blob: 802ff8c1f2e32055979ca3fa3076d50bd7d85620 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 Google LLC
* Author: Quentin Perret <qperret@google.com>
*/
#include <linux/kvm_host.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_pgtable.h>
#include <asm/kvm_pkvm.h>
#include <asm/spectre.h>
#include <nvhe/early_alloc.h>
#include <nvhe/gfp.h>
#include <nvhe/memory.h>
#include <nvhe/mem_protect.h>
#include <nvhe/mm.h>
#include <nvhe/spinlock.h>
struct kvm_pgtable pkvm_pgtable;
hyp_spinlock_t pkvm_pgd_lock;
struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS];
unsigned int hyp_memblock_nr;
static u64 __io_map_base;
static DEFINE_PER_CPU(void *, hyp_fixmap_base);
static int __pkvm_create_mappings(unsigned long start, unsigned long size,
unsigned long phys, enum kvm_pgtable_prot prot)
{
int err;
hyp_spin_lock(&pkvm_pgd_lock);
err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot);
hyp_spin_unlock(&pkvm_pgd_lock);
return err;
}
static unsigned long hyp_alloc_private_va_range(size_t size)
{
unsigned long addr = __io_map_base;
hyp_assert_lock_held(&pkvm_pgd_lock);
__io_map_base += PAGE_ALIGN(size);
/* Are we overflowing on the vmemmap ? */
if (__io_map_base > __hyp_vmemmap) {
__io_map_base = addr;
addr = (unsigned long)ERR_PTR(-ENOMEM);
}
return addr;
}
unsigned long __pkvm_create_private_mapping(phys_addr_t phys, size_t size,
enum kvm_pgtable_prot prot)
{
unsigned long addr;
int err;
hyp_spin_lock(&pkvm_pgd_lock);
size = size + offset_in_page(phys);
addr = hyp_alloc_private_va_range(size);
if (IS_ERR((void *)addr))
goto out;
err = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, size, phys, prot);
if (err) {
addr = (unsigned long)ERR_PTR(err);
goto out;
}
addr = addr + offset_in_page(phys);
out:
hyp_spin_unlock(&pkvm_pgd_lock);
return addr;
}
int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot)
{
unsigned long start = (unsigned long)from;
unsigned long end = (unsigned long)to;
unsigned long virt_addr;
phys_addr_t phys;
hyp_assert_lock_held(&pkvm_pgd_lock);
start = start & PAGE_MASK;
end = PAGE_ALIGN(end);
for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
int err;
phys = hyp_virt_to_phys((void *)virt_addr);
err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE,
phys, prot);
if (err)
return err;
}
return 0;
}
int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
{
int ret;
hyp_spin_lock(&pkvm_pgd_lock);
ret = pkvm_create_mappings_locked(from, to, prot);
hyp_spin_unlock(&pkvm_pgd_lock);
return ret;
}
int hyp_back_vmemmap(phys_addr_t back)
{
unsigned long i, start, size, end = 0;
int ret;
for (i = 0; i < hyp_memblock_nr; i++) {
start = hyp_memory[i].base;
start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE);
/*
* The begining of the hyp_vmemmap region for the current
* memblock may already be backed by the page backing the end
* the previous region, so avoid mapping it twice.
*/
start = max(start, end);
end = hyp_memory[i].base + hyp_memory[i].size;
end = PAGE_ALIGN((u64)hyp_phys_to_page(end));
if (start >= end)
continue;
size = end - start;
ret = __pkvm_create_mappings(start, size, back, PAGE_HYP);
if (ret)
return ret;
memset(hyp_phys_to_virt(back), 0, size);
back += size;
}
return 0;
}
static void *__hyp_bp_vect_base;
int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot)
{
void *vector;
switch (slot) {
case HYP_VECTOR_DIRECT: {
vector = __kvm_hyp_vector;
break;
}
case HYP_VECTOR_SPECTRE_DIRECT: {
vector = __bp_harden_hyp_vecs;
break;
}
case HYP_VECTOR_INDIRECT:
case HYP_VECTOR_SPECTRE_INDIRECT: {
vector = (void *)__hyp_bp_vect_base;
break;
}
default:
return -EINVAL;
}
vector = __kvm_vector_slot2addr(vector, slot);
*this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector;
return 0;
}
int hyp_map_vectors(void)
{
phys_addr_t phys;
void *bp_base;
if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
return 0;
phys = __hyp_pa(__bp_harden_hyp_vecs);
bp_base = (void *)__pkvm_create_private_mapping(phys,
__BP_HARDEN_HYP_VECS_SZ,
PAGE_HYP_EXEC);
if (IS_ERR_OR_NULL(bp_base))
return PTR_ERR(bp_base);
__hyp_bp_vect_base = bp_base;
return 0;
}
void *hyp_fixmap_map(phys_addr_t phys)
{
void *addr = *this_cpu_ptr(&hyp_fixmap_base);
int ret = kvm_pgtable_hyp_map(&pkvm_pgtable, (u64)addr, PAGE_SIZE,
phys, PAGE_HYP);
return ret ? NULL : addr;
}
int hyp_fixmap_unmap(void)
{
void *addr = *this_cpu_ptr(&hyp_fixmap_base);
int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, (u64)addr, PAGE_SIZE);
return (ret != PAGE_SIZE) ? -EINVAL : 0;
}
static int __pin_pgtable_cb(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag, void * const arg)
{
if (!kvm_pte_valid(*ptep) || level != KVM_PGTABLE_MAX_LEVELS - 1)
return -EINVAL;
hyp_page_ref_inc(hyp_virt_to_page(ptep));
return 0;
}
static int hyp_pin_pgtable_pages(u64 addr)
{
struct kvm_pgtable_walker walker = {
.cb = __pin_pgtable_cb,
.flags = KVM_PGTABLE_WALK_LEAF,
};
return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker);
}
int hyp_create_pcpu_fixmap(void)
{
unsigned long i;
int ret = 0;
u64 addr;
hyp_spin_lock(&pkvm_pgd_lock);
for (i = 0; i < hyp_nr_cpus; i++) {
addr = hyp_alloc_private_va_range(PAGE_SIZE);
if (IS_ERR((void *)addr)) {
ret = -ENOMEM;
goto unlock;
}
/*
* Create a dummy mapping, to get the intermediate page-table
* pages allocated, then take a reference on the last level
* page to keep it around at all times.
*/
ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE,
__hyp_pa(__hyp_bss_start), PAGE_HYP);
if (ret) {
ret = -EINVAL;
goto unlock;
}
ret = hyp_pin_pgtable_pages(addr);
if (ret)
goto unlock;
ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, PAGE_SIZE);
if (ret != PAGE_SIZE) {
ret = -EINVAL;
goto unlock;
} else {
ret = 0;
}
*per_cpu_ptr(&hyp_fixmap_base, i) = (void *)addr;
}
unlock:
hyp_spin_unlock(&pkvm_pgd_lock);
return ret;
}
int hyp_create_idmap(u32 hyp_va_bits)
{
unsigned long start, end;
start = hyp_virt_to_phys((void *)__hyp_idmap_text_start);
start = ALIGN_DOWN(start, PAGE_SIZE);
end = hyp_virt_to_phys((void *)__hyp_idmap_text_end);
end = ALIGN(end, PAGE_SIZE);
/*
* One half of the VA space is reserved to linearly map portions of
* memory -- see va_layout.c for more details. The other half of the VA
* space contains the trampoline page, and needs some care. Split that
* second half in two and find the quarter of VA space not conflicting
* with the idmap to place the IOs and the vmemmap. IOs use the lower
* half of the quarter and the vmemmap the upper half.
*/
__io_map_base = start & BIT(hyp_va_bits - 2);
__io_map_base ^= BIT(hyp_va_bits - 2);
__hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3);
return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC);
}
static void *admit_host_page(void *arg)
{
struct kvm_hyp_memcache *host_mc = arg;
if (!host_mc->nr_pages)
return NULL;
/*
* The host still owns the pages in its memcache, so we need to go
* through a full host-to-hyp donation cycle to change it. Fortunately,
* __pkvm_host_donate_hyp() takes care of races for us, so if it
* succeeds we're good to go.
*/
if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(host_mc->head), 1))
return NULL;
return pop_hyp_memcache(host_mc, hyp_phys_to_virt);
}
/* Refill our local memcache by poping pages from the one provided by the host. */
int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages,
struct kvm_hyp_memcache *host_mc)
{
return __topup_hyp_memcache(mc, min_pages, admit_host_page,
hyp_virt_to_phys, host_mc);
}