|  | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  | /* | 
|  | * fscrypt_private.h | 
|  | * | 
|  | * Copyright (C) 2015, Google, Inc. | 
|  | * | 
|  | * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. | 
|  | * Heavily modified since then. | 
|  | */ | 
|  |  | 
|  | #ifndef _FSCRYPT_PRIVATE_H | 
|  | #define _FSCRYPT_PRIVATE_H | 
|  |  | 
|  | #include <crypto/sha2.h> | 
|  | #include <linux/fscrypt.h> | 
|  | #include <linux/minmax.h> | 
|  | #include <linux/siphash.h> | 
|  | #include <linux/blk-crypto.h> | 
|  |  | 
|  | #define CONST_STRLEN(str)	(sizeof(str) - 1) | 
|  |  | 
|  | #define FSCRYPT_FILE_NONCE_SIZE	16 | 
|  |  | 
|  | /* | 
|  | * Minimum size of an fscrypt master key.  Note: a longer key will be required | 
|  | * if ciphers with a 256-bit security strength are used.  This is just the | 
|  | * absolute minimum, which applies when only 128-bit encryption is used. | 
|  | */ | 
|  | #define FSCRYPT_MIN_KEY_SIZE	16 | 
|  |  | 
|  | /* Maximum size of a raw fscrypt master key */ | 
|  | #define FSCRYPT_MAX_RAW_KEY_SIZE	64 | 
|  |  | 
|  | /* Maximum size of a hardware-wrapped fscrypt master key */ | 
|  | #define FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE	BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE | 
|  |  | 
|  | /* Maximum size of an fscrypt master key across both key types */ | 
|  | #define FSCRYPT_MAX_ANY_KEY_SIZE \ | 
|  | MAX(FSCRYPT_MAX_RAW_KEY_SIZE, FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE) | 
|  |  | 
|  | /* | 
|  | * FSCRYPT_MAX_KEY_SIZE is defined in the UAPI header, but the addition of | 
|  | * hardware-wrapped keys has made it misleading as it's only for raw keys. | 
|  | * Don't use it in kernel code; use one of the above constants instead. | 
|  | */ | 
|  | #undef FSCRYPT_MAX_KEY_SIZE | 
|  |  | 
|  | /* | 
|  | * This mask is passed as the third argument to the crypto_alloc_*() functions | 
|  | * to prevent fscrypt from using the Crypto API drivers for non-inline crypto | 
|  | * engines.  Those drivers have been problematic for fscrypt.  fscrypt users | 
|  | * have reported hangs and even incorrect en/decryption with these drivers. | 
|  | * Since going to the driver, off CPU, and back again is really slow, such | 
|  | * drivers can be over 50 times slower than the CPU-based code for fscrypt's | 
|  | * workload.  Even on platforms that lack AES instructions on the CPU, using the | 
|  | * offloads has been shown to be slower, even staying with AES.  (Of course, | 
|  | * Adiantum is faster still, and is the recommended option on such platforms...) | 
|  | * | 
|  | * Note that fscrypt also supports inline crypto engines.  Those don't use the | 
|  | * Crypto API and work much better than the old-style (non-inline) engines. | 
|  | */ | 
|  | #define FSCRYPT_CRYPTOAPI_MASK                            \ | 
|  | (CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | \ | 
|  | CRYPTO_ALG_KERN_DRIVER_ONLY) | 
|  |  | 
|  | #define FSCRYPT_CONTEXT_V1	1 | 
|  | #define FSCRYPT_CONTEXT_V2	2 | 
|  |  | 
|  | /* Keep this in sync with include/uapi/linux/fscrypt.h */ | 
|  | #define FSCRYPT_MODE_MAX	FSCRYPT_MODE_AES_256_HCTR2 | 
|  |  | 
|  | struct fscrypt_context_v1 { | 
|  | u8 version; /* FSCRYPT_CONTEXT_V1 */ | 
|  | u8 contents_encryption_mode; | 
|  | u8 filenames_encryption_mode; | 
|  | u8 flags; | 
|  | u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE]; | 
|  | u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; | 
|  | }; | 
|  |  | 
|  | struct fscrypt_context_v2 { | 
|  | u8 version; /* FSCRYPT_CONTEXT_V2 */ | 
|  | u8 contents_encryption_mode; | 
|  | u8 filenames_encryption_mode; | 
|  | u8 flags; | 
|  | u8 log2_data_unit_size; | 
|  | u8 __reserved[3]; | 
|  | u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]; | 
|  | u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * fscrypt_context - the encryption context of an inode | 
|  | * | 
|  | * This is the on-disk equivalent of an fscrypt_policy, stored alongside each | 
|  | * encrypted file usually in a hidden extended attribute.  It contains the | 
|  | * fields from the fscrypt_policy, in order to identify the encryption algorithm | 
|  | * and key with which the file is encrypted.  It also contains a nonce that was | 
|  | * randomly generated by fscrypt itself; this is used as KDF input or as a tweak | 
|  | * to cause different files to be encrypted differently. | 
|  | */ | 
|  | union fscrypt_context { | 
|  | u8 version; | 
|  | struct fscrypt_context_v1 v1; | 
|  | struct fscrypt_context_v2 v2; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Return the size expected for the given fscrypt_context based on its version | 
|  | * number, or 0 if the context version is unrecognized. | 
|  | */ | 
|  | static inline int fscrypt_context_size(const union fscrypt_context *ctx) | 
|  | { | 
|  | switch (ctx->version) { | 
|  | case FSCRYPT_CONTEXT_V1: | 
|  | BUILD_BUG_ON(sizeof(ctx->v1) != 28); | 
|  | return sizeof(ctx->v1); | 
|  | case FSCRYPT_CONTEXT_V2: | 
|  | BUILD_BUG_ON(sizeof(ctx->v2) != 40); | 
|  | return sizeof(ctx->v2); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check whether an fscrypt_context has a recognized version number and size */ | 
|  | static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx, | 
|  | int ctx_size) | 
|  | { | 
|  | return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx); | 
|  | } | 
|  |  | 
|  | /* Retrieve the context's nonce, assuming the context was already validated */ | 
|  | static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx) | 
|  | { | 
|  | switch (ctx->version) { | 
|  | case FSCRYPT_CONTEXT_V1: | 
|  | return ctx->v1.nonce; | 
|  | case FSCRYPT_CONTEXT_V2: | 
|  | return ctx->v2.nonce; | 
|  | } | 
|  | WARN_ON_ONCE(1); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | union fscrypt_policy { | 
|  | u8 version; | 
|  | struct fscrypt_policy_v1 v1; | 
|  | struct fscrypt_policy_v2 v2; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Return the size expected for the given fscrypt_policy based on its version | 
|  | * number, or 0 if the policy version is unrecognized. | 
|  | */ | 
|  | static inline int fscrypt_policy_size(const union fscrypt_policy *policy) | 
|  | { | 
|  | switch (policy->version) { | 
|  | case FSCRYPT_POLICY_V1: | 
|  | return sizeof(policy->v1); | 
|  | case FSCRYPT_POLICY_V2: | 
|  | return sizeof(policy->v2); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return the contents encryption mode of a valid encryption policy */ | 
|  | static inline u8 | 
|  | fscrypt_policy_contents_mode(const union fscrypt_policy *policy) | 
|  | { | 
|  | switch (policy->version) { | 
|  | case FSCRYPT_POLICY_V1: | 
|  | return policy->v1.contents_encryption_mode; | 
|  | case FSCRYPT_POLICY_V2: | 
|  | return policy->v2.contents_encryption_mode; | 
|  | } | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Return the filenames encryption mode of a valid encryption policy */ | 
|  | static inline u8 | 
|  | fscrypt_policy_fnames_mode(const union fscrypt_policy *policy) | 
|  | { | 
|  | switch (policy->version) { | 
|  | case FSCRYPT_POLICY_V1: | 
|  | return policy->v1.filenames_encryption_mode; | 
|  | case FSCRYPT_POLICY_V2: | 
|  | return policy->v2.filenames_encryption_mode; | 
|  | } | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */ | 
|  | static inline u8 | 
|  | fscrypt_policy_flags(const union fscrypt_policy *policy) | 
|  | { | 
|  | switch (policy->version) { | 
|  | case FSCRYPT_POLICY_V1: | 
|  | return policy->v1.flags; | 
|  | case FSCRYPT_POLICY_V2: | 
|  | return policy->v2.flags; | 
|  | } | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | fscrypt_policy_v2_du_bits(const struct fscrypt_policy_v2 *policy, | 
|  | const struct inode *inode) | 
|  | { | 
|  | return policy->log2_data_unit_size ?: inode->i_blkbits; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | fscrypt_policy_du_bits(const union fscrypt_policy *policy, | 
|  | const struct inode *inode) | 
|  | { | 
|  | switch (policy->version) { | 
|  | case FSCRYPT_POLICY_V1: | 
|  | return inode->i_blkbits; | 
|  | case FSCRYPT_POLICY_V2: | 
|  | return fscrypt_policy_v2_du_bits(&policy->v2, inode); | 
|  | } | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For encrypted symlinks, the ciphertext length is stored at the beginning | 
|  | * of the string in little-endian format. | 
|  | */ | 
|  | struct fscrypt_symlink_data { | 
|  | __le16 len; | 
|  | char encrypted_path[]; | 
|  | } __packed; | 
|  |  | 
|  | /** | 
|  | * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption | 
|  | * @tfm: crypto API transform object | 
|  | * @blk_key: key for blk-crypto | 
|  | * | 
|  | * Normally only one of the fields will be non-NULL. | 
|  | */ | 
|  | struct fscrypt_prepared_key { | 
|  | struct crypto_sync_skcipher *tfm; | 
|  | #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT | 
|  | struct blk_crypto_key *blk_key; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * fscrypt_inode_info - the "encryption key" for an inode | 
|  | * | 
|  | * When an encrypted file's key is made available, an instance of this struct is | 
|  | * allocated and a pointer to it is stored in the file's in-memory inode.  Once | 
|  | * created, it remains until the inode is evicted. | 
|  | */ | 
|  | struct fscrypt_inode_info { | 
|  |  | 
|  | /* The key in a form prepared for actual encryption/decryption */ | 
|  | struct fscrypt_prepared_key ci_enc_key; | 
|  |  | 
|  | /* True if ci_enc_key should be freed when this struct is freed */ | 
|  | u8 ci_owns_key : 1; | 
|  |  | 
|  | #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT | 
|  | /* | 
|  | * True if this inode will use inline encryption (blk-crypto) instead of | 
|  | * the traditional filesystem-layer encryption. | 
|  | */ | 
|  | u8 ci_inlinecrypt : 1; | 
|  | #endif | 
|  |  | 
|  | /* True if ci_dirhash_key is initialized */ | 
|  | u8 ci_dirhash_key_initialized : 1; | 
|  |  | 
|  | /* | 
|  | * log2 of the data unit size (granularity of contents encryption) of | 
|  | * this file.  This is computable from ci_policy and ci_inode but is | 
|  | * cached here for efficiency.  Only used for regular files. | 
|  | */ | 
|  | u8 ci_data_unit_bits; | 
|  |  | 
|  | /* Cached value: log2 of number of data units per FS block */ | 
|  | u8 ci_data_units_per_block_bits; | 
|  |  | 
|  | /* Hashed inode number.  Only set for IV_INO_LBLK_32 */ | 
|  | u32 ci_hashed_ino; | 
|  |  | 
|  | /* | 
|  | * Encryption mode used for this inode.  It corresponds to either the | 
|  | * contents or filenames encryption mode, depending on the inode type. | 
|  | */ | 
|  | struct fscrypt_mode *ci_mode; | 
|  |  | 
|  | /* Back-pointer to the inode */ | 
|  | struct inode *ci_inode; | 
|  |  | 
|  | /* | 
|  | * The master key with which this inode was unlocked (decrypted).  This | 
|  | * will be NULL if the master key was found in a process-subscribed | 
|  | * keyring rather than in the filesystem-level keyring. | 
|  | */ | 
|  | struct fscrypt_master_key *ci_master_key; | 
|  |  | 
|  | /* | 
|  | * Link in list of inodes that were unlocked with the master key. | 
|  | * Only used when ->ci_master_key is set. | 
|  | */ | 
|  | struct list_head ci_master_key_link; | 
|  |  | 
|  | /* | 
|  | * If non-NULL, then encryption is done using the master key directly | 
|  | * and ci_enc_key will equal ci_direct_key->dk_key. | 
|  | */ | 
|  | struct fscrypt_direct_key *ci_direct_key; | 
|  |  | 
|  | /* | 
|  | * This inode's hash key for filenames.  This is a 128-bit SipHash-2-4 | 
|  | * key.  This is only set for directories that use a keyed dirhash over | 
|  | * the plaintext filenames -- currently just casefolded directories. | 
|  | */ | 
|  | siphash_key_t ci_dirhash_key; | 
|  |  | 
|  | /* The encryption policy used by this inode */ | 
|  | union fscrypt_policy ci_policy; | 
|  |  | 
|  | /* This inode's nonce, copied from the fscrypt_context */ | 
|  | u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE]; | 
|  | }; | 
|  |  | 
|  | typedef enum { | 
|  | FS_DECRYPT = 0, | 
|  | FS_ENCRYPT, | 
|  | } fscrypt_direction_t; | 
|  |  | 
|  | /* crypto.c */ | 
|  | extern struct kmem_cache *fscrypt_inode_info_cachep; | 
|  | int fscrypt_initialize(struct super_block *sb); | 
|  | int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci, | 
|  | fscrypt_direction_t rw, u64 index, | 
|  | struct page *src_page, struct page *dest_page, | 
|  | unsigned int len, unsigned int offs); | 
|  | struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags); | 
|  |  | 
|  | void __printf(3, 4) __cold | 
|  | fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...); | 
|  |  | 
|  | #define fscrypt_warn(inode, fmt, ...)		\ | 
|  | fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__) | 
|  | #define fscrypt_err(inode, fmt, ...)		\ | 
|  | fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__) | 
|  |  | 
|  | #define FSCRYPT_MAX_IV_SIZE	32 | 
|  |  | 
|  | union fscrypt_iv { | 
|  | struct { | 
|  | /* zero-based index of data unit within the file */ | 
|  | __le64 index; | 
|  |  | 
|  | /* per-file nonce; only set in DIRECT_KEY mode */ | 
|  | u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; | 
|  | }; | 
|  | u8 raw[FSCRYPT_MAX_IV_SIZE]; | 
|  | __le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)]; | 
|  | }; | 
|  |  | 
|  | void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index, | 
|  | const struct fscrypt_inode_info *ci); | 
|  |  | 
|  | /* | 
|  | * Return the number of bits used by the maximum file data unit index that is | 
|  | * possible on the given filesystem, using the given log2 data unit size. | 
|  | */ | 
|  | static inline int | 
|  | fscrypt_max_file_dun_bits(const struct super_block *sb, int du_bits) | 
|  | { | 
|  | return fls64(sb->s_maxbytes - 1) - du_bits; | 
|  | } | 
|  |  | 
|  | /* fname.c */ | 
|  | bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy, | 
|  | u32 orig_len, u32 max_len, | 
|  | u32 *encrypted_len_ret); | 
|  |  | 
|  | /* hkdf.c */ | 
|  | void fscrypt_init_hkdf(struct hmac_sha512_key *hkdf, const u8 *master_key, | 
|  | unsigned int master_key_size); | 
|  |  | 
|  | /* | 
|  | * The list of contexts in which fscrypt uses HKDF.  These values are used as | 
|  | * the first byte of the HKDF application-specific info string to guarantee that | 
|  | * info strings are never repeated between contexts.  This ensures that all HKDF | 
|  | * outputs are unique and cryptographically isolated, i.e. knowledge of one | 
|  | * output doesn't reveal another. | 
|  | */ | 
|  | #define HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY	1 /* info=<empty>	*/ | 
|  | #define HKDF_CONTEXT_PER_FILE_ENC_KEY	2 /* info=file_nonce		*/ | 
|  | #define HKDF_CONTEXT_DIRECT_KEY		3 /* info=mode_num		*/ | 
|  | #define HKDF_CONTEXT_IV_INO_LBLK_64_KEY	4 /* info=mode_num||fs_uuid	*/ | 
|  | #define HKDF_CONTEXT_DIRHASH_KEY	5 /* info=file_nonce		*/ | 
|  | #define HKDF_CONTEXT_IV_INO_LBLK_32_KEY	6 /* info=mode_num||fs_uuid	*/ | 
|  | #define HKDF_CONTEXT_INODE_HASH_KEY	7 /* info=<empty>		*/ | 
|  | #define HKDF_CONTEXT_KEY_IDENTIFIER_FOR_HW_WRAPPED_KEY \ | 
|  | 8 /* info=<empty>		*/ | 
|  |  | 
|  | void fscrypt_hkdf_expand(const struct hmac_sha512_key *hkdf, u8 context, | 
|  | const u8 *info, unsigned int infolen, | 
|  | u8 *okm, unsigned int okmlen); | 
|  |  | 
|  | /* inline_crypt.c */ | 
|  | #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT | 
|  | int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci, | 
|  | bool is_hw_wrapped_key); | 
|  |  | 
|  | static inline bool | 
|  | fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci) | 
|  | { | 
|  | return ci->ci_inlinecrypt; | 
|  | } | 
|  |  | 
|  | int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key, | 
|  | const u8 *key_bytes, size_t key_size, | 
|  | bool is_hw_wrapped, | 
|  | const struct fscrypt_inode_info *ci); | 
|  |  | 
|  | void fscrypt_destroy_inline_crypt_key(struct super_block *sb, | 
|  | struct fscrypt_prepared_key *prep_key); | 
|  |  | 
|  | int fscrypt_derive_sw_secret(struct super_block *sb, | 
|  | const u8 *wrapped_key, size_t wrapped_key_size, | 
|  | u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]); | 
|  |  | 
|  | /* | 
|  | * Check whether the crypto transform or blk-crypto key has been allocated in | 
|  | * @prep_key, depending on which encryption implementation the file will use. | 
|  | */ | 
|  | static inline bool | 
|  | fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key, | 
|  | const struct fscrypt_inode_info *ci) | 
|  | { | 
|  | /* | 
|  | * The two smp_load_acquire()'s here pair with the smp_store_release()'s | 
|  | * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key(). | 
|  | * I.e., in some cases (namely, if this prep_key is a per-mode | 
|  | * encryption key) another task can publish blk_key or tfm concurrently, | 
|  | * executing a RELEASE barrier.  We need to use smp_load_acquire() here | 
|  | * to safely ACQUIRE the memory the other task published. | 
|  | */ | 
|  | if (fscrypt_using_inline_encryption(ci)) | 
|  | return smp_load_acquire(&prep_key->blk_key) != NULL; | 
|  | return smp_load_acquire(&prep_key->tfm) != NULL; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ | 
|  |  | 
|  | static inline int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci, | 
|  | bool is_hw_wrapped_key) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key, | 
|  | const u8 *key_bytes, size_t key_size, | 
|  | bool is_hw_wrapped, | 
|  | const struct fscrypt_inode_info *ci) | 
|  | { | 
|  | WARN_ON_ONCE(1); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | fscrypt_destroy_inline_crypt_key(struct super_block *sb, | 
|  | struct fscrypt_prepared_key *prep_key) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | fscrypt_derive_sw_secret(struct super_block *sb, | 
|  | const u8 *wrapped_key, size_t wrapped_key_size, | 
|  | u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]) | 
|  | { | 
|  | fscrypt_warn(NULL, "kernel doesn't support hardware-wrapped keys"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key, | 
|  | const struct fscrypt_inode_info *ci) | 
|  | { | 
|  | return smp_load_acquire(&prep_key->tfm) != NULL; | 
|  | } | 
|  | #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ | 
|  |  | 
|  | /* keyring.c */ | 
|  |  | 
|  | /* | 
|  | * fscrypt_master_key_secret - secret key material of an in-use master key | 
|  | */ | 
|  | struct fscrypt_master_key_secret { | 
|  |  | 
|  | /* | 
|  | * The KDF with which subkeys of this key can be derived. | 
|  | * | 
|  | * For v1 policy keys, this isn't applicable and won't be set. | 
|  | * Otherwise, this KDF will be keyed by this master key if | 
|  | * ->is_hw_wrapped=false, or by the "software secret" that hardware | 
|  | * derived from this master key if ->is_hw_wrapped=true. | 
|  | */ | 
|  | struct hmac_sha512_key	hkdf; | 
|  |  | 
|  | /* | 
|  | * True if this key is a hardware-wrapped key; false if this key is a | 
|  | * raw key (i.e. a "software key").  For v1 policy keys this will always | 
|  | * be false, as v1 policy support is a legacy feature which doesn't | 
|  | * support newer functionality such as hardware-wrapped keys. | 
|  | */ | 
|  | bool			is_hw_wrapped; | 
|  |  | 
|  | /* True if this key was added using __FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED */ | 
|  | bool			android_compat; | 
|  |  | 
|  | /* | 
|  | * Size of the key in bytes.  This remains set even if ->bytes was | 
|  | * zeroized due to no longer being needed.  I.e. we still remember the | 
|  | * size of the key even if we don't need to remember the key itself. | 
|  | */ | 
|  | u32			size; | 
|  |  | 
|  | /* | 
|  | * The bytes of the key, when still needed.  This can be either a raw | 
|  | * key or a hardware-wrapped key, as indicated by ->is_hw_wrapped.  In | 
|  | * the case of a raw, v2 policy key, there is no need to remember the | 
|  | * actual key separately from ->hkdf so this field will be zeroized as | 
|  | * soon as ->hkdf is initialized. | 
|  | */ | 
|  | u8			bytes[FSCRYPT_MAX_ANY_KEY_SIZE]; | 
|  |  | 
|  | } __randomize_layout; | 
|  |  | 
|  | /* | 
|  | * fscrypt_master_key - an in-use master key | 
|  | * | 
|  | * This represents a master encryption key which has been added to the | 
|  | * filesystem.  There are three high-level states that a key can be in: | 
|  | * | 
|  | * FSCRYPT_KEY_STATUS_PRESENT | 
|  | *	Key is fully usable; it can be used to unlock inodes that are encrypted | 
|  | *	with it (this includes being able to create new inodes).  ->mk_present | 
|  | *	indicates whether the key is in this state.  ->mk_secret exists, the key | 
|  | *	is in the keyring, and ->mk_active_refs > 0 due to ->mk_present. | 
|  | * | 
|  | * FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED | 
|  | *	Removal of this key has been initiated, but some inodes that were | 
|  | *	unlocked with it are still in-use.  Like ABSENT, ->mk_secret is wiped, | 
|  | *	and the key can no longer be used to unlock inodes.  Unlike ABSENT, the | 
|  | *	key is still in the keyring; ->mk_decrypted_inodes is nonempty; and | 
|  | *	->mk_active_refs > 0, being equal to the size of ->mk_decrypted_inodes. | 
|  | * | 
|  | *	This state transitions to ABSENT if ->mk_decrypted_inodes becomes empty, | 
|  | *	or to PRESENT if FS_IOC_ADD_ENCRYPTION_KEY is called again for this key. | 
|  | * | 
|  | * FSCRYPT_KEY_STATUS_ABSENT | 
|  | *	Key is fully removed.  The key is no longer in the keyring, | 
|  | *	->mk_decrypted_inodes is empty, ->mk_active_refs == 0, ->mk_secret is | 
|  | *	wiped, and the key can no longer be used to unlock inodes. | 
|  | */ | 
|  | struct fscrypt_master_key { | 
|  |  | 
|  | /* | 
|  | * Link in ->s_master_keys->key_hashtable. | 
|  | * Only valid if ->mk_active_refs > 0. | 
|  | */ | 
|  | struct hlist_node			mk_node; | 
|  |  | 
|  | /* Semaphore that protects ->mk_secret, ->mk_users, and ->mk_present */ | 
|  | struct rw_semaphore			mk_sem; | 
|  |  | 
|  | /* | 
|  | * Active and structural reference counts.  An active ref guarantees | 
|  | * that the struct continues to exist, continues to be in the keyring | 
|  | * ->s_master_keys, and that any embedded subkeys (e.g. | 
|  | * ->mk_direct_keys) that have been prepared continue to exist. | 
|  | * A structural ref only guarantees that the struct continues to exist. | 
|  | * | 
|  | * There is one active ref associated with ->mk_present being true, and | 
|  | * one active ref for each inode in ->mk_decrypted_inodes. | 
|  | * | 
|  | * There is one structural ref associated with the active refcount being | 
|  | * nonzero.  Finding a key in the keyring also takes a structural ref, | 
|  | * which is then held temporarily while the key is operated on. | 
|  | */ | 
|  | refcount_t				mk_active_refs; | 
|  | refcount_t				mk_struct_refs; | 
|  |  | 
|  | struct rcu_head				mk_rcu_head; | 
|  |  | 
|  | /* | 
|  | * The secret key material.  Wiped as soon as it is no longer needed; | 
|  | * for details, see the fscrypt_master_key struct comment. | 
|  | * | 
|  | * Locking: protected by ->mk_sem. | 
|  | */ | 
|  | struct fscrypt_master_key_secret	mk_secret; | 
|  |  | 
|  | /* | 
|  | * For v1 policy keys: an arbitrary key descriptor which was assigned by | 
|  | * userspace (->descriptor). | 
|  | * | 
|  | * For v2 policy keys: a cryptographic hash of this key (->identifier). | 
|  | */ | 
|  | struct fscrypt_key_specifier		mk_spec; | 
|  |  | 
|  | /* | 
|  | * Keyring which contains a key of type 'key_type_fscrypt_user' for each | 
|  | * user who has added this key.  Normally each key will be added by just | 
|  | * one user, but it's possible that multiple users share a key, and in | 
|  | * that case we need to keep track of those users so that one user can't | 
|  | * remove the key before the others want it removed too. | 
|  | * | 
|  | * This is NULL for v1 policy keys; those can only be added by root. | 
|  | * | 
|  | * Locking: protected by ->mk_sem.  (We don't just rely on the keyrings | 
|  | * subsystem semaphore ->mk_users->sem, as we need support for atomic | 
|  | * search+insert along with proper synchronization with other fields.) | 
|  | */ | 
|  | struct key		*mk_users; | 
|  |  | 
|  | /* | 
|  | * List of inodes that were unlocked using this key.  This allows the | 
|  | * inodes to be evicted efficiently if the key is removed. | 
|  | */ | 
|  | struct list_head	mk_decrypted_inodes; | 
|  | spinlock_t		mk_decrypted_inodes_lock; | 
|  |  | 
|  | /* | 
|  | * Per-mode encryption keys for the various types of encryption policies | 
|  | * that use them.  Allocated and derived on-demand. | 
|  | */ | 
|  | struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1]; | 
|  | struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1]; | 
|  | struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1]; | 
|  |  | 
|  | /* Hash key for inode numbers.  Initialized only when needed. */ | 
|  | siphash_key_t		mk_ino_hash_key; | 
|  | bool			mk_ino_hash_key_initialized; | 
|  |  | 
|  | /* | 
|  | * Whether this key is in the "present" state, i.e. fully usable.  For | 
|  | * details, see the fscrypt_master_key struct comment. | 
|  | * | 
|  | * Locking: protected by ->mk_sem, but can be read locklessly using | 
|  | * READ_ONCE().  Writers must use WRITE_ONCE() when concurrent readers | 
|  | * are possible. | 
|  | */ | 
|  | bool			mk_present; | 
|  |  | 
|  | } __randomize_layout; | 
|  |  | 
|  | static inline const char *master_key_spec_type( | 
|  | const struct fscrypt_key_specifier *spec) | 
|  | { | 
|  | switch (spec->type) { | 
|  | case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: | 
|  | return "descriptor"; | 
|  | case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: | 
|  | return "identifier"; | 
|  | } | 
|  | return "[unknown]"; | 
|  | } | 
|  |  | 
|  | static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec) | 
|  | { | 
|  | switch (spec->type) { | 
|  | case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: | 
|  | return FSCRYPT_KEY_DESCRIPTOR_SIZE; | 
|  | case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: | 
|  | return FSCRYPT_KEY_IDENTIFIER_SIZE; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void fscrypt_put_master_key(struct fscrypt_master_key *mk); | 
|  |  | 
|  | void fscrypt_put_master_key_activeref(struct super_block *sb, | 
|  | struct fscrypt_master_key *mk); | 
|  |  | 
|  | struct fscrypt_master_key * | 
|  | fscrypt_find_master_key(struct super_block *sb, | 
|  | const struct fscrypt_key_specifier *mk_spec); | 
|  |  | 
|  | void fscrypt_get_test_dummy_key_identifier( | 
|  | u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]); | 
|  |  | 
|  | int fscrypt_add_test_dummy_key(struct super_block *sb, | 
|  | struct fscrypt_key_specifier *key_spec); | 
|  |  | 
|  | int fscrypt_verify_key_added(struct super_block *sb, | 
|  | const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]); | 
|  |  | 
|  | int __init fscrypt_init_keyring(void); | 
|  |  | 
|  | /* keysetup.c */ | 
|  |  | 
|  | struct fscrypt_mode { | 
|  | const char *friendly_name; | 
|  | const char *cipher_str; | 
|  | int keysize;		/* key size in bytes */ | 
|  | int security_strength;	/* security strength in bytes */ | 
|  | int ivsize;		/* IV size in bytes */ | 
|  | int logged_cryptoapi_impl; | 
|  | int logged_blk_crypto_native; | 
|  | int logged_blk_crypto_fallback; | 
|  | enum blk_crypto_mode_num blk_crypto_mode; | 
|  | }; | 
|  |  | 
|  | extern struct fscrypt_mode fscrypt_modes[]; | 
|  |  | 
|  | int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, | 
|  | const u8 *raw_key, const struct fscrypt_inode_info *ci); | 
|  |  | 
|  | void fscrypt_destroy_prepared_key(struct super_block *sb, | 
|  | struct fscrypt_prepared_key *prep_key); | 
|  |  | 
|  | int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci, | 
|  | const u8 *raw_key); | 
|  |  | 
|  | void fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci, | 
|  | const struct fscrypt_master_key *mk); | 
|  |  | 
|  | void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci, | 
|  | const struct fscrypt_master_key *mk); | 
|  |  | 
|  | int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported); | 
|  |  | 
|  | /** | 
|  | * fscrypt_require_key() - require an inode's encryption key | 
|  | * @inode: the inode we need the key for | 
|  | * | 
|  | * If the inode is encrypted, set up its encryption key if not already done. | 
|  | * Then require that the key be present and return -ENOKEY otherwise. | 
|  | * | 
|  | * No locks are needed, and the key will live as long as the struct inode --- so | 
|  | * it won't go away from under you. | 
|  | * | 
|  | * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code | 
|  | * if a problem occurred while setting up the encryption key. | 
|  | */ | 
|  | static inline int fscrypt_require_key(struct inode *inode) | 
|  | { | 
|  | if (IS_ENCRYPTED(inode)) { | 
|  | int err = fscrypt_get_encryption_info(inode, false); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  | if (!fscrypt_has_encryption_key(inode)) | 
|  | return -ENOKEY; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* keysetup_v1.c */ | 
|  |  | 
|  | void fscrypt_put_direct_key(struct fscrypt_direct_key *dk); | 
|  |  | 
|  | int fscrypt_setup_v1_file_key(struct fscrypt_inode_info *ci, | 
|  | const u8 *raw_master_key); | 
|  |  | 
|  | int fscrypt_setup_v1_file_key_via_subscribed_keyrings( | 
|  | struct fscrypt_inode_info *ci); | 
|  |  | 
|  | /* policy.c */ | 
|  |  | 
|  | bool fscrypt_policies_equal(const union fscrypt_policy *policy1, | 
|  | const union fscrypt_policy *policy2); | 
|  | int fscrypt_policy_to_key_spec(const union fscrypt_policy *policy, | 
|  | struct fscrypt_key_specifier *key_spec); | 
|  | const union fscrypt_policy *fscrypt_get_dummy_policy(struct super_block *sb); | 
|  | bool fscrypt_supported_policy(const union fscrypt_policy *policy_u, | 
|  | const struct inode *inode); | 
|  | int fscrypt_policy_from_context(union fscrypt_policy *policy_u, | 
|  | const union fscrypt_context *ctx_u, | 
|  | int ctx_size); | 
|  | const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir); | 
|  |  | 
|  | #endif /* _FSCRYPT_PRIVATE_H */ |