blob: dc87f77ce11e4a08cb6423b06e79d450a6cafacf [file] [log] [blame]
/*
* Copyright (c) 2013
* Phillip Lougher <phillip@squashfs.org.uk>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*/
#include <linux/fs.h>
#include <linux/vfs.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/pagemap.h>
#include <linux/mutex.h>
#include <linux/mm_inline.h>
#include "squashfs_fs.h"
#include "squashfs_fs_sb.h"
#include "squashfs_fs_i.h"
#include "squashfs.h"
#include "page_actor.h"
static void release_actor_pages(struct page **page, int pages, int error)
{
int i;
for (i = 0; i < pages; i++) {
if (!page[i])
continue;
flush_dcache_page(page[i]);
if (!error)
SetPageUptodate(page[i]);
else {
SetPageError(page[i]);
zero_user_segment(page[i], 0, PAGE_SIZE);
}
unlock_page(page[i]);
put_page(page[i]);
}
kfree(page);
}
/*
* Create a "page actor" which will kmap and kunmap the
* page cache pages appropriately within the decompressor
*/
static struct squashfs_page_actor *actor_from_page_cache(
unsigned int actor_pages, struct page *target_page,
struct list_head *rpages, unsigned int *nr_pages, int start_index,
struct address_space *mapping)
{
struct page **page;
struct squashfs_page_actor *actor;
int i, n;
gfp_t gfp = mapping_gfp_constraint(mapping, GFP_KERNEL);
page = kmalloc_array(actor_pages, sizeof(void *), GFP_KERNEL);
if (!page)
return NULL;
for (i = 0, n = start_index; i < actor_pages; i++, n++) {
if (target_page == NULL && rpages && !list_empty(rpages)) {
struct page *cur_page = lru_to_page(rpages);
if (cur_page->index < start_index + actor_pages) {
list_del(&cur_page->lru);
--(*nr_pages);
if (add_to_page_cache_lru(cur_page, mapping,
cur_page->index, gfp))
put_page(cur_page);
else
target_page = cur_page;
} else
rpages = NULL;
}
if (target_page && target_page->index == n) {
page[i] = target_page;
target_page = NULL;
} else {
page[i] = grab_cache_page_nowait(mapping, n);
if (page[i] == NULL)
continue;
}
if (PageUptodate(page[i])) {
unlock_page(page[i]);
put_page(page[i]);
page[i] = NULL;
}
}
actor = squashfs_page_actor_init(page, actor_pages, 0,
release_actor_pages);
if (!actor) {
release_actor_pages(page, actor_pages, -ENOMEM);
kfree(page);
return NULL;
}
return actor;
}
int squashfs_readpages_block(struct page *target_page,
struct list_head *readahead_pages,
unsigned int *nr_pages,
struct address_space *mapping,
int page_index, u64 block, int bsize)
{
struct squashfs_page_actor *actor;
struct inode *inode = mapping->host;
struct squashfs_sb_info *msblk = inode->i_sb->s_fs_info;
int start_index, end_index, file_end, actor_pages, res;
int mask = (1 << (msblk->block_log - PAGE_SHIFT)) - 1;
/*
* If readpage() is called on an uncompressed datablock, we can just
* read the pages instead of fetching the whole block.
* This greatly improves the performance when a process keep doing
* random reads because we only fetch the necessary data.
* The readahead algorithm will take care of doing speculative reads
* if necessary.
* We can't read more than 1 block even if readahead provides use more
* pages because we don't know yet if the next block is compressed or
* not.
*/
if (bsize && !SQUASHFS_COMPRESSED_BLOCK(bsize)) {
u64 block_end = block + msblk->block_size;
block += (page_index & mask) * PAGE_SIZE;
actor_pages = (block_end - block) / PAGE_SIZE;
if (*nr_pages < actor_pages)
actor_pages = *nr_pages;
start_index = page_index;
bsize = min_t(int, bsize, (PAGE_SIZE * actor_pages)
| SQUASHFS_COMPRESSED_BIT_BLOCK);
} else {
file_end = (i_size_read(inode) - 1) >> PAGE_SHIFT;
start_index = page_index & ~mask;
end_index = start_index | mask;
if (end_index > file_end)
end_index = file_end;
actor_pages = end_index - start_index + 1;
}
actor = actor_from_page_cache(actor_pages, target_page,
readahead_pages, nr_pages, start_index,
mapping);
if (!actor)
return -ENOMEM;
res = squashfs_read_data_async(inode->i_sb, block, bsize, NULL,
actor);
return res < 0 ? res : 0;
}