blob: f0b9b46047be801839b9419bc560b3e6993a1236 [file] [log] [blame]
/*
* Copyright (C) 2012 Intel, Inc.
* Copyright (C) 2013 Intel, Inc.
* Copyright (C) 2014 Linaro Limited
* Copyright (C) 2011-2016 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/* This source file contains the implementation of a special device driver
* that intends to provide a *very* fast communication channel between the
* guest system and the QEMU emulator.
*
* Usage from the guest is simply the following (error handling simplified):
*
* int fd = open("/dev/qemu_pipe",O_RDWR);
* .... write() or read() through the pipe.
*
* This driver doesn't deal with the exact protocol used during the session.
* It is intended to be as simple as something like:
*
* // do this _just_ after opening the fd to connect to a specific
* // emulator service.
* const char* msg = "<pipename>";
* if (write(fd, msg, strlen(msg)+1) < 0) {
* ... could not connect to <pipename> service
* close(fd);
* }
*
* // after this, simply read() and write() to communicate with the
* // service. Exact protocol details left as an exercise to the reader.
*
* This driver is very fast because it doesn't copy any data through
* intermediate buffers, since the emulator is capable of translating
* guest user addresses into host ones.
*
* Note that we must however ensure that each user page involved in the
* exchange is properly mapped during a transfer.
*/
#include <linux/printk.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/bug.h>
#include <uapi/linux/goldfish/goldfish_dma.h>
#include "goldfish_pipe.h"
/*
* Update this when something changes in the driver's behavior so the host
* can benefit from knowing it
* Notes:
* version 2 was an intermediate release and isn't supported anymore.
* version 3 is goldfish_pipe_v2 without DMA support.
version 4 (current) is goldfish_pipe_v2 with DMA support.
*/
enum {
PIPE_DRIVER_VERSION = 4,
PIPE_CURRENT_DEVICE_VERSION = 2
};
/* IMPORTANT: The following constants must match the ones used and defined
* in external/qemu/hw/goldfish_pipe.c in the Android source tree.
*/
/* List of bitflags returned in status of CMD_POLL command */
enum PipePollFlags {
PIPE_POLL_IN = 1 << 0,
PIPE_POLL_OUT = 1 << 1,
PIPE_POLL_HUP = 1 << 2
};
/*
* Possible status values used to signal errors - see
* goldfish_pipe_error_convert
*/
enum PipeErrors {
PIPE_ERROR_INVAL = -1,
PIPE_ERROR_AGAIN = -2,
PIPE_ERROR_NOMEM = -3,
PIPE_ERROR_IO = -4
};
/* Bit-flags used to signal events from the emulator */
enum PipeWakeFlags {
PIPE_WAKE_CLOSED = BIT(0), /* emulator closed pipe */
PIPE_WAKE_READ = BIT(1), /* pipe can now be read from */
PIPE_WAKE_WRITE = BIT(2), /* pipe can now be written to */
};
/* Bit flags for the 'flags' field */
enum PipeFlagsBits {
BIT_CLOSED_ON_HOST = 0, /* pipe closed by host */
BIT_WAKE_ON_WRITE = 1, /* want to be woken on writes */
BIT_WAKE_ON_READ = 2, /* want to be woken on reads */
};
enum PipeRegs {
PIPE_REG_CMD = 0,
PIPE_REG_SIGNAL_BUFFER_HIGH = 4,
PIPE_REG_SIGNAL_BUFFER = 8,
PIPE_REG_SIGNAL_BUFFER_COUNT = 12,
PIPE_REG_OPEN_BUFFER_HIGH = 20,
PIPE_REG_OPEN_BUFFER = 24,
PIPE_REG_VERSION = 36,
PIPE_REG_GET_SIGNALLED = 48,
};
enum PipeCmdCode {
PIPE_CMD_OPEN = 1, /* to be used by the pipe device itself */
PIPE_CMD_CLOSE,
PIPE_CMD_POLL,
PIPE_CMD_WRITE,
PIPE_CMD_WAKE_ON_WRITE,
PIPE_CMD_READ,
PIPE_CMD_WAKE_ON_READ,
/*
* TODO(zyy): implement a deferred read/write execution to allow
* parallel processing of pipe operations on the host.
*/
PIPE_CMD_WAKE_ON_DONE_IO,
PIPE_CMD_DMA_HOST_MAP,
PIPE_CMD_DMA_HOST_UNMAP,
};
enum {
MAX_BUFFERS_PER_COMMAND = 336,
MAX_SIGNALLED_PIPES = 64,
INITIAL_PIPES_CAPACITY = 64,
DMA_REGION_MIN_SIZE = PAGE_SIZE,
DMA_REGION_MAX_SIZE = 256 << 20
};
struct goldfish_pipe_dev;
struct goldfish_pipe;
struct goldfish_pipe_command;
/* A per-pipe command structure, shared with the host */
struct goldfish_pipe_command {
s32 cmd; /* PipeCmdCode, guest -> host */
s32 id; /* pipe id, guest -> host */
s32 status; /* command execution status, host -> guest */
s32 reserved; /* to pad to 64-bit boundary */
union {
/* Parameters for PIPE_CMD_{READ,WRITE} */
struct {
/* number of buffers, guest -> host */
u32 buffers_count;
/* number of consumed bytes, host -> guest */
s32 consumed_size;
/* buffer pointers, guest -> host */
u64 ptrs[MAX_BUFFERS_PER_COMMAND];
/* buffer sizes, guest -> host */
u32 sizes[MAX_BUFFERS_PER_COMMAND];
} rw_params;
/* Parameters for PIPE_CMD_DMA_HOST_(UN)MAP */
struct {
u64 dma_paddr;
u64 sz;
} dma_maphost_params;
};
};
/* A single signalled pipe information */
struct signalled_pipe_buffer {
u32 id;
u32 flags;
};
/* Parameters for the PIPE_CMD_OPEN command */
struct open_command_param {
u64 command_buffer_ptr;
u32 rw_params_max_count;
};
/* Device-level set of buffers shared with the host */
struct goldfish_pipe_dev_buffers {
struct open_command_param open_command_params;
struct signalled_pipe_buffer
signalled_pipe_buffers[MAX_SIGNALLED_PIPES];
};
/*
* The main data structure tracking state is
* struct goldfish_dma_context, which is included
* as an extra pointer field in struct goldfish_pipe.
* Each such context is associated with possibly
* one physical address and size describing the
* allocated DMA region, and only one allocation
* is allowed for each pipe fd. Further allocations
* require more open()'s of pipe fd's.
*/
struct goldfish_dma_context {
struct device *pdev_dev; /* pointer to feed to dma_*_coherent */
void *dma_vaddr; /* kernel vaddr of dma region */
size_t dma_size; /* size of dma region */
dma_addr_t phys_begin; /* paddr of dma region */
dma_addr_t phys_end; /* paddr of dma region + dma_size */
};
/* This data type models a given pipe instance */
struct goldfish_pipe {
/* pipe ID - index into goldfish_pipe_dev::pipes array */
u32 id;
/* The wake flags pipe is waiting for.
* Note: not protected with any lock, uses atomic operations and
* barriers to make it thread-safe.
*/
unsigned long flags;
/* wake flags host have signalled,
* protected by goldfish_pipe_dev::lock
*/
unsigned long signalled_flags;
/* A pointer to command buffer */
struct goldfish_pipe_command *command_buffer;
/* doubly linked list of signalled pipes,
* protected by goldfish_pipe_dev::lock
*/
struct goldfish_pipe *prev_signalled;
struct goldfish_pipe *next_signalled;
/*
* A pipe's own lock. Protects the following:
* - *command_buffer - makes sure a command can safely write its
* parameters to the host and read the results back.
*/
struct mutex lock;
/* A wake queue for sleeping until host signals an event */
wait_queue_head_t wake_queue;
/* Pointer to the parent goldfish_pipe_dev instance */
struct goldfish_pipe_dev *dev;
/* Holds information about reserved DMA region for this pipe */
struct goldfish_dma_context *dma;
};
struct goldfish_pipe_dev goldfish_pipe_dev;
static int goldfish_pipe_cmd_locked(
struct goldfish_pipe *pipe, enum PipeCmdCode cmd)
{
pipe->command_buffer->cmd = cmd;
/* failure by default */
pipe->command_buffer->status = PIPE_ERROR_INVAL;
writel(pipe->id, pipe->dev->base + PIPE_REG_CMD);
return pipe->command_buffer->status;
}
static int goldfish_pipe_cmd(struct goldfish_pipe *pipe, enum PipeCmdCode cmd)
{
int status;
if (mutex_lock_interruptible(&pipe->lock))
return PIPE_ERROR_IO;
status = goldfish_pipe_cmd_locked(pipe, cmd);
mutex_unlock(&pipe->lock);
return status;
}
/*
* This function converts an error code returned by the emulator through
* the PIPE_REG_STATUS i/o register into a valid negative errno value.
*/
static int goldfish_pipe_error_convert(int status)
{
switch (status) {
case PIPE_ERROR_AGAIN:
return -EAGAIN;
case PIPE_ERROR_NOMEM:
return -ENOMEM;
case PIPE_ERROR_IO:
return -EIO;
default:
return -EINVAL;
}
}
static int pin_user_pages(unsigned long first_page, unsigned long last_page,
unsigned last_page_size, int is_write,
struct page *pages[MAX_BUFFERS_PER_COMMAND],
unsigned *iter_last_page_size)
{
int ret;
int requested_pages = ((last_page - first_page) >> PAGE_SHIFT) + 1;
if (requested_pages > MAX_BUFFERS_PER_COMMAND) {
requested_pages = MAX_BUFFERS_PER_COMMAND;
*iter_last_page_size = PAGE_SIZE;
} else {
*iter_last_page_size = last_page_size;
}
ret = get_user_pages_fast(
first_page, requested_pages, !is_write, pages);
if (ret <= 0)
return -EFAULT;
if (ret < requested_pages)
*iter_last_page_size = PAGE_SIZE;
return ret;
}
static void release_user_pages(struct page **pages, int pages_count,
int is_write, s32 consumed_size)
{
int i;
for (i = 0; i < pages_count; i++) {
if (!is_write && consumed_size > 0)
set_page_dirty(pages[i]);
put_page(pages[i]);
}
}
/* Populate the call parameters, merging adjacent pages together */
static void populate_rw_params(
struct page **pages, int pages_count,
unsigned long address, unsigned long address_end,
unsigned long first_page, unsigned long last_page,
unsigned iter_last_page_size, int is_write,
struct goldfish_pipe_command *command)
{
/*
* Process the first page separately - it's the only page that
* needs special handling for its start address.
*/
unsigned long xaddr = page_to_phys(pages[0]);
unsigned long xaddr_prev = xaddr;
int buffer_idx = 0;
int i = 1;
int size_on_page = first_page == last_page
? (int)(address_end - address)
: (PAGE_SIZE - (address & ~PAGE_MASK));
command->rw_params.ptrs[0] = (u64)(xaddr | (address & ~PAGE_MASK));
command->rw_params.sizes[0] = size_on_page;
for (; i < pages_count; ++i) {
xaddr = page_to_phys(pages[i]);
size_on_page = (i == pages_count - 1) ?
iter_last_page_size : PAGE_SIZE;
if (xaddr == xaddr_prev + PAGE_SIZE) {
command->rw_params.sizes[buffer_idx] += size_on_page;
} else {
++buffer_idx;
command->rw_params.ptrs[buffer_idx] = (u64)xaddr;
command->rw_params.sizes[buffer_idx] = size_on_page;
}
xaddr_prev = xaddr;
}
command->rw_params.buffers_count = buffer_idx + 1;
}
static int transfer_max_buffers(struct goldfish_pipe *pipe,
unsigned long address, unsigned long address_end, int is_write,
unsigned long last_page, unsigned int last_page_size,
s32 *consumed_size, int *status)
{
struct page *pages[MAX_BUFFERS_PER_COMMAND];
unsigned long first_page = address & PAGE_MASK;
unsigned int iter_last_page_size;
int pages_count = pin_user_pages(first_page, last_page,
last_page_size, is_write,
pages, &iter_last_page_size);
if (pages_count < 0)
return pages_count;
/* Serialize access to the pipe command buffers */
if (mutex_lock_interruptible(&pipe->lock))
return -ERESTARTSYS;
populate_rw_params(pages, pages_count, address, address_end,
first_page, last_page, iter_last_page_size, is_write,
pipe->command_buffer);
/* Transfer the data */
*status = goldfish_pipe_cmd_locked(
pipe,
is_write ? PIPE_CMD_WRITE : PIPE_CMD_READ);
*consumed_size = pipe->command_buffer->rw_params.consumed_size;
mutex_unlock(&pipe->lock);
release_user_pages(pages, pages_count, is_write, *consumed_size);
return 0;
}
static int wait_for_host_signal(struct goldfish_pipe *pipe, int is_write)
{
u32 wakeBit = is_write ? BIT_WAKE_ON_WRITE : BIT_WAKE_ON_READ;
u32 cmdBit = is_write ? PIPE_CMD_WAKE_ON_WRITE : PIPE_CMD_WAKE_ON_READ;
set_bit(wakeBit, &pipe->flags);
/* Tell the emulator we're going to wait for a wake event */
goldfish_pipe_cmd(pipe, cmdBit);
while (test_bit(wakeBit, &pipe->flags)) {
if (wait_event_interruptible(
pipe->wake_queue,
!test_bit(wakeBit, &pipe->flags)))
return -ERESTARTSYS;
if (test_bit(BIT_CLOSED_ON_HOST, &pipe->flags))
return -EIO;
}
return 0;
}
static ssize_t goldfish_pipe_read_write(struct file *filp,
char __user *buffer, size_t bufflen, int is_write)
{
struct goldfish_pipe *pipe = filp->private_data;
int count = 0, ret = -EINVAL;
unsigned long address, address_end, last_page;
unsigned int last_page_size;
struct device *pdev_dev;
/* If the emulator already closed the pipe, no need to go further */
if (unlikely(test_bit(BIT_CLOSED_ON_HOST, &pipe->flags)))
return -EIO;
/* Null reads or writes succeeds */
if (unlikely(bufflen == 0))
return 0;
/* Check the buffer range for access */
if (unlikely(!access_ok(is_write ? VERIFY_WRITE : VERIFY_READ,
buffer, bufflen)))
return -EFAULT;
address = (unsigned long)buffer;
address_end = address + bufflen;
last_page = (address_end - 1) & PAGE_MASK;
last_page_size = ((address_end - 1) & ~PAGE_MASK) + 1;
pdev_dev = pipe->dev->pdev_dev;
while (address < address_end) {
s32 consumed_size;
int status;
ret = transfer_max_buffers(pipe, address, address_end, is_write,
last_page, last_page_size, &consumed_size, &status);
if (ret < 0)
break;
if (consumed_size > 0) {
/* No matter what's the status, we've transfered
* something
*/
count += consumed_size;
address += consumed_size;
}
if (status > 0)
continue;
if (status == 0) {
/* EOF */
ret = 0;
break;
}
if (count > 0) {
/*
* An error occured, but we already transfered
* something on one of the previous iterations.
* Just return what we already copied and log this
* err.
*/
if (status != PIPE_ERROR_AGAIN)
dev_err_ratelimited(pdev_dev,
"goldfish_pipe: backend error %d on %s\n",
status, is_write ? "write" : "read");
break;
}
/*
* If the error is not PIPE_ERROR_AGAIN, or if we are in
* non-blocking mode, just return the error code.
*/
if (status != PIPE_ERROR_AGAIN
|| (filp->f_flags & O_NONBLOCK) != 0) {
ret = goldfish_pipe_error_convert(status);
break;
}
status = wait_for_host_signal(pipe, is_write);
if (status < 0)
return status;
}
if (count > 0)
return count;
return ret;
}
static ssize_t goldfish_pipe_read(struct file *filp, char __user *buffer,
size_t bufflen, loff_t *ppos)
{
return goldfish_pipe_read_write(filp, buffer, bufflen,
/* is_write */ 0);
}
static ssize_t goldfish_pipe_write(struct file *filp,
const char __user *buffer, size_t bufflen,
loff_t *ppos)
{
return goldfish_pipe_read_write(filp,
/* cast away the const */(char __user *)buffer, bufflen,
/* is_write */ 1);
}
static unsigned int goldfish_pipe_poll(struct file *filp, poll_table *wait)
{
struct goldfish_pipe *pipe = filp->private_data;
unsigned int mask = 0;
int status;
poll_wait(filp, &pipe->wake_queue, wait);
status = goldfish_pipe_cmd(pipe, PIPE_CMD_POLL);
if (status < 0)
return -ERESTARTSYS;
if (status & PIPE_POLL_IN)
mask |= POLLIN | POLLRDNORM;
if (status & PIPE_POLL_OUT)
mask |= POLLOUT | POLLWRNORM;
if (status & PIPE_POLL_HUP)
mask |= POLLHUP;
if (test_bit(BIT_CLOSED_ON_HOST, &pipe->flags))
mask |= POLLERR;
return mask;
}
static int signalled_pipes_add_locked(struct goldfish_pipe_dev *dev,
u32 id, u32 flags)
{
struct goldfish_pipe *pipe;
if (id >= dev->pipes_capacity)
return -EINVAL;
pipe = dev->pipes[id];
if (!pipe)
return -ENXIO;
pipe->signalled_flags |= flags;
if (pipe->prev_signalled || pipe->next_signalled
|| dev->first_signalled_pipe == pipe)
return 0; /* already in the list */
pipe->next_signalled = dev->first_signalled_pipe;
if (dev->first_signalled_pipe)
dev->first_signalled_pipe->prev_signalled = pipe;
dev->first_signalled_pipe = pipe;
return 0;
}
static void signalled_pipes_remove_locked(struct goldfish_pipe_dev *dev,
struct goldfish_pipe *pipe) {
if (pipe->prev_signalled)
pipe->prev_signalled->next_signalled = pipe->next_signalled;
if (pipe->next_signalled)
pipe->next_signalled->prev_signalled = pipe->prev_signalled;
if (pipe == dev->first_signalled_pipe)
dev->first_signalled_pipe = pipe->next_signalled;
pipe->prev_signalled = NULL;
pipe->next_signalled = NULL;
}
static struct goldfish_pipe *signalled_pipes_pop_front(
struct goldfish_pipe_dev *dev,
int *wakes)
{
struct goldfish_pipe *pipe;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
pipe = dev->first_signalled_pipe;
if (pipe) {
*wakes = pipe->signalled_flags;
pipe->signalled_flags = 0;
/* This is an optimized version of
* signalled_pipes_remove_locked() - we want to make it as fast
* as possible to wake the sleeping pipe operations faster.
*/
dev->first_signalled_pipe = pipe->next_signalled;
if (dev->first_signalled_pipe)
dev->first_signalled_pipe->prev_signalled = NULL;
pipe->next_signalled = NULL;
}
spin_unlock_irqrestore(&dev->lock, flags);
return pipe;
}
static void goldfish_interrupt_task(unsigned long unused)
{
/* Iterate over the signalled pipes and wake them one by one */
struct goldfish_pipe *pipe;
int wakes;
while ((pipe = signalled_pipes_pop_front(&goldfish_pipe_dev, &wakes)) !=
NULL) {
if (wakes & PIPE_WAKE_CLOSED) {
pipe->flags = 1 << BIT_CLOSED_ON_HOST;
} else {
if (wakes & PIPE_WAKE_READ)
clear_bit(BIT_WAKE_ON_READ, &pipe->flags);
if (wakes & PIPE_WAKE_WRITE)
clear_bit(BIT_WAKE_ON_WRITE, &pipe->flags);
}
/*
* wake_up_interruptible() implies a write barrier, so don't
* explicitly add another one here.
*/
wake_up_interruptible(&pipe->wake_queue);
}
}
DECLARE_TASKLET(goldfish_interrupt_tasklet, goldfish_interrupt_task, 0);
/*
* The general idea of the interrupt handling:
*
* 1. device raises an interrupt if there's at least one signalled pipe
* 2. IRQ handler reads the signalled pipes and their count from the device
* 3. device writes them into a shared buffer and returns the count
* it only resets the IRQ if it has returned all signalled pipes,
* otherwise it leaves it raised, so IRQ handler will be called
* again for the next chunk
* 4. IRQ handler adds all returned pipes to the device's signalled pipes list
* 5. IRQ handler launches a tasklet to process the signalled pipes from the
* list in a separate context
*/
static irqreturn_t goldfish_pipe_interrupt(int irq, void *dev_id)
{
u32 count;
u32 i;
unsigned long flags;
struct goldfish_pipe_dev *dev = dev_id;
if (dev != &goldfish_pipe_dev)
return IRQ_NONE;
/* Request the signalled pipes from the device */
spin_lock_irqsave(&dev->lock, flags);
count = readl(dev->base + PIPE_REG_GET_SIGNALLED);
if (count == 0) {
spin_unlock_irqrestore(&dev->lock, flags);
return IRQ_NONE;
}
if (count > MAX_SIGNALLED_PIPES)
count = MAX_SIGNALLED_PIPES;
for (i = 0; i < count; ++i)
signalled_pipes_add_locked(dev,
dev->buffers->signalled_pipe_buffers[i].id,
dev->buffers->signalled_pipe_buffers[i].flags);
spin_unlock_irqrestore(&dev->lock, flags);
tasklet_schedule(&goldfish_interrupt_tasklet);
return IRQ_HANDLED;
}
static int get_free_pipe_id_locked(struct goldfish_pipe_dev *dev)
{
int id;
for (id = 0; id < dev->pipes_capacity; ++id)
if (!dev->pipes[id])
return id;
{
/* Reallocate the array.
* Since get_free_pipe_id_locked runs with interrupts disabled,
* we don't want to make calls that could lead to sleep.
*/
u32 new_capacity = 2 * dev->pipes_capacity;
struct goldfish_pipe **pipes =
kcalloc(new_capacity, sizeof(*pipes),
GFP_ATOMIC);
if (!pipes)
return -ENOMEM;
memcpy(pipes, dev->pipes, sizeof(*pipes) * dev->pipes_capacity);
kfree(dev->pipes);
dev->pipes = pipes;
id = dev->pipes_capacity;
dev->pipes_capacity = new_capacity;
}
return id;
}
/**
* goldfish_pipe_open - open a channel to the AVD
* @inode: inode of device
* @file: file struct of opener
*
* Create a new pipe link between the emulator and the use application.
* Each new request produces a new pipe.
*
* Note: we use the pipe ID as a mux. All goldfish emulations are 32bit
* right now so this is fine. A move to 64bit will need this addressing
*/
static int goldfish_pipe_open(struct inode *inode, struct file *file)
{
struct goldfish_pipe_dev *dev = &goldfish_pipe_dev;
struct device *pdev_dev;
unsigned long flags;
int id;
int status;
/* Allocate new pipe kernel object */
struct goldfish_pipe *pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
if (pipe == NULL)
return -ENOMEM;
pipe->dev = dev;
mutex_init(&pipe->lock);
init_waitqueue_head(&pipe->wake_queue);
pdev_dev = dev->pdev_dev;
/*
* Command buffer needs to be allocated on its own page to make sure it
* is physically contiguous in host's address space.
*/
pipe->command_buffer =
(struct goldfish_pipe_command *)__get_free_page(GFP_KERNEL);
if (!pipe->command_buffer) {
dev_err(pdev_dev, "Could not alloc pipe command buffer!\n");
status = -ENOMEM;
goto err_pipe;
}
spin_lock_irqsave(&dev->lock, flags);
id = get_free_pipe_id_locked(dev);
if (id < 0) {
dev_err(pdev_dev, "Could not get free pipe id!\n");
status = id;
goto err_id_locked;
}
dev->pipes[id] = pipe;
pipe->id = id;
pipe->command_buffer->id = id;
/* Now tell the emulator we're opening a new pipe. */
dev->buffers->open_command_params.rw_params_max_count =
MAX_BUFFERS_PER_COMMAND;
dev->buffers->open_command_params.command_buffer_ptr =
(u64)__pa(pipe->command_buffer);
status = goldfish_pipe_cmd_locked(pipe, PIPE_CMD_OPEN);
spin_unlock_irqrestore(&dev->lock, flags);
if (status < 0) {
dev_err(pdev_dev,
"Could not tell host of new pipe! status=%d\n",
status);
goto err_cmd;
}
pipe->dma = NULL;
/* All is done, save the pipe into the file's private data field */
file->private_data = pipe;
return 0;
err_cmd:
spin_lock_irqsave(&dev->lock, flags);
dev->pipes[id] = NULL;
err_id_locked:
spin_unlock_irqrestore(&dev->lock, flags);
free_page((unsigned long)pipe->command_buffer);
err_pipe:
kfree(pipe);
return status;
}
static void goldfish_pipe_dma_release_host(struct goldfish_pipe *pipe)
{
struct goldfish_dma_context *dma = pipe->dma;
struct device *pdev_dev;
if (!dma)
return;
pdev_dev = pipe->dev->pdev_dev;
if (dma->dma_vaddr) {
dev_dbg(pdev_dev, "Last ref for dma region @ 0x%llx\n",
dma->phys_begin);
pipe->command_buffer->dma_maphost_params.dma_paddr =
dma->phys_begin;
pipe->command_buffer->dma_maphost_params.sz = dma->dma_size;
goldfish_pipe_cmd(pipe, PIPE_CMD_DMA_HOST_UNMAP);
}
dev_dbg(pdev_dev,
"after delete of dma @ 0x%llx: alloc total %zu\n",
dma->phys_begin, pipe->dev->dma_alloc_total);
}
static void goldfish_pipe_dma_release_guest(struct goldfish_pipe *pipe)
{
struct goldfish_dma_context *dma = pipe->dma;
struct device *pdev_dev;
if (!dma)
return;
pdev_dev = pipe->dev->pdev_dev;
if (dma->dma_vaddr) {
dma_free_coherent(
dma->pdev_dev,
dma->dma_size,
dma->dma_vaddr,
dma->phys_begin);
pipe->dev->dma_alloc_total -= dma->dma_size;
dev_dbg(pdev_dev,
"after delete of dma @ 0x%llx: alloc total %zu\n",
dma->phys_begin, pipe->dev->dma_alloc_total);
}
}
static int goldfish_pipe_release(struct inode *inode, struct file *filp)
{
unsigned long flags;
struct goldfish_pipe *pipe = filp->private_data;
struct goldfish_pipe_dev *dev = pipe->dev;
/* The guest is closing the channel, so tell the emulator right now */
goldfish_pipe_dma_release_host(pipe);
goldfish_pipe_cmd(pipe, PIPE_CMD_CLOSE);
spin_lock_irqsave(&dev->lock, flags);
dev->pipes[pipe->id] = NULL;
signalled_pipes_remove_locked(dev, pipe);
spin_unlock_irqrestore(&dev->lock, flags);
filp->private_data = NULL;
/* Even if a fd is duped or involved in a forked process,
* open/release methods are called only once, ever.
* This makes goldfish_pipe_release a safe point
* to delete the DMA region.
*/
goldfish_pipe_dma_release_guest(pipe);
kfree(pipe->dma);
free_page((unsigned long)pipe->command_buffer);
kfree(pipe);
return 0;
}
/* VMA open/close are for debugging purposes only.
* One might think that fork() (and thus pure calls to open())
* will require some sort of bookkeeping or refcounting
* for dma contexts (incl. when to call dma_free_coherent),
* but |vm_private_data| field and |vma_open/close| are only
* for situations where the driver needs to interact with vma's
* directly with its own per-VMA data structure (which does
* need to be refcounted).
*
* Here, we just use the kernel's existing
* VMA processing; we don't do anything on our own.
* The only reason we would want to do so is if we had to do
* special processing for the virtual (not physical) memory
* already associated with DMA memory; it is much less related
* to the task of knowing when to alloc/dealloc DMA memory.
*/
static void goldfish_dma_vma_open(struct vm_area_struct *vma)
{
/* Not used */
}
static void goldfish_dma_vma_close(struct vm_area_struct *vma)
{
/* Not used */
}
static const struct vm_operations_struct goldfish_dma_vm_ops = {
.open = goldfish_dma_vma_open,
.close = goldfish_dma_vma_close,
};
static bool is_page_size_multiple(unsigned long sz)
{
return !(sz & (PAGE_SIZE - 1));
}
static bool check_region_size_valid(size_t size)
{
if (size < DMA_REGION_MIN_SIZE)
return false;
if (size > DMA_REGION_MAX_SIZE)
return false;
return is_page_size_multiple(size);
}
static int goldfish_pipe_dma_alloc_locked(struct goldfish_pipe *pipe)
{
struct goldfish_dma_context *dma = pipe->dma;
struct device *pdev_dev = pipe->dev->pdev_dev;
dev_dbg(pdev_dev, "%s: try alloc dma for pipe %p\n",
__func__, pipe);
if (dma->dma_vaddr) {
dev_dbg(pdev_dev, "%s: already alloced, return.\n",
__func__);
return 0;
}
dma->phys_begin = 0;
dma->dma_vaddr =
dma_alloc_coherent(
dma->pdev_dev,
dma->dma_size,
&dma->phys_begin,
GFP_KERNEL);
if (!dma->dma_vaddr)
return -ENOMEM;
dma->phys_end = dma->phys_begin + dma->dma_size;
pipe->dev->dma_alloc_total += dma->dma_size;
dev_dbg(pdev_dev, "%s: got v/p addrs "
"%p 0x%llx sz %zu total alloc %zu\n",
__func__,
dma->dma_vaddr,
dma->phys_begin,
dma->dma_size,
pipe->dev->dma_alloc_total);
pipe->command_buffer->dma_maphost_params.dma_paddr = dma->phys_begin;
pipe->command_buffer->dma_maphost_params.sz = dma->dma_size;
return goldfish_pipe_cmd_locked(pipe, PIPE_CMD_DMA_HOST_MAP);
}
static int goldfish_dma_mmap_locked(
struct goldfish_pipe *pipe, struct vm_area_struct *vma)
{
struct goldfish_dma_context *dma = pipe->dma;
struct device *pdev_dev = pipe->dev->pdev_dev;
size_t sz_requested = vma->vm_end - vma->vm_start;
int status;
if (!check_region_size_valid(sz_requested)) {
dev_err(pdev_dev, "%s: bad size (%zu) requested\n", __func__,
sz_requested);
return -EINVAL;
}
dev_dbg(pdev_dev, "Mapping dma at 0x%llx\n", dma->phys_begin);
/* Alloc phys region if not allocated already. */
status = goldfish_pipe_dma_alloc_locked(pipe);
if (status)
return status;
status =
remap_pfn_range(
vma,
vma->vm_start,
dma->phys_begin >> PAGE_SHIFT,
sz_requested,
vma->vm_page_prot);
if (status < 0) {
dev_err(pdev_dev, "Cannot remap pfn range....\n");
return -EAGAIN;
}
vma->vm_ops = &goldfish_dma_vm_ops;
dev_dbg(pdev_dev, "goldfish_dma_mmap for host vaddr 0x%llx succeeded\n",
dma->phys_begin);
return 0;
}
/* When we call mmap() on a pipe fd, we obtain a pointer into
* the physically contiguous DMA region of the pipe device
* (Goldfish DMA).
*/
static int goldfish_dma_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct goldfish_pipe *pipe =
(struct goldfish_pipe *)(filp->private_data);
int status;
if (mutex_lock_interruptible(&pipe->lock))
return -ERESTARTSYS;
status = goldfish_dma_mmap_locked(pipe, vma);
mutex_unlock(&pipe->lock);
return status;
}
static int goldfish_pipe_dma_create_region(
struct goldfish_pipe *pipe, size_t size)
{
struct goldfish_dma_context *dma =
kzalloc(sizeof(struct goldfish_dma_context), GFP_KERNEL);
struct device *pdev_dev = pipe->dev->pdev_dev;
if (dma) {
if (mutex_lock_interruptible(&pipe->lock)) {
kfree(dma);
return -ERESTARTSYS;
}
if (pipe->dma) {
mutex_unlock(&pipe->lock);
kfree(dma);
dev_err(pdev_dev, "The DMA region already allocated\n");
return -EBUSY;
}
dma->dma_size = size;
dma->pdev_dev = pipe->dev->pdev_dev;
pipe->dma = dma;
mutex_unlock(&pipe->lock);
return 0;
}
dev_err(pdev_dev, "Could not allocate DMA context info!\n");
return -ENOMEM;
}
static long goldfish_dma_ioctl_getoff(struct goldfish_pipe *pipe,
unsigned long arg)
{
struct device *pdev_dev = pipe->dev->pdev_dev;
struct goldfish_dma_ioctl_info ioctl_data;
struct goldfish_dma_context *dma;
BUILD_BUG_ON(FIELD_SIZEOF(struct goldfish_dma_ioctl_info, phys_begin) <
FIELD_SIZEOF(struct goldfish_dma_context, phys_begin));
if (mutex_lock_interruptible(&pipe->lock)) {
dev_err(pdev_dev, "DMA_GETOFF: the pipe is not locked\n");
return -EACCES;
}
dma = pipe->dma;
if (dma) {
ioctl_data.phys_begin = dma->phys_begin;
ioctl_data.size = dma->dma_size;
} else {
ioctl_data.phys_begin = 0;
ioctl_data.size = 0;
}
if (copy_to_user((void __user *)arg, &ioctl_data,
sizeof(ioctl_data))) {
mutex_unlock(&pipe->lock);
return -EFAULT;
}
dev_dbg(pdev_dev,
"DMA_IOC_GETOFF: phys_begin=0x%llx size=%lld\n",
ioctl_data.phys_begin, ioctl_data.size);
mutex_unlock(&pipe->lock);
return 0;
}
static long goldfish_dma_ioctl_create_region(struct goldfish_pipe *pipe,
unsigned long arg)
{
struct goldfish_dma_ioctl_info ioctl_data;
if (copy_from_user(&ioctl_data, (void __user *)arg, sizeof(ioctl_data)))
return -EFAULT;
if (!check_region_size_valid(ioctl_data.size)) {
dev_err(pipe->dev->pdev_dev,
"DMA_CREATE_REGION: bad size (%lld) requested\n",
ioctl_data.size);
return -EINVAL;
}
return goldfish_pipe_dma_create_region(pipe, ioctl_data.size);
}
static long goldfish_dma_ioctl(
struct file *file, unsigned int cmd, unsigned long arg)
{
struct goldfish_pipe *pipe =
(struct goldfish_pipe *)(file->private_data);
switch (cmd) {
case GOLDFISH_DMA_IOC_LOCK:
return 0;
case GOLDFISH_DMA_IOC_UNLOCK:
wake_up_interruptible(&pipe->wake_queue);
return 0;
case GOLDFISH_DMA_IOC_GETOFF:
return goldfish_dma_ioctl_getoff(pipe, arg);
case GOLDFISH_DMA_IOC_CREATE_REGION:
return goldfish_dma_ioctl_create_region(pipe, arg);
}
return -ENOTTY;
}
static const struct file_operations goldfish_pipe_fops = {
.owner = THIS_MODULE,
.read = goldfish_pipe_read,
.write = goldfish_pipe_write,
.poll = goldfish_pipe_poll,
.open = goldfish_pipe_open,
.release = goldfish_pipe_release,
/* DMA-related operations */
.mmap = goldfish_dma_mmap,
.unlocked_ioctl = goldfish_dma_ioctl,
.compat_ioctl = goldfish_dma_ioctl,
};
static struct miscdevice goldfish_pipe_miscdev = {
.minor = MISC_DYNAMIC_MINOR,
.name = "goldfish_pipe",
.fops = &goldfish_pipe_fops,
};
static void write_pa_addr(void *addr, void __iomem *portl, void __iomem *porth)
{
const unsigned long paddr = __pa(addr);
writel(paddr >> 32, porth);
writel((u32)paddr, portl);
}
static int goldfish_pipe_device_init_v2(struct platform_device *pdev)
{
struct goldfish_pipe_dev *dev = &goldfish_pipe_dev;
struct device *pdev_dev = &pdev->dev;
char *page;
int err;
err = devm_request_irq(pdev_dev, dev->irq, goldfish_pipe_interrupt,
IRQF_SHARED, "goldfish_pipe", dev);
if (err) {
dev_err(pdev_dev, "unable to allocate IRQ for v2\n");
return err;
}
err = misc_register(&goldfish_pipe_miscdev);
if (err) {
dev_err(pdev_dev, "unable to register v2 device\n");
return err;
}
dev->pdev_dev = pdev_dev;
dev->first_signalled_pipe = NULL;
dev->pipes_capacity = INITIAL_PIPES_CAPACITY;
dev->pipes = kcalloc(dev->pipes_capacity, sizeof(*dev->pipes),
GFP_KERNEL);
if (!dev->pipes)
return -ENOMEM;
/*
* We're going to pass two buffers, open_command_params and
* signalled_pipe_buffers, to the host. This means each of those buffers
* needs to be contained in a single physical page. The easiest choice
* is to just allocate a page and place the buffers in it.
*/
BUILD_BUG_ON(sizeof(*dev->buffers) > PAGE_SIZE);
page = (char *)__get_free_page(GFP_KERNEL);
if (!page) {
kfree(dev->pipes);
return -ENOMEM;
}
dev->buffers = (struct goldfish_pipe_dev_buffers *)page;
/* Send the buffer addresses to the host */
write_pa_addr(&dev->buffers->signalled_pipe_buffers,
dev->base + PIPE_REG_SIGNAL_BUFFER,
dev->base + PIPE_REG_SIGNAL_BUFFER_HIGH);
writel((u32)MAX_SIGNALLED_PIPES,
dev->base + PIPE_REG_SIGNAL_BUFFER_COUNT);
write_pa_addr(&dev->buffers->open_command_params,
dev->base + PIPE_REG_OPEN_BUFFER,
dev->base + PIPE_REG_OPEN_BUFFER_HIGH);
return 0;
}
static void goldfish_pipe_device_deinit_v2(struct platform_device *pdev)
{
misc_deregister(&goldfish_pipe_miscdev);
kfree(goldfish_pipe_dev.pipes);
free_page((unsigned long)goldfish_pipe_dev.buffers);
}
static int goldfish_pipe_probe(struct platform_device *pdev)
{
int err;
struct resource *r;
struct goldfish_pipe_dev *dev = &goldfish_pipe_dev;
struct device *pdev_dev = &pdev->dev;
BUILD_BUG_ON(sizeof(struct goldfish_pipe_command) > PAGE_SIZE);
/* not thread safe, but this should not happen */
WARN_ON(dev->base != NULL);
spin_lock_init(&dev->lock);
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (r == NULL || resource_size(r) < PAGE_SIZE) {
dev_err(pdev_dev, "can't allocate i/o page\n");
return -EINVAL;
}
dev->base = devm_ioremap(pdev_dev, r->start, PAGE_SIZE);
if (dev->base == NULL) {
dev_err(pdev_dev, "ioremap failed\n");
return -EINVAL;
}
r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (r == NULL) {
err = -EINVAL;
goto error;
}
dev->irq = r->start;
/*
* Exchange the versions with the host device
*
* Note: v1 driver used to not report its version, so we write it before
* reading device version back: this allows the host implementation to
* detect the old driver (if there was no version write before read).
*/
writel((u32)PIPE_DRIVER_VERSION, dev->base + PIPE_REG_VERSION);
dev->version = readl(dev->base + PIPE_REG_VERSION);
if (dev->version < PIPE_CURRENT_DEVICE_VERSION) {
/* initialize the old device version */
err = goldfish_pipe_device_init_v1(pdev);
} else {
/* Host device supports the new interface */
err = goldfish_pipe_device_init_v2(pdev);
}
if (!err)
return 0;
error:
dev->base = NULL;
return err;
}
static int goldfish_pipe_remove(struct platform_device *pdev)
{
struct goldfish_pipe_dev *dev = &goldfish_pipe_dev;
if (dev->version < PIPE_CURRENT_DEVICE_VERSION)
goldfish_pipe_device_deinit_v1(pdev);
else
goldfish_pipe_device_deinit_v2(pdev);
dev->base = NULL;
return 0;
}
static const struct acpi_device_id goldfish_pipe_acpi_match[] = {
{ "GFSH0003", 0 },
{ },
};
MODULE_DEVICE_TABLE(acpi, goldfish_pipe_acpi_match);
static const struct of_device_id goldfish_pipe_of_match[] = {
{ .compatible = "google,android-pipe", },
{},
};
MODULE_DEVICE_TABLE(of, goldfish_pipe_of_match);
static struct platform_driver goldfish_pipe_driver = {
.probe = goldfish_pipe_probe,
.remove = goldfish_pipe_remove,
.driver = {
.name = "goldfish_pipe",
.of_match_table = goldfish_pipe_of_match,
.acpi_match_table = ACPI_PTR(goldfish_pipe_acpi_match),
}
};
module_platform_driver(goldfish_pipe_driver);
MODULE_AUTHOR("David Turner <digit@google.com>");
MODULE_LICENSE("GPL v2");