| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> | 
 |  */ | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/iocontext.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/export.h> | 
 | #include <linux/mempool.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/cgroup.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/blk-crypto.h> | 
 | #include <linux/xarray.h> | 
 |  | 
 | #include <trace/events/block.h> | 
 | #include "blk.h" | 
 | #include "blk-rq-qos.h" | 
 | #include "blk-cgroup.h" | 
 |  | 
 | #define ALLOC_CACHE_THRESHOLD	16 | 
 | #define ALLOC_CACHE_MAX		256 | 
 |  | 
 | struct bio_alloc_cache { | 
 | 	struct bio		*free_list; | 
 | 	struct bio		*free_list_irq; | 
 | 	unsigned int		nr; | 
 | 	unsigned int		nr_irq; | 
 | }; | 
 |  | 
 | static struct biovec_slab { | 
 | 	int nr_vecs; | 
 | 	char *name; | 
 | 	struct kmem_cache *slab; | 
 | } bvec_slabs[] __read_mostly = { | 
 | 	{ .nr_vecs = 16, .name = "biovec-16" }, | 
 | 	{ .nr_vecs = 64, .name = "biovec-64" }, | 
 | 	{ .nr_vecs = 128, .name = "biovec-128" }, | 
 | 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, | 
 | }; | 
 |  | 
 | static struct biovec_slab *biovec_slab(unsigned short nr_vecs) | 
 | { | 
 | 	switch (nr_vecs) { | 
 | 	/* smaller bios use inline vecs */ | 
 | 	case 5 ... 16: | 
 | 		return &bvec_slabs[0]; | 
 | 	case 17 ... 64: | 
 | 		return &bvec_slabs[1]; | 
 | 	case 65 ... 128: | 
 | 		return &bvec_slabs[2]; | 
 | 	case 129 ... BIO_MAX_VECS: | 
 | 		return &bvec_slabs[3]; | 
 | 	default: | 
 | 		BUG(); | 
 | 		return NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * fs_bio_set is the bio_set containing bio and iovec memory pools used by | 
 |  * IO code that does not need private memory pools. | 
 |  */ | 
 | struct bio_set fs_bio_set; | 
 | EXPORT_SYMBOL(fs_bio_set); | 
 |  | 
 | /* | 
 |  * Our slab pool management | 
 |  */ | 
 | struct bio_slab { | 
 | 	struct kmem_cache *slab; | 
 | 	unsigned int slab_ref; | 
 | 	unsigned int slab_size; | 
 | 	char name[8]; | 
 | }; | 
 | static DEFINE_MUTEX(bio_slab_lock); | 
 | static DEFINE_XARRAY(bio_slabs); | 
 |  | 
 | static struct bio_slab *create_bio_slab(unsigned int size) | 
 | { | 
 | 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); | 
 |  | 
 | 	if (!bslab) | 
 | 		return NULL; | 
 |  | 
 | 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); | 
 | 	bslab->slab = kmem_cache_create(bslab->name, size, | 
 | 			ARCH_KMALLOC_MINALIGN, | 
 | 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL); | 
 | 	if (!bslab->slab) | 
 | 		goto fail_alloc_slab; | 
 |  | 
 | 	bslab->slab_ref = 1; | 
 | 	bslab->slab_size = size; | 
 |  | 
 | 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) | 
 | 		return bslab; | 
 |  | 
 | 	kmem_cache_destroy(bslab->slab); | 
 |  | 
 | fail_alloc_slab: | 
 | 	kfree(bslab); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline unsigned int bs_bio_slab_size(struct bio_set *bs) | 
 | { | 
 | 	return bs->front_pad + sizeof(struct bio) + bs->back_pad; | 
 | } | 
 |  | 
 | static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) | 
 | { | 
 | 	unsigned int size = bs_bio_slab_size(bs); | 
 | 	struct bio_slab *bslab; | 
 |  | 
 | 	mutex_lock(&bio_slab_lock); | 
 | 	bslab = xa_load(&bio_slabs, size); | 
 | 	if (bslab) | 
 | 		bslab->slab_ref++; | 
 | 	else | 
 | 		bslab = create_bio_slab(size); | 
 | 	mutex_unlock(&bio_slab_lock); | 
 |  | 
 | 	if (bslab) | 
 | 		return bslab->slab; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void bio_put_slab(struct bio_set *bs) | 
 | { | 
 | 	struct bio_slab *bslab = NULL; | 
 | 	unsigned int slab_size = bs_bio_slab_size(bs); | 
 |  | 
 | 	mutex_lock(&bio_slab_lock); | 
 |  | 
 | 	bslab = xa_load(&bio_slabs, slab_size); | 
 | 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) | 
 | 		goto out; | 
 |  | 
 | 	WARN_ON_ONCE(bslab->slab != bs->bio_slab); | 
 |  | 
 | 	WARN_ON(!bslab->slab_ref); | 
 |  | 
 | 	if (--bslab->slab_ref) | 
 | 		goto out; | 
 |  | 
 | 	xa_erase(&bio_slabs, slab_size); | 
 |  | 
 | 	kmem_cache_destroy(bslab->slab); | 
 | 	kfree(bslab); | 
 |  | 
 | out: | 
 | 	mutex_unlock(&bio_slab_lock); | 
 | } | 
 |  | 
 | void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) | 
 | { | 
 | 	BUG_ON(nr_vecs > BIO_MAX_VECS); | 
 |  | 
 | 	if (nr_vecs == BIO_MAX_VECS) | 
 | 		mempool_free(bv, pool); | 
 | 	else if (nr_vecs > BIO_INLINE_VECS) | 
 | 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); | 
 | } | 
 |  | 
 | /* | 
 |  * Make the first allocation restricted and don't dump info on allocation | 
 |  * failures, since we'll fall back to the mempool in case of failure. | 
 |  */ | 
 | static inline gfp_t bvec_alloc_gfp(gfp_t gfp) | 
 | { | 
 | 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | | 
 | 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; | 
 | } | 
 |  | 
 | struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, | 
 | 		gfp_t gfp_mask) | 
 | { | 
 | 	struct biovec_slab *bvs = biovec_slab(*nr_vecs); | 
 |  | 
 | 	if (WARN_ON_ONCE(!bvs)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Upgrade the nr_vecs request to take full advantage of the allocation. | 
 | 	 * We also rely on this in the bvec_free path. | 
 | 	 */ | 
 | 	*nr_vecs = bvs->nr_vecs; | 
 |  | 
 | 	/* | 
 | 	 * Try a slab allocation first for all smaller allocations.  If that | 
 | 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. | 
 | 	 * The mempool is sized to handle up to BIO_MAX_VECS entries. | 
 | 	 */ | 
 | 	if (*nr_vecs < BIO_MAX_VECS) { | 
 | 		struct bio_vec *bvl; | 
 |  | 
 | 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); | 
 | 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
 | 			return bvl; | 
 | 		*nr_vecs = BIO_MAX_VECS; | 
 | 	} | 
 |  | 
 | 	return mempool_alloc(pool, gfp_mask); | 
 | } | 
 |  | 
 | void bio_uninit(struct bio *bio) | 
 | { | 
 | #ifdef CONFIG_BLK_CGROUP | 
 | 	if (bio->bi_blkg) { | 
 | 		blkg_put(bio->bi_blkg); | 
 | 		bio->bi_blkg = NULL; | 
 | 	} | 
 | #endif | 
 | 	if (bio_integrity(bio)) | 
 | 		bio_integrity_free(bio); | 
 |  | 
 | 	bio_crypt_free_ctx(bio); | 
 | } | 
 | EXPORT_SYMBOL(bio_uninit); | 
 |  | 
 | static void bio_free(struct bio *bio) | 
 | { | 
 | 	struct bio_set *bs = bio->bi_pool; | 
 | 	void *p = bio; | 
 |  | 
 | 	WARN_ON_ONCE(!bs); | 
 |  | 
 | 	bio_uninit(bio); | 
 | 	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); | 
 | 	mempool_free(p - bs->front_pad, &bs->bio_pool); | 
 | } | 
 |  | 
 | /* | 
 |  * Users of this function have their own bio allocation. Subsequently, | 
 |  * they must remember to pair any call to bio_init() with bio_uninit() | 
 |  * when IO has completed, or when the bio is released. | 
 |  */ | 
 | void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, | 
 | 	      unsigned short max_vecs, blk_opf_t opf) | 
 | { | 
 | 	bio->bi_next = NULL; | 
 | 	bio->bi_bdev = bdev; | 
 | 	bio->bi_opf = opf; | 
 | 	bio->bi_flags = 0; | 
 | 	bio->bi_ioprio = 0; | 
 | 	bio->bi_write_hint = 0; | 
 | 	bio->bi_status = 0; | 
 | 	bio->bi_iter.bi_sector = 0; | 
 | 	bio->bi_iter.bi_size = 0; | 
 | 	bio->bi_iter.bi_idx = 0; | 
 | 	bio->bi_iter.bi_bvec_done = 0; | 
 | 	bio->bi_end_io = NULL; | 
 | 	bio->bi_private = NULL; | 
 | #ifdef CONFIG_BLK_CGROUP | 
 | 	bio->bi_blkg = NULL; | 
 | 	bio->bi_issue.value = 0; | 
 | 	if (bdev) | 
 | 		bio_associate_blkg(bio); | 
 | #ifdef CONFIG_BLK_CGROUP_IOCOST | 
 | 	bio->bi_iocost_cost = 0; | 
 | #endif | 
 | #endif | 
 | #ifdef CONFIG_BLK_INLINE_ENCRYPTION | 
 | 	bio->bi_crypt_context = NULL; | 
 | #if IS_ENABLED(CONFIG_DM_DEFAULT_KEY) | 
 | 	bio->bi_skip_dm_default_key = false; | 
 | #endif | 
 | #endif | 
 | #ifdef CONFIG_BLK_DEV_INTEGRITY | 
 | 	bio->bi_integrity = NULL; | 
 | #endif | 
 | 	bio->bi_vcnt = 0; | 
 |  | 
 | 	atomic_set(&bio->__bi_remaining, 1); | 
 | 	atomic_set(&bio->__bi_cnt, 1); | 
 | 	bio->bi_cookie = BLK_QC_T_NONE; | 
 |  | 
 | 	bio->bi_max_vecs = max_vecs; | 
 | 	bio->bi_io_vec = table; | 
 | 	bio->bi_pool = NULL; | 
 | } | 
 | EXPORT_SYMBOL(bio_init); | 
 |  | 
 | /** | 
 |  * bio_reset - reinitialize a bio | 
 |  * @bio:	bio to reset | 
 |  * @bdev:	block device to use the bio for | 
 |  * @opf:	operation and flags for bio | 
 |  * | 
 |  * Description: | 
 |  *   After calling bio_reset(), @bio will be in the same state as a freshly | 
 |  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are | 
 |  *   preserved are the ones that are initialized by bio_alloc_bioset(). See | 
 |  *   comment in struct bio. | 
 |  */ | 
 | void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf) | 
 | { | 
 | 	bio_uninit(bio); | 
 | 	memset(bio, 0, BIO_RESET_BYTES); | 
 | 	atomic_set(&bio->__bi_remaining, 1); | 
 | 	bio->bi_bdev = bdev; | 
 | 	if (bio->bi_bdev) | 
 | 		bio_associate_blkg(bio); | 
 | 	bio->bi_opf = opf; | 
 | } | 
 | EXPORT_SYMBOL(bio_reset); | 
 |  | 
 | static struct bio *__bio_chain_endio(struct bio *bio) | 
 | { | 
 | 	struct bio *parent = bio->bi_private; | 
 |  | 
 | 	if (bio->bi_status && !parent->bi_status) | 
 | 		parent->bi_status = bio->bi_status; | 
 | 	bio_put(bio); | 
 | 	return parent; | 
 | } | 
 |  | 
 | static void bio_chain_endio(struct bio *bio) | 
 | { | 
 | 	bio_endio(__bio_chain_endio(bio)); | 
 | } | 
 |  | 
 | /** | 
 |  * bio_chain - chain bio completions | 
 |  * @bio: the target bio | 
 |  * @parent: the parent bio of @bio | 
 |  * | 
 |  * The caller won't have a bi_end_io called when @bio completes - instead, | 
 |  * @parent's bi_end_io won't be called until both @parent and @bio have | 
 |  * completed; the chained bio will also be freed when it completes. | 
 |  * | 
 |  * The caller must not set bi_private or bi_end_io in @bio. | 
 |  */ | 
 | void bio_chain(struct bio *bio, struct bio *parent) | 
 | { | 
 | 	BUG_ON(bio->bi_private || bio->bi_end_io); | 
 |  | 
 | 	bio->bi_private = parent; | 
 | 	bio->bi_end_io	= bio_chain_endio; | 
 | 	bio_inc_remaining(parent); | 
 | } | 
 | EXPORT_SYMBOL(bio_chain); | 
 |  | 
 | /** | 
 |  * bio_chain_and_submit - submit a bio after chaining it to another one | 
 |  * @prev: bio to chain and submit | 
 |  * @new: bio to chain to | 
 |  * | 
 |  * If @prev is non-NULL, chain it to @new and submit it. | 
 |  * | 
 |  * Return: @new. | 
 |  */ | 
 | struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new) | 
 | { | 
 | 	if (prev) { | 
 | 		bio_chain(prev, new); | 
 | 		submit_bio(prev); | 
 | 	} | 
 | 	return new; | 
 | } | 
 |  | 
 | struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, | 
 | 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp) | 
 | { | 
 | 	return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_next_bio); | 
 |  | 
 | static void bio_alloc_rescue(struct work_struct *work) | 
 | { | 
 | 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work); | 
 | 	struct bio *bio; | 
 |  | 
 | 	while (1) { | 
 | 		spin_lock(&bs->rescue_lock); | 
 | 		bio = bio_list_pop(&bs->rescue_list); | 
 | 		spin_unlock(&bs->rescue_lock); | 
 |  | 
 | 		if (!bio) | 
 | 			break; | 
 |  | 
 | 		submit_bio_noacct(bio); | 
 | 	} | 
 | } | 
 |  | 
 | static void punt_bios_to_rescuer(struct bio_set *bs) | 
 | { | 
 | 	struct bio_list punt, nopunt; | 
 | 	struct bio *bio; | 
 |  | 
 | 	if (WARN_ON_ONCE(!bs->rescue_workqueue)) | 
 | 		return; | 
 | 	/* | 
 | 	 * In order to guarantee forward progress we must punt only bios that | 
 | 	 * were allocated from this bio_set; otherwise, if there was a bio on | 
 | 	 * there for a stacking driver higher up in the stack, processing it | 
 | 	 * could require allocating bios from this bio_set, and doing that from | 
 | 	 * our own rescuer would be bad. | 
 | 	 * | 
 | 	 * Since bio lists are singly linked, pop them all instead of trying to | 
 | 	 * remove from the middle of the list: | 
 | 	 */ | 
 |  | 
 | 	bio_list_init(&punt); | 
 | 	bio_list_init(&nopunt); | 
 |  | 
 | 	while ((bio = bio_list_pop(¤t->bio_list[0]))) | 
 | 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); | 
 | 	current->bio_list[0] = nopunt; | 
 |  | 
 | 	bio_list_init(&nopunt); | 
 | 	while ((bio = bio_list_pop(¤t->bio_list[1]))) | 
 | 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); | 
 | 	current->bio_list[1] = nopunt; | 
 |  | 
 | 	spin_lock(&bs->rescue_lock); | 
 | 	bio_list_merge(&bs->rescue_list, &punt); | 
 | 	spin_unlock(&bs->rescue_lock); | 
 |  | 
 | 	queue_work(bs->rescue_workqueue, &bs->rescue_work); | 
 | } | 
 |  | 
 | static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* cache->free_list must be empty */ | 
 | 	if (WARN_ON_ONCE(cache->free_list)) | 
 | 		return; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	cache->free_list = cache->free_list_irq; | 
 | 	cache->free_list_irq = NULL; | 
 | 	cache->nr += cache->nr_irq; | 
 | 	cache->nr_irq = 0; | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static struct bio *bio_alloc_percpu_cache(struct block_device *bdev, | 
 | 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp, | 
 | 		struct bio_set *bs) | 
 | { | 
 | 	struct bio_alloc_cache *cache; | 
 | 	struct bio *bio; | 
 |  | 
 | 	cache = per_cpu_ptr(bs->cache, get_cpu()); | 
 | 	if (!cache->free_list) { | 
 | 		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD) | 
 | 			bio_alloc_irq_cache_splice(cache); | 
 | 		if (!cache->free_list) { | 
 | 			put_cpu(); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 | 	bio = cache->free_list; | 
 | 	cache->free_list = bio->bi_next; | 
 | 	cache->nr--; | 
 | 	put_cpu(); | 
 |  | 
 | 	bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf); | 
 | 	bio->bi_pool = bs; | 
 | 	return bio; | 
 | } | 
 |  | 
 | /** | 
 |  * bio_alloc_bioset - allocate a bio for I/O | 
 |  * @bdev:	block device to allocate the bio for (can be %NULL) | 
 |  * @nr_vecs:	number of bvecs to pre-allocate | 
 |  * @opf:	operation and flags for bio | 
 |  * @gfp_mask:   the GFP_* mask given to the slab allocator | 
 |  * @bs:		the bio_set to allocate from. | 
 |  * | 
 |  * Allocate a bio from the mempools in @bs. | 
 |  * | 
 |  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to | 
 |  * allocate a bio.  This is due to the mempool guarantees.  To make this work, | 
 |  * callers must never allocate more than 1 bio at a time from the general pool. | 
 |  * Callers that need to allocate more than 1 bio must always submit the | 
 |  * previously allocated bio for IO before attempting to allocate a new one. | 
 |  * Failure to do so can cause deadlocks under memory pressure. | 
 |  * | 
 |  * Note that when running under submit_bio_noacct() (i.e. any block driver), | 
 |  * bios are not submitted until after you return - see the code in | 
 |  * submit_bio_noacct() that converts recursion into iteration, to prevent | 
 |  * stack overflows. | 
 |  * | 
 |  * This would normally mean allocating multiple bios under submit_bio_noacct() | 
 |  * would be susceptible to deadlocks, but we have | 
 |  * deadlock avoidance code that resubmits any blocked bios from a rescuer | 
 |  * thread. | 
 |  * | 
 |  * However, we do not guarantee forward progress for allocations from other | 
 |  * mempools. Doing multiple allocations from the same mempool under | 
 |  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad | 
 |  * for per bio allocations. | 
 |  * | 
 |  * Returns: Pointer to new bio on success, NULL on failure. | 
 |  */ | 
 | struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, | 
 | 			     blk_opf_t opf, gfp_t gfp_mask, | 
 | 			     struct bio_set *bs) | 
 | { | 
 | 	gfp_t saved_gfp = gfp_mask; | 
 | 	struct bio *bio; | 
 | 	void *p; | 
 |  | 
 | 	/* should not use nobvec bioset for nr_vecs > 0 */ | 
 | 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0)) | 
 | 		return NULL; | 
 |  | 
 | 	if (opf & REQ_ALLOC_CACHE) { | 
 | 		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) { | 
 | 			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf, | 
 | 						     gfp_mask, bs); | 
 | 			if (bio) | 
 | 				return bio; | 
 | 			/* | 
 | 			 * No cached bio available, bio returned below marked with | 
 | 			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache. | 
 | 			 */ | 
 | 		} else { | 
 | 			opf &= ~REQ_ALLOC_CACHE; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * submit_bio_noacct() converts recursion to iteration; this means if | 
 | 	 * we're running beneath it, any bios we allocate and submit will not be | 
 | 	 * submitted (and thus freed) until after we return. | 
 | 	 * | 
 | 	 * This exposes us to a potential deadlock if we allocate multiple bios | 
 | 	 * from the same bio_set() while running underneath submit_bio_noacct(). | 
 | 	 * If we were to allocate multiple bios (say a stacking block driver | 
 | 	 * that was splitting bios), we would deadlock if we exhausted the | 
 | 	 * mempool's reserve. | 
 | 	 * | 
 | 	 * We solve this, and guarantee forward progress, with a rescuer | 
 | 	 * workqueue per bio_set. If we go to allocate and there are bios on | 
 | 	 * current->bio_list, we first try the allocation without | 
 | 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be | 
 | 	 * blocking to the rescuer workqueue before we retry with the original | 
 | 	 * gfp_flags. | 
 | 	 */ | 
 | 	if (current->bio_list && | 
 | 	    (!bio_list_empty(¤t->bio_list[0]) || | 
 | 	     !bio_list_empty(¤t->bio_list[1])) && | 
 | 	    bs->rescue_workqueue) | 
 | 		gfp_mask &= ~__GFP_DIRECT_RECLAIM; | 
 |  | 
 | 	p = mempool_alloc(&bs->bio_pool, gfp_mask); | 
 | 	if (!p && gfp_mask != saved_gfp) { | 
 | 		punt_bios_to_rescuer(bs); | 
 | 		gfp_mask = saved_gfp; | 
 | 		p = mempool_alloc(&bs->bio_pool, gfp_mask); | 
 | 	} | 
 | 	if (unlikely(!p)) | 
 | 		return NULL; | 
 | 	if (!mempool_is_saturated(&bs->bio_pool)) | 
 | 		opf &= ~REQ_ALLOC_CACHE; | 
 |  | 
 | 	bio = p + bs->front_pad; | 
 | 	if (nr_vecs > BIO_INLINE_VECS) { | 
 | 		struct bio_vec *bvl = NULL; | 
 |  | 
 | 		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); | 
 | 		if (!bvl && gfp_mask != saved_gfp) { | 
 | 			punt_bios_to_rescuer(bs); | 
 | 			gfp_mask = saved_gfp; | 
 | 			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); | 
 | 		} | 
 | 		if (unlikely(!bvl)) | 
 | 			goto err_free; | 
 |  | 
 | 		bio_init(bio, bdev, bvl, nr_vecs, opf); | 
 | 	} else if (nr_vecs) { | 
 | 		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf); | 
 | 	} else { | 
 | 		bio_init(bio, bdev, NULL, 0, opf); | 
 | 	} | 
 |  | 
 | 	bio->bi_pool = bs; | 
 | 	return bio; | 
 |  | 
 | err_free: | 
 | 	mempool_free(p, &bs->bio_pool); | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(bio_alloc_bioset); | 
 |  | 
 | /** | 
 |  * bio_kmalloc - kmalloc a bio | 
 |  * @nr_vecs:	number of bio_vecs to allocate | 
 |  * @gfp_mask:   the GFP_* mask given to the slab allocator | 
 |  * | 
 |  * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized | 
 |  * using bio_init() before use.  To free a bio returned from this function use | 
 |  * kfree() after calling bio_uninit().  A bio returned from this function can | 
 |  * be reused by calling bio_uninit() before calling bio_init() again. | 
 |  * | 
 |  * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this | 
 |  * function are not backed by a mempool can fail.  Do not use this function | 
 |  * for allocations in the file system I/O path. | 
 |  * | 
 |  * Returns: Pointer to new bio on success, NULL on failure. | 
 |  */ | 
 | struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask) | 
 | { | 
 | 	struct bio *bio; | 
 |  | 
 | 	if (nr_vecs > UIO_MAXIOV) | 
 | 		return NULL; | 
 | 	return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask); | 
 | } | 
 | EXPORT_SYMBOL(bio_kmalloc); | 
 |  | 
 | void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) | 
 | { | 
 | 	struct bio_vec bv; | 
 | 	struct bvec_iter iter; | 
 |  | 
 | 	__bio_for_each_segment(bv, bio, iter, start) | 
 | 		memzero_bvec(&bv); | 
 | } | 
 | EXPORT_SYMBOL(zero_fill_bio_iter); | 
 |  | 
 | /** | 
 |  * bio_truncate - truncate the bio to small size of @new_size | 
 |  * @bio:	the bio to be truncated | 
 |  * @new_size:	new size for truncating the bio | 
 |  * | 
 |  * Description: | 
 |  *   Truncate the bio to new size of @new_size. If bio_op(bio) is | 
 |  *   REQ_OP_READ, zero the truncated part. This function should only | 
 |  *   be used for handling corner cases, such as bio eod. | 
 |  */ | 
 | static void bio_truncate(struct bio *bio, unsigned new_size) | 
 | { | 
 | 	struct bio_vec bv; | 
 | 	struct bvec_iter iter; | 
 | 	unsigned int done = 0; | 
 | 	bool truncated = false; | 
 |  | 
 | 	if (new_size >= bio->bi_iter.bi_size) | 
 | 		return; | 
 |  | 
 | 	if (bio_op(bio) != REQ_OP_READ) | 
 | 		goto exit; | 
 |  | 
 | 	bio_for_each_segment(bv, bio, iter) { | 
 | 		if (done + bv.bv_len > new_size) { | 
 | 			unsigned offset; | 
 |  | 
 | 			if (!truncated) | 
 | 				offset = new_size - done; | 
 | 			else | 
 | 				offset = 0; | 
 | 			zero_user(bv.bv_page, bv.bv_offset + offset, | 
 | 				  bv.bv_len - offset); | 
 | 			truncated = true; | 
 | 		} | 
 | 		done += bv.bv_len; | 
 | 	} | 
 |  | 
 |  exit: | 
 | 	/* | 
 | 	 * Don't touch bvec table here and make it really immutable, since | 
 | 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all | 
 | 	 * in its .end_bio() callback. | 
 | 	 * | 
 | 	 * It is enough to truncate bio by updating .bi_size since we can make | 
 | 	 * correct bvec with the updated .bi_size for drivers. | 
 | 	 */ | 
 | 	bio->bi_iter.bi_size = new_size; | 
 | } | 
 |  | 
 | /** | 
 |  * guard_bio_eod - truncate a BIO to fit the block device | 
 |  * @bio:	bio to truncate | 
 |  * | 
 |  * This allows us to do IO even on the odd last sectors of a device, even if the | 
 |  * block size is some multiple of the physical sector size. | 
 |  * | 
 |  * We'll just truncate the bio to the size of the device, and clear the end of | 
 |  * the buffer head manually.  Truly out-of-range accesses will turn into actual | 
 |  * I/O errors, this only handles the "we need to be able to do I/O at the final | 
 |  * sector" case. | 
 |  */ | 
 | void guard_bio_eod(struct bio *bio) | 
 | { | 
 | 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); | 
 |  | 
 | 	if (!maxsector) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If the *whole* IO is past the end of the device, | 
 | 	 * let it through, and the IO layer will turn it into | 
 | 	 * an EIO. | 
 | 	 */ | 
 | 	if (unlikely(bio->bi_iter.bi_sector >= maxsector)) | 
 | 		return; | 
 |  | 
 | 	maxsector -= bio->bi_iter.bi_sector; | 
 | 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) | 
 | 		return; | 
 |  | 
 | 	bio_truncate(bio, maxsector << 9); | 
 | } | 
 |  | 
 | static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache, | 
 | 				   unsigned int nr) | 
 | { | 
 | 	unsigned int i = 0; | 
 | 	struct bio *bio; | 
 |  | 
 | 	while ((bio = cache->free_list) != NULL) { | 
 | 		cache->free_list = bio->bi_next; | 
 | 		cache->nr--; | 
 | 		bio_free(bio); | 
 | 		if (++i == nr) | 
 | 			break; | 
 | 	} | 
 | 	return i; | 
 | } | 
 |  | 
 | static void bio_alloc_cache_prune(struct bio_alloc_cache *cache, | 
 | 				  unsigned int nr) | 
 | { | 
 | 	nr -= __bio_alloc_cache_prune(cache, nr); | 
 | 	if (!READ_ONCE(cache->free_list)) { | 
 | 		bio_alloc_irq_cache_splice(cache); | 
 | 		__bio_alloc_cache_prune(cache, nr); | 
 | 	} | 
 | } | 
 |  | 
 | static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node) | 
 | { | 
 | 	struct bio_set *bs; | 
 |  | 
 | 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead); | 
 | 	if (bs->cache) { | 
 | 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu); | 
 |  | 
 | 		bio_alloc_cache_prune(cache, -1U); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void bio_alloc_cache_destroy(struct bio_set *bs) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	if (!bs->cache) | 
 | 		return; | 
 |  | 
 | 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct bio_alloc_cache *cache; | 
 |  | 
 | 		cache = per_cpu_ptr(bs->cache, cpu); | 
 | 		bio_alloc_cache_prune(cache, -1U); | 
 | 	} | 
 | 	free_percpu(bs->cache); | 
 | 	bs->cache = NULL; | 
 | } | 
 |  | 
 | static inline void bio_put_percpu_cache(struct bio *bio) | 
 | { | 
 | 	struct bio_alloc_cache *cache; | 
 |  | 
 | 	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu()); | 
 | 	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) | 
 | 		goto out_free; | 
 |  | 
 | 	if (in_task()) { | 
 | 		bio_uninit(bio); | 
 | 		bio->bi_next = cache->free_list; | 
 | 		/* Not necessary but helps not to iopoll already freed bios */ | 
 | 		bio->bi_bdev = NULL; | 
 | 		cache->free_list = bio; | 
 | 		cache->nr++; | 
 | 	} else if (in_hardirq()) { | 
 | 		lockdep_assert_irqs_disabled(); | 
 |  | 
 | 		bio_uninit(bio); | 
 | 		bio->bi_next = cache->free_list_irq; | 
 | 		cache->free_list_irq = bio; | 
 | 		cache->nr_irq++; | 
 | 	} else { | 
 | 		goto out_free; | 
 | 	} | 
 | 	put_cpu(); | 
 | 	return; | 
 | out_free: | 
 | 	put_cpu(); | 
 | 	bio_free(bio); | 
 | } | 
 |  | 
 | /** | 
 |  * bio_put - release a reference to a bio | 
 |  * @bio:   bio to release reference to | 
 |  * | 
 |  * Description: | 
 |  *   Put a reference to a &struct bio, either one you have gotten with | 
 |  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. | 
 |  **/ | 
 | void bio_put(struct bio *bio) | 
 | { | 
 | 	if (unlikely(bio_flagged(bio, BIO_REFFED))) { | 
 | 		BUG_ON(!atomic_read(&bio->__bi_cnt)); | 
 | 		if (!atomic_dec_and_test(&bio->__bi_cnt)) | 
 | 			return; | 
 | 	} | 
 | 	if (bio->bi_opf & REQ_ALLOC_CACHE) | 
 | 		bio_put_percpu_cache(bio); | 
 | 	else | 
 | 		bio_free(bio); | 
 | } | 
 | EXPORT_SYMBOL(bio_put); | 
 |  | 
 | static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp) | 
 | { | 
 | 	bio_set_flag(bio, BIO_CLONED); | 
 | 	bio->bi_ioprio = bio_src->bi_ioprio; | 
 | 	bio->bi_write_hint = bio_src->bi_write_hint; | 
 | 	bio->bi_iter = bio_src->bi_iter; | 
 |  | 
 | 	if (bio->bi_bdev) { | 
 | 		if (bio->bi_bdev == bio_src->bi_bdev && | 
 | 		    bio_flagged(bio_src, BIO_REMAPPED)) | 
 | 			bio_set_flag(bio, BIO_REMAPPED); | 
 | 		bio_clone_blkg_association(bio, bio_src); | 
 | 	} | 
 |  | 
 | 	if (bio_crypt_clone(bio, bio_src, gfp) < 0) | 
 | 		return -ENOMEM; | 
 | 	if (bio_integrity(bio_src) && | 
 | 	    bio_integrity_clone(bio, bio_src, gfp) < 0) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * bio_alloc_clone - clone a bio that shares the original bio's biovec | 
 |  * @bdev: block_device to clone onto | 
 |  * @bio_src: bio to clone from | 
 |  * @gfp: allocation priority | 
 |  * @bs: bio_set to allocate from | 
 |  * | 
 |  * Allocate a new bio that is a clone of @bio_src. The caller owns the returned | 
 |  * bio, but not the actual data it points to. | 
 |  * | 
 |  * The caller must ensure that the return bio is not freed before @bio_src. | 
 |  */ | 
 | struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, | 
 | 		gfp_t gfp, struct bio_set *bs) | 
 | { | 
 | 	struct bio *bio; | 
 |  | 
 | 	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs); | 
 | 	if (!bio) | 
 | 		return NULL; | 
 |  | 
 | 	if (__bio_clone(bio, bio_src, gfp) < 0) { | 
 | 		bio_put(bio); | 
 | 		return NULL; | 
 | 	} | 
 | 	bio->bi_io_vec = bio_src->bi_io_vec; | 
 |  | 
 | 	return bio; | 
 | } | 
 | EXPORT_SYMBOL(bio_alloc_clone); | 
 |  | 
 | /** | 
 |  * bio_init_clone - clone a bio that shares the original bio's biovec | 
 |  * @bdev: block_device to clone onto | 
 |  * @bio: bio to clone into | 
 |  * @bio_src: bio to clone from | 
 |  * @gfp: allocation priority | 
 |  * | 
 |  * Initialize a new bio in caller provided memory that is a clone of @bio_src. | 
 |  * The caller owns the returned bio, but not the actual data it points to. | 
 |  * | 
 |  * The caller must ensure that @bio_src is not freed before @bio. | 
 |  */ | 
 | int bio_init_clone(struct block_device *bdev, struct bio *bio, | 
 | 		struct bio *bio_src, gfp_t gfp) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf); | 
 | 	ret = __bio_clone(bio, bio_src, gfp); | 
 | 	if (ret) | 
 | 		bio_uninit(bio); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(bio_init_clone); | 
 |  | 
 | /** | 
 |  * bio_full - check if the bio is full | 
 |  * @bio:	bio to check | 
 |  * @len:	length of one segment to be added | 
 |  * | 
 |  * Return true if @bio is full and one segment with @len bytes can't be | 
 |  * added to the bio, otherwise return false | 
 |  */ | 
 | static inline bool bio_full(struct bio *bio, unsigned len) | 
 | { | 
 | 	if (bio->bi_vcnt >= bio->bi_max_vecs) | 
 | 		return true; | 
 | 	if (bio->bi_iter.bi_size > UINT_MAX - len) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page, | 
 | 		unsigned int len, unsigned int off, bool *same_page) | 
 | { | 
 | 	size_t bv_end = bv->bv_offset + bv->bv_len; | 
 | 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; | 
 | 	phys_addr_t page_addr = page_to_phys(page); | 
 |  | 
 | 	if (vec_end_addr + 1 != page_addr + off) | 
 | 		return false; | 
 | 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) | 
 | 		return false; | 
 | 	if (!zone_device_pages_have_same_pgmap(bv->bv_page, page)) | 
 | 		return false; | 
 |  | 
 | 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr); | 
 | 	if (!*same_page) { | 
 | 		if (IS_ENABLED(CONFIG_KMSAN)) | 
 | 			return false; | 
 | 		if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	bv->bv_len += len; | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Try to merge a page into a segment, while obeying the hardware segment | 
 |  * size limit.  This is not for normal read/write bios, but for passthrough | 
 |  * or Zone Append operations that we can't split. | 
 |  */ | 
 | bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, | 
 | 		struct page *page, unsigned len, unsigned offset, | 
 | 		bool *same_page) | 
 | { | 
 | 	unsigned long mask = queue_segment_boundary(q); | 
 | 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; | 
 | 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; | 
 |  | 
 | 	if ((addr1 | mask) != (addr2 | mask)) | 
 | 		return false; | 
 | 	if (len > queue_max_segment_size(q) - bv->bv_len) | 
 | 		return false; | 
 | 	return bvec_try_merge_page(bv, page, len, offset, same_page); | 
 | } | 
 |  | 
 | /** | 
 |  * bio_add_hw_page - attempt to add a page to a bio with hw constraints | 
 |  * @q: the target queue | 
 |  * @bio: destination bio | 
 |  * @page: page to add | 
 |  * @len: vec entry length | 
 |  * @offset: vec entry offset | 
 |  * @max_sectors: maximum number of sectors that can be added | 
 |  * @same_page: return if the segment has been merged inside the same page | 
 |  * | 
 |  * Add a page to a bio while respecting the hardware max_sectors, max_segment | 
 |  * and gap limitations. | 
 |  */ | 
 | int bio_add_hw_page(struct request_queue *q, struct bio *bio, | 
 | 		struct page *page, unsigned int len, unsigned int offset, | 
 | 		unsigned int max_sectors, bool *same_page) | 
 | { | 
 | 	unsigned int max_size = max_sectors << SECTOR_SHIFT; | 
 |  | 
 | 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) | 
 | 		return 0; | 
 |  | 
 | 	len = min3(len, max_size, queue_max_segment_size(q)); | 
 | 	if (len > max_size - bio->bi_iter.bi_size) | 
 | 		return 0; | 
 |  | 
 | 	if (bio->bi_vcnt > 0) { | 
 | 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; | 
 |  | 
 | 		if (bvec_try_merge_hw_page(q, bv, page, len, offset, | 
 | 				same_page)) { | 
 | 			bio->bi_iter.bi_size += len; | 
 | 			return len; | 
 | 		} | 
 |  | 
 | 		if (bio->bi_vcnt >= | 
 | 		    min(bio->bi_max_vecs, queue_max_segments(q))) | 
 | 			return 0; | 
 |  | 
 | 		/* | 
 | 		 * If the queue doesn't support SG gaps and adding this segment | 
 | 		 * would create a gap, disallow it. | 
 | 		 */ | 
 | 		if (bvec_gap_to_prev(&q->limits, bv, offset)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset); | 
 | 	bio->bi_vcnt++; | 
 | 	bio->bi_iter.bi_size += len; | 
 | 	return len; | 
 | } | 
 |  | 
 | /** | 
 |  * bio_add_pc_page	- attempt to add page to passthrough bio | 
 |  * @q: the target queue | 
 |  * @bio: destination bio | 
 |  * @page: page to add | 
 |  * @len: vec entry length | 
 |  * @offset: vec entry offset | 
 |  * | 
 |  * Attempt to add a page to the bio_vec maplist. This can fail for a | 
 |  * number of reasons, such as the bio being full or target block device | 
 |  * limitations. The target block device must allow bio's up to PAGE_SIZE, | 
 |  * so it is always possible to add a single page to an empty bio. | 
 |  * | 
 |  * This should only be used by passthrough bios. | 
 |  */ | 
 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, | 
 | 		struct page *page, unsigned int len, unsigned int offset) | 
 | { | 
 | 	bool same_page = false; | 
 | 	return bio_add_hw_page(q, bio, page, len, offset, | 
 | 			queue_max_hw_sectors(q), &same_page); | 
 | } | 
 | EXPORT_SYMBOL(bio_add_pc_page); | 
 |  | 
 | /** | 
 |  * bio_add_zone_append_page - attempt to add page to zone-append bio | 
 |  * @bio: destination bio | 
 |  * @page: page to add | 
 |  * @len: vec entry length | 
 |  * @offset: vec entry offset | 
 |  * | 
 |  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted | 
 |  * for a zone-append request. This can fail for a number of reasons, such as the | 
 |  * bio being full or the target block device is not a zoned block device or | 
 |  * other limitations of the target block device. The target block device must | 
 |  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page | 
 |  * to an empty bio. | 
 |  * | 
 |  * Returns: number of bytes added to the bio, or 0 in case of a failure. | 
 |  */ | 
 | int bio_add_zone_append_page(struct bio *bio, struct page *page, | 
 | 			     unsigned int len, unsigned int offset) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(bio->bi_bdev); | 
 | 	bool same_page = false; | 
 |  | 
 | 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) | 
 | 		return 0; | 
 |  | 
 | 	if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev))) | 
 | 		return 0; | 
 |  | 
 | 	return bio_add_hw_page(q, bio, page, len, offset, | 
 | 			       queue_max_zone_append_sectors(q), &same_page); | 
 | } | 
 | EXPORT_SYMBOL_GPL(bio_add_zone_append_page); | 
 |  | 
 | /** | 
 |  * __bio_add_page - add page(s) to a bio in a new segment | 
 |  * @bio: destination bio | 
 |  * @page: start page to add | 
 |  * @len: length of the data to add, may cross pages | 
 |  * @off: offset of the data relative to @page, may cross pages | 
 |  * | 
 |  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure | 
 |  * that @bio has space for another bvec. | 
 |  */ | 
 | void __bio_add_page(struct bio *bio, struct page *page, | 
 | 		unsigned int len, unsigned int off) | 
 | { | 
 | 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); | 
 | 	WARN_ON_ONCE(bio_full(bio, len)); | 
 |  | 
 | 	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off); | 
 | 	bio->bi_iter.bi_size += len; | 
 | 	bio->bi_vcnt++; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__bio_add_page); | 
 |  | 
 | /** | 
 |  *	bio_add_page	-	attempt to add page(s) to bio | 
 |  *	@bio: destination bio | 
 |  *	@page: start page to add | 
 |  *	@len: vec entry length, may cross pages | 
 |  *	@offset: vec entry offset relative to @page, may cross pages | 
 |  * | 
 |  *	Attempt to add page(s) to the bio_vec maplist. This will only fail | 
 |  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. | 
 |  */ | 
 | int bio_add_page(struct bio *bio, struct page *page, | 
 | 		 unsigned int len, unsigned int offset) | 
 | { | 
 | 	bool same_page = false; | 
 |  | 
 | 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) | 
 | 		return 0; | 
 | 	if (bio->bi_iter.bi_size > UINT_MAX - len) | 
 | 		return 0; | 
 |  | 
 | 	if (bio->bi_vcnt > 0 && | 
 | 	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1], | 
 | 				page, len, offset, &same_page)) { | 
 | 		bio->bi_iter.bi_size += len; | 
 | 		return len; | 
 | 	} | 
 |  | 
 | 	if (bio->bi_vcnt >= bio->bi_max_vecs) | 
 | 		return 0; | 
 | 	__bio_add_page(bio, page, len, offset); | 
 | 	return len; | 
 | } | 
 | EXPORT_SYMBOL(bio_add_page); | 
 |  | 
 | void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, | 
 | 			  size_t off) | 
 | { | 
 | 	WARN_ON_ONCE(len > UINT_MAX); | 
 | 	WARN_ON_ONCE(off > UINT_MAX); | 
 | 	__bio_add_page(bio, &folio->page, len, off); | 
 | } | 
 | EXPORT_SYMBOL_GPL(bio_add_folio_nofail); | 
 |  | 
 | /** | 
 |  * bio_add_folio - Attempt to add part of a folio to a bio. | 
 |  * @bio: BIO to add to. | 
 |  * @folio: Folio to add. | 
 |  * @len: How many bytes from the folio to add. | 
 |  * @off: First byte in this folio to add. | 
 |  * | 
 |  * Filesystems that use folios can call this function instead of calling | 
 |  * bio_add_page() for each page in the folio.  If @off is bigger than | 
 |  * PAGE_SIZE, this function can create a bio_vec that starts in a page | 
 |  * after the bv_page.  BIOs do not support folios that are 4GiB or larger. | 
 |  * | 
 |  * Return: Whether the addition was successful. | 
 |  */ | 
 | bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len, | 
 | 		   size_t off) | 
 | { | 
 | 	if (len > UINT_MAX || off > UINT_MAX) | 
 | 		return false; | 
 | 	return bio_add_page(bio, &folio->page, len, off) > 0; | 
 | } | 
 | EXPORT_SYMBOL(bio_add_folio); | 
 |  | 
 | void __bio_release_pages(struct bio *bio, bool mark_dirty) | 
 | { | 
 | 	struct folio_iter fi; | 
 |  | 
 | 	bio_for_each_folio_all(fi, bio) { | 
 | 		struct page *page; | 
 | 		size_t nr_pages; | 
 |  | 
 | 		if (mark_dirty) { | 
 | 			folio_lock(fi.folio); | 
 | 			folio_mark_dirty(fi.folio); | 
 | 			folio_unlock(fi.folio); | 
 | 		} | 
 | 		page = folio_page(fi.folio, fi.offset / PAGE_SIZE); | 
 | 		nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE - | 
 | 			   fi.offset / PAGE_SIZE + 1; | 
 | 		do { | 
 | 			bio_release_page(bio, page++); | 
 | 		} while (--nr_pages != 0); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(__bio_release_pages); | 
 |  | 
 | void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) | 
 | { | 
 | 	size_t size = iov_iter_count(iter); | 
 |  | 
 | 	WARN_ON_ONCE(bio->bi_max_vecs); | 
 |  | 
 | 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) { | 
 | 		struct request_queue *q = bdev_get_queue(bio->bi_bdev); | 
 | 		size_t max_sectors = queue_max_zone_append_sectors(q); | 
 |  | 
 | 		size = min(size, max_sectors << SECTOR_SHIFT); | 
 | 	} | 
 |  | 
 | 	bio->bi_vcnt = iter->nr_segs; | 
 | 	bio->bi_io_vec = (struct bio_vec *)iter->bvec; | 
 | 	bio->bi_iter.bi_bvec_done = iter->iov_offset; | 
 | 	bio->bi_iter.bi_size = size; | 
 | 	bio_set_flag(bio, BIO_CLONED); | 
 | } | 
 |  | 
 | static int bio_iov_add_page(struct bio *bio, struct page *page, | 
 | 		unsigned int len, unsigned int offset) | 
 | { | 
 | 	bool same_page = false; | 
 |  | 
 | 	if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len)) | 
 | 		return -EIO; | 
 |  | 
 | 	if (bio->bi_vcnt > 0 && | 
 | 	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1], | 
 | 				page, len, offset, &same_page)) { | 
 | 		bio->bi_iter.bi_size += len; | 
 | 		if (same_page) | 
 | 			bio_release_page(bio, page); | 
 | 		return 0; | 
 | 	} | 
 | 	__bio_add_page(bio, page, len, offset); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page, | 
 | 		unsigned int len, unsigned int offset) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(bio->bi_bdev); | 
 | 	bool same_page = false; | 
 |  | 
 | 	if (bio_add_hw_page(q, bio, page, len, offset, | 
 | 			queue_max_zone_append_sectors(q), &same_page) != len) | 
 | 		return -EINVAL; | 
 | 	if (same_page) | 
 | 		bio_release_page(bio, page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *)) | 
 |  | 
 | /** | 
 |  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio | 
 |  * @bio: bio to add pages to | 
 |  * @iter: iov iterator describing the region to be mapped | 
 |  * | 
 |  * Extracts pages from *iter and appends them to @bio's bvec array.  The pages | 
 |  * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag. | 
 |  * For a multi-segment *iter, this function only adds pages from the next | 
 |  * non-empty segment of the iov iterator. | 
 |  */ | 
 | static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) | 
 | { | 
 | 	iov_iter_extraction_t extraction_flags = 0; | 
 | 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; | 
 | 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; | 
 | 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; | 
 | 	struct page **pages = (struct page **)bv; | 
 | 	ssize_t size, left; | 
 | 	unsigned len, i = 0; | 
 | 	size_t offset; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Move page array up in the allocated memory for the bio vecs as far as | 
 | 	 * possible so that we can start filling biovecs from the beginning | 
 | 	 * without overwriting the temporary page array. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); | 
 | 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); | 
 |  | 
 | 	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue)) | 
 | 		extraction_flags |= ITER_ALLOW_P2PDMA; | 
 |  | 
 | 	/* | 
 | 	 * Each segment in the iov is required to be a block size multiple. | 
 | 	 * However, we may not be able to get the entire segment if it spans | 
 | 	 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the | 
 | 	 * result to ensure the bio's total size is correct. The remainder of | 
 | 	 * the iov data will be picked up in the next bio iteration. | 
 | 	 */ | 
 | 	size = iov_iter_extract_pages(iter, &pages, | 
 | 				      UINT_MAX - bio->bi_iter.bi_size, | 
 | 				      nr_pages, extraction_flags, &offset); | 
 | 	if (unlikely(size <= 0)) | 
 | 		return size ? size : -EFAULT; | 
 |  | 
 | 	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE); | 
 |  | 
 | 	if (bio->bi_bdev) { | 
 | 		size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1); | 
 | 		iov_iter_revert(iter, trim); | 
 | 		size -= trim; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!size)) { | 
 | 		ret = -EFAULT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	for (left = size, i = 0; left > 0; left -= len, i++) { | 
 | 		struct page *page = pages[i]; | 
 |  | 
 | 		len = min_t(size_t, PAGE_SIZE - offset, left); | 
 | 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) { | 
 | 			ret = bio_iov_add_zone_append_page(bio, page, len, | 
 | 					offset); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} else | 
 | 			bio_iov_add_page(bio, page, len, offset); | 
 |  | 
 | 		offset = 0; | 
 | 	} | 
 |  | 
 | 	iov_iter_revert(iter, left); | 
 | out: | 
 | 	while (i < nr_pages) | 
 | 		bio_release_page(bio, pages[i++]); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * bio_iov_iter_get_pages - add user or kernel pages to a bio | 
 |  * @bio: bio to add pages to | 
 |  * @iter: iov iterator describing the region to be added | 
 |  * | 
 |  * This takes either an iterator pointing to user memory, or one pointing to | 
 |  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and | 
 |  * map them into the kernel. On IO completion, the caller should put those | 
 |  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided | 
 |  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs | 
 |  * to ensure the bvecs and pages stay referenced until the submitted I/O is | 
 |  * completed by a call to ->ki_complete() or returns with an error other than | 
 |  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF | 
 |  * on IO completion. If it isn't, then pages should be released. | 
 |  * | 
 |  * The function tries, but does not guarantee, to pin as many pages as | 
 |  * fit into the bio, or are requested in @iter, whatever is smaller. If | 
 |  * MM encounters an error pinning the requested pages, it stops. Error | 
 |  * is returned only if 0 pages could be pinned. | 
 |  */ | 
 | int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) | 
 | 		return -EIO; | 
 |  | 
 | 	if (iov_iter_is_bvec(iter)) { | 
 | 		bio_iov_bvec_set(bio, iter); | 
 | 		iov_iter_advance(iter, bio->bi_iter.bi_size); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (iov_iter_extract_will_pin(iter)) | 
 | 		bio_set_flag(bio, BIO_PAGE_PINNED); | 
 | 	do { | 
 | 		ret = __bio_iov_iter_get_pages(bio, iter); | 
 | 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); | 
 |  | 
 | 	return bio->bi_vcnt ? 0 : ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); | 
 |  | 
 | static void submit_bio_wait_endio(struct bio *bio) | 
 | { | 
 | 	complete(bio->bi_private); | 
 | } | 
 |  | 
 | /** | 
 |  * submit_bio_wait - submit a bio, and wait until it completes | 
 |  * @bio: The &struct bio which describes the I/O | 
 |  * | 
 |  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from | 
 |  * bio_endio() on failure. | 
 |  * | 
 |  * WARNING: Unlike to how submit_bio() is usually used, this function does not | 
 |  * result in bio reference to be consumed. The caller must drop the reference | 
 |  * on his own. | 
 |  */ | 
 | int submit_bio_wait(struct bio *bio) | 
 | { | 
 | 	DECLARE_COMPLETION_ONSTACK_MAP(done, | 
 | 			bio->bi_bdev->bd_disk->lockdep_map); | 
 |  | 
 | 	bio->bi_private = &done; | 
 | 	bio->bi_end_io = submit_bio_wait_endio; | 
 | 	bio->bi_opf |= REQ_SYNC; | 
 | 	submit_bio(bio); | 
 | 	blk_wait_io(&done); | 
 |  | 
 | 	return blk_status_to_errno(bio->bi_status); | 
 | } | 
 | EXPORT_SYMBOL(submit_bio_wait); | 
 |  | 
 | static void bio_wait_end_io(struct bio *bio) | 
 | { | 
 | 	complete(bio->bi_private); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | /* | 
 |  * bio_await_chain - ends @bio and waits for every chained bio to complete | 
 |  */ | 
 | void bio_await_chain(struct bio *bio) | 
 | { | 
 | 	DECLARE_COMPLETION_ONSTACK_MAP(done, | 
 | 			bio->bi_bdev->bd_disk->lockdep_map); | 
 |  | 
 | 	bio->bi_private = &done; | 
 | 	bio->bi_end_io = bio_wait_end_io; | 
 | 	bio_endio(bio); | 
 | 	blk_wait_io(&done); | 
 | } | 
 |  | 
 | void __bio_advance(struct bio *bio, unsigned bytes) | 
 | { | 
 | 	if (bio_integrity(bio)) | 
 | 		bio_integrity_advance(bio, bytes); | 
 |  | 
 | 	bio_crypt_advance(bio, bytes); | 
 | 	bio_advance_iter(bio, &bio->bi_iter, bytes); | 
 | } | 
 | EXPORT_SYMBOL(__bio_advance); | 
 |  | 
 | void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, | 
 | 			struct bio *src, struct bvec_iter *src_iter) | 
 | { | 
 | 	while (src_iter->bi_size && dst_iter->bi_size) { | 
 | 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); | 
 | 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); | 
 | 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); | 
 | 		void *src_buf = bvec_kmap_local(&src_bv); | 
 | 		void *dst_buf = bvec_kmap_local(&dst_bv); | 
 |  | 
 | 		memcpy(dst_buf, src_buf, bytes); | 
 |  | 
 | 		kunmap_local(dst_buf); | 
 | 		kunmap_local(src_buf); | 
 |  | 
 | 		bio_advance_iter_single(src, src_iter, bytes); | 
 | 		bio_advance_iter_single(dst, dst_iter, bytes); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(bio_copy_data_iter); | 
 |  | 
 | /** | 
 |  * bio_copy_data - copy contents of data buffers from one bio to another | 
 |  * @src: source bio | 
 |  * @dst: destination bio | 
 |  * | 
 |  * Stops when it reaches the end of either @src or @dst - that is, copies | 
 |  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). | 
 |  */ | 
 | void bio_copy_data(struct bio *dst, struct bio *src) | 
 | { | 
 | 	struct bvec_iter src_iter = src->bi_iter; | 
 | 	struct bvec_iter dst_iter = dst->bi_iter; | 
 |  | 
 | 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter); | 
 | } | 
 | EXPORT_SYMBOL(bio_copy_data); | 
 |  | 
 | void bio_free_pages(struct bio *bio) | 
 | { | 
 | 	struct bio_vec *bvec; | 
 | 	struct bvec_iter_all iter_all; | 
 |  | 
 | 	bio_for_each_segment_all(bvec, bio, iter_all) | 
 | 		__free_page(bvec->bv_page); | 
 | } | 
 | EXPORT_SYMBOL(bio_free_pages); | 
 |  | 
 | /* | 
 |  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | 
 |  * for performing direct-IO in BIOs. | 
 |  * | 
 |  * The problem is that we cannot run folio_mark_dirty() from interrupt context | 
 |  * because the required locks are not interrupt-safe.  So what we can do is to | 
 |  * mark the pages dirty _before_ performing IO.  And in interrupt context, | 
 |  * check that the pages are still dirty.   If so, fine.  If not, redirty them | 
 |  * in process context. | 
 |  * | 
 |  * Note that this code is very hard to test under normal circumstances because | 
 |  * direct-io pins the pages with get_user_pages().  This makes | 
 |  * is_page_cache_freeable return false, and the VM will not clean the pages. | 
 |  * But other code (eg, flusher threads) could clean the pages if they are mapped | 
 |  * pagecache. | 
 |  * | 
 |  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | 
 |  * deferred bio dirtying paths. | 
 |  */ | 
 |  | 
 | /* | 
 |  * bio_set_pages_dirty() will mark all the bio's pages as dirty. | 
 |  */ | 
 | void bio_set_pages_dirty(struct bio *bio) | 
 | { | 
 | 	struct folio_iter fi; | 
 |  | 
 | 	bio_for_each_folio_all(fi, bio) { | 
 | 		folio_lock(fi.folio); | 
 | 		folio_mark_dirty(fi.folio); | 
 | 		folio_unlock(fi.folio); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(bio_set_pages_dirty); | 
 |  | 
 | /* | 
 |  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | 
 |  * If they are, then fine.  If, however, some pages are clean then they must | 
 |  * have been written out during the direct-IO read.  So we take another ref on | 
 |  * the BIO and re-dirty the pages in process context. | 
 |  * | 
 |  * It is expected that bio_check_pages_dirty() will wholly own the BIO from | 
 |  * here on.  It will unpin each page and will run one bio_put() against the | 
 |  * BIO. | 
 |  */ | 
 |  | 
 | static void bio_dirty_fn(struct work_struct *work); | 
 |  | 
 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); | 
 | static DEFINE_SPINLOCK(bio_dirty_lock); | 
 | static struct bio *bio_dirty_list; | 
 |  | 
 | /* | 
 |  * This runs in process context | 
 |  */ | 
 | static void bio_dirty_fn(struct work_struct *work) | 
 | { | 
 | 	struct bio *bio, *next; | 
 |  | 
 | 	spin_lock_irq(&bio_dirty_lock); | 
 | 	next = bio_dirty_list; | 
 | 	bio_dirty_list = NULL; | 
 | 	spin_unlock_irq(&bio_dirty_lock); | 
 |  | 
 | 	while ((bio = next) != NULL) { | 
 | 		next = bio->bi_private; | 
 |  | 
 | 		bio_release_pages(bio, true); | 
 | 		bio_put(bio); | 
 | 	} | 
 | } | 
 |  | 
 | void bio_check_pages_dirty(struct bio *bio) | 
 | { | 
 | 	struct folio_iter fi; | 
 | 	unsigned long flags; | 
 |  | 
 | 	bio_for_each_folio_all(fi, bio) { | 
 | 		if (!folio_test_dirty(fi.folio)) | 
 | 			goto defer; | 
 | 	} | 
 |  | 
 | 	bio_release_pages(bio, false); | 
 | 	bio_put(bio); | 
 | 	return; | 
 | defer: | 
 | 	spin_lock_irqsave(&bio_dirty_lock, flags); | 
 | 	bio->bi_private = bio_dirty_list; | 
 | 	bio_dirty_list = bio; | 
 | 	spin_unlock_irqrestore(&bio_dirty_lock, flags); | 
 | 	schedule_work(&bio_dirty_work); | 
 | } | 
 | EXPORT_SYMBOL_GPL(bio_check_pages_dirty); | 
 |  | 
 | static inline bool bio_remaining_done(struct bio *bio) | 
 | { | 
 | 	/* | 
 | 	 * If we're not chaining, then ->__bi_remaining is always 1 and | 
 | 	 * we always end io on the first invocation. | 
 | 	 */ | 
 | 	if (!bio_flagged(bio, BIO_CHAIN)) | 
 | 		return true; | 
 |  | 
 | 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); | 
 |  | 
 | 	if (atomic_dec_and_test(&bio->__bi_remaining)) { | 
 | 		bio_clear_flag(bio, BIO_CHAIN); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * bio_endio - end I/O on a bio | 
 |  * @bio:	bio | 
 |  * | 
 |  * Description: | 
 |  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred | 
 |  *   way to end I/O on a bio. No one should call bi_end_io() directly on a | 
 |  *   bio unless they own it and thus know that it has an end_io function. | 
 |  * | 
 |  *   bio_endio() can be called several times on a bio that has been chained | 
 |  *   using bio_chain().  The ->bi_end_io() function will only be called the | 
 |  *   last time. | 
 |  **/ | 
 | void bio_endio(struct bio *bio) | 
 | { | 
 | again: | 
 | 	if (!bio_remaining_done(bio)) | 
 | 		return; | 
 | 	if (!bio_integrity_endio(bio)) | 
 | 		return; | 
 |  | 
 | 	blk_zone_bio_endio(bio); | 
 |  | 
 | 	rq_qos_done_bio(bio); | 
 |  | 
 | 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { | 
 | 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio); | 
 | 		bio_clear_flag(bio, BIO_TRACE_COMPLETION); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Need to have a real endio function for chained bios, otherwise | 
 | 	 * various corner cases will break (like stacking block devices that | 
 | 	 * save/restore bi_end_io) - however, we want to avoid unbounded | 
 | 	 * recursion and blowing the stack. Tail call optimization would | 
 | 	 * handle this, but compiling with frame pointers also disables | 
 | 	 * gcc's sibling call optimization. | 
 | 	 */ | 
 | 	if (bio->bi_end_io == bio_chain_endio) { | 
 | 		bio = __bio_chain_endio(bio); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	/* release cgroup info */ | 
 | 	bio_uninit(bio); | 
 | 	if (bio->bi_end_io) | 
 | 		bio->bi_end_io(bio); | 
 | } | 
 | EXPORT_SYMBOL(bio_endio); | 
 |  | 
 | /** | 
 |  * bio_split - split a bio | 
 |  * @bio:	bio to split | 
 |  * @sectors:	number of sectors to split from the front of @bio | 
 |  * @gfp:	gfp mask | 
 |  * @bs:		bio set to allocate from | 
 |  * | 
 |  * Allocates and returns a new bio which represents @sectors from the start of | 
 |  * @bio, and updates @bio to represent the remaining sectors. | 
 |  * | 
 |  * Unless this is a discard request the newly allocated bio will point | 
 |  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that | 
 |  * neither @bio nor @bs are freed before the split bio. | 
 |  */ | 
 | struct bio *bio_split(struct bio *bio, int sectors, | 
 | 		      gfp_t gfp, struct bio_set *bs) | 
 | { | 
 | 	struct bio *split; | 
 |  | 
 | 	BUG_ON(sectors <= 0); | 
 | 	BUG_ON(sectors >= bio_sectors(bio)); | 
 |  | 
 | 	/* Zone append commands cannot be split */ | 
 | 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) | 
 | 		return NULL; | 
 |  | 
 | 	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs); | 
 | 	if (!split) | 
 | 		return NULL; | 
 |  | 
 | 	split->bi_iter.bi_size = sectors << 9; | 
 |  | 
 | 	if (bio_integrity(split)) | 
 | 		bio_integrity_trim(split); | 
 |  | 
 | 	bio_advance(bio, split->bi_iter.bi_size); | 
 |  | 
 | 	if (bio_flagged(bio, BIO_TRACE_COMPLETION)) | 
 | 		bio_set_flag(split, BIO_TRACE_COMPLETION); | 
 |  | 
 | 	return split; | 
 | } | 
 | EXPORT_SYMBOL(bio_split); | 
 |  | 
 | /** | 
 |  * bio_trim - trim a bio | 
 |  * @bio:	bio to trim | 
 |  * @offset:	number of sectors to trim from the front of @bio | 
 |  * @size:	size we want to trim @bio to, in sectors | 
 |  * | 
 |  * This function is typically used for bios that are cloned and submitted | 
 |  * to the underlying device in parts. | 
 |  */ | 
 | void bio_trim(struct bio *bio, sector_t offset, sector_t size) | 
 | { | 
 | 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS || | 
 | 			 offset + size > bio_sectors(bio))) | 
 | 		return; | 
 |  | 
 | 	size <<= 9; | 
 | 	if (offset == 0 && size == bio->bi_iter.bi_size) | 
 | 		return; | 
 |  | 
 | 	bio_advance(bio, offset << 9); | 
 | 	bio->bi_iter.bi_size = size; | 
 |  | 
 | 	if (bio_integrity(bio)) | 
 | 		bio_integrity_trim(bio); | 
 | } | 
 | EXPORT_SYMBOL_GPL(bio_trim); | 
 |  | 
 | /* | 
 |  * create memory pools for biovec's in a bio_set. | 
 |  * use the global biovec slabs created for general use. | 
 |  */ | 
 | int biovec_init_pool(mempool_t *pool, int pool_entries) | 
 | { | 
 | 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; | 
 |  | 
 | 	return mempool_init_slab_pool(pool, pool_entries, bp->slab); | 
 | } | 
 |  | 
 | /* | 
 |  * bioset_exit - exit a bioset initialized with bioset_init() | 
 |  * | 
 |  * May be called on a zeroed but uninitialized bioset (i.e. allocated with | 
 |  * kzalloc()). | 
 |  */ | 
 | void bioset_exit(struct bio_set *bs) | 
 | { | 
 | 	bio_alloc_cache_destroy(bs); | 
 | 	if (bs->rescue_workqueue) | 
 | 		destroy_workqueue(bs->rescue_workqueue); | 
 | 	bs->rescue_workqueue = NULL; | 
 |  | 
 | 	mempool_exit(&bs->bio_pool); | 
 | 	mempool_exit(&bs->bvec_pool); | 
 |  | 
 | 	bioset_integrity_free(bs); | 
 | 	if (bs->bio_slab) | 
 | 		bio_put_slab(bs); | 
 | 	bs->bio_slab = NULL; | 
 | } | 
 | EXPORT_SYMBOL(bioset_exit); | 
 |  | 
 | /** | 
 |  * bioset_init - Initialize a bio_set | 
 |  * @bs:		pool to initialize | 
 |  * @pool_size:	Number of bio and bio_vecs to cache in the mempool | 
 |  * @front_pad:	Number of bytes to allocate in front of the returned bio | 
 |  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS | 
 |  *              and %BIOSET_NEED_RESCUER | 
 |  * | 
 |  * Description: | 
 |  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller | 
 |  *    to ask for a number of bytes to be allocated in front of the bio. | 
 |  *    Front pad allocation is useful for embedding the bio inside | 
 |  *    another structure, to avoid allocating extra data to go with the bio. | 
 |  *    Note that the bio must be embedded at the END of that structure always, | 
 |  *    or things will break badly. | 
 |  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated | 
 |  *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone(). | 
 |  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used | 
 |  *    to dispatch queued requests when the mempool runs out of space. | 
 |  * | 
 |  */ | 
 | int bioset_init(struct bio_set *bs, | 
 | 		unsigned int pool_size, | 
 | 		unsigned int front_pad, | 
 | 		int flags) | 
 | { | 
 | 	bs->front_pad = front_pad; | 
 | 	if (flags & BIOSET_NEED_BVECS) | 
 | 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); | 
 | 	else | 
 | 		bs->back_pad = 0; | 
 |  | 
 | 	spin_lock_init(&bs->rescue_lock); | 
 | 	bio_list_init(&bs->rescue_list); | 
 | 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue); | 
 |  | 
 | 	bs->bio_slab = bio_find_or_create_slab(bs); | 
 | 	if (!bs->bio_slab) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) | 
 | 		goto bad; | 
 |  | 
 | 	if ((flags & BIOSET_NEED_BVECS) && | 
 | 	    biovec_init_pool(&bs->bvec_pool, pool_size)) | 
 | 		goto bad; | 
 |  | 
 | 	if (flags & BIOSET_NEED_RESCUER) { | 
 | 		bs->rescue_workqueue = alloc_workqueue("bioset", | 
 | 							WQ_MEM_RECLAIM, 0); | 
 | 		if (!bs->rescue_workqueue) | 
 | 			goto bad; | 
 | 	} | 
 | 	if (flags & BIOSET_PERCPU_CACHE) { | 
 | 		bs->cache = alloc_percpu(struct bio_alloc_cache); | 
 | 		if (!bs->cache) | 
 | 			goto bad; | 
 | 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | bad: | 
 | 	bioset_exit(bs); | 
 | 	return -ENOMEM; | 
 | } | 
 | EXPORT_SYMBOL(bioset_init); | 
 |  | 
 | static int __init init_bio(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags)); | 
 |  | 
 | 	bio_integrity_init(); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { | 
 | 		struct biovec_slab *bvs = bvec_slabs + i; | 
 |  | 
 | 		bvs->slab = kmem_cache_create(bvs->name, | 
 | 				bvs->nr_vecs * sizeof(struct bio_vec), 0, | 
 | 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); | 
 | 	} | 
 |  | 
 | 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL, | 
 | 					bio_cpu_dead); | 
 |  | 
 | 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, | 
 | 			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE)) | 
 | 		panic("bio: can't allocate bios\n"); | 
 |  | 
 | 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) | 
 | 		panic("bio: can't create integrity pool\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(init_bio); |