blob: 522f723af576b055b88f89f9c8ff3ca79c3513fa [file] [log] [blame]
/*
* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* Window Assisted Load Tracking (WALT) implementation credits:
* Srivatsa Vaddagiri, Steve Muckle, Syed Rameez Mustafa, Joonwoo Park,
* Pavan Kumar Kondeti, Olav Haugan
*
* 2016-03-06: Integration with EAS/refactoring by Vikram Mulukutla
* and Todd Kjos
*/
#include <linux/syscore_ops.h>
#include <linux/cpufreq.h>
#include <trace/events/sched.h>
#include "sched.h"
#include "walt.h"
#define WINDOW_STATS_RECENT 0
#define WINDOW_STATS_MAX 1
#define WINDOW_STATS_MAX_RECENT_AVG 2
#define WINDOW_STATS_AVG 3
#define WINDOW_STATS_INVALID_POLICY 4
#define EXITING_TASK_MARKER 0xdeaddead
static __read_mostly unsigned int walt_ravg_hist_size = 5;
static __read_mostly unsigned int walt_window_stats_policy =
WINDOW_STATS_MAX_RECENT_AVG;
static __read_mostly unsigned int walt_account_wait_time = 1;
static __read_mostly unsigned int walt_freq_account_wait_time = 0;
static __read_mostly unsigned int walt_io_is_busy = 0;
unsigned int sysctl_sched_walt_init_task_load_pct = 15;
/* 1 -> use PELT based load stats, 0 -> use window-based load stats */
unsigned int __read_mostly walt_disabled = 0;
static unsigned int max_possible_efficiency = 1024;
static unsigned int min_possible_efficiency = 1024;
/*
* Maximum possible frequency across all cpus. Task demand and cpu
* capacity (cpu_power) metrics are scaled in reference to it.
*/
static unsigned int max_possible_freq = 1;
/*
* Minimum possible max_freq across all cpus. This will be same as
* max_possible_freq on homogeneous systems and could be different from
* max_possible_freq on heterogenous systems. min_max_freq is used to derive
* capacity (cpu_power) of cpus.
*/
static unsigned int min_max_freq = 1;
static unsigned int max_load_scale_factor = 1024;
static unsigned int max_possible_capacity = 1024;
/* Mask of all CPUs that have max_possible_capacity */
static cpumask_t mpc_mask = CPU_MASK_ALL;
/* Window size (in ns) */
__read_mostly unsigned int walt_ravg_window = 20000000;
/* Min window size (in ns) = 10ms */
#ifdef CONFIG_HZ_300
/*
* Tick interval becomes to 3333333 due to
* rounding error when HZ=300.
*/
#define MIN_SCHED_RAVG_WINDOW (3333333 * 6)
#else
#define MIN_SCHED_RAVG_WINDOW 10000000
#endif
/* Max window size (in ns) = 1s */
#define MAX_SCHED_RAVG_WINDOW 1000000000
static unsigned int sync_cpu;
static ktime_t ktime_last;
static __read_mostly bool walt_ktime_suspended;
static unsigned int task_load(struct task_struct *p)
{
return p->ravg.demand;
}
void
walt_inc_cumulative_runnable_avg(struct rq *rq,
struct task_struct *p)
{
rq->cumulative_runnable_avg += p->ravg.demand;
}
void
walt_dec_cumulative_runnable_avg(struct rq *rq,
struct task_struct *p)
{
rq->cumulative_runnable_avg -= p->ravg.demand;
BUG_ON((s64)rq->cumulative_runnable_avg < 0);
}
static void
fixup_cumulative_runnable_avg(struct rq *rq,
struct task_struct *p, s64 task_load_delta)
{
rq->cumulative_runnable_avg += task_load_delta;
if ((s64)rq->cumulative_runnable_avg < 0)
panic("cra less than zero: tld: %lld, task_load(p) = %u\n",
task_load_delta, task_load(p));
}
u64 walt_ktime_clock(void)
{
if (unlikely(walt_ktime_suspended))
return ktime_to_ns(ktime_last);
return ktime_get_ns();
}
static void walt_resume(void)
{
walt_ktime_suspended = false;
}
static int walt_suspend(void)
{
ktime_last = ktime_get();
walt_ktime_suspended = true;
return 0;
}
static struct syscore_ops walt_syscore_ops = {
.resume = walt_resume,
.suspend = walt_suspend
};
static int __init walt_init_ops(void)
{
register_syscore_ops(&walt_syscore_ops);
return 0;
}
late_initcall(walt_init_ops);
void walt_inc_cfs_cumulative_runnable_avg(struct cfs_rq *cfs_rq,
struct task_struct *p)
{
cfs_rq->cumulative_runnable_avg += p->ravg.demand;
}
void walt_dec_cfs_cumulative_runnable_avg(struct cfs_rq *cfs_rq,
struct task_struct *p)
{
cfs_rq->cumulative_runnable_avg -= p->ravg.demand;
}
static int exiting_task(struct task_struct *p)
{
if (p->flags & PF_EXITING) {
if (p->ravg.sum_history[0] != EXITING_TASK_MARKER) {
p->ravg.sum_history[0] = EXITING_TASK_MARKER;
}
return 1;
}
return 0;
}
static int __init set_walt_ravg_window(char *str)
{
get_option(&str, &walt_ravg_window);
walt_disabled = (walt_ravg_window < MIN_SCHED_RAVG_WINDOW ||
walt_ravg_window > MAX_SCHED_RAVG_WINDOW);
return 0;
}
early_param("walt_ravg_window", set_walt_ravg_window);
static void
update_window_start(struct rq *rq, u64 wallclock)
{
s64 delta;
int nr_windows;
delta = wallclock - rq->window_start;
/* If the MPM global timer is cleared, set delta as 0 to avoid kernel BUG happening */
if (delta < 0) {
delta = 0;
WARN_ONCE(1, "WALT wallclock appears to have gone backwards or reset\n");
}
if (delta < walt_ravg_window)
return;
nr_windows = div64_u64(delta, walt_ravg_window);
rq->window_start += (u64)nr_windows * (u64)walt_ravg_window;
}
static u64 scale_exec_time(u64 delta, struct rq *rq)
{
unsigned int cur_freq = rq->cur_freq;
int sf;
if (unlikely(cur_freq > max_possible_freq))
cur_freq = rq->max_possible_freq;
/* round up div64 */
delta = div64_u64(delta * cur_freq + max_possible_freq - 1,
max_possible_freq);
sf = DIV_ROUND_UP(rq->efficiency * 1024, max_possible_efficiency);
delta *= sf;
delta >>= 10;
return delta;
}
static int cpu_is_waiting_on_io(struct rq *rq)
{
if (!walt_io_is_busy)
return 0;
return atomic_read(&rq->nr_iowait);
}
void walt_account_irqtime(int cpu, struct task_struct *curr,
u64 delta, u64 wallclock)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags, nr_windows;
u64 cur_jiffies_ts;
raw_spin_lock_irqsave(&rq->lock, flags);
/*
* cputime (wallclock) uses sched_clock so use the same here for
* consistency.
*/
delta += sched_clock() - wallclock;
cur_jiffies_ts = get_jiffies_64();
if (is_idle_task(curr))
walt_update_task_ravg(curr, rq, IRQ_UPDATE, walt_ktime_clock(),
delta);
nr_windows = cur_jiffies_ts - rq->irqload_ts;
if (nr_windows) {
if (nr_windows < 10) {
/* Decay CPU's irqload by 3/4 for each window. */
rq->avg_irqload *= (3 * nr_windows);
rq->avg_irqload = div64_u64(rq->avg_irqload,
4 * nr_windows);
} else {
rq->avg_irqload = 0;
}
rq->avg_irqload += rq->cur_irqload;
rq->cur_irqload = 0;
}
rq->cur_irqload += delta;
rq->irqload_ts = cur_jiffies_ts;
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
#define WALT_HIGH_IRQ_TIMEOUT 3
u64 walt_irqload(int cpu) {
struct rq *rq = cpu_rq(cpu);
s64 delta;
delta = get_jiffies_64() - rq->irqload_ts;
/*
* Current context can be preempted by irq and rq->irqload_ts can be
* updated by irq context so that delta can be negative.
* But this is okay and we can safely return as this means there
* was recent irq occurrence.
*/
if (delta < WALT_HIGH_IRQ_TIMEOUT)
return rq->avg_irqload;
else
return 0;
}
int walt_cpu_high_irqload(int cpu) {
return walt_irqload(cpu) >= sysctl_sched_walt_cpu_high_irqload;
}
static int account_busy_for_cpu_time(struct rq *rq, struct task_struct *p,
u64 irqtime, int event)
{
if (is_idle_task(p)) {
/* TASK_WAKE && TASK_MIGRATE is not possible on idle task! */
if (event == PICK_NEXT_TASK)
return 0;
/* PUT_PREV_TASK, TASK_UPDATE && IRQ_UPDATE are left */
return irqtime || cpu_is_waiting_on_io(rq);
}
if (event == TASK_WAKE)
return 0;
if (event == PUT_PREV_TASK || event == IRQ_UPDATE ||
event == TASK_UPDATE)
return 1;
/* Only TASK_MIGRATE && PICK_NEXT_TASK left */
return walt_freq_account_wait_time;
}
/*
* Account cpu activity in its busy time counters (rq->curr/prev_runnable_sum)
*/
static void update_cpu_busy_time(struct task_struct *p, struct rq *rq,
int event, u64 wallclock, u64 irqtime)
{
int new_window, nr_full_windows = 0;
int p_is_curr_task = (p == rq->curr);
u64 mark_start = p->ravg.mark_start;
u64 window_start = rq->window_start;
u32 window_size = walt_ravg_window;
u64 delta;
new_window = mark_start < window_start;
if (new_window) {
nr_full_windows = div64_u64((window_start - mark_start),
window_size);
if (p->ravg.active_windows < USHRT_MAX)
p->ravg.active_windows++;
}
/* Handle per-task window rollover. We don't care about the idle
* task or exiting tasks. */
if (new_window && !is_idle_task(p) && !exiting_task(p)) {
u32 curr_window = 0;
if (!nr_full_windows)
curr_window = p->ravg.curr_window;
p->ravg.prev_window = curr_window;
p->ravg.curr_window = 0;
}
if (!account_busy_for_cpu_time(rq, p, irqtime, event)) {
/* account_busy_for_cpu_time() = 0, so no update to the
* task's current window needs to be made. This could be
* for example
*
* - a wakeup event on a task within the current
* window (!new_window below, no action required),
* - switching to a new task from idle (PICK_NEXT_TASK)
* in a new window where irqtime is 0 and we aren't
* waiting on IO */
if (!new_window)
return;
/* A new window has started. The RQ demand must be rolled
* over if p is the current task. */
if (p_is_curr_task) {
u64 prev_sum = 0;
/* p is either idle task or an exiting task */
if (!nr_full_windows) {
prev_sum = rq->curr_runnable_sum;
}
rq->prev_runnable_sum = prev_sum;
rq->curr_runnable_sum = 0;
}
return;
}
if (!new_window) {
/* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. No rollover
* since we didn't start a new window. An example of this is
* when a task starts execution and then sleeps within the
* same window. */
if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq))
delta = wallclock - mark_start;
else
delta = irqtime;
delta = scale_exec_time(delta, rq);
rq->curr_runnable_sum += delta;
if (!is_idle_task(p) && !exiting_task(p))
p->ravg.curr_window += delta;
return;
}
if (!p_is_curr_task) {
/* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. A new window
* has also started, but p is not the current task, so the
* window is not rolled over - just split up and account
* as necessary into curr and prev. The window is only
* rolled over when a new window is processed for the current
* task.
*
* Irqtime can't be accounted by a task that isn't the
* currently running task. */
if (!nr_full_windows) {
/* A full window hasn't elapsed, account partial
* contribution to previous completed window. */
delta = scale_exec_time(window_start - mark_start, rq);
if (!exiting_task(p))
p->ravg.prev_window += delta;
} else {
/* Since at least one full window has elapsed,
* the contribution to the previous window is the
* full window (window_size). */
delta = scale_exec_time(window_size, rq);
if (!exiting_task(p))
p->ravg.prev_window = delta;
}
rq->prev_runnable_sum += delta;
/* Account piece of busy time in the current window. */
delta = scale_exec_time(wallclock - window_start, rq);
rq->curr_runnable_sum += delta;
if (!exiting_task(p))
p->ravg.curr_window = delta;
return;
}
if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq)) {
/* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. A new window
* has started and p is the current task so rollover is
* needed. If any of these three above conditions are true
* then this busy time can't be accounted as irqtime.
*
* Busy time for the idle task or exiting tasks need not
* be accounted.
*
* An example of this would be a task that starts execution
* and then sleeps once a new window has begun. */
if (!nr_full_windows) {
/* A full window hasn't elapsed, account partial
* contribution to previous completed window. */
delta = scale_exec_time(window_start - mark_start, rq);
if (!is_idle_task(p) && !exiting_task(p))
p->ravg.prev_window += delta;
delta += rq->curr_runnable_sum;
} else {
/* Since at least one full window has elapsed,
* the contribution to the previous window is the
* full window (window_size). */
delta = scale_exec_time(window_size, rq);
if (!is_idle_task(p) && !exiting_task(p))
p->ravg.prev_window = delta;
}
/*
* Rollover for normal runnable sum is done here by overwriting
* the values in prev_runnable_sum and curr_runnable_sum.
* Rollover for new task runnable sum has completed by previous
* if-else statement.
*/
rq->prev_runnable_sum = delta;
/* Account piece of busy time in the current window. */
delta = scale_exec_time(wallclock - window_start, rq);
rq->curr_runnable_sum = delta;
if (!is_idle_task(p) && !exiting_task(p))
p->ravg.curr_window = delta;
return;
}
if (irqtime) {
/* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. A new window
* has started and p is the current task so rollover is
* needed. The current task must be the idle task because
* irqtime is not accounted for any other task.
*
* Irqtime will be accounted each time we process IRQ activity
* after a period of idleness, so we know the IRQ busy time
* started at wallclock - irqtime. */
BUG_ON(!is_idle_task(p));
mark_start = wallclock - irqtime;
/* Roll window over. If IRQ busy time was just in the current
* window then that is all that need be accounted. */
rq->prev_runnable_sum = rq->curr_runnable_sum;
if (mark_start > window_start) {
rq->curr_runnable_sum = scale_exec_time(irqtime, rq);
return;
}
/* The IRQ busy time spanned multiple windows. Process the
* busy time preceding the current window start first. */
delta = window_start - mark_start;
if (delta > window_size)
delta = window_size;
delta = scale_exec_time(delta, rq);
rq->prev_runnable_sum += delta;
/* Process the remaining IRQ busy time in the current window. */
delta = wallclock - window_start;
rq->curr_runnable_sum = scale_exec_time(delta, rq);
return;
}
BUG();
}
static int account_busy_for_task_demand(struct task_struct *p, int event)
{
/* No need to bother updating task demand for exiting tasks
* or the idle task. */
if (exiting_task(p) || is_idle_task(p))
return 0;
/* When a task is waking up it is completing a segment of non-busy
* time. Likewise, if wait time is not treated as busy time, then
* when a task begins to run or is migrated, it is not running and
* is completing a segment of non-busy time. */
if (event == TASK_WAKE || (!walt_account_wait_time &&
(event == PICK_NEXT_TASK || event == TASK_MIGRATE)))
return 0;
return 1;
}
/*
* Called when new window is starting for a task, to record cpu usage over
* recently concluded window(s). Normally 'samples' should be 1. It can be > 1
* when, say, a real-time task runs without preemption for several windows at a
* stretch.
*/
static void update_history(struct rq *rq, struct task_struct *p,
u32 runtime, int samples, int event)
{
u32 *hist = &p->ravg.sum_history[0];
int ridx, widx;
u32 max = 0, avg, demand;
u64 sum = 0;
/* Ignore windows where task had no activity */
if (!runtime || is_idle_task(p) || exiting_task(p) || !samples)
goto done;
/* Push new 'runtime' value onto stack */
widx = walt_ravg_hist_size - 1;
ridx = widx - samples;
for (; ridx >= 0; --widx, --ridx) {
hist[widx] = hist[ridx];
sum += hist[widx];
if (hist[widx] > max)
max = hist[widx];
}
for (widx = 0; widx < samples && widx < walt_ravg_hist_size; widx++) {
hist[widx] = runtime;
sum += hist[widx];
if (hist[widx] > max)
max = hist[widx];
}
p->ravg.sum = 0;
if (walt_window_stats_policy == WINDOW_STATS_RECENT) {
demand = runtime;
} else if (walt_window_stats_policy == WINDOW_STATS_MAX) {
demand = max;
} else {
avg = div64_u64(sum, walt_ravg_hist_size);
if (walt_window_stats_policy == WINDOW_STATS_AVG)
demand = avg;
else
demand = max(avg, runtime);
}
/*
* A throttled deadline sched class task gets dequeued without
* changing p->on_rq. Since the dequeue decrements hmp stats
* avoid decrementing it here again.
*/
if (task_on_rq_queued(p) && (!task_has_dl_policy(p) ||
!p->dl.dl_throttled))
fixup_cumulative_runnable_avg(rq, p, demand);
p->ravg.demand = demand;
done:
trace_walt_update_history(rq, p, runtime, samples, event);
return;
}
static void add_to_task_demand(struct rq *rq, struct task_struct *p,
u64 delta)
{
delta = scale_exec_time(delta, rq);
p->ravg.sum += delta;
if (unlikely(p->ravg.sum > walt_ravg_window))
p->ravg.sum = walt_ravg_window;
}
/*
* Account cpu demand of task and/or update task's cpu demand history
*
* ms = p->ravg.mark_start;
* wc = wallclock
* ws = rq->window_start
*
* Three possibilities:
*
* a) Task event is contained within one window.
* window_start < mark_start < wallclock
*
* ws ms wc
* | | |
* V V V
* |---------------|
*
* In this case, p->ravg.sum is updated *iff* event is appropriate
* (ex: event == PUT_PREV_TASK)
*
* b) Task event spans two windows.
* mark_start < window_start < wallclock
*
* ms ws wc
* | | |
* V V V
* -----|-------------------
*
* In this case, p->ravg.sum is updated with (ws - ms) *iff* event
* is appropriate, then a new window sample is recorded followed
* by p->ravg.sum being set to (wc - ws) *iff* event is appropriate.
*
* c) Task event spans more than two windows.
*
* ms ws_tmp ws wc
* | | | |
* V V V V
* ---|-------|-------|-------|-------|------
* | |
* |<------ nr_full_windows ------>|
*
* In this case, p->ravg.sum is updated with (ws_tmp - ms) first *iff*
* event is appropriate, window sample of p->ravg.sum is recorded,
* 'nr_full_window' samples of window_size is also recorded *iff*
* event is appropriate and finally p->ravg.sum is set to (wc - ws)
* *iff* event is appropriate.
*
* IMPORTANT : Leave p->ravg.mark_start unchanged, as update_cpu_busy_time()
* depends on it!
*/
static void update_task_demand(struct task_struct *p, struct rq *rq,
int event, u64 wallclock)
{
u64 mark_start = p->ravg.mark_start;
u64 delta, window_start = rq->window_start;
int new_window, nr_full_windows;
u32 window_size = walt_ravg_window;
new_window = mark_start < window_start;
if (!account_busy_for_task_demand(p, event)) {
if (new_window)
/* If the time accounted isn't being accounted as
* busy time, and a new window started, only the
* previous window need be closed out with the
* pre-existing demand. Multiple windows may have
* elapsed, but since empty windows are dropped,
* it is not necessary to account those. */
update_history(rq, p, p->ravg.sum, 1, event);
return;
}
if (!new_window) {
/* The simple case - busy time contained within the existing
* window. */
add_to_task_demand(rq, p, wallclock - mark_start);
return;
}
/* Busy time spans at least two windows. Temporarily rewind
* window_start to first window boundary after mark_start. */
delta = window_start - mark_start;
nr_full_windows = div64_u64(delta, window_size);
window_start -= (u64)nr_full_windows * (u64)window_size;
/* Process (window_start - mark_start) first */
add_to_task_demand(rq, p, window_start - mark_start);
/* Push new sample(s) into task's demand history */
update_history(rq, p, p->ravg.sum, 1, event);
if (nr_full_windows)
update_history(rq, p, scale_exec_time(window_size, rq),
nr_full_windows, event);
/* Roll window_start back to current to process any remainder
* in current window. */
window_start += (u64)nr_full_windows * (u64)window_size;
/* Process (wallclock - window_start) next */
mark_start = window_start;
add_to_task_demand(rq, p, wallclock - mark_start);
}
/* Reflect task activity on its demand and cpu's busy time statistics */
void walt_update_task_ravg(struct task_struct *p, struct rq *rq,
int event, u64 wallclock, u64 irqtime)
{
if (walt_disabled || !rq->window_start)
return;
lockdep_assert_held(&rq->lock);
update_window_start(rq, wallclock);
if (!p->ravg.mark_start)
goto done;
update_task_demand(p, rq, event, wallclock);
update_cpu_busy_time(p, rq, event, wallclock, irqtime);
done:
trace_walt_update_task_ravg(p, rq, event, wallclock, irqtime);
p->ravg.mark_start = wallclock;
}
unsigned long __weak arch_get_cpu_efficiency(int cpu)
{
return SCHED_CAPACITY_SCALE;
}
void walt_init_cpu_efficiency(void)
{
int i, efficiency;
unsigned int max = 0, min = UINT_MAX;
for_each_possible_cpu(i) {
efficiency = arch_get_cpu_efficiency(i);
cpu_rq(i)->efficiency = efficiency;
if (efficiency > max)
max = efficiency;
if (efficiency < min)
min = efficiency;
}
if (max)
max_possible_efficiency = max;
if (min)
min_possible_efficiency = min;
}
static void reset_task_stats(struct task_struct *p)
{
u32 sum = 0;
if (exiting_task(p))
sum = EXITING_TASK_MARKER;
memset(&p->ravg, 0, sizeof(struct ravg));
/* Retain EXITING_TASK marker */
p->ravg.sum_history[0] = sum;
}
void walt_mark_task_starting(struct task_struct *p)
{
u64 wallclock;
struct rq *rq = task_rq(p);
if (!rq->window_start) {
reset_task_stats(p);
return;
}
wallclock = walt_ktime_clock();
p->ravg.mark_start = wallclock;
}
void walt_set_window_start(struct rq *rq)
{
int cpu = cpu_of(rq);
struct rq *sync_rq = cpu_rq(sync_cpu);
if (rq->window_start)
return;
if (cpu == sync_cpu) {
rq->window_start = walt_ktime_clock();
} else {
raw_spin_unlock(&rq->lock);
double_rq_lock(rq, sync_rq);
rq->window_start = cpu_rq(sync_cpu)->window_start;
rq->curr_runnable_sum = rq->prev_runnable_sum = 0;
raw_spin_unlock(&sync_rq->lock);
}
rq->curr->ravg.mark_start = rq->window_start;
}
void walt_migrate_sync_cpu(int cpu)
{
if (cpu == sync_cpu)
sync_cpu = smp_processor_id();
}
void walt_fixup_busy_time(struct task_struct *p, int new_cpu)
{
struct rq *src_rq = task_rq(p);
struct rq *dest_rq = cpu_rq(new_cpu);
u64 wallclock;
if (!p->on_rq && p->state != TASK_WAKING)
return;
if (exiting_task(p)) {
return;
}
if (p->state == TASK_WAKING)
double_rq_lock(src_rq, dest_rq);
wallclock = walt_ktime_clock();
walt_update_task_ravg(task_rq(p)->curr, task_rq(p),
TASK_UPDATE, wallclock, 0);
walt_update_task_ravg(dest_rq->curr, dest_rq,
TASK_UPDATE, wallclock, 0);
walt_update_task_ravg(p, task_rq(p), TASK_MIGRATE, wallclock, 0);
if (p->ravg.curr_window) {
src_rq->curr_runnable_sum -= p->ravg.curr_window;
dest_rq->curr_runnable_sum += p->ravg.curr_window;
}
if (p->ravg.prev_window) {
src_rq->prev_runnable_sum -= p->ravg.prev_window;
dest_rq->prev_runnable_sum += p->ravg.prev_window;
}
if ((s64)src_rq->prev_runnable_sum < 0) {
src_rq->prev_runnable_sum = 0;
WARN_ON(1);
}
if ((s64)src_rq->curr_runnable_sum < 0) {
src_rq->curr_runnable_sum = 0;
WARN_ON(1);
}
trace_walt_migration_update_sum(src_rq, p);
trace_walt_migration_update_sum(dest_rq, p);
if (p->state == TASK_WAKING)
double_rq_unlock(src_rq, dest_rq);
}
/*
* Return 'capacity' of a cpu in reference to "least" efficient cpu, such that
* least efficient cpu gets capacity of 1024
*/
static unsigned long capacity_scale_cpu_efficiency(int cpu)
{
return (1024 * cpu_rq(cpu)->efficiency) / min_possible_efficiency;
}
/*
* Return 'capacity' of a cpu in reference to cpu with lowest max_freq
* (min_max_freq), such that one with lowest max_freq gets capacity of 1024.
*/
static unsigned long capacity_scale_cpu_freq(int cpu)
{
return (1024 * cpu_rq(cpu)->max_freq) / min_max_freq;
}
/*
* Return load_scale_factor of a cpu in reference to "most" efficient cpu, so
* that "most" efficient cpu gets a load_scale_factor of 1
*/
static unsigned long load_scale_cpu_efficiency(int cpu)
{
return DIV_ROUND_UP(1024 * max_possible_efficiency,
cpu_rq(cpu)->efficiency);
}
/*
* Return load_scale_factor of a cpu in reference to cpu with best max_freq
* (max_possible_freq), so that one with best max_freq gets a load_scale_factor
* of 1.
*/
static unsigned long load_scale_cpu_freq(int cpu)
{
return DIV_ROUND_UP(1024 * max_possible_freq, cpu_rq(cpu)->max_freq);
}
static int compute_capacity(int cpu)
{
int capacity = 1024;
capacity *= capacity_scale_cpu_efficiency(cpu);
capacity >>= 10;
capacity *= capacity_scale_cpu_freq(cpu);
capacity >>= 10;
return capacity;
}
static int compute_load_scale_factor(int cpu)
{
int load_scale = 1024;
/*
* load_scale_factor accounts for the fact that task load
* is in reference to "best" performing cpu. Task's load will need to be
* scaled (up) by a factor to determine suitability to be placed on a
* (little) cpu.
*/
load_scale *= load_scale_cpu_efficiency(cpu);
load_scale >>= 10;
load_scale *= load_scale_cpu_freq(cpu);
load_scale >>= 10;
return load_scale;
}
static int cpufreq_notifier_policy(struct notifier_block *nb,
unsigned long val, void *data)
{
struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
int i, update_max = 0;
u64 highest_mpc = 0, highest_mplsf = 0;
const struct cpumask *cpus = policy->related_cpus;
unsigned int orig_min_max_freq = min_max_freq;
unsigned int orig_max_possible_freq = max_possible_freq;
/* Initialized to policy->max in case policy->related_cpus is empty! */
unsigned int orig_max_freq = policy->max;
if (val != CPUFREQ_NOTIFY)
return 0;
for_each_cpu(i, policy->related_cpus) {
cpumask_copy(&cpu_rq(i)->freq_domain_cpumask,
policy->related_cpus);
orig_max_freq = cpu_rq(i)->max_freq;
cpu_rq(i)->min_freq = policy->min;
cpu_rq(i)->max_freq = policy->max;
cpu_rq(i)->cur_freq = policy->cur;
cpu_rq(i)->max_possible_freq = policy->cpuinfo.max_freq;
}
max_possible_freq = max(max_possible_freq, policy->cpuinfo.max_freq);
if (min_max_freq == 1)
min_max_freq = UINT_MAX;
min_max_freq = min(min_max_freq, policy->cpuinfo.max_freq);
BUG_ON(!min_max_freq);
BUG_ON(!policy->max);
/* Changes to policy other than max_freq don't require any updates */
if (orig_max_freq == policy->max)
return 0;
/*
* A changed min_max_freq or max_possible_freq (possible during bootup)
* needs to trigger re-computation of load_scale_factor and capacity for
* all possible cpus (even those offline). It also needs to trigger
* re-computation of nr_big_task count on all online cpus.
*
* A changed rq->max_freq otoh needs to trigger re-computation of
* load_scale_factor and capacity for just the cluster of cpus involved.
* Since small task definition depends on max_load_scale_factor, a
* changed load_scale_factor of one cluster could influence
* classification of tasks in another cluster. Hence a changed
* rq->max_freq will need to trigger re-computation of nr_big_task
* count on all online cpus.
*
* While it should be sufficient for nr_big_tasks to be
* re-computed for only online cpus, we have inadequate context
* information here (in policy notifier) with regard to hotplug-safety
* context in which notification is issued. As a result, we can't use
* get_online_cpus() here, as it can lead to deadlock. Until cpufreq is
* fixed up to issue notification always in hotplug-safe context,
* re-compute nr_big_task for all possible cpus.
*/
if (orig_min_max_freq != min_max_freq ||
orig_max_possible_freq != max_possible_freq) {
cpus = cpu_possible_mask;
update_max = 1;
}
/*
* Changed load_scale_factor can trigger reclassification of tasks as
* big or small. Make this change "atomic" so that tasks are accounted
* properly due to changed load_scale_factor
*/
for_each_cpu(i, cpus) {
struct rq *rq = cpu_rq(i);
rq->capacity = compute_capacity(i);
rq->load_scale_factor = compute_load_scale_factor(i);
if (update_max) {
u64 mpc, mplsf;
mpc = div_u64(((u64) rq->capacity) *
rq->max_possible_freq, rq->max_freq);
rq->max_possible_capacity = (int) mpc;
mplsf = div_u64(((u64) rq->load_scale_factor) *
rq->max_possible_freq, rq->max_freq);
if (mpc > highest_mpc) {
highest_mpc = mpc;
cpumask_clear(&mpc_mask);
cpumask_set_cpu(i, &mpc_mask);
} else if (mpc == highest_mpc) {
cpumask_set_cpu(i, &mpc_mask);
}
if (mplsf > highest_mplsf)
highest_mplsf = mplsf;
}
}
if (update_max) {
max_possible_capacity = highest_mpc;
max_load_scale_factor = highest_mplsf;
}
return 0;
}
static int cpufreq_notifier_trans(struct notifier_block *nb,
unsigned long val, void *data)
{
struct cpufreq_freqs *freq = (struct cpufreq_freqs *)data;
unsigned int cpu = freq->cpu, new_freq = freq->new;
unsigned long flags;
int i;
if (val != CPUFREQ_POSTCHANGE)
return 0;
BUG_ON(!new_freq);
if (cpu_rq(cpu)->cur_freq == new_freq)
return 0;
for_each_cpu(i, &cpu_rq(cpu)->freq_domain_cpumask) {
struct rq *rq = cpu_rq(i);
raw_spin_lock_irqsave(&rq->lock, flags);
walt_update_task_ravg(rq->curr, rq, TASK_UPDATE,
walt_ktime_clock(), 0);
rq->cur_freq = new_freq;
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
return 0;
}
static struct notifier_block notifier_policy_block = {
.notifier_call = cpufreq_notifier_policy
};
static struct notifier_block notifier_trans_block = {
.notifier_call = cpufreq_notifier_trans
};
static int register_sched_callback(void)
{
int ret;
ret = cpufreq_register_notifier(&notifier_policy_block,
CPUFREQ_POLICY_NOTIFIER);
if (!ret)
ret = cpufreq_register_notifier(&notifier_trans_block,
CPUFREQ_TRANSITION_NOTIFIER);
return 0;
}
/*
* cpufreq callbacks can be registered at core_initcall or later time.
* Any registration done prior to that is "forgotten" by cpufreq. See
* initialization of variable init_cpufreq_transition_notifier_list_called
* for further information.
*/
core_initcall(register_sched_callback);
void walt_init_new_task_load(struct task_struct *p)
{
int i;
u32 init_load_windows =
div64_u64((u64)sysctl_sched_walt_init_task_load_pct *
(u64)walt_ravg_window, 100);
u32 init_load_pct = current->init_load_pct;
p->init_load_pct = 0;
memset(&p->ravg, 0, sizeof(struct ravg));
if (init_load_pct) {
init_load_windows = div64_u64((u64)init_load_pct *
(u64)walt_ravg_window, 100);
}
p->ravg.demand = init_load_windows;
for (i = 0; i < RAVG_HIST_SIZE_MAX; ++i)
p->ravg.sum_history[i] = init_load_windows;
}