERITY,
STATX_ATTR_VERITY);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TESTEQUAL(ioctl(fd, FS_IOC_GETFLAGS, &flags), 0);
TESTEQUAL(flags & FS_VERITY_FL, FS_VERITY_FL);
digest->digest_size = INCFS_MAX_HASH_SIZE;
TESTEQUAL(ioctl(fd, FS_IOC_MEASURE_VERITY, digest), 0);
TESTEQUAL(digest->digest_algorithm, FS_VERITY_HASH_ALG_SHA256);
TESTEQUAL(digest->digest_size, 32);
if (file->verity_sig) {
TEST(buf = malloc(file->verity_sig_size), buf);
frma = (struct fsverity_read_metadata_arg) {
.metadata_type = FS_VERITY_METADATA_TYPE_SIGNATURE,
.length = file->verity_sig_size,
.buf_ptr = ptr_to_u64(buf),
};
TESTEQUAL(ioctl(fd, FS_IOC_READ_VERITY_METADATA, &frma),
file->verity_sig_size);
TESTEQUAL(memcmp(buf, file->verity_sig, file->verity_sig_size),
0);
} else {
frma = (struct fsverity_read_metadata_arg) {
.metadata_type = FS_VERITY_METADATA_TYPE_SIGNATURE,
};
TESTEQUAL(ioctl(fd, FS_IOC_READ_VERITY_METADATA, &frma), -1);
TESTEQUAL(errno, ENODATA);
}
frma = (struct fsverity_read_metadata_arg) {
.metadata_type = FS_VERITY_METADATA_TYPE_DESCRIPTOR,
.length = sizeof(desc),
.buf_ptr = ptr_to_u64(&desc),
};
TESTEQUAL(ioctl(fd, FS_IOC_READ_VERITY_METADATA, &frma),
sizeof(desc));
TESTEQUAL(desc.version, 1);
TESTEQUAL(desc.hash_algorithm, FS_VERITY_HASH_ALG_SHA256);
TESTEQUAL(desc.log_blocksize, ilog2(INCFS_DATA_FILE_BLOCK_SIZE));
TESTEQUAL(desc.salt_size, 0);
TESTEQUAL(desc.__reserved_0x04, 0);
TESTEQUAL(desc.data_size, file->size);
TESTEQUAL(memcmp(desc.root_hash, file->root_hash, SHA256_DIGEST_SIZE),
0);
TESTEQUAL(memzero(desc.root_hash + SHA256_DIGEST_SIZE,
sizeof(desc.root_hash) - SHA256_DIGEST_SIZE), 0);
TESTEQUAL(memzero(desc.salt, sizeof(desc.salt)), 0);
TESTEQUAL(memzero(desc.__reserved, sizeof(desc.__reserved)), 0);
result = TEST_SUCCESS;
out:
free(buf);
close(fd);
free(filename);
free(digest);
return result;
}
static int verity_test_optional_sigs(const char *mount_dir, bool use_signatures)
{
int result = TEST_FAILURE;
char *backing_dir = NULL;
bool installed;
int cmd_fd = -1;
int i;
struct test_files_set test = get_test_files_set();
const int file_num = test.files_count;
EVP_PKEY *key = NULL;
X509 *cert = NULL;
BIO *mem = NULL;
long len;
void *ptr;
FILE *proc_key_fd = NULL;
char *line = NULL;
size_t read = 0;
int key_id = -1;
TEST(backing_dir = create_backing_dir(mount_dir), backing_dir);
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir, "readahead=0", false),
0);
TEST(cmd_fd = open_commands_file(mount_dir), cmd_fd != -1);
TESTEQUAL(verity_installed(mount_dir, cmd_fd, &installed), 0);
if (!installed) {
result = TEST_SUCCESS;
goto out;
}
TEST(key = create_key(), key);
TEST(cert = get_cert(key), cert);
TEST(proc_key_fd = fopen("/proc/keys", "r"), proc_key_fd != NULL);
while (getline(&line, &read, proc_key_fd) != -1)
if (strstr(line, ".fs-verity"))
key_id = strtol(line, NULL, 16);
TEST(mem = BIO_new(BIO_s_mem()), mem != NULL);
TESTEQUAL(i2d_X509_bio(mem, cert), 1);
TEST(len = BIO_get_mem_data(mem, &ptr), len != 0);
TESTCOND(key_id == -1
|| syscall(__NR_add_key, "asymmetric", "test:key", ptr, len,
key_id) != -1);
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
build_mtree(file);
TESTEQUAL(crypto_emit_file(cmd_fd, NULL, file->name, &file->id,
file->size, file->root_hash,
file->sig.add_data), 0);
TESTEQUAL(load_hash_tree(mount_dir, file), 0);
TESTEQUAL(enable_verity(mount_dir, file, key, cert,
use_signatures),
0);
}
for (i = 0; i < file_num; i++)
TESTEQUAL(validate_verity(mount_dir, &test.files[i]), 0);
close(cmd_fd);
cmd_fd = -1;
TESTEQUAL(umount(mount_dir), 0);
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir, "readahead=0", false),
0);
for (i = 0; i < file_num; i++)
TESTEQUAL(validate_verity(mount_dir, &test.files[i]), 0);
result = TEST_SUCCESS;
out:
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
free(file->mtree);
free(file->verity_sig);
file->mtree = NULL;
file->verity_sig = NULL;
}
free(line);
BIO_free(mem);
X509_free(cert);
EVP_PKEY_free(key);
fclose(proc_key_fd);
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
return result;
}
static int verity_test(const char *mount_dir)
{
int result = TEST_FAILURE;
TESTEQUAL(verity_test_optional_sigs(mount_dir, true), TEST_SUCCESS);
TESTEQUAL(verity_test_optional_sigs(mount_dir, false), TEST_SUCCESS);
result = TEST_SUCCESS;
out:
return result;
}
static int verity_file_valid(const char *mount_dir, struct test_file *file)
{
int result = TEST_FAILURE;
char *filename = NULL;
int fd = -1;
uint8_t buffer[INCFS_DATA_FILE_BLOCK_SIZE];
struct incfs_get_file_sig_args gfsa = {
.file_signature = ptr_to_u64(buffer),
.file_signature_buf_size = sizeof(buffer),
};
int i;
TEST(filename = concat_file_name(mount_dir, file->name), filename);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TESTEQUAL(ioctl(fd, INCFS_IOC_READ_FILE_SIGNATURE, &gfsa), 0);
for (i = 0; i < file->size; i += sizeof(buffer))
TESTEQUAL(pread(fd, buffer, sizeof(buffer), i),
file->size - i > sizeof(buffer) ?
sizeof(buffer) : file->size - i);
result = TEST_SUCCESS;
out:
close(fd);
free(filename);
return result;
}
static int enable_verity_test(const char *mount_dir)
{
int result = TEST_FAILURE;
char *backing_dir = NULL;
bool installed;
int cmd_fd = -1;
struct test_files_set test = get_test_files_set();
int i;
TEST(backing_dir = create_backing_dir(mount_dir), backing_dir);
TESTEQUAL(mount_fs(mount_dir, backing_dir, 0), 0);
TEST(cmd_fd = open_commands_file(mount_dir), cmd_fd != -1);
TESTEQUAL(verity_installed(mount_dir, cmd_fd, &installed), 0);
if (!installed) {
result = TEST_SUCCESS;
goto out;
}
for (i = 0; i < test.files_count; ++i) {
struct test_file *file = &test.files[i];
TESTEQUAL(emit_file(cmd_fd, NULL, file->name, &file->id,
file->size, NULL), 0);
TESTEQUAL(emit_test_file_data(mount_dir, file), 0);
TESTEQUAL(enable_verity(mount_dir, file, NULL, NULL, false), 0);
}
/* Check files are valid on disk */
close(cmd_fd);
cmd_fd = -1;
TESTEQUAL(umount(mount_dir), 0);
TESTEQUAL(mount_fs(mount_dir, backing_dir, 0), 0);
for (i = 0; i < test.files_count; ++i)
TESTEQUAL(verity_file_valid(mount_dir, &test.files[i]), 0);
result = TEST_SUCCESS;
out:
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
return result;
}
static int mmap_test(const char *mount_dir)
{
int result = TEST_FAILURE;
char *backing_dir = NULL;
int cmd_fd = -1;
/*
* File is big enough to have a two layer tree with two hashes in the
* higher level, so we can corrupt the second one
*/
int shas_per_block = INCFS_DATA_FILE_BLOCK_SIZE / SHA256_DIGEST_SIZE;
struct test_file file = {
.name = "file",
.size = INCFS_DATA_FILE_BLOCK_SIZE * shas_per_block * 2,
};
char *filename = NULL;
int fd = -1;
char *addr = (void *)-1;
TEST(backing_dir = create_backing_dir(mount_dir), backing_dir);
TESTEQUAL(mount_fs(mount_dir, backing_dir, 0), 0);
TEST(cmd_fd = open_commands_file(mount_dir), cmd_fd != -1);
TESTEQUAL(build_mtree(&file), 0);
file.mtree[1].data[INCFS_DATA_FILE_BLOCK_SIZE] ^= 0xff;
TESTEQUAL(crypto_emit_file(cmd_fd, NULL, file.name, &file.id,
file.size, file.root_hash,
file.sig.add_data), 0);
TESTEQUAL(emit_test_file_data(mount_dir, &file), 0);
TESTEQUAL(load_hash_tree(mount_dir, &file), 0);
TEST(filename = concat_file_name(mount_dir, file.name), filename);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TEST(addr = mmap(NULL, file.size, PROT_READ, MAP_PRIVATE, fd, 0),
addr != (void *) -1);
TESTEQUAL(mlock(addr, INCFS_DATA_FILE_BLOCK_SIZE), 0);
TESTEQUAL(munlock(addr, INCFS_DATA_FILE_BLOCK_SIZE), 0);
TESTEQUAL(mlock(addr + shas_per_block * INCFS_DATA_FILE_BLOCK_SIZE,
INCFS_DATA_FILE_BLOCK_SIZE), -1);
TESTEQUAL(mlock(addr + (shas_per_block - 1) *
INCFS_DATA_FILE_BLOCK_SIZE,
INCFS_DATA_FILE_BLOCK_SIZE), 0);
TESTEQUAL(munlock(addr + (shas_per_block - 1) *
INCFS_DATA_FILE_BLOCK_SIZE,
INCFS_DATA_FILE_BLOCK_SIZE), 0);
TESTEQUAL(mlock(addr + (shas_per_block - 1) *
INCFS_DATA_FILE_BLOCK_SIZE,
INCFS_DATA_FILE_BLOCK_SIZE * 2), -1);
TESTEQUAL(munmap(addr, file.size), 0);
result = TEST_SUCCESS;
out:
free(file.mtree);
close(fd);
free(filename);
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
return result;
}
static int truncate_test(const char *mount_dir)
{
int result = TEST_FAILURE;
char *backing_dir = NULL;
int cmd_fd = -1;
struct test_file file = {
.name = "file",
.size = INCFS_DATA_FILE_BLOCK_SIZE,
};
char *backing_file = NULL;
int fd = -1;
struct stat st;
TEST(backing_dir = create_backing_dir(mount_dir), backing_dir);
TESTEQUAL(mount_fs(mount_dir, backing_dir, 0), 0);
TEST(cmd_fd = open_commands_file(mount_dir), cmd_fd != -1);
TESTEQUAL(emit_file(cmd_fd, NULL, file.name, &file.id, file.size, NULL),
0);
TEST(backing_file = concat_file_name(backing_dir, file.name),
backing_file);
TEST(fd = open(backing_file, O_RDWR | O_CLOEXEC), fd != -1);
TESTEQUAL(stat(backing_file, &st), 0);
TESTCOND(st.st_blocks < 128);
TESTEQUAL(fallocate(fd, FALLOC_FL_KEEP_SIZE, 0, 1 << 24), 0);
TESTEQUAL(stat(backing_file, &st), 0);
TESTCOND(st.st_blocks > 32768);
TESTEQUAL(emit_test_file_data(mount_dir, &file), 0);
TESTEQUAL(stat(backing_file, &st), 0);
TESTCOND(st.st_blocks < 128);
result = TEST_SUCCESS;
out:
close(fd);
free(backing_file);
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
return result;
}
static int stat_file_test(const char *mount_dir, int cmd_fd,
struct test_file *file)
{
int result = TEST_FAILURE;
struct stat st;
char *filename = NULL;
TESTEQUAL(emit_file(cmd_fd, NULL, file->name, &file->id,
file->size, NULL), 0);
TEST(filename = concat_file_name(mount_dir, file->name), filename);
TESTEQUAL(stat(filename, &st), 0);
TESTCOND(st.st_blocks < 32);
TESTEQUAL(emit_test_file_data(mount_dir, file), 0);
TESTEQUAL(stat(filename, &st), 0);
TESTCOND(st.st_blocks > file->size / 512);
result = TEST_SUCCESS;
out:
free(filename);
return result;
}
static int stat_test(const char *mount_dir)
{
int result = TEST_FAILURE;
char *backing_dir = NULL;
int cmd_fd = -1;
int i;
struct test_files_set test = get_test_files_set();
const int file_num = test.files_count;
TEST(backing_dir = create_backing_dir(mount_dir), backing_dir);
TESTEQUAL(mount_fs(mount_dir, backing_dir, 0), 0);
TEST(cmd_fd = open_commands_file(mount_dir), cmd_fd != -1);
for (i = 0; i < file_num; i++) {
struct test_file *file = &test.files[i];
TESTEQUAL(stat_file_test(mount_dir, cmd_fd, file), 0);
}
result = TEST_SUCCESS;
out:
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
return result;
}
#define SYSFS_DIR "/sys/fs/incremental-fs/instances/test_node/"
static int sysfs_test_value(const char *name, uint64_t value)
{
int result = TEST_FAILURE;
char *filename = NULL;
FILE *file = NULL;
uint64_t res;
TEST(filename = concat_file_name(SYSFS_DIR, name), filename);
TEST(file = fopen(filename, "re"), file);
TESTEQUAL(fscanf(file, "%lu", &res), 1);
TESTEQUAL(res, value);
result = TEST_SUCCESS;
out:
if (file)
fclose(file);
free(filename);
return result;
}
static int sysfs_test_value_range(const char *name, uint64_t low, uint64_t high)
{
int result = TEST_FAILURE;
char *filename = NULL;
FILE *file = NULL;
uint64_t res;
TEST(filename = concat_file_name(SYSFS_DIR, name), filename);
TEST(file = fopen(filename, "re"), file);
TESTEQUAL(fscanf(file, "%lu", &res), 1);
TESTCOND(res >= low && res <= high);
result = TEST_SUCCESS;
out:
if (file)
fclose(file);
free(filename);
return result;
}
static int ioctl_test_last_error(int cmd_fd, const incfs_uuid_t *file_id,
int page, int error)
{
int result = TEST_FAILURE;
struct incfs_get_last_read_error_args glre;
TESTEQUAL(ioctl(cmd_fd, INCFS_IOC_GET_LAST_READ_ERROR, &glre), 0);
if (file_id)
TESTEQUAL(memcmp(&glre.file_id_out, file_id, sizeof(*file_id)),
0);
TESTEQUAL(glre.page_out, page);
TESTEQUAL(glre.errno_out, error);
result = TEST_SUCCESS;
out:
return result;
}
static int sysfs_test(const char *mount_dir)
{
int result = TEST_FAILURE;
char *backing_dir = NULL;
int cmd_fd = -1;
struct test_file file = {
.name = "file",
.size = INCFS_DATA_FILE_BLOCK_SIZE,
};
char *filename = NULL;
int fd = -1;
int pid = -1;
char buffer[32];
char *null_buf = NULL;
int status;
struct incfs_per_uid_read_timeouts purt_set[] = {
{
.uid = 0,
.min_time_us = 1000000,
.min_pending_time_us = 1000000,
.max_pending_time_us = 2000000,
},
};
struct incfs_set_read_timeouts_args srt = {
ptr_to_u64(purt_set),
sizeof(purt_set)
};
TEST(backing_dir = create_backing_dir(mount_dir), backing_dir);
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir, "sysfs_name=test_node",
false),
0);
TEST(cmd_fd = open_commands_file(mount_dir), cmd_fd != -1);
TESTEQUAL(build_mtree(&file), 0);
file.root_hash[0] ^= 0xff;
TESTEQUAL(crypto_emit_file(cmd_fd, NULL, file.name, &file.id, file.size,
file.root_hash, file.sig.add_data),
0);
TEST(filename = concat_file_name(mount_dir, file.name), filename);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TESTEQUAL(ioctl_test_last_error(cmd_fd, NULL, 0, 0), 0);
TESTEQUAL(sysfs_test_value("reads_failed_timed_out", 0), 0);
TESTEQUAL(read(fd, null_buf, 1), -1);
TESTEQUAL(ioctl_test_last_error(cmd_fd, &file.id, 0, -ETIME), 0);
TESTEQUAL(sysfs_test_value("reads_failed_timed_out", 2), 0);
TESTEQUAL(emit_test_file_data(mount_dir, &file), 0);
TESTEQUAL(sysfs_test_value("reads_failed_hash_verification", 0), 0);
TESTEQUAL(read(fd, null_buf, 1), -1);
TESTEQUAL(sysfs_test_value("reads_failed_hash_verification", 1), 0);
TESTSYSCALL(close(fd));
fd = -1;
TESTSYSCALL(unlink(filename));
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir,
"read_timeout_ms=10000,sysfs_name=test_node",
true),
0);
TESTEQUAL(emit_file(cmd_fd, NULL, file.name, &file.id, file.size, NULL),
0);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TESTSYSCALL(fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC));
TEST(pid = fork(), pid != -1);
if (pid == 0) {
TESTEQUAL(read(fd, buffer, sizeof(buffer)), sizeof(buffer));
exit(0);
}
sleep(1);
TESTEQUAL(sysfs_test_value("reads_delayed_pending", 0), 0);
TESTEQUAL(emit_test_file_data(mount_dir, &file), 0);
TESTNE(wait(&status), -1);
TESTEQUAL(status, 0);
TESTEQUAL(sysfs_test_value("reads_delayed_pending", 1), 0);
/* Allow +/- 10% */
TESTEQUAL(sysfs_test_value_range("reads_delayed_pending_us", 900000, 1100000),
0);
TESTSYSCALL(close(fd));
fd = -1;
TESTSYSCALL(unlink(filename));
TESTEQUAL(ioctl(cmd_fd, INCFS_IOC_SET_READ_TIMEOUTS, &srt), 0);
TESTEQUAL(emit_file(cmd_fd, NULL, file.name, &file.id, file.size, NULL),
0);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TESTEQUAL(sysfs_test_value("reads_delayed_min", 0), 0);
TESTEQUAL(emit_test_file_data(mount_dir, &file), 0);
TESTEQUAL(read(fd, buffer, sizeof(buffer)), sizeof(buffer));
TESTEQUAL(sysfs_test_value("reads_delayed_min", 1), 0);
/* This should be exact */
TESTEQUAL(sysfs_test_value("reads_delayed_min_us", 1000000), 0);
TESTSYSCALL(close(fd));
fd = -1;
TESTSYSCALL(unlink(filename));
TESTEQUAL(emit_file(cmd_fd, NULL, file.name, &file.id, file.size, NULL),
0);
TEST(fd = open(filename, O_RDONLY | O_CLOEXEC), fd != -1);
TESTSYSCALL(fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC));
TEST(pid = fork(), pid != -1);
if (pid == 0) {
TESTEQUAL(read(fd, buffer, sizeof(buffer)), sizeof(buffer));
exit(0);
}
usleep(500000);
TESTEQUAL(sysfs_test_value("reads_delayed_pending", 1), 0);
TESTEQUAL(sysfs_test_value("reads_delayed_min", 1), 0);
TESTEQUAL(emit_test_file_data(mount_dir, &file), 0);
TESTNE(wait(&status), -1);
TESTEQUAL(status, 0);
TESTEQUAL(sysfs_test_value("reads_delayed_pending", 2), 0);
TESTEQUAL(sysfs_test_value("reads_delayed_min", 2), 0);
/* Exact 1000000 plus 500000 +/- 10% */
TESTEQUAL(sysfs_test_value_range("reads_delayed_min_us", 1450000, 1550000), 0);
/* Allow +/- 10% */
TESTEQUAL(sysfs_test_value_range("reads_delayed_pending_us", 1350000, 1650000),
0);
result = TEST_SUCCESS;
out:
if (pid == 0)
exit(result);
free(file.mtree);
free(filename);
close(fd);
close(cmd_fd);
umount(mount_dir);
free(backing_dir);
return result;
}
static int sysfs_test_directories(bool one_present, bool two_present)
{
int result = TEST_FAILURE;
struct stat st;
TESTEQUAL(stat("/sys/fs/incremental-fs/instances/1", &st),
one_present ? 0 : -1);
if (one_present)
TESTCOND(S_ISDIR(st.st_mode));
else
TESTEQUAL(errno, ENOENT);
TESTEQUAL(stat("/sys/fs/incremental-fs/instances/2", &st),
two_present ? 0 : -1);
if (two_present)
TESTCOND(S_ISDIR(st.st_mode));
else
TESTEQUAL(errno, ENOENT);
result = TEST_SUCCESS;
out:
return result;
}
static int sysfs_rename_test(const char *mount_dir)
{
int result = TEST_FAILURE;
char *backing_dir = NULL;
char *mount_dir2 = NULL;
int fd = -1;
char c;
/* Mount with no node */
TEST(backing_dir = create_backing_dir(mount_dir), backing_dir);
TESTEQUAL(mount_fs(mount_dir, backing_dir, 0), 0);
TESTEQUAL(sysfs_test_directories(false, false), 0);
/* Remount with node */
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir, "sysfs_name=1", true),
0);
TESTEQUAL(sysfs_test_directories(true, false), 0);
TEST(fd = open("/sys/fs/incremental-fs/instances/1/reads_delayed_min",
O_RDONLY | O_CLOEXEC), fd != -1);
TESTEQUAL(pread(fd, &c, 1, 0), 1);
TESTEQUAL(c, '0');
TESTEQUAL(pread(fd, &c, 1, 0), 1);
TESTEQUAL(c, '0');
/* Rename node */
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir, "sysfs_name=2", true),
0);
TESTEQUAL(sysfs_test_directories(false, true), 0);
TESTEQUAL(pread(fd, &c, 1, 0), -1);
/* Try mounting another instance with same node name */
TEST(mount_dir2 = concat_file_name(backing_dir, "incfs-mount-dir2"),
mount_dir2);
rmdir(mount_dir2); /* In case we crashed before */
TESTSYSCALL(mkdir(mount_dir2, 0777));
TEST(mount_fs_opt(mount_dir2, backing_dir, "sysfs_name=2", false),
-1);
/* Try mounting another instance then remounting with existing name */
TESTEQUAL(mount_fs(mount_dir2, backing_dir, 0), 0);
TESTEQUAL(mount_fs_opt(mount_dir2, backing_dir, "sysfs_name=2", true),
-1);
/* Remount with no node */
TESTEQUAL(mount_fs_opt(mount_dir, backing_dir, "", true),
0);
TESTEQUAL(sysfs_test_directories(false, false), 0);
result = TEST_SUCCESS;
out:
umount(mount_dir2);
rmdir(mount_dir2);
free(mount_dir2);
close(fd);
umount(mount_dir);
free(backing_dir);
return result;
}
static int stacked_mount_test(const char *mount_dir)
{
int result = TEST_FAILURE;
char *backing_dir = NULL;
/* Mount with no node */
TEST(backing_dir = create_backing_dir(mount_dir), backing_dir);
TESTEQUAL(mount_fs(mount_dir, backing_dir, 0), 0);
/* Try mounting another instance with same name */
TESTEQUAL(mount_fs(mount_dir, backing_dir, 0), 0);
/* Try unmounting the first instance */
TESTEQUAL(umount_fs(mount_dir), 0);
/* Try unmounting the second instance */
TESTEQUAL(umount_fs(mount_dir), 0);
result = TEST_SUCCESS;
out:
/* Cleanup */
rmdir(mount_dir);
rmdir(backing_dir);
free(backing_dir);
return result;
}
static char *setup_mount_dir()
{
struct stat st;
char *current_dir = getcwd(NULL, 0);
char *mount_dir = concat_file_name(current_dir, "incfs-mount-dir");
free(current_dir);
if (stat(mount_dir, &st) == 0) {
if (S_ISDIR(st.st_mode))
return mount_dir;
ksft_print_msg("%s is a file, not a dir.\n", mount_dir);
return NULL;
}
if (mkdir(mount_dir, 0777)) {
print_error("Can't create mount dir.");
return NULL;
}
return mount_dir;
}
int parse_options(int argc, char *const *argv)
{
signed char c;
while ((c = getopt(argc, argv, "f:t:v")) != -1)
switch (c) {
case 'f':
options.file = strtol(optarg, NULL, 10);
break;
case 't':
options.test = strtol(optarg, NULL, 10);
break;
case 'v':
options.verbose = true;
break;
default:
return -EINVAL;
}
return 0;
}
struct test_case {
int (*pfunc)(const char *dir);
const char *name;
};
void run_one_test(const char *mount_dir, struct test_case *test_case)
{
int ret;
ksft_print_msg("Running %s\n", test_case->name);
ret = test_case->pfunc(mount_dir);
if (ret == TEST_SUCCESS)
ksft_test_result_pass("%s\n", test_case->name);
else if (ret == TEST_SKIP)
ksft_test_result_skip("%s\n", test_case->name);
else
ksft_test_result_fail("%s\n", test_case->name);
}
int main(int argc, char *argv[])
{
char *mount_dir = NULL;
int i;
int fd, count;
if (parse_options(argc, argv))
ksft_exit_fail_msg("Bad options\n");
// Seed randomness pool for testing on QEMU
// NOTE - this abuses the concept of randomness - do *not* ever do this
// on a machine for production use - the device will think it has good
// randomness when it does not.
fd = open("/dev/urandom", O_WRONLY | O_CLOEXEC);
count = 4096;
for (int i = 0; i < 128; ++i)
ioctl(fd, RNDADDTOENTCNT, &count);
close(fd);
ksft_print_header();
if (geteuid() != 0)
ksft_print_msg("Not a root, might fail to mount.\n");
mount_dir = setup_mount_dir();
if (mount_dir == NULL)
ksft_exit_fail_msg("Can't create a mount dir\n");
#define MAKE_TEST(test) \
{ \
test, #test \
}
struct test_case cases[] = {
MAKE_TEST(basic_file_ops_test),
MAKE_TEST(cant_touch_index_test),
MAKE_TEST(dynamic_files_and_data_test),
MAKE_TEST(concurrent_reads_and_writes_test),
MAKE_TEST(attribute_test),
MAKE_TEST(work_after_remount_test),
MAKE_TEST(child_procs_waiting_for_data_test),
MAKE_TEST(multiple_providers_test),
MAKE_TEST(hash_tree_test),
MAKE_TEST(read_log_test),
MAKE_TEST(get_blocks_test),
MAKE_TEST(get_hash_blocks_test),
MAKE_TEST(large_file_test),
MAKE_TEST(mapped_file_test),
MAKE_TEST(compatibility_test),
MAKE_TEST(data_block_count_test),
MAKE_TEST(hash_block_count_test),
MAKE_TEST(per_uid_read_timeouts_test),
MAKE_TEST(inotify_test),
MAKE_TEST(verity_test),
MAKE_TEST(enable_verity_test),
MAKE_TEST(mmap_test),
MAKE_TEST(truncate_test),
MAKE_TEST(stat_test),
MAKE_TEST(sysfs_test),
MAKE_TEST(sysfs_rename_test),
MAKE_TEST(stacked_mount_test),
};
#undef MAKE_TEST
if (options.test) {
if (options.test <= 0 || options.test > ARRAY_SIZE(cases))
ksft_exit_fail_msg("Invalid test\n");
ksft_set_plan(1);
run_one_test(mount_dir, &cases[options.test - 1]);
} else {
ksft_set_plan(ARRAY_SIZE(cases));
for (i = 0; i < ARRAY_SIZE(cases); ++i)
run_one_test(mount_dir, &cases[i]);
}
umount2(mount_dir, MNT_FORCE);
rmdir(mount_dir);
return !ksft_get_fail_cnt() ? ksft_exit_pass() : ksft_exit_fail();
}