|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support. | 
|  | * | 
|  | * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_address.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <crypto/md5.h> | 
|  | #include <crypto/sha1.h> | 
|  | #include <crypto/sha2.h> | 
|  | #include <crypto/aes.h> | 
|  | #include <crypto/internal/des.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/sched.h> | 
|  |  | 
|  | #include <crypto/internal/hash.h> | 
|  | #include <crypto/internal/skcipher.h> | 
|  | #include <crypto/scatterwalk.h> | 
|  | #include <crypto/algapi.h> | 
|  |  | 
|  | #include <asm/hypervisor.h> | 
|  | #include <asm/mdesc.h> | 
|  |  | 
|  | #include "n2_core.h" | 
|  |  | 
|  | #define DRV_MODULE_NAME		"n2_crypto" | 
|  | #define DRV_MODULE_VERSION	"0.2" | 
|  | #define DRV_MODULE_RELDATE	"July 28, 2011" | 
|  |  | 
|  | static const char version[] = | 
|  | DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; | 
|  |  | 
|  | MODULE_AUTHOR("David S. Miller <davem@davemloft.net>"); | 
|  | MODULE_DESCRIPTION("Niagara2 Crypto driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION(DRV_MODULE_VERSION); | 
|  |  | 
|  | #define N2_CRA_PRIORITY		200 | 
|  |  | 
|  | static DEFINE_MUTEX(spu_lock); | 
|  |  | 
|  | struct spu_queue { | 
|  | cpumask_t		sharing; | 
|  | unsigned long		qhandle; | 
|  |  | 
|  | spinlock_t		lock; | 
|  | u8			q_type; | 
|  | void			*q; | 
|  | unsigned long		head; | 
|  | unsigned long		tail; | 
|  | struct list_head	jobs; | 
|  |  | 
|  | unsigned long		devino; | 
|  |  | 
|  | char			irq_name[32]; | 
|  | unsigned int		irq; | 
|  |  | 
|  | struct list_head	list; | 
|  | }; | 
|  |  | 
|  | struct spu_qreg { | 
|  | struct spu_queue	*queue; | 
|  | unsigned long		type; | 
|  | }; | 
|  |  | 
|  | static struct spu_queue **cpu_to_cwq; | 
|  | static struct spu_queue **cpu_to_mau; | 
|  |  | 
|  | static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off) | 
|  | { | 
|  | if (q->q_type == HV_NCS_QTYPE_MAU) { | 
|  | off += MAU_ENTRY_SIZE; | 
|  | if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES)) | 
|  | off = 0; | 
|  | } else { | 
|  | off += CWQ_ENTRY_SIZE; | 
|  | if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES)) | 
|  | off = 0; | 
|  | } | 
|  | return off; | 
|  | } | 
|  |  | 
|  | struct n2_request_common { | 
|  | struct list_head	entry; | 
|  | unsigned int		offset; | 
|  | }; | 
|  | #define OFFSET_NOT_RUNNING	(~(unsigned int)0) | 
|  |  | 
|  | /* An async job request records the final tail value it used in | 
|  | * n2_request_common->offset, test to see if that offset is in | 
|  | * the range old_head, new_head, inclusive. | 
|  | */ | 
|  | static inline bool job_finished(struct spu_queue *q, unsigned int offset, | 
|  | unsigned long old_head, unsigned long new_head) | 
|  | { | 
|  | if (old_head <= new_head) { | 
|  | if (offset > old_head && offset <= new_head) | 
|  | return true; | 
|  | } else { | 
|  | if (offset > old_head || offset <= new_head) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* When the HEAD marker is unequal to the actual HEAD, we get | 
|  | * a virtual device INO interrupt.  We should process the | 
|  | * completed CWQ entries and adjust the HEAD marker to clear | 
|  | * the IRQ. | 
|  | */ | 
|  | static irqreturn_t cwq_intr(int irq, void *dev_id) | 
|  | { | 
|  | unsigned long off, new_head, hv_ret; | 
|  | struct spu_queue *q = dev_id; | 
|  |  | 
|  | pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n", | 
|  | smp_processor_id(), q->qhandle); | 
|  |  | 
|  | spin_lock(&q->lock); | 
|  |  | 
|  | hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head); | 
|  |  | 
|  | pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n", | 
|  | smp_processor_id(), new_head, hv_ret); | 
|  |  | 
|  | for (off = q->head; off != new_head; off = spu_next_offset(q, off)) { | 
|  | /* XXX ... XXX */ | 
|  | } | 
|  |  | 
|  | hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head); | 
|  | if (hv_ret == HV_EOK) | 
|  | q->head = new_head; | 
|  |  | 
|  | spin_unlock(&q->lock); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t mau_intr(int irq, void *dev_id) | 
|  | { | 
|  | struct spu_queue *q = dev_id; | 
|  | unsigned long head, hv_ret; | 
|  |  | 
|  | spin_lock(&q->lock); | 
|  |  | 
|  | pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n", | 
|  | smp_processor_id(), q->qhandle); | 
|  |  | 
|  | hv_ret = sun4v_ncs_gethead(q->qhandle, &head); | 
|  |  | 
|  | pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n", | 
|  | smp_processor_id(), head, hv_ret); | 
|  |  | 
|  | sun4v_ncs_sethead_marker(q->qhandle, head); | 
|  |  | 
|  | spin_unlock(&q->lock); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void *spu_queue_next(struct spu_queue *q, void *cur) | 
|  | { | 
|  | return q->q + spu_next_offset(q, cur - q->q); | 
|  | } | 
|  |  | 
|  | static int spu_queue_num_free(struct spu_queue *q) | 
|  | { | 
|  | unsigned long head = q->head; | 
|  | unsigned long tail = q->tail; | 
|  | unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES); | 
|  | unsigned long diff; | 
|  |  | 
|  | if (head > tail) | 
|  | diff = head - tail; | 
|  | else | 
|  | diff = (end - tail) + head; | 
|  |  | 
|  | return (diff / CWQ_ENTRY_SIZE) - 1; | 
|  | } | 
|  |  | 
|  | static void *spu_queue_alloc(struct spu_queue *q, int num_entries) | 
|  | { | 
|  | int avail = spu_queue_num_free(q); | 
|  |  | 
|  | if (avail >= num_entries) | 
|  | return q->q + q->tail; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static unsigned long spu_queue_submit(struct spu_queue *q, void *last) | 
|  | { | 
|  | unsigned long hv_ret, new_tail; | 
|  |  | 
|  | new_tail = spu_next_offset(q, last - q->q); | 
|  |  | 
|  | hv_ret = sun4v_ncs_settail(q->qhandle, new_tail); | 
|  | if (hv_ret == HV_EOK) | 
|  | q->tail = new_tail; | 
|  | return hv_ret; | 
|  | } | 
|  |  | 
|  | static u64 control_word_base(unsigned int len, unsigned int hmac_key_len, | 
|  | int enc_type, int auth_type, | 
|  | unsigned int hash_len, | 
|  | bool sfas, bool sob, bool eob, bool encrypt, | 
|  | int opcode) | 
|  | { | 
|  | u64 word = (len - 1) & CONTROL_LEN; | 
|  |  | 
|  | word |= ((u64) opcode << CONTROL_OPCODE_SHIFT); | 
|  | word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT); | 
|  | word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT); | 
|  | if (sfas) | 
|  | word |= CONTROL_STORE_FINAL_AUTH_STATE; | 
|  | if (sob) | 
|  | word |= CONTROL_START_OF_BLOCK; | 
|  | if (eob) | 
|  | word |= CONTROL_END_OF_BLOCK; | 
|  | if (encrypt) | 
|  | word |= CONTROL_ENCRYPT; | 
|  | if (hmac_key_len) | 
|  | word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT; | 
|  | if (hash_len) | 
|  | word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT; | 
|  |  | 
|  | return word; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static inline bool n2_should_run_async(struct spu_queue *qp, int this_len) | 
|  | { | 
|  | if (this_len >= 64 || | 
|  | qp->head != qp->tail) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | struct n2_ahash_alg { | 
|  | struct list_head	entry; | 
|  | const u8		*hash_zero; | 
|  | const u8		*hash_init; | 
|  | u8			hw_op_hashsz; | 
|  | u8			digest_size; | 
|  | u8			auth_type; | 
|  | u8			hmac_type; | 
|  | struct ahash_alg	alg; | 
|  | }; | 
|  |  | 
|  | static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct crypto_alg *alg = tfm->__crt_alg; | 
|  | struct ahash_alg *ahash_alg; | 
|  |  | 
|  | ahash_alg = container_of(alg, struct ahash_alg, halg.base); | 
|  |  | 
|  | return container_of(ahash_alg, struct n2_ahash_alg, alg); | 
|  | } | 
|  |  | 
|  | struct n2_hmac_alg { | 
|  | const char		*child_alg; | 
|  | struct n2_ahash_alg	derived; | 
|  | }; | 
|  |  | 
|  | static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct crypto_alg *alg = tfm->__crt_alg; | 
|  | struct ahash_alg *ahash_alg; | 
|  |  | 
|  | ahash_alg = container_of(alg, struct ahash_alg, halg.base); | 
|  |  | 
|  | return container_of(ahash_alg, struct n2_hmac_alg, derived.alg); | 
|  | } | 
|  |  | 
|  | struct n2_hash_ctx { | 
|  | struct crypto_ahash		*fallback_tfm; | 
|  | }; | 
|  |  | 
|  | #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */ | 
|  |  | 
|  | struct n2_hmac_ctx { | 
|  | struct n2_hash_ctx		base; | 
|  |  | 
|  | struct crypto_shash		*child_shash; | 
|  |  | 
|  | int				hash_key_len; | 
|  | unsigned char			hash_key[N2_HASH_KEY_MAX]; | 
|  | }; | 
|  |  | 
|  | struct n2_hash_req_ctx { | 
|  | union { | 
|  | struct md5_state	md5; | 
|  | struct sha1_state	sha1; | 
|  | struct sha256_state	sha256; | 
|  | } u; | 
|  |  | 
|  | struct ahash_request		fallback_req; | 
|  | }; | 
|  |  | 
|  | static int n2_hash_async_init(struct ahash_request *req) | 
|  | { | 
|  | struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
|  | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
|  | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); | 
|  |  | 
|  | ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); | 
|  | rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
|  |  | 
|  | return crypto_ahash_init(&rctx->fallback_req); | 
|  | } | 
|  |  | 
|  | static int n2_hash_async_update(struct ahash_request *req) | 
|  | { | 
|  | struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
|  | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
|  | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); | 
|  |  | 
|  | ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); | 
|  | rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
|  | rctx->fallback_req.nbytes = req->nbytes; | 
|  | rctx->fallback_req.src = req->src; | 
|  |  | 
|  | return crypto_ahash_update(&rctx->fallback_req); | 
|  | } | 
|  |  | 
|  | static int n2_hash_async_final(struct ahash_request *req) | 
|  | { | 
|  | struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
|  | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
|  | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); | 
|  |  | 
|  | ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); | 
|  | rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
|  | rctx->fallback_req.result = req->result; | 
|  |  | 
|  | return crypto_ahash_final(&rctx->fallback_req); | 
|  | } | 
|  |  | 
|  | static int n2_hash_async_finup(struct ahash_request *req) | 
|  | { | 
|  | struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
|  | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
|  | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); | 
|  |  | 
|  | ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); | 
|  | rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
|  | rctx->fallback_req.nbytes = req->nbytes; | 
|  | rctx->fallback_req.src = req->src; | 
|  | rctx->fallback_req.result = req->result; | 
|  |  | 
|  | return crypto_ahash_finup(&rctx->fallback_req); | 
|  | } | 
|  |  | 
|  | static int n2_hash_async_noimport(struct ahash_request *req, const void *in) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | static int n2_hash_async_noexport(struct ahash_request *req, void *out) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | static int n2_hash_cra_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | const char *fallback_driver_name = crypto_tfm_alg_name(tfm); | 
|  | struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); | 
|  | struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); | 
|  | struct crypto_ahash *fallback_tfm; | 
|  | int err; | 
|  |  | 
|  | fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, | 
|  | CRYPTO_ALG_NEED_FALLBACK); | 
|  | if (IS_ERR(fallback_tfm)) { | 
|  | pr_warn("Fallback driver '%s' could not be loaded!\n", | 
|  | fallback_driver_name); | 
|  | err = PTR_ERR(fallback_tfm); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + | 
|  | crypto_ahash_reqsize(fallback_tfm))); | 
|  |  | 
|  | ctx->fallback_tfm = fallback_tfm; | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void n2_hash_cra_exit(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); | 
|  | struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); | 
|  |  | 
|  | crypto_free_ahash(ctx->fallback_tfm); | 
|  | } | 
|  |  | 
|  | static int n2_hmac_cra_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | const char *fallback_driver_name = crypto_tfm_alg_name(tfm); | 
|  | struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); | 
|  | struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); | 
|  | struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm); | 
|  | struct crypto_ahash *fallback_tfm; | 
|  | struct crypto_shash *child_shash; | 
|  | int err; | 
|  |  | 
|  | fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, | 
|  | CRYPTO_ALG_NEED_FALLBACK); | 
|  | if (IS_ERR(fallback_tfm)) { | 
|  | pr_warn("Fallback driver '%s' could not be loaded!\n", | 
|  | fallback_driver_name); | 
|  | err = PTR_ERR(fallback_tfm); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0); | 
|  | if (IS_ERR(child_shash)) { | 
|  | pr_warn("Child shash '%s' could not be loaded!\n", | 
|  | n2alg->child_alg); | 
|  | err = PTR_ERR(child_shash); | 
|  | goto out_free_fallback; | 
|  | } | 
|  |  | 
|  | crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + | 
|  | crypto_ahash_reqsize(fallback_tfm))); | 
|  |  | 
|  | ctx->child_shash = child_shash; | 
|  | ctx->base.fallback_tfm = fallback_tfm; | 
|  | return 0; | 
|  |  | 
|  | out_free_fallback: | 
|  | crypto_free_ahash(fallback_tfm); | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void n2_hmac_cra_exit(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); | 
|  | struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); | 
|  |  | 
|  | crypto_free_ahash(ctx->base.fallback_tfm); | 
|  | crypto_free_shash(ctx->child_shash); | 
|  | } | 
|  |  | 
|  | static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); | 
|  | struct crypto_shash *child_shash = ctx->child_shash; | 
|  | struct crypto_ahash *fallback_tfm; | 
|  | int err, bs, ds; | 
|  |  | 
|  | fallback_tfm = ctx->base.fallback_tfm; | 
|  | err = crypto_ahash_setkey(fallback_tfm, key, keylen); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | bs = crypto_shash_blocksize(child_shash); | 
|  | ds = crypto_shash_digestsize(child_shash); | 
|  | BUG_ON(ds > N2_HASH_KEY_MAX); | 
|  | if (keylen > bs) { | 
|  | err = crypto_shash_tfm_digest(child_shash, key, keylen, | 
|  | ctx->hash_key); | 
|  | if (err) | 
|  | return err; | 
|  | keylen = ds; | 
|  | } else if (keylen <= N2_HASH_KEY_MAX) | 
|  | memcpy(ctx->hash_key, key, keylen); | 
|  |  | 
|  | ctx->hash_key_len = keylen; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static unsigned long wait_for_tail(struct spu_queue *qp) | 
|  | { | 
|  | unsigned long head, hv_ret; | 
|  |  | 
|  | do { | 
|  | hv_ret = sun4v_ncs_gethead(qp->qhandle, &head); | 
|  | if (hv_ret != HV_EOK) { | 
|  | pr_err("Hypervisor error on gethead\n"); | 
|  | break; | 
|  | } | 
|  | if (head == qp->tail) { | 
|  | qp->head = head; | 
|  | break; | 
|  | } | 
|  | } while (1); | 
|  | return hv_ret; | 
|  | } | 
|  |  | 
|  | static unsigned long submit_and_wait_for_tail(struct spu_queue *qp, | 
|  | struct cwq_initial_entry *ent) | 
|  | { | 
|  | unsigned long hv_ret = spu_queue_submit(qp, ent); | 
|  |  | 
|  | if (hv_ret == HV_EOK) | 
|  | hv_ret = wait_for_tail(qp); | 
|  |  | 
|  | return hv_ret; | 
|  | } | 
|  |  | 
|  | static int n2_do_async_digest(struct ahash_request *req, | 
|  | unsigned int auth_type, unsigned int digest_size, | 
|  | unsigned int result_size, void *hash_loc, | 
|  | unsigned long auth_key, unsigned int auth_key_len) | 
|  | { | 
|  | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
|  | struct cwq_initial_entry *ent; | 
|  | struct crypto_hash_walk walk; | 
|  | struct spu_queue *qp; | 
|  | unsigned long flags; | 
|  | int err = -ENODEV; | 
|  | int nbytes, cpu; | 
|  |  | 
|  | /* The total effective length of the operation may not | 
|  | * exceed 2^16. | 
|  | */ | 
|  | if (unlikely(req->nbytes > (1 << 16))) { | 
|  | struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
|  | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); | 
|  |  | 
|  | ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); | 
|  | rctx->fallback_req.base.flags = | 
|  | req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
|  | rctx->fallback_req.nbytes = req->nbytes; | 
|  | rctx->fallback_req.src = req->src; | 
|  | rctx->fallback_req.result = req->result; | 
|  |  | 
|  | return crypto_ahash_digest(&rctx->fallback_req); | 
|  | } | 
|  |  | 
|  | nbytes = crypto_hash_walk_first(req, &walk); | 
|  |  | 
|  | cpu = get_cpu(); | 
|  | qp = cpu_to_cwq[cpu]; | 
|  | if (!qp) | 
|  | goto out; | 
|  |  | 
|  | spin_lock_irqsave(&qp->lock, flags); | 
|  |  | 
|  | /* XXX can do better, improve this later by doing a by-hand scatterlist | 
|  | * XXX walk, etc. | 
|  | */ | 
|  | ent = qp->q + qp->tail; | 
|  |  | 
|  | ent->control = control_word_base(nbytes, auth_key_len, 0, | 
|  | auth_type, digest_size, | 
|  | false, true, false, false, | 
|  | OPCODE_INPLACE_BIT | | 
|  | OPCODE_AUTH_MAC); | 
|  | ent->src_addr = __pa(walk.data); | 
|  | ent->auth_key_addr = auth_key; | 
|  | ent->auth_iv_addr = __pa(hash_loc); | 
|  | ent->final_auth_state_addr = 0UL; | 
|  | ent->enc_key_addr = 0UL; | 
|  | ent->enc_iv_addr = 0UL; | 
|  | ent->dest_addr = __pa(hash_loc); | 
|  |  | 
|  | nbytes = crypto_hash_walk_done(&walk, 0); | 
|  | while (nbytes > 0) { | 
|  | ent = spu_queue_next(qp, ent); | 
|  |  | 
|  | ent->control = (nbytes - 1); | 
|  | ent->src_addr = __pa(walk.data); | 
|  | ent->auth_key_addr = 0UL; | 
|  | ent->auth_iv_addr = 0UL; | 
|  | ent->final_auth_state_addr = 0UL; | 
|  | ent->enc_key_addr = 0UL; | 
|  | ent->enc_iv_addr = 0UL; | 
|  | ent->dest_addr = 0UL; | 
|  |  | 
|  | nbytes = crypto_hash_walk_done(&walk, 0); | 
|  | } | 
|  | ent->control |= CONTROL_END_OF_BLOCK; | 
|  |  | 
|  | if (submit_and_wait_for_tail(qp, ent) != HV_EOK) | 
|  | err = -EINVAL; | 
|  | else | 
|  | err = 0; | 
|  |  | 
|  | spin_unlock_irqrestore(&qp->lock, flags); | 
|  |  | 
|  | if (!err) | 
|  | memcpy(req->result, hash_loc, result_size); | 
|  | out: | 
|  | put_cpu(); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int n2_hash_async_digest(struct ahash_request *req) | 
|  | { | 
|  | struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm); | 
|  | struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
|  | int ds; | 
|  |  | 
|  | ds = n2alg->digest_size; | 
|  | if (unlikely(req->nbytes == 0)) { | 
|  | memcpy(req->result, n2alg->hash_zero, ds); | 
|  | return 0; | 
|  | } | 
|  | memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz); | 
|  |  | 
|  | return n2_do_async_digest(req, n2alg->auth_type, | 
|  | n2alg->hw_op_hashsz, ds, | 
|  | &rctx->u, 0UL, 0); | 
|  | } | 
|  |  | 
|  | static int n2_hmac_async_digest(struct ahash_request *req) | 
|  | { | 
|  | struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm); | 
|  | struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
|  | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
|  | struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); | 
|  | int ds; | 
|  |  | 
|  | ds = n2alg->derived.digest_size; | 
|  | if (unlikely(req->nbytes == 0) || | 
|  | unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) { | 
|  | struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); | 
|  | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); | 
|  |  | 
|  | ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); | 
|  | rctx->fallback_req.base.flags = | 
|  | req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
|  | rctx->fallback_req.nbytes = req->nbytes; | 
|  | rctx->fallback_req.src = req->src; | 
|  | rctx->fallback_req.result = req->result; | 
|  |  | 
|  | return crypto_ahash_digest(&rctx->fallback_req); | 
|  | } | 
|  | memcpy(&rctx->u, n2alg->derived.hash_init, | 
|  | n2alg->derived.hw_op_hashsz); | 
|  |  | 
|  | return n2_do_async_digest(req, n2alg->derived.hmac_type, | 
|  | n2alg->derived.hw_op_hashsz, ds, | 
|  | &rctx->u, | 
|  | __pa(&ctx->hash_key), | 
|  | ctx->hash_key_len); | 
|  | } | 
|  |  | 
|  | struct n2_skcipher_context { | 
|  | int			key_len; | 
|  | int			enc_type; | 
|  | union { | 
|  | u8		aes[AES_MAX_KEY_SIZE]; | 
|  | u8		des[DES_KEY_SIZE]; | 
|  | u8		des3[3 * DES_KEY_SIZE]; | 
|  | } key; | 
|  | }; | 
|  |  | 
|  | #define N2_CHUNK_ARR_LEN	16 | 
|  |  | 
|  | struct n2_crypto_chunk { | 
|  | struct list_head	entry; | 
|  | unsigned long		iv_paddr : 44; | 
|  | unsigned long		arr_len : 20; | 
|  | unsigned long		dest_paddr; | 
|  | unsigned long		dest_final; | 
|  | struct { | 
|  | unsigned long	src_paddr : 44; | 
|  | unsigned long	src_len : 20; | 
|  | } arr[N2_CHUNK_ARR_LEN]; | 
|  | }; | 
|  |  | 
|  | struct n2_request_context { | 
|  | struct skcipher_walk	walk; | 
|  | struct list_head	chunk_list; | 
|  | struct n2_crypto_chunk	chunk; | 
|  | u8			temp_iv[16]; | 
|  | }; | 
|  |  | 
|  | /* The SPU allows some level of flexibility for partial cipher blocks | 
|  | * being specified in a descriptor. | 
|  | * | 
|  | * It merely requires that every descriptor's length field is at least | 
|  | * as large as the cipher block size.  This means that a cipher block | 
|  | * can span at most 2 descriptors.  However, this does not allow a | 
|  | * partial block to span into the final descriptor as that would | 
|  | * violate the rule (since every descriptor's length must be at lest | 
|  | * the block size).  So, for example, assuming an 8 byte block size: | 
|  | * | 
|  | *	0xe --> 0xa --> 0x8 | 
|  | * | 
|  | * is a valid length sequence, whereas: | 
|  | * | 
|  | *	0xe --> 0xb --> 0x7 | 
|  | * | 
|  | * is not a valid sequence. | 
|  | */ | 
|  |  | 
|  | struct n2_skcipher_alg { | 
|  | struct list_head	entry; | 
|  | u8			enc_type; | 
|  | struct skcipher_alg	skcipher; | 
|  | }; | 
|  |  | 
|  | static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm) | 
|  | { | 
|  | struct skcipher_alg *alg = crypto_skcipher_alg(tfm); | 
|  |  | 
|  | return container_of(alg, struct n2_skcipher_alg, skcipher); | 
|  | } | 
|  |  | 
|  | struct n2_skcipher_request_context { | 
|  | struct skcipher_walk	walk; | 
|  | }; | 
|  |  | 
|  | static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); | 
|  | struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); | 
|  | struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); | 
|  |  | 
|  | ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK); | 
|  |  | 
|  | switch (keylen) { | 
|  | case AES_KEYSIZE_128: | 
|  | ctx->enc_type |= ENC_TYPE_ALG_AES128; | 
|  | break; | 
|  | case AES_KEYSIZE_192: | 
|  | ctx->enc_type |= ENC_TYPE_ALG_AES192; | 
|  | break; | 
|  | case AES_KEYSIZE_256: | 
|  | ctx->enc_type |= ENC_TYPE_ALG_AES256; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ctx->key_len = keylen; | 
|  | memcpy(ctx->key.aes, key, keylen); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); | 
|  | struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); | 
|  | struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); | 
|  | int err; | 
|  |  | 
|  | err = verify_skcipher_des_key(skcipher, key); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | ctx->enc_type = n2alg->enc_type; | 
|  |  | 
|  | ctx->key_len = keylen; | 
|  | memcpy(ctx->key.des, key, keylen); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); | 
|  | struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); | 
|  | struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); | 
|  | int err; | 
|  |  | 
|  | err = verify_skcipher_des3_key(skcipher, key); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | ctx->enc_type = n2alg->enc_type; | 
|  |  | 
|  | ctx->key_len = keylen; | 
|  | memcpy(ctx->key.des3, key, keylen); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size) | 
|  | { | 
|  | int this_len = nbytes; | 
|  |  | 
|  | this_len -= (nbytes & (block_size - 1)); | 
|  | return this_len > (1 << 16) ? (1 << 16) : this_len; | 
|  | } | 
|  |  | 
|  | static int __n2_crypt_chunk(struct crypto_skcipher *skcipher, | 
|  | struct n2_crypto_chunk *cp, | 
|  | struct spu_queue *qp, bool encrypt) | 
|  | { | 
|  | struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher); | 
|  | struct cwq_initial_entry *ent; | 
|  | bool in_place; | 
|  | int i; | 
|  |  | 
|  | ent = spu_queue_alloc(qp, cp->arr_len); | 
|  | if (!ent) { | 
|  | pr_info("queue_alloc() of %d fails\n", | 
|  | cp->arr_len); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | in_place = (cp->dest_paddr == cp->arr[0].src_paddr); | 
|  |  | 
|  | ent->control = control_word_base(cp->arr[0].src_len, | 
|  | 0, ctx->enc_type, 0, 0, | 
|  | false, true, false, encrypt, | 
|  | OPCODE_ENCRYPT | | 
|  | (in_place ? OPCODE_INPLACE_BIT : 0)); | 
|  | ent->src_addr = cp->arr[0].src_paddr; | 
|  | ent->auth_key_addr = 0UL; | 
|  | ent->auth_iv_addr = 0UL; | 
|  | ent->final_auth_state_addr = 0UL; | 
|  | ent->enc_key_addr = __pa(&ctx->key); | 
|  | ent->enc_iv_addr = cp->iv_paddr; | 
|  | ent->dest_addr = (in_place ? 0UL : cp->dest_paddr); | 
|  |  | 
|  | for (i = 1; i < cp->arr_len; i++) { | 
|  | ent = spu_queue_next(qp, ent); | 
|  |  | 
|  | ent->control = cp->arr[i].src_len - 1; | 
|  | ent->src_addr = cp->arr[i].src_paddr; | 
|  | ent->auth_key_addr = 0UL; | 
|  | ent->auth_iv_addr = 0UL; | 
|  | ent->final_auth_state_addr = 0UL; | 
|  | ent->enc_key_addr = 0UL; | 
|  | ent->enc_iv_addr = 0UL; | 
|  | ent->dest_addr = 0UL; | 
|  | } | 
|  | ent->control |= CONTROL_END_OF_BLOCK; | 
|  |  | 
|  | return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0; | 
|  | } | 
|  |  | 
|  | static int n2_compute_chunks(struct skcipher_request *req) | 
|  | { | 
|  | struct n2_request_context *rctx = skcipher_request_ctx(req); | 
|  | struct skcipher_walk *walk = &rctx->walk; | 
|  | struct n2_crypto_chunk *chunk; | 
|  | unsigned long dest_prev; | 
|  | unsigned int tot_len; | 
|  | bool prev_in_place; | 
|  | int err, nbytes; | 
|  |  | 
|  | err = skcipher_walk_async(walk, req); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | INIT_LIST_HEAD(&rctx->chunk_list); | 
|  |  | 
|  | chunk = &rctx->chunk; | 
|  | INIT_LIST_HEAD(&chunk->entry); | 
|  |  | 
|  | chunk->iv_paddr = 0UL; | 
|  | chunk->arr_len = 0; | 
|  | chunk->dest_paddr = 0UL; | 
|  |  | 
|  | prev_in_place = false; | 
|  | dest_prev = ~0UL; | 
|  | tot_len = 0; | 
|  |  | 
|  | while ((nbytes = walk->nbytes) != 0) { | 
|  | unsigned long dest_paddr, src_paddr; | 
|  | bool in_place; | 
|  | int this_len; | 
|  |  | 
|  | src_paddr = (page_to_phys(walk->src.phys.page) + | 
|  | walk->src.phys.offset); | 
|  | dest_paddr = (page_to_phys(walk->dst.phys.page) + | 
|  | walk->dst.phys.offset); | 
|  | in_place = (src_paddr == dest_paddr); | 
|  | this_len = skcipher_descriptor_len(nbytes, walk->blocksize); | 
|  |  | 
|  | if (chunk->arr_len != 0) { | 
|  | if (in_place != prev_in_place || | 
|  | (!prev_in_place && | 
|  | dest_paddr != dest_prev) || | 
|  | chunk->arr_len == N2_CHUNK_ARR_LEN || | 
|  | tot_len + this_len > (1 << 16)) { | 
|  | chunk->dest_final = dest_prev; | 
|  | list_add_tail(&chunk->entry, | 
|  | &rctx->chunk_list); | 
|  | chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC); | 
|  | if (!chunk) { | 
|  | err = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | INIT_LIST_HEAD(&chunk->entry); | 
|  | } | 
|  | } | 
|  | if (chunk->arr_len == 0) { | 
|  | chunk->dest_paddr = dest_paddr; | 
|  | tot_len = 0; | 
|  | } | 
|  | chunk->arr[chunk->arr_len].src_paddr = src_paddr; | 
|  | chunk->arr[chunk->arr_len].src_len = this_len; | 
|  | chunk->arr_len++; | 
|  |  | 
|  | dest_prev = dest_paddr + this_len; | 
|  | prev_in_place = in_place; | 
|  | tot_len += this_len; | 
|  |  | 
|  | err = skcipher_walk_done(walk, nbytes - this_len); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | if (!err && chunk->arr_len != 0) { | 
|  | chunk->dest_final = dest_prev; | 
|  | list_add_tail(&chunk->entry, &rctx->chunk_list); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void n2_chunk_complete(struct skcipher_request *req, void *final_iv) | 
|  | { | 
|  | struct n2_request_context *rctx = skcipher_request_ctx(req); | 
|  | struct n2_crypto_chunk *c, *tmp; | 
|  |  | 
|  | if (final_iv) | 
|  | memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize); | 
|  |  | 
|  | list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { | 
|  | list_del(&c->entry); | 
|  | if (unlikely(c != &rctx->chunk)) | 
|  | kfree(c); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static int n2_do_ecb(struct skcipher_request *req, bool encrypt) | 
|  | { | 
|  | struct n2_request_context *rctx = skcipher_request_ctx(req); | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | int err = n2_compute_chunks(req); | 
|  | struct n2_crypto_chunk *c, *tmp; | 
|  | unsigned long flags, hv_ret; | 
|  | struct spu_queue *qp; | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | qp = cpu_to_cwq[get_cpu()]; | 
|  | err = -ENODEV; | 
|  | if (!qp) | 
|  | goto out; | 
|  |  | 
|  | spin_lock_irqsave(&qp->lock, flags); | 
|  |  | 
|  | list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { | 
|  | err = __n2_crypt_chunk(tfm, c, qp, encrypt); | 
|  | if (err) | 
|  | break; | 
|  | list_del(&c->entry); | 
|  | if (unlikely(c != &rctx->chunk)) | 
|  | kfree(c); | 
|  | } | 
|  | if (!err) { | 
|  | hv_ret = wait_for_tail(qp); | 
|  | if (hv_ret != HV_EOK) | 
|  | err = -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&qp->lock, flags); | 
|  |  | 
|  | out: | 
|  | put_cpu(); | 
|  |  | 
|  | n2_chunk_complete(req, NULL); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int n2_encrypt_ecb(struct skcipher_request *req) | 
|  | { | 
|  | return n2_do_ecb(req, true); | 
|  | } | 
|  |  | 
|  | static int n2_decrypt_ecb(struct skcipher_request *req) | 
|  | { | 
|  | return n2_do_ecb(req, false); | 
|  | } | 
|  |  | 
|  | static int n2_do_chaining(struct skcipher_request *req, bool encrypt) | 
|  | { | 
|  | struct n2_request_context *rctx = skcipher_request_ctx(req); | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | unsigned long flags, hv_ret, iv_paddr; | 
|  | int err = n2_compute_chunks(req); | 
|  | struct n2_crypto_chunk *c, *tmp; | 
|  | struct spu_queue *qp; | 
|  | void *final_iv_addr; | 
|  |  | 
|  | final_iv_addr = NULL; | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | qp = cpu_to_cwq[get_cpu()]; | 
|  | err = -ENODEV; | 
|  | if (!qp) | 
|  | goto out; | 
|  |  | 
|  | spin_lock_irqsave(&qp->lock, flags); | 
|  |  | 
|  | if (encrypt) { | 
|  | iv_paddr = __pa(rctx->walk.iv); | 
|  | list_for_each_entry_safe(c, tmp, &rctx->chunk_list, | 
|  | entry) { | 
|  | c->iv_paddr = iv_paddr; | 
|  | err = __n2_crypt_chunk(tfm, c, qp, true); | 
|  | if (err) | 
|  | break; | 
|  | iv_paddr = c->dest_final - rctx->walk.blocksize; | 
|  | list_del(&c->entry); | 
|  | if (unlikely(c != &rctx->chunk)) | 
|  | kfree(c); | 
|  | } | 
|  | final_iv_addr = __va(iv_paddr); | 
|  | } else { | 
|  | list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list, | 
|  | entry) { | 
|  | if (c == &rctx->chunk) { | 
|  | iv_paddr = __pa(rctx->walk.iv); | 
|  | } else { | 
|  | iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr + | 
|  | tmp->arr[tmp->arr_len-1].src_len - | 
|  | rctx->walk.blocksize); | 
|  | } | 
|  | if (!final_iv_addr) { | 
|  | unsigned long pa; | 
|  |  | 
|  | pa = (c->arr[c->arr_len-1].src_paddr + | 
|  | c->arr[c->arr_len-1].src_len - | 
|  | rctx->walk.blocksize); | 
|  | final_iv_addr = rctx->temp_iv; | 
|  | memcpy(rctx->temp_iv, __va(pa), | 
|  | rctx->walk.blocksize); | 
|  | } | 
|  | c->iv_paddr = iv_paddr; | 
|  | err = __n2_crypt_chunk(tfm, c, qp, false); | 
|  | if (err) | 
|  | break; | 
|  | list_del(&c->entry); | 
|  | if (unlikely(c != &rctx->chunk)) | 
|  | kfree(c); | 
|  | } | 
|  | } | 
|  | if (!err) { | 
|  | hv_ret = wait_for_tail(qp); | 
|  | if (hv_ret != HV_EOK) | 
|  | err = -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&qp->lock, flags); | 
|  |  | 
|  | out: | 
|  | put_cpu(); | 
|  |  | 
|  | n2_chunk_complete(req, err ? NULL : final_iv_addr); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int n2_encrypt_chaining(struct skcipher_request *req) | 
|  | { | 
|  | return n2_do_chaining(req, true); | 
|  | } | 
|  |  | 
|  | static int n2_decrypt_chaining(struct skcipher_request *req) | 
|  | { | 
|  | return n2_do_chaining(req, false); | 
|  | } | 
|  |  | 
|  | struct n2_skcipher_tmpl { | 
|  | const char		*name; | 
|  | const char		*drv_name; | 
|  | u8			block_size; | 
|  | u8			enc_type; | 
|  | struct skcipher_alg	skcipher; | 
|  | }; | 
|  |  | 
|  | static const struct n2_skcipher_tmpl skcipher_tmpls[] = { | 
|  | /* DES: ECB CBC and CFB are supported */ | 
|  | {	.name		= "ecb(des)", | 
|  | .drv_name	= "ecb-des", | 
|  | .block_size	= DES_BLOCK_SIZE, | 
|  | .enc_type	= (ENC_TYPE_ALG_DES | | 
|  | ENC_TYPE_CHAINING_ECB), | 
|  | .skcipher	= { | 
|  | .min_keysize	= DES_KEY_SIZE, | 
|  | .max_keysize	= DES_KEY_SIZE, | 
|  | .setkey		= n2_des_setkey, | 
|  | .encrypt	= n2_encrypt_ecb, | 
|  | .decrypt	= n2_decrypt_ecb, | 
|  | }, | 
|  | }, | 
|  | {	.name		= "cbc(des)", | 
|  | .drv_name	= "cbc-des", | 
|  | .block_size	= DES_BLOCK_SIZE, | 
|  | .enc_type	= (ENC_TYPE_ALG_DES | | 
|  | ENC_TYPE_CHAINING_CBC), | 
|  | .skcipher	= { | 
|  | .ivsize		= DES_BLOCK_SIZE, | 
|  | .min_keysize	= DES_KEY_SIZE, | 
|  | .max_keysize	= DES_KEY_SIZE, | 
|  | .setkey		= n2_des_setkey, | 
|  | .encrypt	= n2_encrypt_chaining, | 
|  | .decrypt	= n2_decrypt_chaining, | 
|  | }, | 
|  | }, | 
|  |  | 
|  | /* 3DES: ECB CBC and CFB are supported */ | 
|  | {	.name		= "ecb(des3_ede)", | 
|  | .drv_name	= "ecb-3des", | 
|  | .block_size	= DES_BLOCK_SIZE, | 
|  | .enc_type	= (ENC_TYPE_ALG_3DES | | 
|  | ENC_TYPE_CHAINING_ECB), | 
|  | .skcipher	= { | 
|  | .min_keysize	= 3 * DES_KEY_SIZE, | 
|  | .max_keysize	= 3 * DES_KEY_SIZE, | 
|  | .setkey		= n2_3des_setkey, | 
|  | .encrypt	= n2_encrypt_ecb, | 
|  | .decrypt	= n2_decrypt_ecb, | 
|  | }, | 
|  | }, | 
|  | {	.name		= "cbc(des3_ede)", | 
|  | .drv_name	= "cbc-3des", | 
|  | .block_size	= DES_BLOCK_SIZE, | 
|  | .enc_type	= (ENC_TYPE_ALG_3DES | | 
|  | ENC_TYPE_CHAINING_CBC), | 
|  | .skcipher	= { | 
|  | .ivsize		= DES_BLOCK_SIZE, | 
|  | .min_keysize	= 3 * DES_KEY_SIZE, | 
|  | .max_keysize	= 3 * DES_KEY_SIZE, | 
|  | .setkey		= n2_3des_setkey, | 
|  | .encrypt	= n2_encrypt_chaining, | 
|  | .decrypt	= n2_decrypt_chaining, | 
|  | }, | 
|  | }, | 
|  |  | 
|  | /* AES: ECB CBC and CTR are supported */ | 
|  | {	.name		= "ecb(aes)", | 
|  | .drv_name	= "ecb-aes", | 
|  | .block_size	= AES_BLOCK_SIZE, | 
|  | .enc_type	= (ENC_TYPE_ALG_AES128 | | 
|  | ENC_TYPE_CHAINING_ECB), | 
|  | .skcipher	= { | 
|  | .min_keysize	= AES_MIN_KEY_SIZE, | 
|  | .max_keysize	= AES_MAX_KEY_SIZE, | 
|  | .setkey		= n2_aes_setkey, | 
|  | .encrypt	= n2_encrypt_ecb, | 
|  | .decrypt	= n2_decrypt_ecb, | 
|  | }, | 
|  | }, | 
|  | {	.name		= "cbc(aes)", | 
|  | .drv_name	= "cbc-aes", | 
|  | .block_size	= AES_BLOCK_SIZE, | 
|  | .enc_type	= (ENC_TYPE_ALG_AES128 | | 
|  | ENC_TYPE_CHAINING_CBC), | 
|  | .skcipher	= { | 
|  | .ivsize		= AES_BLOCK_SIZE, | 
|  | .min_keysize	= AES_MIN_KEY_SIZE, | 
|  | .max_keysize	= AES_MAX_KEY_SIZE, | 
|  | .setkey		= n2_aes_setkey, | 
|  | .encrypt	= n2_encrypt_chaining, | 
|  | .decrypt	= n2_decrypt_chaining, | 
|  | }, | 
|  | }, | 
|  | {	.name		= "ctr(aes)", | 
|  | .drv_name	= "ctr-aes", | 
|  | .block_size	= AES_BLOCK_SIZE, | 
|  | .enc_type	= (ENC_TYPE_ALG_AES128 | | 
|  | ENC_TYPE_CHAINING_COUNTER), | 
|  | .skcipher	= { | 
|  | .ivsize		= AES_BLOCK_SIZE, | 
|  | .min_keysize	= AES_MIN_KEY_SIZE, | 
|  | .max_keysize	= AES_MAX_KEY_SIZE, | 
|  | .setkey		= n2_aes_setkey, | 
|  | .encrypt	= n2_encrypt_chaining, | 
|  | .decrypt	= n2_encrypt_chaining, | 
|  | }, | 
|  | }, | 
|  |  | 
|  | }; | 
|  | #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls) | 
|  |  | 
|  | static LIST_HEAD(skcipher_algs); | 
|  |  | 
|  | struct n2_hash_tmpl { | 
|  | const char	*name; | 
|  | const u8	*hash_zero; | 
|  | const u8	*hash_init; | 
|  | u8		hw_op_hashsz; | 
|  | u8		digest_size; | 
|  | u8		statesize; | 
|  | u8		block_size; | 
|  | u8		auth_type; | 
|  | u8		hmac_type; | 
|  | }; | 
|  |  | 
|  | static const __le32 n2_md5_init[MD5_HASH_WORDS] = { | 
|  | cpu_to_le32(MD5_H0), | 
|  | cpu_to_le32(MD5_H1), | 
|  | cpu_to_le32(MD5_H2), | 
|  | cpu_to_le32(MD5_H3), | 
|  | }; | 
|  | static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = { | 
|  | SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, | 
|  | }; | 
|  | static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = { | 
|  | SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, | 
|  | SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7, | 
|  | }; | 
|  | static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = { | 
|  | SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3, | 
|  | SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7, | 
|  | }; | 
|  |  | 
|  | static const struct n2_hash_tmpl hash_tmpls[] = { | 
|  | { .name		= "md5", | 
|  | .hash_zero	= md5_zero_message_hash, | 
|  | .hash_init	= (u8 *)n2_md5_init, | 
|  | .auth_type	= AUTH_TYPE_MD5, | 
|  | .hmac_type	= AUTH_TYPE_HMAC_MD5, | 
|  | .hw_op_hashsz	= MD5_DIGEST_SIZE, | 
|  | .digest_size	= MD5_DIGEST_SIZE, | 
|  | .statesize	= sizeof(struct md5_state), | 
|  | .block_size	= MD5_HMAC_BLOCK_SIZE }, | 
|  | { .name		= "sha1", | 
|  | .hash_zero	= sha1_zero_message_hash, | 
|  | .hash_init	= (u8 *)n2_sha1_init, | 
|  | .auth_type	= AUTH_TYPE_SHA1, | 
|  | .hmac_type	= AUTH_TYPE_HMAC_SHA1, | 
|  | .hw_op_hashsz	= SHA1_DIGEST_SIZE, | 
|  | .digest_size	= SHA1_DIGEST_SIZE, | 
|  | .statesize	= sizeof(struct sha1_state), | 
|  | .block_size	= SHA1_BLOCK_SIZE }, | 
|  | { .name		= "sha256", | 
|  | .hash_zero	= sha256_zero_message_hash, | 
|  | .hash_init	= (u8 *)n2_sha256_init, | 
|  | .auth_type	= AUTH_TYPE_SHA256, | 
|  | .hmac_type	= AUTH_TYPE_HMAC_SHA256, | 
|  | .hw_op_hashsz	= SHA256_DIGEST_SIZE, | 
|  | .digest_size	= SHA256_DIGEST_SIZE, | 
|  | .statesize	= sizeof(struct sha256_state), | 
|  | .block_size	= SHA256_BLOCK_SIZE }, | 
|  | { .name		= "sha224", | 
|  | .hash_zero	= sha224_zero_message_hash, | 
|  | .hash_init	= (u8 *)n2_sha224_init, | 
|  | .auth_type	= AUTH_TYPE_SHA256, | 
|  | .hmac_type	= AUTH_TYPE_RESERVED, | 
|  | .hw_op_hashsz	= SHA256_DIGEST_SIZE, | 
|  | .digest_size	= SHA224_DIGEST_SIZE, | 
|  | .statesize	= sizeof(struct sha256_state), | 
|  | .block_size	= SHA224_BLOCK_SIZE }, | 
|  | }; | 
|  | #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls) | 
|  |  | 
|  | static LIST_HEAD(ahash_algs); | 
|  | static LIST_HEAD(hmac_algs); | 
|  |  | 
|  | static int algs_registered; | 
|  |  | 
|  | static void __n2_unregister_algs(void) | 
|  | { | 
|  | struct n2_skcipher_alg *skcipher, *skcipher_tmp; | 
|  | struct n2_ahash_alg *alg, *alg_tmp; | 
|  | struct n2_hmac_alg *hmac, *hmac_tmp; | 
|  |  | 
|  | list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) { | 
|  | crypto_unregister_skcipher(&skcipher->skcipher); | 
|  | list_del(&skcipher->entry); | 
|  | kfree(skcipher); | 
|  | } | 
|  | list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) { | 
|  | crypto_unregister_ahash(&hmac->derived.alg); | 
|  | list_del(&hmac->derived.entry); | 
|  | kfree(hmac); | 
|  | } | 
|  | list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) { | 
|  | crypto_unregister_ahash(&alg->alg); | 
|  | list_del(&alg->entry); | 
|  | kfree(alg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm) | 
|  | { | 
|  | crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl) | 
|  | { | 
|  | struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); | 
|  | struct skcipher_alg *alg; | 
|  | int err; | 
|  |  | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | alg = &p->skcipher; | 
|  | *alg = tmpl->skcipher; | 
|  |  | 
|  | snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); | 
|  | snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name); | 
|  | alg->base.cra_priority = N2_CRA_PRIORITY; | 
|  | alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_ALLOCATES_MEMORY; | 
|  | alg->base.cra_blocksize = tmpl->block_size; | 
|  | p->enc_type = tmpl->enc_type; | 
|  | alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context); | 
|  | alg->base.cra_module = THIS_MODULE; | 
|  | alg->init = n2_skcipher_init_tfm; | 
|  |  | 
|  | list_add(&p->entry, &skcipher_algs); | 
|  | err = crypto_register_skcipher(alg); | 
|  | if (err) { | 
|  | pr_err("%s alg registration failed\n", alg->base.cra_name); | 
|  | list_del(&p->entry); | 
|  | kfree(p); | 
|  | } else { | 
|  | pr_info("%s alg registered\n", alg->base.cra_name); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash) | 
|  | { | 
|  | struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); | 
|  | struct ahash_alg *ahash; | 
|  | struct crypto_alg *base; | 
|  | int err; | 
|  |  | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | p->child_alg = n2ahash->alg.halg.base.cra_name; | 
|  | memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg)); | 
|  | INIT_LIST_HEAD(&p->derived.entry); | 
|  |  | 
|  | ahash = &p->derived.alg; | 
|  | ahash->digest = n2_hmac_async_digest; | 
|  | ahash->setkey = n2_hmac_async_setkey; | 
|  |  | 
|  | base = &ahash->halg.base; | 
|  | if (snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", | 
|  | p->child_alg) >= CRYPTO_MAX_ALG_NAME) | 
|  | goto out_free_p; | 
|  | if (snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", | 
|  | p->child_alg) >= CRYPTO_MAX_ALG_NAME) | 
|  | goto out_free_p; | 
|  |  | 
|  | base->cra_ctxsize = sizeof(struct n2_hmac_ctx); | 
|  | base->cra_init = n2_hmac_cra_init; | 
|  | base->cra_exit = n2_hmac_cra_exit; | 
|  |  | 
|  | list_add(&p->derived.entry, &hmac_algs); | 
|  | err = crypto_register_ahash(ahash); | 
|  | if (err) { | 
|  | pr_err("%s alg registration failed\n", base->cra_name); | 
|  | list_del(&p->derived.entry); | 
|  | out_free_p: | 
|  | kfree(p); | 
|  | } else { | 
|  | pr_info("%s alg registered\n", base->cra_name); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl) | 
|  | { | 
|  | struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); | 
|  | struct hash_alg_common *halg; | 
|  | struct crypto_alg *base; | 
|  | struct ahash_alg *ahash; | 
|  | int err; | 
|  |  | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | p->hash_zero = tmpl->hash_zero; | 
|  | p->hash_init = tmpl->hash_init; | 
|  | p->auth_type = tmpl->auth_type; | 
|  | p->hmac_type = tmpl->hmac_type; | 
|  | p->hw_op_hashsz = tmpl->hw_op_hashsz; | 
|  | p->digest_size = tmpl->digest_size; | 
|  |  | 
|  | ahash = &p->alg; | 
|  | ahash->init = n2_hash_async_init; | 
|  | ahash->update = n2_hash_async_update; | 
|  | ahash->final = n2_hash_async_final; | 
|  | ahash->finup = n2_hash_async_finup; | 
|  | ahash->digest = n2_hash_async_digest; | 
|  | ahash->export = n2_hash_async_noexport; | 
|  | ahash->import = n2_hash_async_noimport; | 
|  |  | 
|  | halg = &ahash->halg; | 
|  | halg->digestsize = tmpl->digest_size; | 
|  | halg->statesize = tmpl->statesize; | 
|  |  | 
|  | base = &halg->base; | 
|  | snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); | 
|  | snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name); | 
|  | base->cra_priority = N2_CRA_PRIORITY; | 
|  | base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | | 
|  | CRYPTO_ALG_NEED_FALLBACK; | 
|  | base->cra_blocksize = tmpl->block_size; | 
|  | base->cra_ctxsize = sizeof(struct n2_hash_ctx); | 
|  | base->cra_module = THIS_MODULE; | 
|  | base->cra_init = n2_hash_cra_init; | 
|  | base->cra_exit = n2_hash_cra_exit; | 
|  |  | 
|  | list_add(&p->entry, &ahash_algs); | 
|  | err = crypto_register_ahash(ahash); | 
|  | if (err) { | 
|  | pr_err("%s alg registration failed\n", base->cra_name); | 
|  | list_del(&p->entry); | 
|  | kfree(p); | 
|  | } else { | 
|  | pr_info("%s alg registered\n", base->cra_name); | 
|  | } | 
|  | if (!err && p->hmac_type != AUTH_TYPE_RESERVED) | 
|  | err = __n2_register_one_hmac(p); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int n2_register_algs(void) | 
|  | { | 
|  | int i, err = 0; | 
|  |  | 
|  | mutex_lock(&spu_lock); | 
|  | if (algs_registered++) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < NUM_HASH_TMPLS; i++) { | 
|  | err = __n2_register_one_ahash(&hash_tmpls[i]); | 
|  | if (err) { | 
|  | __n2_unregister_algs(); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | for (i = 0; i < NUM_CIPHER_TMPLS; i++) { | 
|  | err = __n2_register_one_skcipher(&skcipher_tmpls[i]); | 
|  | if (err) { | 
|  | __n2_unregister_algs(); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&spu_lock); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void n2_unregister_algs(void) | 
|  | { | 
|  | mutex_lock(&spu_lock); | 
|  | if (!--algs_registered) | 
|  | __n2_unregister_algs(); | 
|  | mutex_unlock(&spu_lock); | 
|  | } | 
|  |  | 
|  | /* To map CWQ queues to interrupt sources, the hypervisor API provides | 
|  | * a devino.  This isn't very useful to us because all of the | 
|  | * interrupts listed in the device_node have been translated to | 
|  | * Linux virtual IRQ cookie numbers. | 
|  | * | 
|  | * So we have to back-translate, going through the 'intr' and 'ino' | 
|  | * property tables of the n2cp MDESC node, matching it with the OF | 
|  | * 'interrupts' property entries, in order to figure out which | 
|  | * devino goes to which already-translated IRQ. | 
|  | */ | 
|  | static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip, | 
|  | unsigned long dev_ino) | 
|  | { | 
|  | const unsigned int *dev_intrs; | 
|  | unsigned int intr; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ip->num_intrs; i++) { | 
|  | if (ip->ino_table[i].ino == dev_ino) | 
|  | break; | 
|  | } | 
|  | if (i == ip->num_intrs) | 
|  | return -ENODEV; | 
|  |  | 
|  | intr = ip->ino_table[i].intr; | 
|  |  | 
|  | dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL); | 
|  | if (!dev_intrs) | 
|  | return -ENODEV; | 
|  |  | 
|  | for (i = 0; i < dev->archdata.num_irqs; i++) { | 
|  | if (dev_intrs[i] == intr) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip, | 
|  | const char *irq_name, struct spu_queue *p, | 
|  | irq_handler_t handler) | 
|  | { | 
|  | unsigned long herr; | 
|  | int index; | 
|  |  | 
|  | herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino); | 
|  | if (herr) | 
|  | return -EINVAL; | 
|  |  | 
|  | index = find_devino_index(dev, ip, p->devino); | 
|  | if (index < 0) | 
|  | return index; | 
|  |  | 
|  | p->irq = dev->archdata.irqs[index]; | 
|  |  | 
|  | sprintf(p->irq_name, "%s-%d", irq_name, index); | 
|  |  | 
|  | return request_irq(p->irq, handler, 0, p->irq_name, p); | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *queue_cache[2]; | 
|  |  | 
|  | static void *new_queue(unsigned long q_type) | 
|  | { | 
|  | return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | static void free_queue(void *p, unsigned long q_type) | 
|  | { | 
|  | kmem_cache_free(queue_cache[q_type - 1], p); | 
|  | } | 
|  |  | 
|  | static int queue_cache_init(void) | 
|  | { | 
|  | if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) | 
|  | queue_cache[HV_NCS_QTYPE_MAU - 1] = | 
|  | kmem_cache_create("mau_queue", | 
|  | (MAU_NUM_ENTRIES * | 
|  | MAU_ENTRY_SIZE), | 
|  | MAU_ENTRY_SIZE, 0, NULL); | 
|  | if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) | 
|  | queue_cache[HV_NCS_QTYPE_CWQ - 1] = | 
|  | kmem_cache_create("cwq_queue", | 
|  | (CWQ_NUM_ENTRIES * | 
|  | CWQ_ENTRY_SIZE), | 
|  | CWQ_ENTRY_SIZE, 0, NULL); | 
|  | if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) { | 
|  | kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); | 
|  | queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void queue_cache_destroy(void) | 
|  | { | 
|  | kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); | 
|  | kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]); | 
|  | queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; | 
|  | queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL; | 
|  | } | 
|  |  | 
|  | static long spu_queue_register_workfn(void *arg) | 
|  | { | 
|  | struct spu_qreg *qr = arg; | 
|  | struct spu_queue *p = qr->queue; | 
|  | unsigned long q_type = qr->type; | 
|  | unsigned long hv_ret; | 
|  |  | 
|  | hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q), | 
|  | CWQ_NUM_ENTRIES, &p->qhandle); | 
|  | if (!hv_ret) | 
|  | sun4v_ncs_sethead_marker(p->qhandle, 0); | 
|  |  | 
|  | return hv_ret ? -EINVAL : 0; | 
|  | } | 
|  |  | 
|  | static int spu_queue_register(struct spu_queue *p, unsigned long q_type) | 
|  | { | 
|  | int cpu = cpumask_any_and(&p->sharing, cpu_online_mask); | 
|  | struct spu_qreg qr = { .queue = p, .type = q_type }; | 
|  |  | 
|  | return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr); | 
|  | } | 
|  |  | 
|  | static int spu_queue_setup(struct spu_queue *p) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | p->q = new_queue(p->q_type); | 
|  | if (!p->q) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = spu_queue_register(p, p->q_type); | 
|  | if (err) { | 
|  | free_queue(p->q, p->q_type); | 
|  | p->q = NULL; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void spu_queue_destroy(struct spu_queue *p) | 
|  | { | 
|  | unsigned long hv_ret; | 
|  |  | 
|  | if (!p->q) | 
|  | return; | 
|  |  | 
|  | hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle); | 
|  |  | 
|  | if (!hv_ret) | 
|  | free_queue(p->q, p->q_type); | 
|  | } | 
|  |  | 
|  | static void spu_list_destroy(struct list_head *list) | 
|  | { | 
|  | struct spu_queue *p, *n; | 
|  |  | 
|  | list_for_each_entry_safe(p, n, list, list) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NR_CPUS; i++) { | 
|  | if (cpu_to_cwq[i] == p) | 
|  | cpu_to_cwq[i] = NULL; | 
|  | } | 
|  |  | 
|  | if (p->irq) { | 
|  | free_irq(p->irq, p); | 
|  | p->irq = 0; | 
|  | } | 
|  | spu_queue_destroy(p); | 
|  | list_del(&p->list); | 
|  | kfree(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Walk the backward arcs of a CWQ 'exec-unit' node, | 
|  | * gathering cpu membership information. | 
|  | */ | 
|  | static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc, | 
|  | struct platform_device *dev, | 
|  | u64 node, struct spu_queue *p, | 
|  | struct spu_queue **table) | 
|  | { | 
|  | u64 arc; | 
|  |  | 
|  | mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) { | 
|  | u64 tgt = mdesc_arc_target(mdesc, arc); | 
|  | const char *name = mdesc_node_name(mdesc, tgt); | 
|  | const u64 *id; | 
|  |  | 
|  | if (strcmp(name, "cpu")) | 
|  | continue; | 
|  | id = mdesc_get_property(mdesc, tgt, "id", NULL); | 
|  | if (table[*id] != NULL) { | 
|  | dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n", | 
|  | dev->dev.of_node); | 
|  | return -EINVAL; | 
|  | } | 
|  | cpumask_set_cpu(*id, &p->sharing); | 
|  | table[*id] = p; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Process an 'exec-unit' MDESC node of type 'cwq'.  */ | 
|  | static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list, | 
|  | struct platform_device *dev, struct mdesc_handle *mdesc, | 
|  | u64 node, const char *iname, unsigned long q_type, | 
|  | irq_handler_t handler, struct spu_queue **table) | 
|  | { | 
|  | struct spu_queue *p; | 
|  | int err; | 
|  |  | 
|  | p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL); | 
|  | if (!p) { | 
|  | dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n", | 
|  | dev->dev.of_node); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | cpumask_clear(&p->sharing); | 
|  | spin_lock_init(&p->lock); | 
|  | p->q_type = q_type; | 
|  | INIT_LIST_HEAD(&p->jobs); | 
|  | list_add(&p->list, list); | 
|  |  | 
|  | err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = spu_queue_setup(p); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return spu_map_ino(dev, ip, iname, p, handler); | 
|  | } | 
|  |  | 
|  | static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev, | 
|  | struct spu_mdesc_info *ip, struct list_head *list, | 
|  | const char *exec_name, unsigned long q_type, | 
|  | irq_handler_t handler, struct spu_queue **table) | 
|  | { | 
|  | int err = 0; | 
|  | u64 node; | 
|  |  | 
|  | mdesc_for_each_node_by_name(mdesc, node, "exec-unit") { | 
|  | const char *type; | 
|  |  | 
|  | type = mdesc_get_property(mdesc, node, "type", NULL); | 
|  | if (!type || strcmp(type, exec_name)) | 
|  | continue; | 
|  |  | 
|  | err = handle_exec_unit(ip, list, dev, mdesc, node, | 
|  | exec_name, q_type, handler, table); | 
|  | if (err) { | 
|  | spu_list_destroy(list); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int get_irq_props(struct mdesc_handle *mdesc, u64 node, | 
|  | struct spu_mdesc_info *ip) | 
|  | { | 
|  | const u64 *ino; | 
|  | int ino_len; | 
|  | int i; | 
|  |  | 
|  | ino = mdesc_get_property(mdesc, node, "ino", &ino_len); | 
|  | if (!ino) { | 
|  | printk("NO 'ino'\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | ip->num_intrs = ino_len / sizeof(u64); | 
|  | ip->ino_table = kzalloc((sizeof(struct ino_blob) * | 
|  | ip->num_intrs), | 
|  | GFP_KERNEL); | 
|  | if (!ip->ino_table) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < ip->num_intrs; i++) { | 
|  | struct ino_blob *b = &ip->ino_table[i]; | 
|  | b->intr = i + 1; | 
|  | b->ino = ino[i]; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int grab_mdesc_irq_props(struct mdesc_handle *mdesc, | 
|  | struct platform_device *dev, | 
|  | struct spu_mdesc_info *ip, | 
|  | const char *node_name) | 
|  | { | 
|  | u64 node, reg; | 
|  |  | 
|  | if (of_property_read_reg(dev->dev.of_node, 0, ®, NULL) < 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | mdesc_for_each_node_by_name(mdesc, node, "virtual-device") { | 
|  | const char *name; | 
|  | const u64 *chdl; | 
|  |  | 
|  | name = mdesc_get_property(mdesc, node, "name", NULL); | 
|  | if (!name || strcmp(name, node_name)) | 
|  | continue; | 
|  | chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL); | 
|  | if (!chdl || (*chdl != reg)) | 
|  | continue; | 
|  | ip->cfg_handle = *chdl; | 
|  | return get_irq_props(mdesc, node, ip); | 
|  | } | 
|  |  | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static unsigned long n2_spu_hvapi_major; | 
|  | static unsigned long n2_spu_hvapi_minor; | 
|  |  | 
|  | static int n2_spu_hvapi_register(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | n2_spu_hvapi_major = 2; | 
|  | n2_spu_hvapi_minor = 0; | 
|  |  | 
|  | err = sun4v_hvapi_register(HV_GRP_NCS, | 
|  | n2_spu_hvapi_major, | 
|  | &n2_spu_hvapi_minor); | 
|  |  | 
|  | if (!err) | 
|  | pr_info("Registered NCS HVAPI version %lu.%lu\n", | 
|  | n2_spu_hvapi_major, | 
|  | n2_spu_hvapi_minor); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void n2_spu_hvapi_unregister(void) | 
|  | { | 
|  | sun4v_hvapi_unregister(HV_GRP_NCS); | 
|  | } | 
|  |  | 
|  | static int global_ref; | 
|  |  | 
|  | static int grab_global_resources(void) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | mutex_lock(&spu_lock); | 
|  |  | 
|  | if (global_ref++) | 
|  | goto out; | 
|  |  | 
|  | err = n2_spu_hvapi_register(); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = queue_cache_init(); | 
|  | if (err) | 
|  | goto out_hvapi_release; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *), | 
|  | GFP_KERNEL); | 
|  | if (!cpu_to_cwq) | 
|  | goto out_queue_cache_destroy; | 
|  |  | 
|  | cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *), | 
|  | GFP_KERNEL); | 
|  | if (!cpu_to_mau) | 
|  | goto out_free_cwq_table; | 
|  |  | 
|  | err = 0; | 
|  |  | 
|  | out: | 
|  | if (err) | 
|  | global_ref--; | 
|  | mutex_unlock(&spu_lock); | 
|  | return err; | 
|  |  | 
|  | out_free_cwq_table: | 
|  | kfree(cpu_to_cwq); | 
|  | cpu_to_cwq = NULL; | 
|  |  | 
|  | out_queue_cache_destroy: | 
|  | queue_cache_destroy(); | 
|  |  | 
|  | out_hvapi_release: | 
|  | n2_spu_hvapi_unregister(); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static void release_global_resources(void) | 
|  | { | 
|  | mutex_lock(&spu_lock); | 
|  | if (!--global_ref) { | 
|  | kfree(cpu_to_cwq); | 
|  | cpu_to_cwq = NULL; | 
|  |  | 
|  | kfree(cpu_to_mau); | 
|  | cpu_to_mau = NULL; | 
|  |  | 
|  | queue_cache_destroy(); | 
|  | n2_spu_hvapi_unregister(); | 
|  | } | 
|  | mutex_unlock(&spu_lock); | 
|  | } | 
|  |  | 
|  | static struct n2_crypto *alloc_n2cp(void) | 
|  | { | 
|  | struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL); | 
|  |  | 
|  | if (np) | 
|  | INIT_LIST_HEAD(&np->cwq_list); | 
|  |  | 
|  | return np; | 
|  | } | 
|  |  | 
|  | static void free_n2cp(struct n2_crypto *np) | 
|  | { | 
|  | kfree(np->cwq_info.ino_table); | 
|  | np->cwq_info.ino_table = NULL; | 
|  |  | 
|  | kfree(np); | 
|  | } | 
|  |  | 
|  | static void n2_spu_driver_version(void) | 
|  | { | 
|  | static int n2_spu_version_printed; | 
|  |  | 
|  | if (n2_spu_version_printed++ == 0) | 
|  | pr_info("%s", version); | 
|  | } | 
|  |  | 
|  | static int n2_crypto_probe(struct platform_device *dev) | 
|  | { | 
|  | struct mdesc_handle *mdesc; | 
|  | struct n2_crypto *np; | 
|  | int err; | 
|  |  | 
|  | n2_spu_driver_version(); | 
|  |  | 
|  | pr_info("Found N2CP at %pOF\n", dev->dev.of_node); | 
|  |  | 
|  | np = alloc_n2cp(); | 
|  | if (!np) { | 
|  | dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n", | 
|  | dev->dev.of_node); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | err = grab_global_resources(); | 
|  | if (err) { | 
|  | dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", | 
|  | dev->dev.of_node); | 
|  | goto out_free_n2cp; | 
|  | } | 
|  |  | 
|  | mdesc = mdesc_grab(); | 
|  |  | 
|  | if (!mdesc) { | 
|  | dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", | 
|  | dev->dev.of_node); | 
|  | err = -ENODEV; | 
|  | goto out_free_global; | 
|  | } | 
|  | err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp"); | 
|  | if (err) { | 
|  | dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", | 
|  | dev->dev.of_node); | 
|  | mdesc_release(mdesc); | 
|  | goto out_free_global; | 
|  | } | 
|  |  | 
|  | err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list, | 
|  | "cwq", HV_NCS_QTYPE_CWQ, cwq_intr, | 
|  | cpu_to_cwq); | 
|  | mdesc_release(mdesc); | 
|  |  | 
|  | if (err) { | 
|  | dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n", | 
|  | dev->dev.of_node); | 
|  | goto out_free_global; | 
|  | } | 
|  |  | 
|  | err = n2_register_algs(); | 
|  | if (err) { | 
|  | dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n", | 
|  | dev->dev.of_node); | 
|  | goto out_free_spu_list; | 
|  | } | 
|  |  | 
|  | dev_set_drvdata(&dev->dev, np); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_spu_list: | 
|  | spu_list_destroy(&np->cwq_list); | 
|  |  | 
|  | out_free_global: | 
|  | release_global_resources(); | 
|  |  | 
|  | out_free_n2cp: | 
|  | free_n2cp(np); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void n2_crypto_remove(struct platform_device *dev) | 
|  | { | 
|  | struct n2_crypto *np = dev_get_drvdata(&dev->dev); | 
|  |  | 
|  | n2_unregister_algs(); | 
|  |  | 
|  | spu_list_destroy(&np->cwq_list); | 
|  |  | 
|  | release_global_resources(); | 
|  |  | 
|  | free_n2cp(np); | 
|  | } | 
|  |  | 
|  | static struct n2_mau *alloc_ncp(void) | 
|  | { | 
|  | struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL); | 
|  |  | 
|  | if (mp) | 
|  | INIT_LIST_HEAD(&mp->mau_list); | 
|  |  | 
|  | return mp; | 
|  | } | 
|  |  | 
|  | static void free_ncp(struct n2_mau *mp) | 
|  | { | 
|  | kfree(mp->mau_info.ino_table); | 
|  | mp->mau_info.ino_table = NULL; | 
|  |  | 
|  | kfree(mp); | 
|  | } | 
|  |  | 
|  | static int n2_mau_probe(struct platform_device *dev) | 
|  | { | 
|  | struct mdesc_handle *mdesc; | 
|  | struct n2_mau *mp; | 
|  | int err; | 
|  |  | 
|  | n2_spu_driver_version(); | 
|  |  | 
|  | pr_info("Found NCP at %pOF\n", dev->dev.of_node); | 
|  |  | 
|  | mp = alloc_ncp(); | 
|  | if (!mp) { | 
|  | dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n", | 
|  | dev->dev.of_node); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | err = grab_global_resources(); | 
|  | if (err) { | 
|  | dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", | 
|  | dev->dev.of_node); | 
|  | goto out_free_ncp; | 
|  | } | 
|  |  | 
|  | mdesc = mdesc_grab(); | 
|  |  | 
|  | if (!mdesc) { | 
|  | dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", | 
|  | dev->dev.of_node); | 
|  | err = -ENODEV; | 
|  | goto out_free_global; | 
|  | } | 
|  |  | 
|  | err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp"); | 
|  | if (err) { | 
|  | dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", | 
|  | dev->dev.of_node); | 
|  | mdesc_release(mdesc); | 
|  | goto out_free_global; | 
|  | } | 
|  |  | 
|  | err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list, | 
|  | "mau", HV_NCS_QTYPE_MAU, mau_intr, | 
|  | cpu_to_mau); | 
|  | mdesc_release(mdesc); | 
|  |  | 
|  | if (err) { | 
|  | dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n", | 
|  | dev->dev.of_node); | 
|  | goto out_free_global; | 
|  | } | 
|  |  | 
|  | dev_set_drvdata(&dev->dev, mp); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_global: | 
|  | release_global_resources(); | 
|  |  | 
|  | out_free_ncp: | 
|  | free_ncp(mp); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void n2_mau_remove(struct platform_device *dev) | 
|  | { | 
|  | struct n2_mau *mp = dev_get_drvdata(&dev->dev); | 
|  |  | 
|  | spu_list_destroy(&mp->mau_list); | 
|  |  | 
|  | release_global_resources(); | 
|  |  | 
|  | free_ncp(mp); | 
|  | } | 
|  |  | 
|  | static const struct of_device_id n2_crypto_match[] = { | 
|  | { | 
|  | .name = "n2cp", | 
|  | .compatible = "SUNW,n2-cwq", | 
|  | }, | 
|  | { | 
|  | .name = "n2cp", | 
|  | .compatible = "SUNW,vf-cwq", | 
|  | }, | 
|  | { | 
|  | .name = "n2cp", | 
|  | .compatible = "SUNW,kt-cwq", | 
|  | }, | 
|  | {}, | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(of, n2_crypto_match); | 
|  |  | 
|  | static struct platform_driver n2_crypto_driver = { | 
|  | .driver = { | 
|  | .name		=	"n2cp", | 
|  | .of_match_table	=	n2_crypto_match, | 
|  | }, | 
|  | .probe		=	n2_crypto_probe, | 
|  | .remove_new	=	n2_crypto_remove, | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id n2_mau_match[] = { | 
|  | { | 
|  | .name = "ncp", | 
|  | .compatible = "SUNW,n2-mau", | 
|  | }, | 
|  | { | 
|  | .name = "ncp", | 
|  | .compatible = "SUNW,vf-mau", | 
|  | }, | 
|  | { | 
|  | .name = "ncp", | 
|  | .compatible = "SUNW,kt-mau", | 
|  | }, | 
|  | {}, | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(of, n2_mau_match); | 
|  |  | 
|  | static struct platform_driver n2_mau_driver = { | 
|  | .driver = { | 
|  | .name		=	"ncp", | 
|  | .of_match_table	=	n2_mau_match, | 
|  | }, | 
|  | .probe		=	n2_mau_probe, | 
|  | .remove_new	=	n2_mau_remove, | 
|  | }; | 
|  |  | 
|  | static struct platform_driver * const drivers[] = { | 
|  | &n2_crypto_driver, | 
|  | &n2_mau_driver, | 
|  | }; | 
|  |  | 
|  | static int __init n2_init(void) | 
|  | { | 
|  | return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); | 
|  | } | 
|  |  | 
|  | static void __exit n2_exit(void) | 
|  | { | 
|  | platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); | 
|  | } | 
|  |  | 
|  | module_init(n2_init); | 
|  | module_exit(n2_exit); |