| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * NVM helpers | 
 |  * | 
 |  * Copyright (C) 2020, Intel Corporation | 
 |  * Author: Mika Westerberg <mika.westerberg@linux.intel.com> | 
 |  */ | 
 |  | 
 | #include <linux/idr.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/vmalloc.h> | 
 |  | 
 | #include "tb.h" | 
 |  | 
 | #define NVM_MIN_SIZE		SZ_32K | 
 | #define NVM_MAX_SIZE		SZ_1M | 
 | #define NVM_DATA_DWORDS		16 | 
 |  | 
 | /* Intel specific NVM offsets */ | 
 | #define INTEL_NVM_DEVID			0x05 | 
 | #define INTEL_NVM_VERSION		0x08 | 
 | #define INTEL_NVM_CSS			0x10 | 
 | #define INTEL_NVM_FLASH_SIZE		0x45 | 
 |  | 
 | /* ASMedia specific NVM offsets */ | 
 | #define ASMEDIA_NVM_DATE		0x1c | 
 | #define ASMEDIA_NVM_VERSION		0x28 | 
 |  | 
 | static DEFINE_IDA(nvm_ida); | 
 |  | 
 | /** | 
 |  * struct tb_nvm_vendor_ops - Vendor specific NVM operations | 
 |  * @read_version: Reads out NVM version from the flash | 
 |  * @validate: Validates the NVM image before update (optional) | 
 |  * @write_headers: Writes headers before the rest of the image (optional) | 
 |  */ | 
 | struct tb_nvm_vendor_ops { | 
 | 	int (*read_version)(struct tb_nvm *nvm); | 
 | 	int (*validate)(struct tb_nvm *nvm); | 
 | 	int (*write_headers)(struct tb_nvm *nvm); | 
 | }; | 
 |  | 
 | /** | 
 |  * struct tb_nvm_vendor - Vendor to &struct tb_nvm_vendor_ops mapping | 
 |  * @vendor: Vendor ID | 
 |  * @vops: Vendor specific NVM operations | 
 |  * | 
 |  * Maps vendor ID to NVM vendor operations. If there is no mapping then | 
 |  * NVM firmware upgrade is disabled for the device. | 
 |  */ | 
 | struct tb_nvm_vendor { | 
 | 	u16 vendor; | 
 | 	const struct tb_nvm_vendor_ops *vops; | 
 | }; | 
 |  | 
 | static int intel_switch_nvm_version(struct tb_nvm *nvm) | 
 | { | 
 | 	struct tb_switch *sw = tb_to_switch(nvm->dev); | 
 | 	u32 val, nvm_size, hdr_size; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * If the switch is in safe-mode the only accessible portion of | 
 | 	 * the NVM is the non-active one where userspace is expected to | 
 | 	 * write new functional NVM. | 
 | 	 */ | 
 | 	if (sw->safe_mode) | 
 | 		return 0; | 
 |  | 
 | 	ret = tb_switch_nvm_read(sw, INTEL_NVM_FLASH_SIZE, &val, sizeof(val)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; | 
 | 	nvm_size = (SZ_1M << (val & 7)) / 8; | 
 | 	nvm_size = (nvm_size - hdr_size) / 2; | 
 |  | 
 | 	ret = tb_switch_nvm_read(sw, INTEL_NVM_VERSION, &val, sizeof(val)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	nvm->major = (val >> 16) & 0xff; | 
 | 	nvm->minor = (val >> 8) & 0xff; | 
 | 	nvm->active_size = nvm_size; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int intel_switch_nvm_validate(struct tb_nvm *nvm) | 
 | { | 
 | 	struct tb_switch *sw = tb_to_switch(nvm->dev); | 
 | 	unsigned int image_size, hdr_size; | 
 | 	u16 ds_size, device_id; | 
 | 	u8 *buf = nvm->buf; | 
 |  | 
 | 	image_size = nvm->buf_data_size; | 
 |  | 
 | 	/* | 
 | 	 * FARB pointer must point inside the image and must at least | 
 | 	 * contain parts of the digital section we will be reading here. | 
 | 	 */ | 
 | 	hdr_size = (*(u32 *)buf) & 0xffffff; | 
 | 	if (hdr_size + INTEL_NVM_DEVID + 2 >= image_size) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Digital section start should be aligned to 4k page */ | 
 | 	if (!IS_ALIGNED(hdr_size, SZ_4K)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Read digital section size and check that it also fits inside | 
 | 	 * the image. | 
 | 	 */ | 
 | 	ds_size = *(u16 *)(buf + hdr_size); | 
 | 	if (ds_size >= image_size) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (sw->safe_mode) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Make sure the device ID in the image matches the one | 
 | 	 * we read from the switch config space. | 
 | 	 */ | 
 | 	device_id = *(u16 *)(buf + hdr_size + INTEL_NVM_DEVID); | 
 | 	if (device_id != sw->config.device_id) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Skip headers in the image */ | 
 | 	nvm->buf_data_start = buf + hdr_size; | 
 | 	nvm->buf_data_size = image_size - hdr_size; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int intel_switch_nvm_write_headers(struct tb_nvm *nvm) | 
 | { | 
 | 	struct tb_switch *sw = tb_to_switch(nvm->dev); | 
 |  | 
 | 	if (sw->generation < 3) { | 
 | 		int ret; | 
 |  | 
 | 		/* Write CSS headers first */ | 
 | 		ret = dma_port_flash_write(sw->dma_port, | 
 | 			DMA_PORT_CSS_ADDRESS, nvm->buf + INTEL_NVM_CSS, | 
 | 			DMA_PORT_CSS_MAX_SIZE); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct tb_nvm_vendor_ops intel_switch_nvm_ops = { | 
 | 	.read_version = intel_switch_nvm_version, | 
 | 	.validate = intel_switch_nvm_validate, | 
 | 	.write_headers = intel_switch_nvm_write_headers, | 
 | }; | 
 |  | 
 | static int asmedia_switch_nvm_version(struct tb_nvm *nvm) | 
 | { | 
 | 	struct tb_switch *sw = tb_to_switch(nvm->dev); | 
 | 	u32 val; | 
 | 	int ret; | 
 |  | 
 | 	ret = tb_switch_nvm_read(sw, ASMEDIA_NVM_VERSION, &val, sizeof(val)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	nvm->major = (val << 16) & 0xff0000; | 
 | 	nvm->major |= val & 0x00ff00; | 
 | 	nvm->major |= (val >> 16) & 0x0000ff; | 
 |  | 
 | 	ret = tb_switch_nvm_read(sw, ASMEDIA_NVM_DATE, &val, sizeof(val)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	nvm->minor = (val << 16) & 0xff0000; | 
 | 	nvm->minor |= val & 0x00ff00; | 
 | 	nvm->minor |= (val >> 16) & 0x0000ff; | 
 |  | 
 | 	/* ASMedia NVM size is fixed to 512k */ | 
 | 	nvm->active_size = SZ_512K; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct tb_nvm_vendor_ops asmedia_switch_nvm_ops = { | 
 | 	.read_version = asmedia_switch_nvm_version, | 
 | }; | 
 |  | 
 | /* Router vendor NVM support table */ | 
 | static const struct tb_nvm_vendor switch_nvm_vendors[] = { | 
 | 	{ 0x174c, &asmedia_switch_nvm_ops }, | 
 | 	{ PCI_VENDOR_ID_INTEL, &intel_switch_nvm_ops }, | 
 | 	{ 0x8087, &intel_switch_nvm_ops }, | 
 | }; | 
 |  | 
 | static int intel_retimer_nvm_version(struct tb_nvm *nvm) | 
 | { | 
 | 	struct tb_retimer *rt = tb_to_retimer(nvm->dev); | 
 | 	u32 val, nvm_size; | 
 | 	int ret; | 
 |  | 
 | 	ret = tb_retimer_nvm_read(rt, INTEL_NVM_VERSION, &val, sizeof(val)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	nvm->major = (val >> 16) & 0xff; | 
 | 	nvm->minor = (val >> 8) & 0xff; | 
 |  | 
 | 	ret = tb_retimer_nvm_read(rt, INTEL_NVM_FLASH_SIZE, &val, sizeof(val)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	nvm_size = (SZ_1M << (val & 7)) / 8; | 
 | 	nvm_size = (nvm_size - SZ_16K) / 2; | 
 | 	nvm->active_size = nvm_size; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int intel_retimer_nvm_validate(struct tb_nvm *nvm) | 
 | { | 
 | 	struct tb_retimer *rt = tb_to_retimer(nvm->dev); | 
 | 	unsigned int image_size, hdr_size; | 
 | 	u8 *buf = nvm->buf; | 
 | 	u16 ds_size, device; | 
 |  | 
 | 	image_size = nvm->buf_data_size; | 
 |  | 
 | 	/* | 
 | 	 * FARB pointer must point inside the image and must at least | 
 | 	 * contain parts of the digital section we will be reading here. | 
 | 	 */ | 
 | 	hdr_size = (*(u32 *)buf) & 0xffffff; | 
 | 	if (hdr_size + INTEL_NVM_DEVID + 2 >= image_size) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Digital section start should be aligned to 4k page */ | 
 | 	if (!IS_ALIGNED(hdr_size, SZ_4K)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Read digital section size and check that it also fits inside | 
 | 	 * the image. | 
 | 	 */ | 
 | 	ds_size = *(u16 *)(buf + hdr_size); | 
 | 	if (ds_size >= image_size) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Make sure the device ID in the image matches the retimer | 
 | 	 * hardware. | 
 | 	 */ | 
 | 	device = *(u16 *)(buf + hdr_size + INTEL_NVM_DEVID); | 
 | 	if (device != rt->device) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Skip headers in the image */ | 
 | 	nvm->buf_data_start = buf + hdr_size; | 
 | 	nvm->buf_data_size = image_size - hdr_size; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct tb_nvm_vendor_ops intel_retimer_nvm_ops = { | 
 | 	.read_version = intel_retimer_nvm_version, | 
 | 	.validate = intel_retimer_nvm_validate, | 
 | }; | 
 |  | 
 | /* Retimer vendor NVM support table */ | 
 | static const struct tb_nvm_vendor retimer_nvm_vendors[] = { | 
 | 	{ 0x8087, &intel_retimer_nvm_ops }, | 
 | }; | 
 |  | 
 | /** | 
 |  * tb_nvm_alloc() - Allocate new NVM structure | 
 |  * @dev: Device owning the NVM | 
 |  * | 
 |  * Allocates new NVM structure with unique @id and returns it. In case | 
 |  * of error returns ERR_PTR(). Specifically returns %-EOPNOTSUPP if the | 
 |  * NVM format of the @dev is not known by the kernel. | 
 |  */ | 
 | struct tb_nvm *tb_nvm_alloc(struct device *dev) | 
 | { | 
 | 	const struct tb_nvm_vendor_ops *vops = NULL; | 
 | 	struct tb_nvm *nvm; | 
 | 	int ret, i; | 
 |  | 
 | 	if (tb_is_switch(dev)) { | 
 | 		const struct tb_switch *sw = tb_to_switch(dev); | 
 |  | 
 | 		for (i = 0; i < ARRAY_SIZE(switch_nvm_vendors); i++) { | 
 | 			const struct tb_nvm_vendor *v = &switch_nvm_vendors[i]; | 
 |  | 
 | 			if (v->vendor == sw->config.vendor_id) { | 
 | 				vops = v->vops; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!vops) { | 
 | 			tb_sw_dbg(sw, "router NVM format of vendor %#x unknown\n", | 
 | 				  sw->config.vendor_id); | 
 | 			return ERR_PTR(-EOPNOTSUPP); | 
 | 		} | 
 | 	} else if (tb_is_retimer(dev)) { | 
 | 		const struct tb_retimer *rt = tb_to_retimer(dev); | 
 |  | 
 | 		for (i = 0; i < ARRAY_SIZE(retimer_nvm_vendors); i++) { | 
 | 			const struct tb_nvm_vendor *v = &retimer_nvm_vendors[i]; | 
 |  | 
 | 			if (v->vendor == rt->vendor) { | 
 | 				vops = v->vops; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!vops) { | 
 | 			dev_dbg(dev, "retimer NVM format of vendor %#x unknown\n", | 
 | 				rt->vendor); | 
 | 			return ERR_PTR(-EOPNOTSUPP); | 
 | 		} | 
 | 	} else { | 
 | 		return ERR_PTR(-EOPNOTSUPP); | 
 | 	} | 
 |  | 
 | 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); | 
 | 	if (!nvm) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	ret = ida_alloc(&nvm_ida, GFP_KERNEL); | 
 | 	if (ret < 0) { | 
 | 		kfree(nvm); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	nvm->id = ret; | 
 | 	nvm->dev = dev; | 
 | 	nvm->vops = vops; | 
 |  | 
 | 	return nvm; | 
 | } | 
 |  | 
 | /** | 
 |  * tb_nvm_read_version() - Read and populate NVM version | 
 |  * @nvm: NVM structure | 
 |  * | 
 |  * Uses vendor specific means to read out and fill in the existing | 
 |  * active NVM version. Returns %0 in case of success and negative errno | 
 |  * otherwise. | 
 |  */ | 
 | int tb_nvm_read_version(struct tb_nvm *nvm) | 
 | { | 
 | 	const struct tb_nvm_vendor_ops *vops = nvm->vops; | 
 |  | 
 | 	if (vops && vops->read_version) | 
 | 		return vops->read_version(nvm); | 
 |  | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 | /** | 
 |  * tb_nvm_validate() - Validate new NVM image | 
 |  * @nvm: NVM structure | 
 |  * | 
 |  * Runs vendor specific validation over the new NVM image and if all | 
 |  * checks pass returns %0. As side effect updates @nvm->buf_data_start | 
 |  * and @nvm->buf_data_size fields to match the actual data to be written | 
 |  * to the NVM. | 
 |  * | 
 |  * If the validation does not pass then returns negative errno. | 
 |  */ | 
 | int tb_nvm_validate(struct tb_nvm *nvm) | 
 | { | 
 | 	const struct tb_nvm_vendor_ops *vops = nvm->vops; | 
 | 	unsigned int image_size; | 
 | 	u8 *buf = nvm->buf; | 
 |  | 
 | 	if (!buf) | 
 | 		return -EINVAL; | 
 | 	if (!vops) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	/* Just do basic image size checks */ | 
 | 	image_size = nvm->buf_data_size; | 
 | 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Set the default data start in the buffer. The validate method | 
 | 	 * below can change this if needed. | 
 | 	 */ | 
 | 	nvm->buf_data_start = buf; | 
 |  | 
 | 	return vops->validate ? vops->validate(nvm) : 0; | 
 | } | 
 |  | 
 | /** | 
 |  * tb_nvm_write_headers() - Write headers before the rest of the image | 
 |  * @nvm: NVM structure | 
 |  * | 
 |  * If the vendor NVM format requires writing headers before the rest of | 
 |  * the image, this function does that. Can be called even if the device | 
 |  * does not need this. | 
 |  * | 
 |  * Returns %0 in case of success and negative errno otherwise. | 
 |  */ | 
 | int tb_nvm_write_headers(struct tb_nvm *nvm) | 
 | { | 
 | 	const struct tb_nvm_vendor_ops *vops = nvm->vops; | 
 |  | 
 | 	return vops->write_headers ? vops->write_headers(nvm) : 0; | 
 | } | 
 |  | 
 | /** | 
 |  * tb_nvm_add_active() - Adds active NVMem device to NVM | 
 |  * @nvm: NVM structure | 
 |  * @reg_read: Pointer to the function to read the NVM (passed directly to the | 
 |  *	      NVMem device) | 
 |  * | 
 |  * Registers new active NVmem device for @nvm. The @reg_read is called | 
 |  * directly from NVMem so it must handle possible concurrent access if | 
 |  * needed. The first parameter passed to @reg_read is @nvm structure. | 
 |  * Returns %0 in success and negative errno otherwise. | 
 |  */ | 
 | int tb_nvm_add_active(struct tb_nvm *nvm, nvmem_reg_read_t reg_read) | 
 | { | 
 | 	struct nvmem_config config; | 
 | 	struct nvmem_device *nvmem; | 
 |  | 
 | 	memset(&config, 0, sizeof(config)); | 
 |  | 
 | 	config.name = "nvm_active"; | 
 | 	config.reg_read = reg_read; | 
 | 	config.read_only = true; | 
 | 	config.id = nvm->id; | 
 | 	config.stride = 4; | 
 | 	config.word_size = 4; | 
 | 	config.size = nvm->active_size; | 
 | 	config.dev = nvm->dev; | 
 | 	config.owner = THIS_MODULE; | 
 | 	config.priv = nvm; | 
 |  | 
 | 	nvmem = nvmem_register(&config); | 
 | 	if (IS_ERR(nvmem)) | 
 | 		return PTR_ERR(nvmem); | 
 |  | 
 | 	nvm->active = nvmem; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * tb_nvm_write_buf() - Write data to @nvm buffer | 
 |  * @nvm: NVM structure | 
 |  * @offset: Offset where to write the data | 
 |  * @val: Data buffer to write | 
 |  * @bytes: Number of bytes to write | 
 |  * | 
 |  * Helper function to cache the new NVM image before it is actually | 
 |  * written to the flash. Copies @bytes from @val to @nvm->buf starting | 
 |  * from @offset. | 
 |  */ | 
 | int tb_nvm_write_buf(struct tb_nvm *nvm, unsigned int offset, void *val, | 
 | 		     size_t bytes) | 
 | { | 
 | 	if (!nvm->buf) { | 
 | 		nvm->buf = vmalloc(NVM_MAX_SIZE); | 
 | 		if (!nvm->buf) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	nvm->flushed = false; | 
 | 	nvm->buf_data_size = offset + bytes; | 
 | 	memcpy(nvm->buf + offset, val, bytes); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * tb_nvm_add_non_active() - Adds non-active NVMem device to NVM | 
 |  * @nvm: NVM structure | 
 |  * @reg_write: Pointer to the function to write the NVM (passed directly | 
 |  *	       to the NVMem device) | 
 |  * | 
 |  * Registers new non-active NVmem device for @nvm. The @reg_write is called | 
 |  * directly from NVMem so it must handle possible concurrent access if | 
 |  * needed. The first parameter passed to @reg_write is @nvm structure. | 
 |  * The size of the NVMem device is set to %NVM_MAX_SIZE. | 
 |  * | 
 |  * Returns %0 in success and negative errno otherwise. | 
 |  */ | 
 | int tb_nvm_add_non_active(struct tb_nvm *nvm, nvmem_reg_write_t reg_write) | 
 | { | 
 | 	struct nvmem_config config; | 
 | 	struct nvmem_device *nvmem; | 
 |  | 
 | 	memset(&config, 0, sizeof(config)); | 
 |  | 
 | 	config.name = "nvm_non_active"; | 
 | 	config.reg_write = reg_write; | 
 | 	config.root_only = true; | 
 | 	config.id = nvm->id; | 
 | 	config.stride = 4; | 
 | 	config.word_size = 4; | 
 | 	config.size = NVM_MAX_SIZE; | 
 | 	config.dev = nvm->dev; | 
 | 	config.owner = THIS_MODULE; | 
 | 	config.priv = nvm; | 
 |  | 
 | 	nvmem = nvmem_register(&config); | 
 | 	if (IS_ERR(nvmem)) | 
 | 		return PTR_ERR(nvmem); | 
 |  | 
 | 	nvm->non_active = nvmem; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * tb_nvm_free() - Release NVM and its resources | 
 |  * @nvm: NVM structure to release | 
 |  * | 
 |  * Releases NVM and the NVMem devices if they were registered. | 
 |  */ | 
 | void tb_nvm_free(struct tb_nvm *nvm) | 
 | { | 
 | 	if (nvm) { | 
 | 		nvmem_unregister(nvm->non_active); | 
 | 		nvmem_unregister(nvm->active); | 
 | 		vfree(nvm->buf); | 
 | 		ida_free(&nvm_ida, nvm->id); | 
 | 	} | 
 | 	kfree(nvm); | 
 | } | 
 |  | 
 | /** | 
 |  * tb_nvm_read_data() - Read data from NVM | 
 |  * @address: Start address on the flash | 
 |  * @buf: Buffer where the read data is copied | 
 |  * @size: Size of the buffer in bytes | 
 |  * @retries: Number of retries if block read fails | 
 |  * @read_block: Function that reads block from the flash | 
 |  * @read_block_data: Data passsed to @read_block | 
 |  * | 
 |  * This is a generic function that reads data from NVM or NVM like | 
 |  * device. | 
 |  * | 
 |  * Returns %0 on success and negative errno otherwise. | 
 |  */ | 
 | int tb_nvm_read_data(unsigned int address, void *buf, size_t size, | 
 | 		     unsigned int retries, read_block_fn read_block, | 
 | 		     void *read_block_data) | 
 | { | 
 | 	do { | 
 | 		unsigned int dwaddress, dwords, offset; | 
 | 		u8 data[NVM_DATA_DWORDS * 4]; | 
 | 		size_t nbytes; | 
 | 		int ret; | 
 |  | 
 | 		offset = address & 3; | 
 | 		nbytes = min_t(size_t, size + offset, NVM_DATA_DWORDS * 4); | 
 |  | 
 | 		dwaddress = address / 4; | 
 | 		dwords = ALIGN(nbytes, 4) / 4; | 
 |  | 
 | 		ret = read_block(read_block_data, dwaddress, data, dwords); | 
 | 		if (ret) { | 
 | 			if (ret != -ENODEV && retries--) | 
 | 				continue; | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		nbytes -= offset; | 
 | 		memcpy(buf, data + offset, nbytes); | 
 |  | 
 | 		size -= nbytes; | 
 | 		address += nbytes; | 
 | 		buf += nbytes; | 
 | 	} while (size > 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * tb_nvm_write_data() - Write data to NVM | 
 |  * @address: Start address on the flash | 
 |  * @buf: Buffer where the data is copied from | 
 |  * @size: Size of the buffer in bytes | 
 |  * @retries: Number of retries if the block write fails | 
 |  * @write_block: Function that writes block to the flash | 
 |  * @write_block_data: Data passed to @write_block | 
 |  * | 
 |  * This is generic function that writes data to NVM or NVM like device. | 
 |  * | 
 |  * Returns %0 on success and negative errno otherwise. | 
 |  */ | 
 | int tb_nvm_write_data(unsigned int address, const void *buf, size_t size, | 
 | 		      unsigned int retries, write_block_fn write_block, | 
 | 		      void *write_block_data) | 
 | { | 
 | 	do { | 
 | 		unsigned int offset, dwaddress; | 
 | 		u8 data[NVM_DATA_DWORDS * 4]; | 
 | 		size_t nbytes; | 
 | 		int ret; | 
 |  | 
 | 		offset = address & 3; | 
 | 		nbytes = min_t(u32, size + offset, NVM_DATA_DWORDS * 4); | 
 |  | 
 | 		memcpy(data + offset, buf, nbytes); | 
 |  | 
 | 		dwaddress = address / 4; | 
 | 		ret = write_block(write_block_data, dwaddress, data, nbytes / 4); | 
 | 		if (ret) { | 
 | 			if (ret == -ETIMEDOUT) { | 
 | 				if (retries--) | 
 | 					continue; | 
 | 				ret = -EIO; | 
 | 			} | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		size -= nbytes; | 
 | 		address += nbytes; | 
 | 		buf += nbytes; | 
 | 	} while (size > 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void tb_nvm_exit(void) | 
 | { | 
 | 	ida_destroy(&nvm_ida); | 
 | } |