|  | #ifndef _LINUX_SCHED_H | 
|  | #define _LINUX_SCHED_H | 
|  |  | 
|  | #include <uapi/linux/sched.h> | 
|  |  | 
|  | #include <linux/sched/prio.h> | 
|  |  | 
|  |  | 
|  | struct sched_param { | 
|  | int sched_priority; | 
|  | }; | 
|  |  | 
|  | #include <asm/param.h>	/* for HZ */ | 
|  |  | 
|  | #include <linux/capability.h> | 
|  | #include <linux/threads.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/plist.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/thread_info.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/mm_types.h> | 
|  | #include <linux/preempt.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <linux/cputime.h> | 
|  |  | 
|  | #include <linux/smp.h> | 
|  | #include <linux/sem.h> | 
|  | #include <linux/shm.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/pid.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/seccomp.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <linux/rtmutex.h> | 
|  |  | 
|  | #include <linux/time.h> | 
|  | #include <linux/param.h> | 
|  | #include <linux/resource.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/kcov.h> | 
|  | #include <linux/task_io_accounting.h> | 
|  | #include <linux/latencytop.h> | 
|  | #include <linux/cred.h> | 
|  | #include <linux/llist.h> | 
|  | #include <linux/uidgid.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/cgroup-defs.h> | 
|  |  | 
|  | #include <asm/processor.h> | 
|  |  | 
|  | #define SCHED_ATTR_SIZE_VER0	48	/* sizeof first published struct */ | 
|  |  | 
|  | /* | 
|  | * Extended scheduling parameters data structure. | 
|  | * | 
|  | * This is needed because the original struct sched_param can not be | 
|  | * altered without introducing ABI issues with legacy applications | 
|  | * (e.g., in sched_getparam()). | 
|  | * | 
|  | * However, the possibility of specifying more than just a priority for | 
|  | * the tasks may be useful for a wide variety of application fields, e.g., | 
|  | * multimedia, streaming, automation and control, and many others. | 
|  | * | 
|  | * This variant (sched_attr) is meant at describing a so-called | 
|  | * sporadic time-constrained task. In such model a task is specified by: | 
|  | *  - the activation period or minimum instance inter-arrival time; | 
|  | *  - the maximum (or average, depending on the actual scheduling | 
|  | *    discipline) computation time of all instances, a.k.a. runtime; | 
|  | *  - the deadline (relative to the actual activation time) of each | 
|  | *    instance. | 
|  | * Very briefly, a periodic (sporadic) task asks for the execution of | 
|  | * some specific computation --which is typically called an instance-- | 
|  | * (at most) every period. Moreover, each instance typically lasts no more | 
|  | * than the runtime and must be completed by time instant t equal to | 
|  | * the instance activation time + the deadline. | 
|  | * | 
|  | * This is reflected by the actual fields of the sched_attr structure: | 
|  | * | 
|  | *  @size		size of the structure, for fwd/bwd compat. | 
|  | * | 
|  | *  @sched_policy	task's scheduling policy | 
|  | *  @sched_flags	for customizing the scheduler behaviour | 
|  | *  @sched_nice		task's nice value      (SCHED_NORMAL/BATCH) | 
|  | *  @sched_priority	task's static priority (SCHED_FIFO/RR) | 
|  | *  @sched_deadline	representative of the task's deadline | 
|  | *  @sched_runtime	representative of the task's runtime | 
|  | *  @sched_period	representative of the task's period | 
|  | * | 
|  | * Given this task model, there are a multiplicity of scheduling algorithms | 
|  | * and policies, that can be used to ensure all the tasks will make their | 
|  | * timing constraints. | 
|  | * | 
|  | * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the | 
|  | * only user of this new interface. More information about the algorithm | 
|  | * available in the scheduling class file or in Documentation/. | 
|  | */ | 
|  | struct sched_attr { | 
|  | u32 size; | 
|  |  | 
|  | u32 sched_policy; | 
|  | u64 sched_flags; | 
|  |  | 
|  | /* SCHED_NORMAL, SCHED_BATCH */ | 
|  | s32 sched_nice; | 
|  |  | 
|  | /* SCHED_FIFO, SCHED_RR */ | 
|  | u32 sched_priority; | 
|  |  | 
|  | /* SCHED_DEADLINE */ | 
|  | u64 sched_runtime; | 
|  | u64 sched_deadline; | 
|  | u64 sched_period; | 
|  | }; | 
|  |  | 
|  | struct futex_pi_state; | 
|  | struct robust_list_head; | 
|  | struct bio_list; | 
|  | struct fs_struct; | 
|  | struct perf_event_context; | 
|  | struct blk_plug; | 
|  | struct filename; | 
|  | struct nameidata; | 
|  |  | 
|  | #define VMACACHE_BITS 2 | 
|  | #define VMACACHE_SIZE (1U << VMACACHE_BITS) | 
|  | #define VMACACHE_MASK (VMACACHE_SIZE - 1) | 
|  |  | 
|  | /* | 
|  | * These are the constant used to fake the fixed-point load-average | 
|  | * counting. Some notes: | 
|  | *  - 11 bit fractions expand to 22 bits by the multiplies: this gives | 
|  | *    a load-average precision of 10 bits integer + 11 bits fractional | 
|  | *  - if you want to count load-averages more often, you need more | 
|  | *    precision, or rounding will get you. With 2-second counting freq, | 
|  | *    the EXP_n values would be 1981, 2034 and 2043 if still using only | 
|  | *    11 bit fractions. | 
|  | */ | 
|  | extern unsigned long avenrun[];		/* Load averages */ | 
|  | extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); | 
|  |  | 
|  | #define FSHIFT		11		/* nr of bits of precision */ | 
|  | #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */ | 
|  | #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */ | 
|  | #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */ | 
|  | #define EXP_5		2014		/* 1/exp(5sec/5min) */ | 
|  | #define EXP_15		2037		/* 1/exp(5sec/15min) */ | 
|  |  | 
|  | #define CALC_LOAD(load,exp,n) \ | 
|  | load *= exp; \ | 
|  | load += n*(FIXED_1-exp); \ | 
|  | load >>= FSHIFT; | 
|  |  | 
|  | extern unsigned long total_forks; | 
|  | extern int nr_threads; | 
|  | DECLARE_PER_CPU(unsigned long, process_counts); | 
|  | extern int nr_processes(void); | 
|  | extern unsigned long nr_running(void); | 
|  | extern bool single_task_running(void); | 
|  | extern unsigned long nr_iowait(void); | 
|  | extern unsigned long nr_iowait_cpu(int cpu); | 
|  | extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); | 
|  |  | 
|  | extern void calc_global_load(unsigned long ticks); | 
|  |  | 
|  | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) | 
|  | extern void cpu_load_update_nohz_start(void); | 
|  | extern void cpu_load_update_nohz_stop(void); | 
|  | #else | 
|  | static inline void cpu_load_update_nohz_start(void) { } | 
|  | static inline void cpu_load_update_nohz_stop(void) { } | 
|  | #endif | 
|  |  | 
|  | extern void dump_cpu_task(int cpu); | 
|  |  | 
|  | struct seq_file; | 
|  | struct cfs_rq; | 
|  | struct task_group; | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); | 
|  | extern void proc_sched_set_task(struct task_struct *p); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Task state bitmask. NOTE! These bits are also | 
|  | * encoded in fs/proc/array.c: get_task_state(). | 
|  | * | 
|  | * We have two separate sets of flags: task->state | 
|  | * is about runnability, while task->exit_state are | 
|  | * about the task exiting. Confusing, but this way | 
|  | * modifying one set can't modify the other one by | 
|  | * mistake. | 
|  | */ | 
|  | #define TASK_RUNNING		0 | 
|  | #define TASK_INTERRUPTIBLE	1 | 
|  | #define TASK_UNINTERRUPTIBLE	2 | 
|  | #define __TASK_STOPPED		4 | 
|  | #define __TASK_TRACED		8 | 
|  | /* in tsk->exit_state */ | 
|  | #define EXIT_DEAD		16 | 
|  | #define EXIT_ZOMBIE		32 | 
|  | #define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD) | 
|  | /* in tsk->state again */ | 
|  | #define TASK_DEAD		64 | 
|  | #define TASK_WAKEKILL		128 | 
|  | #define TASK_WAKING		256 | 
|  | #define TASK_PARKED		512 | 
|  | #define TASK_NOLOAD		1024 | 
|  | #define TASK_NEW		2048 | 
|  | #define TASK_STATE_MAX		4096 | 
|  |  | 
|  | #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn" | 
|  |  | 
|  | extern char ___assert_task_state[1 - 2*!!( | 
|  | sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; | 
|  |  | 
|  | /* Convenience macros for the sake of set_task_state */ | 
|  | #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) | 
|  | #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED) | 
|  | #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED) | 
|  |  | 
|  | #define TASK_IDLE		(TASK_UNINTERRUPTIBLE | TASK_NOLOAD) | 
|  |  | 
|  | /* Convenience macros for the sake of wake_up */ | 
|  | #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) | 
|  | #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) | 
|  |  | 
|  | /* get_task_state() */ | 
|  | #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \ | 
|  | TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ | 
|  | __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) | 
|  |  | 
|  | #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0) | 
|  | #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0) | 
|  | #define task_is_stopped_or_traced(task)	\ | 
|  | ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) | 
|  | #define task_contributes_to_load(task)	\ | 
|  | ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ | 
|  | (task->flags & PF_FROZEN) == 0 && \ | 
|  | (task->state & TASK_NOLOAD) == 0) | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP | 
|  |  | 
|  | #define __set_task_state(tsk, state_value)			\ | 
|  | do {							\ | 
|  | (tsk)->task_state_change = _THIS_IP_;		\ | 
|  | (tsk)->state = (state_value);			\ | 
|  | } while (0) | 
|  | #define set_task_state(tsk, state_value)			\ | 
|  | do {							\ | 
|  | (tsk)->task_state_change = _THIS_IP_;		\ | 
|  | smp_store_mb((tsk)->state, (state_value));		\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * set_current_state() includes a barrier so that the write of current->state | 
|  | * is correctly serialised wrt the caller's subsequent test of whether to | 
|  | * actually sleep: | 
|  | * | 
|  | *	set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | *	if (do_i_need_to_sleep()) | 
|  | *		schedule(); | 
|  | * | 
|  | * If the caller does not need such serialisation then use __set_current_state() | 
|  | */ | 
|  | #define __set_current_state(state_value)			\ | 
|  | do {							\ | 
|  | current->task_state_change = _THIS_IP_;		\ | 
|  | current->state = (state_value);			\ | 
|  | } while (0) | 
|  | #define set_current_state(state_value)				\ | 
|  | do {							\ | 
|  | current->task_state_change = _THIS_IP_;		\ | 
|  | smp_store_mb(current->state, (state_value));		\ | 
|  | } while (0) | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define __set_task_state(tsk, state_value)		\ | 
|  | do { (tsk)->state = (state_value); } while (0) | 
|  | #define set_task_state(tsk, state_value)		\ | 
|  | smp_store_mb((tsk)->state, (state_value)) | 
|  |  | 
|  | /* | 
|  | * set_current_state() includes a barrier so that the write of current->state | 
|  | * is correctly serialised wrt the caller's subsequent test of whether to | 
|  | * actually sleep: | 
|  | * | 
|  | *	set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | *	if (do_i_need_to_sleep()) | 
|  | *		schedule(); | 
|  | * | 
|  | * If the caller does not need such serialisation then use __set_current_state() | 
|  | */ | 
|  | #define __set_current_state(state_value)		\ | 
|  | do { current->state = (state_value); } while (0) | 
|  | #define set_current_state(state_value)			\ | 
|  | smp_store_mb(current->state, (state_value)) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* Task command name length */ | 
|  | #define TASK_COMM_LEN 16 | 
|  |  | 
|  | #include <linux/spinlock.h> | 
|  |  | 
|  | /* | 
|  | * This serializes "schedule()" and also protects | 
|  | * the run-queue from deletions/modifications (but | 
|  | * _adding_ to the beginning of the run-queue has | 
|  | * a separate lock). | 
|  | */ | 
|  | extern rwlock_t tasklist_lock; | 
|  | extern spinlock_t mmlist_lock; | 
|  |  | 
|  | struct task_struct; | 
|  |  | 
|  | #ifdef CONFIG_PROVE_RCU | 
|  | extern int lockdep_tasklist_lock_is_held(void); | 
|  | #endif /* #ifdef CONFIG_PROVE_RCU */ | 
|  |  | 
|  | extern void sched_init(void); | 
|  | extern void sched_init_smp(void); | 
|  | extern asmlinkage void schedule_tail(struct task_struct *prev); | 
|  | extern void init_idle(struct task_struct *idle, int cpu); | 
|  | extern void init_idle_bootup_task(struct task_struct *idle); | 
|  |  | 
|  | extern cpumask_var_t cpu_isolated_map; | 
|  |  | 
|  | extern int runqueue_is_locked(int cpu); | 
|  |  | 
|  | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) | 
|  | extern void nohz_balance_enter_idle(int cpu); | 
|  | extern void set_cpu_sd_state_idle(void); | 
|  | extern int get_nohz_timer_target(void); | 
|  | #else | 
|  | static inline void nohz_balance_enter_idle(int cpu) { } | 
|  | static inline void set_cpu_sd_state_idle(void) { } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Only dump TASK_* tasks. (0 for all tasks) | 
|  | */ | 
|  | extern void show_state_filter(unsigned long state_filter); | 
|  |  | 
|  | static inline void show_state(void) | 
|  | { | 
|  | show_state_filter(0); | 
|  | } | 
|  |  | 
|  | extern void show_regs(struct pt_regs *); | 
|  |  | 
|  | /* | 
|  | * TASK is a pointer to the task whose backtrace we want to see (or NULL for current | 
|  | * task), SP is the stack pointer of the first frame that should be shown in the back | 
|  | * trace (or NULL if the entire call-chain of the task should be shown). | 
|  | */ | 
|  | extern void show_stack(struct task_struct *task, unsigned long *sp); | 
|  |  | 
|  | extern void cpu_init (void); | 
|  | extern void trap_init(void); | 
|  | extern void update_process_times(int user); | 
|  | extern void scheduler_tick(void); | 
|  | extern int sched_cpu_starting(unsigned int cpu); | 
|  | extern int sched_cpu_activate(unsigned int cpu); | 
|  | extern int sched_cpu_deactivate(unsigned int cpu); | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | extern int sched_cpu_dying(unsigned int cpu); | 
|  | #else | 
|  | # define sched_cpu_dying	NULL | 
|  | #endif | 
|  |  | 
|  | extern void sched_show_task(struct task_struct *p); | 
|  |  | 
|  | #ifdef CONFIG_LOCKUP_DETECTOR | 
|  | extern void touch_softlockup_watchdog_sched(void); | 
|  | extern void touch_softlockup_watchdog(void); | 
|  | extern void touch_softlockup_watchdog_sync(void); | 
|  | extern void touch_all_softlockup_watchdogs(void); | 
|  | extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, | 
|  | void __user *buffer, | 
|  | size_t *lenp, loff_t *ppos); | 
|  | extern unsigned int  softlockup_panic; | 
|  | extern unsigned int  hardlockup_panic; | 
|  | void lockup_detector_init(void); | 
|  | #else | 
|  | static inline void touch_softlockup_watchdog_sched(void) | 
|  | { | 
|  | } | 
|  | static inline void touch_softlockup_watchdog(void) | 
|  | { | 
|  | } | 
|  | static inline void touch_softlockup_watchdog_sync(void) | 
|  | { | 
|  | } | 
|  | static inline void touch_all_softlockup_watchdogs(void) | 
|  | { | 
|  | } | 
|  | static inline void lockup_detector_init(void) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DETECT_HUNG_TASK | 
|  | void reset_hung_task_detector(void); | 
|  | #else | 
|  | static inline void reset_hung_task_detector(void) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Attach to any functions which should be ignored in wchan output. */ | 
|  | #define __sched		__attribute__((__section__(".sched.text"))) | 
|  |  | 
|  | /* Linker adds these: start and end of __sched functions */ | 
|  | extern char __sched_text_start[], __sched_text_end[]; | 
|  |  | 
|  | /* Is this address in the __sched functions? */ | 
|  | extern int in_sched_functions(unsigned long addr); | 
|  |  | 
|  | #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX | 
|  | extern signed long schedule_timeout(signed long timeout); | 
|  | extern signed long schedule_timeout_interruptible(signed long timeout); | 
|  | extern signed long schedule_timeout_killable(signed long timeout); | 
|  | extern signed long schedule_timeout_uninterruptible(signed long timeout); | 
|  | extern signed long schedule_timeout_idle(signed long timeout); | 
|  | asmlinkage void schedule(void); | 
|  | extern void schedule_preempt_disabled(void); | 
|  |  | 
|  | extern long io_schedule_timeout(long timeout); | 
|  |  | 
|  | static inline void io_schedule(void) | 
|  | { | 
|  | io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); | 
|  | } | 
|  |  | 
|  | void __noreturn do_task_dead(void); | 
|  |  | 
|  | struct nsproxy; | 
|  | struct user_namespace; | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | extern void arch_pick_mmap_layout(struct mm_struct *mm); | 
|  | extern unsigned long | 
|  | arch_get_unmapped_area(struct file *, unsigned long, unsigned long, | 
|  | unsigned long, unsigned long); | 
|  | extern unsigned long | 
|  | arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, | 
|  | unsigned long flags); | 
|  | #else | 
|  | static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} | 
|  | #endif | 
|  |  | 
|  | #define SUID_DUMP_DISABLE	0	/* No setuid dumping */ | 
|  | #define SUID_DUMP_USER		1	/* Dump as user of process */ | 
|  | #define SUID_DUMP_ROOT		2	/* Dump as root */ | 
|  |  | 
|  | /* mm flags */ | 
|  |  | 
|  | /* for SUID_DUMP_* above */ | 
|  | #define MMF_DUMPABLE_BITS 2 | 
|  | #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) | 
|  |  | 
|  | extern void set_dumpable(struct mm_struct *mm, int value); | 
|  | /* | 
|  | * This returns the actual value of the suid_dumpable flag. For things | 
|  | * that are using this for checking for privilege transitions, it must | 
|  | * test against SUID_DUMP_USER rather than treating it as a boolean | 
|  | * value. | 
|  | */ | 
|  | static inline int __get_dumpable(unsigned long mm_flags) | 
|  | { | 
|  | return mm_flags & MMF_DUMPABLE_MASK; | 
|  | } | 
|  |  | 
|  | static inline int get_dumpable(struct mm_struct *mm) | 
|  | { | 
|  | return __get_dumpable(mm->flags); | 
|  | } | 
|  |  | 
|  | /* coredump filter bits */ | 
|  | #define MMF_DUMP_ANON_PRIVATE	2 | 
|  | #define MMF_DUMP_ANON_SHARED	3 | 
|  | #define MMF_DUMP_MAPPED_PRIVATE	4 | 
|  | #define MMF_DUMP_MAPPED_SHARED	5 | 
|  | #define MMF_DUMP_ELF_HEADERS	6 | 
|  | #define MMF_DUMP_HUGETLB_PRIVATE 7 | 
|  | #define MMF_DUMP_HUGETLB_SHARED  8 | 
|  | #define MMF_DUMP_DAX_PRIVATE	9 | 
|  | #define MMF_DUMP_DAX_SHARED	10 | 
|  |  | 
|  | #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS | 
|  | #define MMF_DUMP_FILTER_BITS	9 | 
|  | #define MMF_DUMP_FILTER_MASK \ | 
|  | (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) | 
|  | #define MMF_DUMP_FILTER_DEFAULT \ | 
|  | ((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\ | 
|  | (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) | 
|  |  | 
|  | #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS | 
|  | # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS) | 
|  | #else | 
|  | # define MMF_DUMP_MASK_DEFAULT_ELF	0 | 
|  | #endif | 
|  | /* leave room for more dump flags */ | 
|  | #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */ | 
|  | #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */ | 
|  | #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */ | 
|  |  | 
|  | #define MMF_HAS_UPROBES		19	/* has uprobes */ | 
|  | #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */ | 
|  | #define MMF_OOM_SKIP		21	/* mm is of no interest for the OOM killer */ | 
|  | #define MMF_UNSTABLE		22	/* mm is unstable for copy_from_user */ | 
|  | #define MMF_HUGE_ZERO_PAGE	23      /* mm has ever used the global huge zero page */ | 
|  | #define MMF_OOM_REAP_QUEUED	26	/* mm was queued for oom_reaper */ | 
|  |  | 
|  | #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) | 
|  |  | 
|  | struct sighand_struct { | 
|  | atomic_t		count; | 
|  | struct k_sigaction	action[_NSIG]; | 
|  | spinlock_t		siglock; | 
|  | wait_queue_head_t	signalfd_wqh; | 
|  | }; | 
|  |  | 
|  | struct pacct_struct { | 
|  | int			ac_flag; | 
|  | long			ac_exitcode; | 
|  | unsigned long		ac_mem; | 
|  | cputime_t		ac_utime, ac_stime; | 
|  | unsigned long		ac_minflt, ac_majflt; | 
|  | }; | 
|  |  | 
|  | struct cpu_itimer { | 
|  | cputime_t expires; | 
|  | cputime_t incr; | 
|  | u32 error; | 
|  | u32 incr_error; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct prev_cputime - snaphsot of system and user cputime | 
|  | * @utime: time spent in user mode | 
|  | * @stime: time spent in system mode | 
|  | * @lock: protects the above two fields | 
|  | * | 
|  | * Stores previous user/system time values such that we can guarantee | 
|  | * monotonicity. | 
|  | */ | 
|  | struct prev_cputime { | 
|  | #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE | 
|  | cputime_t utime; | 
|  | cputime_t stime; | 
|  | raw_spinlock_t lock; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static inline void prev_cputime_init(struct prev_cputime *prev) | 
|  | { | 
|  | #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE | 
|  | prev->utime = prev->stime = 0; | 
|  | raw_spin_lock_init(&prev->lock); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * struct task_cputime - collected CPU time counts | 
|  | * @utime:		time spent in user mode, in &cputime_t units | 
|  | * @stime:		time spent in kernel mode, in &cputime_t units | 
|  | * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds | 
|  | * | 
|  | * This structure groups together three kinds of CPU time that are tracked for | 
|  | * threads and thread groups.  Most things considering CPU time want to group | 
|  | * these counts together and treat all three of them in parallel. | 
|  | */ | 
|  | struct task_cputime { | 
|  | cputime_t utime; | 
|  | cputime_t stime; | 
|  | unsigned long long sum_exec_runtime; | 
|  | }; | 
|  |  | 
|  | /* Alternate field names when used to cache expirations. */ | 
|  | #define virt_exp	utime | 
|  | #define prof_exp	stime | 
|  | #define sched_exp	sum_exec_runtime | 
|  |  | 
|  | #define INIT_CPUTIME	\ | 
|  | (struct task_cputime) {					\ | 
|  | .utime = 0,					\ | 
|  | .stime = 0,					\ | 
|  | .sum_exec_runtime = 0,				\ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the atomic variant of task_cputime, which can be used for | 
|  | * storing and updating task_cputime statistics without locking. | 
|  | */ | 
|  | struct task_cputime_atomic { | 
|  | atomic64_t utime; | 
|  | atomic64_t stime; | 
|  | atomic64_t sum_exec_runtime; | 
|  | }; | 
|  |  | 
|  | #define INIT_CPUTIME_ATOMIC \ | 
|  | (struct task_cputime_atomic) {				\ | 
|  | .utime = ATOMIC64_INIT(0),			\ | 
|  | .stime = ATOMIC64_INIT(0),			\ | 
|  | .sum_exec_runtime = ATOMIC64_INIT(0),		\ | 
|  | } | 
|  |  | 
|  | #define PREEMPT_DISABLED	(PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) | 
|  |  | 
|  | /* | 
|  | * Disable preemption until the scheduler is running -- use an unconditional | 
|  | * value so that it also works on !PREEMPT_COUNT kernels. | 
|  | * | 
|  | * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). | 
|  | */ | 
|  | #define INIT_PREEMPT_COUNT	PREEMPT_OFFSET | 
|  |  | 
|  | /* | 
|  | * Initial preempt_count value; reflects the preempt_count schedule invariant | 
|  | * which states that during context switches: | 
|  | * | 
|  | *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET | 
|  | * | 
|  | * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. | 
|  | * Note: See finish_task_switch(). | 
|  | */ | 
|  | #define FORK_PREEMPT_COUNT	(2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) | 
|  |  | 
|  | /** | 
|  | * struct thread_group_cputimer - thread group interval timer counts | 
|  | * @cputime_atomic:	atomic thread group interval timers. | 
|  | * @running:		true when there are timers running and | 
|  | *			@cputime_atomic receives updates. | 
|  | * @checking_timer:	true when a thread in the group is in the | 
|  | *			process of checking for thread group timers. | 
|  | * | 
|  | * This structure contains the version of task_cputime, above, that is | 
|  | * used for thread group CPU timer calculations. | 
|  | */ | 
|  | struct thread_group_cputimer { | 
|  | struct task_cputime_atomic cputime_atomic; | 
|  | bool running; | 
|  | bool checking_timer; | 
|  | }; | 
|  |  | 
|  | #include <linux/rwsem.h> | 
|  | struct autogroup; | 
|  |  | 
|  | /* | 
|  | * NOTE! "signal_struct" does not have its own | 
|  | * locking, because a shared signal_struct always | 
|  | * implies a shared sighand_struct, so locking | 
|  | * sighand_struct is always a proper superset of | 
|  | * the locking of signal_struct. | 
|  | */ | 
|  | struct signal_struct { | 
|  | atomic_t		sigcnt; | 
|  | atomic_t		live; | 
|  | int			nr_threads; | 
|  | struct list_head	thread_head; | 
|  |  | 
|  | wait_queue_head_t	wait_chldexit;	/* for wait4() */ | 
|  |  | 
|  | /* current thread group signal load-balancing target: */ | 
|  | struct task_struct	*curr_target; | 
|  |  | 
|  | /* shared signal handling: */ | 
|  | struct sigpending	shared_pending; | 
|  |  | 
|  | /* thread group exit support */ | 
|  | int			group_exit_code; | 
|  | /* overloaded: | 
|  | * - notify group_exit_task when ->count is equal to notify_count | 
|  | * - everyone except group_exit_task is stopped during signal delivery | 
|  | *   of fatal signals, group_exit_task processes the signal. | 
|  | */ | 
|  | int			notify_count; | 
|  | struct task_struct	*group_exit_task; | 
|  |  | 
|  | /* thread group stop support, overloads group_exit_code too */ | 
|  | int			group_stop_count; | 
|  | unsigned int		flags; /* see SIGNAL_* flags below */ | 
|  |  | 
|  | /* | 
|  | * PR_SET_CHILD_SUBREAPER marks a process, like a service | 
|  | * manager, to re-parent orphan (double-forking) child processes | 
|  | * to this process instead of 'init'. The service manager is | 
|  | * able to receive SIGCHLD signals and is able to investigate | 
|  | * the process until it calls wait(). All children of this | 
|  | * process will inherit a flag if they should look for a | 
|  | * child_subreaper process at exit. | 
|  | */ | 
|  | unsigned int		is_child_subreaper:1; | 
|  | unsigned int		has_child_subreaper:1; | 
|  |  | 
|  | /* POSIX.1b Interval Timers */ | 
|  | int			posix_timer_id; | 
|  | struct list_head	posix_timers; | 
|  |  | 
|  | /* ITIMER_REAL timer for the process */ | 
|  | struct hrtimer real_timer; | 
|  | struct pid *leader_pid; | 
|  | ktime_t it_real_incr; | 
|  |  | 
|  | /* | 
|  | * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use | 
|  | * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these | 
|  | * values are defined to 0 and 1 respectively | 
|  | */ | 
|  | struct cpu_itimer it[2]; | 
|  |  | 
|  | /* | 
|  | * Thread group totals for process CPU timers. | 
|  | * See thread_group_cputimer(), et al, for details. | 
|  | */ | 
|  | struct thread_group_cputimer cputimer; | 
|  |  | 
|  | /* Earliest-expiration cache. */ | 
|  | struct task_cputime cputime_expires; | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_FULL | 
|  | atomic_t tick_dep_mask; | 
|  | #endif | 
|  |  | 
|  | struct list_head cpu_timers[3]; | 
|  |  | 
|  | struct pid *tty_old_pgrp; | 
|  |  | 
|  | /* boolean value for session group leader */ | 
|  | int leader; | 
|  |  | 
|  | struct tty_struct *tty; /* NULL if no tty */ | 
|  |  | 
|  | #ifdef CONFIG_SCHED_AUTOGROUP | 
|  | struct autogroup *autogroup; | 
|  | #endif | 
|  | /* | 
|  | * Cumulative resource counters for dead threads in the group, | 
|  | * and for reaped dead child processes forked by this group. | 
|  | * Live threads maintain their own counters and add to these | 
|  | * in __exit_signal, except for the group leader. | 
|  | */ | 
|  | seqlock_t stats_lock; | 
|  | cputime_t utime, stime, cutime, cstime; | 
|  | cputime_t gtime; | 
|  | cputime_t cgtime; | 
|  | struct prev_cputime prev_cputime; | 
|  | unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; | 
|  | unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; | 
|  | unsigned long inblock, oublock, cinblock, coublock; | 
|  | unsigned long maxrss, cmaxrss; | 
|  | struct task_io_accounting ioac; | 
|  |  | 
|  | /* | 
|  | * Cumulative ns of schedule CPU time fo dead threads in the | 
|  | * group, not including a zombie group leader, (This only differs | 
|  | * from jiffies_to_ns(utime + stime) if sched_clock uses something | 
|  | * other than jiffies.) | 
|  | */ | 
|  | unsigned long long sum_sched_runtime; | 
|  |  | 
|  | /* | 
|  | * We don't bother to synchronize most readers of this at all, | 
|  | * because there is no reader checking a limit that actually needs | 
|  | * to get both rlim_cur and rlim_max atomically, and either one | 
|  | * alone is a single word that can safely be read normally. | 
|  | * getrlimit/setrlimit use task_lock(current->group_leader) to | 
|  | * protect this instead of the siglock, because they really | 
|  | * have no need to disable irqs. | 
|  | */ | 
|  | struct rlimit rlim[RLIM_NLIMITS]; | 
|  |  | 
|  | #ifdef CONFIG_BSD_PROCESS_ACCT | 
|  | struct pacct_struct pacct;	/* per-process accounting information */ | 
|  | #endif | 
|  | #ifdef CONFIG_TASKSTATS | 
|  | struct taskstats *stats; | 
|  | #endif | 
|  | #ifdef CONFIG_AUDIT | 
|  | unsigned audit_tty; | 
|  | struct tty_audit_buf *tty_audit_buf; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Thread is the potential origin of an oom condition; kill first on | 
|  | * oom | 
|  | */ | 
|  | bool oom_flag_origin; | 
|  | short oom_score_adj;		/* OOM kill score adjustment */ | 
|  | short oom_score_adj_min;	/* OOM kill score adjustment min value. | 
|  | * Only settable by CAP_SYS_RESOURCE. */ | 
|  | struct mm_struct *oom_mm;	/* recorded mm when the thread group got | 
|  | * killed by the oom killer */ | 
|  |  | 
|  | struct mutex cred_guard_mutex;	/* guard against foreign influences on | 
|  | * credential calculations | 
|  | * (notably. ptrace) */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Bits in flags field of signal_struct. | 
|  | */ | 
|  | #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */ | 
|  | #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */ | 
|  | #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */ | 
|  | #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */ | 
|  | /* | 
|  | * Pending notifications to parent. | 
|  | */ | 
|  | #define SIGNAL_CLD_STOPPED	0x00000010 | 
|  | #define SIGNAL_CLD_CONTINUED	0x00000020 | 
|  | #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) | 
|  |  | 
|  | #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */ | 
|  |  | 
|  | #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ | 
|  | SIGNAL_STOP_CONTINUED) | 
|  |  | 
|  | static inline void signal_set_stop_flags(struct signal_struct *sig, | 
|  | unsigned int flags) | 
|  | { | 
|  | WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); | 
|  | sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; | 
|  | } | 
|  |  | 
|  | /* If true, all threads except ->group_exit_task have pending SIGKILL */ | 
|  | static inline int signal_group_exit(const struct signal_struct *sig) | 
|  | { | 
|  | return	(sig->flags & SIGNAL_GROUP_EXIT) || | 
|  | (sig->group_exit_task != NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some day this will be a full-fledged user tracking system.. | 
|  | */ | 
|  | struct user_struct { | 
|  | atomic_t __count;	/* reference count */ | 
|  | atomic_t processes;	/* How many processes does this user have? */ | 
|  | atomic_t sigpending;	/* How many pending signals does this user have? */ | 
|  | #ifdef CONFIG_INOTIFY_USER | 
|  | atomic_t inotify_watches; /* How many inotify watches does this user have? */ | 
|  | atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */ | 
|  | #endif | 
|  | #ifdef CONFIG_FANOTIFY | 
|  | atomic_t fanotify_listeners; | 
|  | #endif | 
|  | #ifdef CONFIG_EPOLL | 
|  | atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ | 
|  | #endif | 
|  | #ifdef CONFIG_POSIX_MQUEUE | 
|  | /* protected by mq_lock	*/ | 
|  | unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */ | 
|  | #endif | 
|  | unsigned long locked_shm; /* How many pages of mlocked shm ? */ | 
|  | unsigned long unix_inflight;	/* How many files in flight in unix sockets */ | 
|  | atomic_long_t pipe_bufs;  /* how many pages are allocated in pipe buffers */ | 
|  |  | 
|  | #ifdef CONFIG_KEYS | 
|  | struct key *uid_keyring;	/* UID specific keyring */ | 
|  | struct key *session_keyring;	/* UID's default session keyring */ | 
|  | #endif | 
|  |  | 
|  | /* Hash table maintenance information */ | 
|  | struct hlist_node uidhash_node; | 
|  | kuid_t uid; | 
|  |  | 
|  | #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) | 
|  | atomic_long_t locked_vm; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | extern int uids_sysfs_init(void); | 
|  |  | 
|  | extern struct user_struct *find_user(kuid_t); | 
|  |  | 
|  | extern struct user_struct root_user; | 
|  | #define INIT_USER (&root_user) | 
|  |  | 
|  |  | 
|  | struct backing_dev_info; | 
|  | struct reclaim_state; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_INFO | 
|  | struct sched_info { | 
|  | /* cumulative counters */ | 
|  | unsigned long pcount;	      /* # of times run on this cpu */ | 
|  | unsigned long long run_delay; /* time spent waiting on a runqueue */ | 
|  |  | 
|  | /* timestamps */ | 
|  | unsigned long long last_arrival,/* when we last ran on a cpu */ | 
|  | last_queued;	/* when we were last queued to run */ | 
|  | }; | 
|  | #endif /* CONFIG_SCHED_INFO */ | 
|  |  | 
|  | #ifdef CONFIG_TASK_DELAY_ACCT | 
|  | struct task_delay_info { | 
|  | spinlock_t	lock; | 
|  | unsigned int	flags;	/* Private per-task flags */ | 
|  |  | 
|  | /* For each stat XXX, add following, aligned appropriately | 
|  | * | 
|  | * struct timespec XXX_start, XXX_end; | 
|  | * u64 XXX_delay; | 
|  | * u32 XXX_count; | 
|  | * | 
|  | * Atomicity of updates to XXX_delay, XXX_count protected by | 
|  | * single lock above (split into XXX_lock if contention is an issue). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * XXX_count is incremented on every XXX operation, the delay | 
|  | * associated with the operation is added to XXX_delay. | 
|  | * XXX_delay contains the accumulated delay time in nanoseconds. | 
|  | */ | 
|  | u64 blkio_start;	/* Shared by blkio, swapin */ | 
|  | u64 blkio_delay;	/* wait for sync block io completion */ | 
|  | u64 swapin_delay;	/* wait for swapin block io completion */ | 
|  | u32 blkio_count;	/* total count of the number of sync block */ | 
|  | /* io operations performed */ | 
|  | u32 swapin_count;	/* total count of the number of swapin block */ | 
|  | /* io operations performed */ | 
|  |  | 
|  | u64 freepages_start; | 
|  | u64 freepages_delay;	/* wait for memory reclaim */ | 
|  | u32 freepages_count;	/* total count of memory reclaim */ | 
|  | }; | 
|  | #endif	/* CONFIG_TASK_DELAY_ACCT */ | 
|  |  | 
|  | static inline int sched_info_on(void) | 
|  | { | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | return 1; | 
|  | #elif defined(CONFIG_TASK_DELAY_ACCT) | 
|  | extern int delayacct_on; | 
|  | return delayacct_on; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | void force_schedstat_enabled(void); | 
|  | #endif | 
|  |  | 
|  | enum cpu_idle_type { | 
|  | CPU_IDLE, | 
|  | CPU_NOT_IDLE, | 
|  | CPU_NEWLY_IDLE, | 
|  | CPU_MAX_IDLE_TYPES | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Integer metrics need fixed point arithmetic, e.g., sched/fair | 
|  | * has a few: load, load_avg, util_avg, freq, and capacity. | 
|  | * | 
|  | * We define a basic fixed point arithmetic range, and then formalize | 
|  | * all these metrics based on that basic range. | 
|  | */ | 
|  | # define SCHED_FIXEDPOINT_SHIFT	10 | 
|  | # define SCHED_FIXEDPOINT_SCALE	(1L << SCHED_FIXEDPOINT_SHIFT) | 
|  |  | 
|  | /* | 
|  | * Increase resolution of cpu_capacity calculations | 
|  | */ | 
|  | #define SCHED_CAPACITY_SHIFT	SCHED_FIXEDPOINT_SHIFT | 
|  | #define SCHED_CAPACITY_SCALE	(1L << SCHED_CAPACITY_SHIFT) | 
|  |  | 
|  | /* | 
|  | * Wake-queues are lists of tasks with a pending wakeup, whose | 
|  | * callers have already marked the task as woken internally, | 
|  | * and can thus carry on. A common use case is being able to | 
|  | * do the wakeups once the corresponding user lock as been | 
|  | * released. | 
|  | * | 
|  | * We hold reference to each task in the list across the wakeup, | 
|  | * thus guaranteeing that the memory is still valid by the time | 
|  | * the actual wakeups are performed in wake_up_q(). | 
|  | * | 
|  | * One per task suffices, because there's never a need for a task to be | 
|  | * in two wake queues simultaneously; it is forbidden to abandon a task | 
|  | * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is | 
|  | * already in a wake queue, the wakeup will happen soon and the second | 
|  | * waker can just skip it. | 
|  | * | 
|  | * The WAKE_Q macro declares and initializes the list head. | 
|  | * wake_up_q() does NOT reinitialize the list; it's expected to be | 
|  | * called near the end of a function, where the fact that the queue is | 
|  | * not used again will be easy to see by inspection. | 
|  | * | 
|  | * Note that this can cause spurious wakeups. schedule() callers | 
|  | * must ensure the call is done inside a loop, confirming that the | 
|  | * wakeup condition has in fact occurred. | 
|  | */ | 
|  | struct wake_q_node { | 
|  | struct wake_q_node *next; | 
|  | }; | 
|  |  | 
|  | struct wake_q_head { | 
|  | struct wake_q_node *first; | 
|  | struct wake_q_node **lastp; | 
|  | }; | 
|  |  | 
|  | #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) | 
|  |  | 
|  | #define WAKE_Q(name)					\ | 
|  | struct wake_q_head name = { WAKE_Q_TAIL, &name.first } | 
|  |  | 
|  | extern void wake_q_add(struct wake_q_head *head, | 
|  | struct task_struct *task); | 
|  | extern void wake_up_q(struct wake_q_head *head); | 
|  |  | 
|  | /* | 
|  | * sched-domains (multiprocessor balancing) declarations: | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  | #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */ | 
|  | #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */ | 
|  | #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */ | 
|  | #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */ | 
|  | #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */ | 
|  | #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */ | 
|  | #define SD_ASYM_CPUCAPACITY	0x0040  /* Groups have different max cpu capacities */ | 
|  | #define SD_SHARE_CPUCAPACITY	0x0080	/* Domain members share cpu capacity */ | 
|  | #define SD_SHARE_POWERDOMAIN	0x0100	/* Domain members share power domain */ | 
|  | #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */ | 
|  | #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */ | 
|  | #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */ | 
|  | #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */ | 
|  | #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */ | 
|  | #define SD_NUMA			0x4000	/* cross-node balancing */ | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | static inline int cpu_smt_flags(void) | 
|  | { | 
|  | return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | static inline int cpu_core_flags(void) | 
|  | { | 
|  | return SD_SHARE_PKG_RESOURCES; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static inline int cpu_numa_flags(void) | 
|  | { | 
|  | return SD_NUMA; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | struct sched_domain_attr { | 
|  | int relax_domain_level; | 
|  | }; | 
|  |  | 
|  | #define SD_ATTR_INIT	(struct sched_domain_attr) {	\ | 
|  | .relax_domain_level = -1,			\ | 
|  | } | 
|  |  | 
|  | extern int sched_domain_level_max; | 
|  |  | 
|  | struct sched_group; | 
|  |  | 
|  | struct sched_domain_shared { | 
|  | atomic_t	ref; | 
|  | atomic_t	nr_busy_cpus; | 
|  | int		has_idle_cores; | 
|  | }; | 
|  |  | 
|  | struct sched_domain { | 
|  | /* These fields must be setup */ | 
|  | struct sched_domain *parent;	/* top domain must be null terminated */ | 
|  | struct sched_domain *child;	/* bottom domain must be null terminated */ | 
|  | struct sched_group *groups;	/* the balancing groups of the domain */ | 
|  | unsigned long min_interval;	/* Minimum balance interval ms */ | 
|  | unsigned long max_interval;	/* Maximum balance interval ms */ | 
|  | unsigned int busy_factor;	/* less balancing by factor if busy */ | 
|  | unsigned int imbalance_pct;	/* No balance until over watermark */ | 
|  | unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */ | 
|  | unsigned int busy_idx; | 
|  | unsigned int idle_idx; | 
|  | unsigned int newidle_idx; | 
|  | unsigned int wake_idx; | 
|  | unsigned int forkexec_idx; | 
|  | unsigned int smt_gain; | 
|  |  | 
|  | int nohz_idle;			/* NOHZ IDLE status */ | 
|  | int flags;			/* See SD_* */ | 
|  | int level; | 
|  |  | 
|  | /* Runtime fields. */ | 
|  | unsigned long last_balance;	/* init to jiffies. units in jiffies */ | 
|  | unsigned int balance_interval;	/* initialise to 1. units in ms. */ | 
|  | unsigned int nr_balance_failed; /* initialise to 0 */ | 
|  |  | 
|  | /* idle_balance() stats */ | 
|  | u64 max_newidle_lb_cost; | 
|  | unsigned long next_decay_max_lb_cost; | 
|  |  | 
|  | u64 avg_scan_cost;		/* select_idle_sibling */ | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | /* load_balance() stats */ | 
|  | unsigned int lb_count[CPU_MAX_IDLE_TYPES]; | 
|  | unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; | 
|  | unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; | 
|  | unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; | 
|  | unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; | 
|  | unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; | 
|  | unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; | 
|  | unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; | 
|  |  | 
|  | /* Active load balancing */ | 
|  | unsigned int alb_count; | 
|  | unsigned int alb_failed; | 
|  | unsigned int alb_pushed; | 
|  |  | 
|  | /* SD_BALANCE_EXEC stats */ | 
|  | unsigned int sbe_count; | 
|  | unsigned int sbe_balanced; | 
|  | unsigned int sbe_pushed; | 
|  |  | 
|  | /* SD_BALANCE_FORK stats */ | 
|  | unsigned int sbf_count; | 
|  | unsigned int sbf_balanced; | 
|  | unsigned int sbf_pushed; | 
|  |  | 
|  | /* try_to_wake_up() stats */ | 
|  | unsigned int ttwu_wake_remote; | 
|  | unsigned int ttwu_move_affine; | 
|  | unsigned int ttwu_move_balance; | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | char *name; | 
|  | #endif | 
|  | union { | 
|  | void *private;		/* used during construction */ | 
|  | struct rcu_head rcu;	/* used during destruction */ | 
|  | }; | 
|  | struct sched_domain_shared *shared; | 
|  |  | 
|  | unsigned int span_weight; | 
|  | /* | 
|  | * Span of all CPUs in this domain. | 
|  | * | 
|  | * NOTE: this field is variable length. (Allocated dynamically | 
|  | * by attaching extra space to the end of the structure, | 
|  | * depending on how many CPUs the kernel has booted up with) | 
|  | */ | 
|  | unsigned long span[0]; | 
|  | }; | 
|  |  | 
|  | static inline struct cpumask *sched_domain_span(struct sched_domain *sd) | 
|  | { | 
|  | return to_cpumask(sd->span); | 
|  | } | 
|  |  | 
|  | extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], | 
|  | struct sched_domain_attr *dattr_new); | 
|  |  | 
|  | /* Allocate an array of sched domains, for partition_sched_domains(). */ | 
|  | cpumask_var_t *alloc_sched_domains(unsigned int ndoms); | 
|  | void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); | 
|  |  | 
|  | bool cpus_share_cache(int this_cpu, int that_cpu); | 
|  |  | 
|  | typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); | 
|  | typedef int (*sched_domain_flags_f)(void); | 
|  |  | 
|  | #define SDTL_OVERLAP	0x01 | 
|  |  | 
|  | struct sd_data { | 
|  | struct sched_domain **__percpu sd; | 
|  | struct sched_domain_shared **__percpu sds; | 
|  | struct sched_group **__percpu sg; | 
|  | struct sched_group_capacity **__percpu sgc; | 
|  | }; | 
|  |  | 
|  | struct sched_domain_topology_level { | 
|  | sched_domain_mask_f mask; | 
|  | sched_domain_flags_f sd_flags; | 
|  | int		    flags; | 
|  | int		    numa_level; | 
|  | struct sd_data      data; | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | char                *name; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | extern void set_sched_topology(struct sched_domain_topology_level *tl); | 
|  | extern void wake_up_if_idle(int cpu); | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | # define SD_INIT_NAME(type)		.name = #type | 
|  | #else | 
|  | # define SD_INIT_NAME(type) | 
|  | #endif | 
|  |  | 
|  | #else /* CONFIG_SMP */ | 
|  |  | 
|  | struct sched_domain_attr; | 
|  |  | 
|  | static inline void | 
|  | partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], | 
|  | struct sched_domain_attr *dattr_new) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline bool cpus_share_cache(int this_cpu, int that_cpu) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #endif	/* !CONFIG_SMP */ | 
|  |  | 
|  |  | 
|  | struct io_context;			/* See blkdev.h */ | 
|  |  | 
|  |  | 
|  | #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK | 
|  | extern void prefetch_stack(struct task_struct *t); | 
|  | #else | 
|  | static inline void prefetch_stack(struct task_struct *t) { } | 
|  | #endif | 
|  |  | 
|  | struct audit_context;		/* See audit.c */ | 
|  | struct mempolicy; | 
|  | struct pipe_inode_info; | 
|  | struct uts_namespace; | 
|  |  | 
|  | struct load_weight { | 
|  | unsigned long weight; | 
|  | u32 inv_weight; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The load_avg/util_avg accumulates an infinite geometric series | 
|  | * (see __update_load_avg() in kernel/sched/fair.c). | 
|  | * | 
|  | * [load_avg definition] | 
|  | * | 
|  | *   load_avg = runnable% * scale_load_down(load) | 
|  | * | 
|  | * where runnable% is the time ratio that a sched_entity is runnable. | 
|  | * For cfs_rq, it is the aggregated load_avg of all runnable and | 
|  | * blocked sched_entities. | 
|  | * | 
|  | * load_avg may also take frequency scaling into account: | 
|  | * | 
|  | *   load_avg = runnable% * scale_load_down(load) * freq% | 
|  | * | 
|  | * where freq% is the CPU frequency normalized to the highest frequency. | 
|  | * | 
|  | * [util_avg definition] | 
|  | * | 
|  | *   util_avg = running% * SCHED_CAPACITY_SCALE | 
|  | * | 
|  | * where running% is the time ratio that a sched_entity is running on | 
|  | * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable | 
|  | * and blocked sched_entities. | 
|  | * | 
|  | * util_avg may also factor frequency scaling and CPU capacity scaling: | 
|  | * | 
|  | *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% | 
|  | * | 
|  | * where freq% is the same as above, and capacity% is the CPU capacity | 
|  | * normalized to the greatest capacity (due to uarch differences, etc). | 
|  | * | 
|  | * N.B., the above ratios (runnable%, running%, freq%, and capacity%) | 
|  | * themselves are in the range of [0, 1]. To do fixed point arithmetics, | 
|  | * we therefore scale them to as large a range as necessary. This is for | 
|  | * example reflected by util_avg's SCHED_CAPACITY_SCALE. | 
|  | * | 
|  | * [Overflow issue] | 
|  | * | 
|  | * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities | 
|  | * with the highest load (=88761), always runnable on a single cfs_rq, | 
|  | * and should not overflow as the number already hits PID_MAX_LIMIT. | 
|  | * | 
|  | * For all other cases (including 32-bit kernels), struct load_weight's | 
|  | * weight will overflow first before we do, because: | 
|  | * | 
|  | *    Max(load_avg) <= Max(load.weight) | 
|  | * | 
|  | * Then it is the load_weight's responsibility to consider overflow | 
|  | * issues. | 
|  | */ | 
|  | struct sched_avg { | 
|  | u64 last_update_time, load_sum; | 
|  | u32 util_sum, period_contrib; | 
|  | unsigned long load_avg, util_avg; | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | struct sched_statistics { | 
|  | u64			wait_start; | 
|  | u64			wait_max; | 
|  | u64			wait_count; | 
|  | u64			wait_sum; | 
|  | u64			iowait_count; | 
|  | u64			iowait_sum; | 
|  |  | 
|  | u64			sleep_start; | 
|  | u64			sleep_max; | 
|  | s64			sum_sleep_runtime; | 
|  |  | 
|  | u64			block_start; | 
|  | u64			block_max; | 
|  | u64			exec_max; | 
|  | u64			slice_max; | 
|  |  | 
|  | u64			nr_migrations_cold; | 
|  | u64			nr_failed_migrations_affine; | 
|  | u64			nr_failed_migrations_running; | 
|  | u64			nr_failed_migrations_hot; | 
|  | u64			nr_forced_migrations; | 
|  |  | 
|  | u64			nr_wakeups; | 
|  | u64			nr_wakeups_sync; | 
|  | u64			nr_wakeups_migrate; | 
|  | u64			nr_wakeups_local; | 
|  | u64			nr_wakeups_remote; | 
|  | u64			nr_wakeups_affine; | 
|  | u64			nr_wakeups_affine_attempts; | 
|  | u64			nr_wakeups_passive; | 
|  | u64			nr_wakeups_idle; | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | struct sched_entity { | 
|  | struct load_weight	load;		/* for load-balancing */ | 
|  | struct rb_node		run_node; | 
|  | struct list_head	group_node; | 
|  | unsigned int		on_rq; | 
|  |  | 
|  | u64			exec_start; | 
|  | u64			sum_exec_runtime; | 
|  | u64			vruntime; | 
|  | u64			prev_sum_exec_runtime; | 
|  |  | 
|  | u64			nr_migrations; | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | struct sched_statistics statistics; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | int			depth; | 
|  | struct sched_entity	*parent; | 
|  | /* rq on which this entity is (to be) queued: */ | 
|  | struct cfs_rq		*cfs_rq; | 
|  | /* rq "owned" by this entity/group: */ | 
|  | struct cfs_rq		*my_q; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Per entity load average tracking. | 
|  | * | 
|  | * Put into separate cache line so it does not | 
|  | * collide with read-mostly values above. | 
|  | */ | 
|  | struct sched_avg	avg ____cacheline_aligned_in_smp; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct sched_rt_entity { | 
|  | struct list_head run_list; | 
|  | unsigned long timeout; | 
|  | unsigned long watchdog_stamp; | 
|  | unsigned int time_slice; | 
|  | unsigned short on_rq; | 
|  | unsigned short on_list; | 
|  |  | 
|  | struct sched_rt_entity *back; | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | struct sched_rt_entity	*parent; | 
|  | /* rq on which this entity is (to be) queued: */ | 
|  | struct rt_rq		*rt_rq; | 
|  | /* rq "owned" by this entity/group: */ | 
|  | struct rt_rq		*my_q; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct sched_dl_entity { | 
|  | struct rb_node	rb_node; | 
|  |  | 
|  | /* | 
|  | * Original scheduling parameters. Copied here from sched_attr | 
|  | * during sched_setattr(), they will remain the same until | 
|  | * the next sched_setattr(). | 
|  | */ | 
|  | u64 dl_runtime;		/* maximum runtime for each instance	*/ | 
|  | u64 dl_deadline;	/* relative deadline of each instance	*/ | 
|  | u64 dl_period;		/* separation of two instances (period) */ | 
|  | u64 dl_bw;		/* dl_runtime / dl_deadline		*/ | 
|  | u64 dl_density;		/* dl_runtime / dl_deadline		*/ | 
|  |  | 
|  | /* | 
|  | * Actual scheduling parameters. Initialized with the values above, | 
|  | * they are continously updated during task execution. Note that | 
|  | * the remaining runtime could be < 0 in case we are in overrun. | 
|  | */ | 
|  | s64 runtime;		/* remaining runtime for this instance	*/ | 
|  | u64 deadline;		/* absolute deadline for this instance	*/ | 
|  | unsigned int flags;	/* specifying the scheduler behaviour	*/ | 
|  |  | 
|  | /* | 
|  | * Some bool flags: | 
|  | * | 
|  | * @dl_throttled tells if we exhausted the runtime. If so, the | 
|  | * task has to wait for a replenishment to be performed at the | 
|  | * next firing of dl_timer. | 
|  | * | 
|  | * @dl_boosted tells if we are boosted due to DI. If so we are | 
|  | * outside bandwidth enforcement mechanism (but only until we | 
|  | * exit the critical section); | 
|  | * | 
|  | * @dl_yielded tells if task gave up the cpu before consuming | 
|  | * all its available runtime during the last job. | 
|  | */ | 
|  | int dl_throttled, dl_boosted, dl_yielded; | 
|  |  | 
|  | /* | 
|  | * Bandwidth enforcement timer. Each -deadline task has its | 
|  | * own bandwidth to be enforced, thus we need one timer per task. | 
|  | */ | 
|  | struct hrtimer dl_timer; | 
|  | }; | 
|  |  | 
|  | union rcu_special { | 
|  | struct { | 
|  | u8 blocked; | 
|  | u8 need_qs; | 
|  | u8 exp_need_qs; | 
|  | u8 pad;	/* Otherwise the compiler can store garbage here. */ | 
|  | } b; /* Bits. */ | 
|  | u32 s; /* Set of bits. */ | 
|  | }; | 
|  | struct rcu_node; | 
|  |  | 
|  | enum perf_event_task_context { | 
|  | perf_invalid_context = -1, | 
|  | perf_hw_context = 0, | 
|  | perf_sw_context, | 
|  | perf_nr_task_contexts, | 
|  | }; | 
|  |  | 
|  | /* Track pages that require TLB flushes */ | 
|  | struct tlbflush_unmap_batch { | 
|  | /* | 
|  | * Each bit set is a CPU that potentially has a TLB entry for one of | 
|  | * the PFNs being flushed. See set_tlb_ubc_flush_pending(). | 
|  | */ | 
|  | struct cpumask cpumask; | 
|  |  | 
|  | /* True if any bit in cpumask is set */ | 
|  | bool flush_required; | 
|  |  | 
|  | /* | 
|  | * If true then the PTE was dirty when unmapped. The entry must be | 
|  | * flushed before IO is initiated or a stale TLB entry potentially | 
|  | * allows an update without redirtying the page. | 
|  | */ | 
|  | bool writable; | 
|  | }; | 
|  |  | 
|  | struct task_struct { | 
|  | #ifdef CONFIG_THREAD_INFO_IN_TASK | 
|  | /* | 
|  | * For reasons of header soup (see current_thread_info()), this | 
|  | * must be the first element of task_struct. | 
|  | */ | 
|  | struct thread_info thread_info; | 
|  | #endif | 
|  | volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */ | 
|  | void *stack; | 
|  | atomic_t usage; | 
|  | unsigned int flags;	/* per process flags, defined below */ | 
|  | unsigned int ptrace; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | struct llist_node wake_entry; | 
|  | int on_cpu; | 
|  | #ifdef CONFIG_THREAD_INFO_IN_TASK | 
|  | unsigned int cpu;	/* current CPU */ | 
|  | #endif | 
|  | unsigned int wakee_flips; | 
|  | unsigned long wakee_flip_decay_ts; | 
|  | struct task_struct *last_wakee; | 
|  |  | 
|  | int wake_cpu; | 
|  | #endif | 
|  | int on_rq; | 
|  |  | 
|  | int prio, static_prio, normal_prio; | 
|  | unsigned int rt_priority; | 
|  | const struct sched_class *sched_class; | 
|  | struct sched_entity se; | 
|  | struct sched_rt_entity rt; | 
|  | #ifdef CONFIG_CGROUP_SCHED | 
|  | struct task_group *sched_task_group; | 
|  | #endif | 
|  | struct sched_dl_entity dl; | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
|  | /* list of struct preempt_notifier: */ | 
|  | struct hlist_head preempt_notifiers; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_IO_TRACE | 
|  | unsigned int btrace_seq; | 
|  | #endif | 
|  |  | 
|  | unsigned int policy; | 
|  | int nr_cpus_allowed; | 
|  | cpumask_t cpus_allowed; | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT_RCU | 
|  | int rcu_read_lock_nesting; | 
|  | union rcu_special rcu_read_unlock_special; | 
|  | struct list_head rcu_node_entry; | 
|  | struct rcu_node *rcu_blocked_node; | 
|  | #endif /* #ifdef CONFIG_PREEMPT_RCU */ | 
|  | #ifdef CONFIG_TASKS_RCU | 
|  | unsigned long rcu_tasks_nvcsw; | 
|  | bool rcu_tasks_holdout; | 
|  | struct list_head rcu_tasks_holdout_list; | 
|  | int rcu_tasks_idle_cpu; | 
|  | #endif /* #ifdef CONFIG_TASKS_RCU */ | 
|  |  | 
|  | #ifdef CONFIG_SCHED_INFO | 
|  | struct sched_info sched_info; | 
|  | #endif | 
|  |  | 
|  | struct list_head tasks; | 
|  | #ifdef CONFIG_SMP | 
|  | struct plist_node pushable_tasks; | 
|  | struct rb_node pushable_dl_tasks; | 
|  | #endif | 
|  |  | 
|  | struct mm_struct *mm, *active_mm; | 
|  | /* per-thread vma caching */ | 
|  | u64 vmacache_seqnum; | 
|  | struct vm_area_struct *vmacache[VMACACHE_SIZE]; | 
|  | #if defined(SPLIT_RSS_COUNTING) | 
|  | struct task_rss_stat	rss_stat; | 
|  | #endif | 
|  | /* task state */ | 
|  | int exit_state; | 
|  | int exit_code, exit_signal; | 
|  | int pdeath_signal;  /*  The signal sent when the parent dies  */ | 
|  | unsigned long jobctl;	/* JOBCTL_*, siglock protected */ | 
|  |  | 
|  | /* Used for emulating ABI behavior of previous Linux versions */ | 
|  | unsigned int personality; | 
|  |  | 
|  | /* scheduler bits, serialized by scheduler locks */ | 
|  | unsigned sched_reset_on_fork:1; | 
|  | unsigned sched_contributes_to_load:1; | 
|  | unsigned sched_migrated:1; | 
|  | unsigned sched_remote_wakeup:1; | 
|  | unsigned :0; /* force alignment to the next boundary */ | 
|  |  | 
|  | /* unserialized, strictly 'current' */ | 
|  | unsigned in_execve:1; /* bit to tell LSMs we're in execve */ | 
|  | unsigned in_iowait:1; | 
|  | #if !defined(TIF_RESTORE_SIGMASK) | 
|  | unsigned restore_sigmask:1; | 
|  | #endif | 
|  | #ifdef CONFIG_MEMCG | 
|  | unsigned memcg_may_oom:1; | 
|  | #ifndef CONFIG_SLOB | 
|  | unsigned memcg_kmem_skip_account:1; | 
|  | #endif | 
|  | #endif | 
|  | #ifdef CONFIG_COMPAT_BRK | 
|  | unsigned brk_randomized:1; | 
|  | #endif | 
|  | #ifdef CONFIG_CGROUPS | 
|  | /* disallow userland-initiated cgroup migration */ | 
|  | unsigned no_cgroup_migration:1; | 
|  | #endif | 
|  |  | 
|  | unsigned long atomic_flags; /* Flags needing atomic access. */ | 
|  |  | 
|  | struct restart_block restart_block; | 
|  |  | 
|  | pid_t pid; | 
|  | pid_t tgid; | 
|  |  | 
|  | #ifdef CONFIG_CC_STACKPROTECTOR | 
|  | /* Canary value for the -fstack-protector gcc feature */ | 
|  | unsigned long stack_canary; | 
|  | #endif | 
|  | /* | 
|  | * pointers to (original) parent process, youngest child, younger sibling, | 
|  | * older sibling, respectively.  (p->father can be replaced with | 
|  | * p->real_parent->pid) | 
|  | */ | 
|  | struct task_struct __rcu *real_parent; /* real parent process */ | 
|  | struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ | 
|  | /* | 
|  | * children/sibling forms the list of my natural children | 
|  | */ | 
|  | struct list_head children;	/* list of my children */ | 
|  | struct list_head sibling;	/* linkage in my parent's children list */ | 
|  | struct task_struct *group_leader;	/* threadgroup leader */ | 
|  |  | 
|  | /* | 
|  | * ptraced is the list of tasks this task is using ptrace on. | 
|  | * This includes both natural children and PTRACE_ATTACH targets. | 
|  | * p->ptrace_entry is p's link on the p->parent->ptraced list. | 
|  | */ | 
|  | struct list_head ptraced; | 
|  | struct list_head ptrace_entry; | 
|  |  | 
|  | /* PID/PID hash table linkage. */ | 
|  | struct pid_link pids[PIDTYPE_MAX]; | 
|  | struct list_head thread_group; | 
|  | struct list_head thread_node; | 
|  |  | 
|  | struct completion *vfork_done;		/* for vfork() */ | 
|  | int __user *set_child_tid;		/* CLONE_CHILD_SETTID */ | 
|  | int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */ | 
|  |  | 
|  | cputime_t utime, stime, utimescaled, stimescaled; | 
|  | cputime_t gtime; | 
|  | struct prev_cputime prev_cputime; | 
|  | #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN | 
|  | seqcount_t vtime_seqcount; | 
|  | unsigned long long vtime_snap; | 
|  | enum { | 
|  | /* Task is sleeping or running in a CPU with VTIME inactive */ | 
|  | VTIME_INACTIVE = 0, | 
|  | /* Task runs in userspace in a CPU with VTIME active */ | 
|  | VTIME_USER, | 
|  | /* Task runs in kernelspace in a CPU with VTIME active */ | 
|  | VTIME_SYS, | 
|  | } vtime_snap_whence; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_FULL | 
|  | atomic_t tick_dep_mask; | 
|  | #endif | 
|  | unsigned long nvcsw, nivcsw; /* context switch counts */ | 
|  | u64 start_time;		/* monotonic time in nsec */ | 
|  | u64 real_start_time;	/* boot based time in nsec */ | 
|  | /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ | 
|  | unsigned long min_flt, maj_flt; | 
|  |  | 
|  | struct task_cputime cputime_expires; | 
|  | struct list_head cpu_timers[3]; | 
|  |  | 
|  | /* process credentials */ | 
|  | const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */ | 
|  | const struct cred __rcu *real_cred; /* objective and real subjective task | 
|  | * credentials (COW) */ | 
|  | const struct cred __rcu *cred;	/* effective (overridable) subjective task | 
|  | * credentials (COW) */ | 
|  | char comm[TASK_COMM_LEN]; /* executable name excluding path | 
|  | - access with [gs]et_task_comm (which lock | 
|  | it with task_lock()) | 
|  | - initialized normally by setup_new_exec */ | 
|  | /* file system info */ | 
|  | struct nameidata *nameidata; | 
|  | #ifdef CONFIG_SYSVIPC | 
|  | /* ipc stuff */ | 
|  | struct sysv_sem sysvsem; | 
|  | struct sysv_shm sysvshm; | 
|  | #endif | 
|  | #ifdef CONFIG_DETECT_HUNG_TASK | 
|  | /* hung task detection */ | 
|  | unsigned long last_switch_count; | 
|  | #endif | 
|  | /* filesystem information */ | 
|  | struct fs_struct *fs; | 
|  | /* open file information */ | 
|  | struct files_struct *files; | 
|  | /* namespaces */ | 
|  | struct nsproxy *nsproxy; | 
|  | /* signal handlers */ | 
|  | struct signal_struct *signal; | 
|  | struct sighand_struct *sighand; | 
|  |  | 
|  | sigset_t blocked, real_blocked; | 
|  | sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */ | 
|  | struct sigpending pending; | 
|  |  | 
|  | unsigned long sas_ss_sp; | 
|  | size_t sas_ss_size; | 
|  | unsigned sas_ss_flags; | 
|  |  | 
|  | struct callback_head *task_works; | 
|  |  | 
|  | struct audit_context *audit_context; | 
|  | #ifdef CONFIG_AUDITSYSCALL | 
|  | kuid_t loginuid; | 
|  | unsigned int sessionid; | 
|  | #endif | 
|  | struct seccomp seccomp; | 
|  |  | 
|  | /* Thread group tracking */ | 
|  | u32 parent_exec_id; | 
|  | u32 self_exec_id; | 
|  | /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, | 
|  | * mempolicy */ | 
|  | spinlock_t alloc_lock; | 
|  |  | 
|  | /* Protection of the PI data structures: */ | 
|  | raw_spinlock_t pi_lock; | 
|  |  | 
|  | struct wake_q_node wake_q; | 
|  |  | 
|  | #ifdef CONFIG_RT_MUTEXES | 
|  | /* PI waiters blocked on a rt_mutex held by this task */ | 
|  | struct rb_root pi_waiters; | 
|  | struct rb_node *pi_waiters_leftmost; | 
|  | /* Deadlock detection and priority inheritance handling */ | 
|  | struct rt_mutex_waiter *pi_blocked_on; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_MUTEXES | 
|  | /* mutex deadlock detection */ | 
|  | struct mutex_waiter *blocked_on; | 
|  | #endif | 
|  | #ifdef CONFIG_TRACE_IRQFLAGS | 
|  | unsigned int irq_events; | 
|  | unsigned long hardirq_enable_ip; | 
|  | unsigned long hardirq_disable_ip; | 
|  | unsigned int hardirq_enable_event; | 
|  | unsigned int hardirq_disable_event; | 
|  | int hardirqs_enabled; | 
|  | int hardirq_context; | 
|  | unsigned long softirq_disable_ip; | 
|  | unsigned long softirq_enable_ip; | 
|  | unsigned int softirq_disable_event; | 
|  | unsigned int softirq_enable_event; | 
|  | int softirqs_enabled; | 
|  | int softirq_context; | 
|  | #endif | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | # define MAX_LOCK_DEPTH 48UL | 
|  | u64 curr_chain_key; | 
|  | int lockdep_depth; | 
|  | unsigned int lockdep_recursion; | 
|  | struct held_lock held_locks[MAX_LOCK_DEPTH]; | 
|  | gfp_t lockdep_reclaim_gfp; | 
|  | #endif | 
|  | #ifdef CONFIG_UBSAN | 
|  | unsigned int in_ubsan; | 
|  | #endif | 
|  |  | 
|  | /* journalling filesystem info */ | 
|  | void *journal_info; | 
|  |  | 
|  | /* stacked block device info */ | 
|  | struct bio_list *bio_list; | 
|  |  | 
|  | #ifdef CONFIG_BLOCK | 
|  | /* stack plugging */ | 
|  | struct blk_plug *plug; | 
|  | #endif | 
|  |  | 
|  | /* VM state */ | 
|  | struct reclaim_state *reclaim_state; | 
|  |  | 
|  | struct backing_dev_info *backing_dev_info; | 
|  |  | 
|  | struct io_context *io_context; | 
|  |  | 
|  | unsigned long ptrace_message; | 
|  | siginfo_t *last_siginfo; /* For ptrace use.  */ | 
|  | struct task_io_accounting ioac; | 
|  | #if defined(CONFIG_TASK_XACCT) | 
|  | u64 acct_rss_mem1;	/* accumulated rss usage */ | 
|  | u64 acct_vm_mem1;	/* accumulated virtual memory usage */ | 
|  | cputime_t acct_timexpd;	/* stime + utime since last update */ | 
|  | #endif | 
|  | #ifdef CONFIG_CPUSETS | 
|  | nodemask_t mems_allowed;	/* Protected by alloc_lock */ | 
|  | seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */ | 
|  | int cpuset_mem_spread_rotor; | 
|  | int cpuset_slab_spread_rotor; | 
|  | #endif | 
|  | #ifdef CONFIG_CGROUPS | 
|  | /* Control Group info protected by css_set_lock */ | 
|  | struct css_set __rcu *cgroups; | 
|  | /* cg_list protected by css_set_lock and tsk->alloc_lock */ | 
|  | struct list_head cg_list; | 
|  | #endif | 
|  | #ifdef CONFIG_FUTEX | 
|  | struct robust_list_head __user *robust_list; | 
|  | #ifdef CONFIG_COMPAT | 
|  | struct compat_robust_list_head __user *compat_robust_list; | 
|  | #endif | 
|  | struct list_head pi_state_list; | 
|  | struct futex_pi_state *pi_state_cache; | 
|  | #endif | 
|  | #ifdef CONFIG_PERF_EVENTS | 
|  | struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; | 
|  | struct mutex perf_event_mutex; | 
|  | struct list_head perf_event_list; | 
|  | #endif | 
|  | #ifdef CONFIG_DEBUG_PREEMPT | 
|  | unsigned long preempt_disable_ip; | 
|  | #endif | 
|  | #ifdef CONFIG_NUMA | 
|  | struct mempolicy *mempolicy;	/* Protected by alloc_lock */ | 
|  | short il_next; | 
|  | short pref_node_fork; | 
|  | #endif | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | int numa_scan_seq; | 
|  | unsigned int numa_scan_period; | 
|  | unsigned int numa_scan_period_max; | 
|  | int numa_preferred_nid; | 
|  | unsigned long numa_migrate_retry; | 
|  | u64 node_stamp;			/* migration stamp  */ | 
|  | u64 last_task_numa_placement; | 
|  | u64 last_sum_exec_runtime; | 
|  | struct callback_head numa_work; | 
|  |  | 
|  | struct list_head numa_entry; | 
|  | struct numa_group *numa_group; | 
|  |  | 
|  | /* | 
|  | * numa_faults is an array split into four regions: | 
|  | * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer | 
|  | * in this precise order. | 
|  | * | 
|  | * faults_memory: Exponential decaying average of faults on a per-node | 
|  | * basis. Scheduling placement decisions are made based on these | 
|  | * counts. The values remain static for the duration of a PTE scan. | 
|  | * faults_cpu: Track the nodes the process was running on when a NUMA | 
|  | * hinting fault was incurred. | 
|  | * faults_memory_buffer and faults_cpu_buffer: Record faults per node | 
|  | * during the current scan window. When the scan completes, the counts | 
|  | * in faults_memory and faults_cpu decay and these values are copied. | 
|  | */ | 
|  | unsigned long *numa_faults; | 
|  | unsigned long total_numa_faults; | 
|  |  | 
|  | /* | 
|  | * numa_faults_locality tracks if faults recorded during the last | 
|  | * scan window were remote/local or failed to migrate. The task scan | 
|  | * period is adapted based on the locality of the faults with different | 
|  | * weights depending on whether they were shared or private faults | 
|  | */ | 
|  | unsigned long numa_faults_locality[3]; | 
|  |  | 
|  | unsigned long numa_pages_migrated; | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  |  | 
|  | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH | 
|  | struct tlbflush_unmap_batch tlb_ubc; | 
|  | #endif | 
|  |  | 
|  | struct rcu_head rcu; | 
|  |  | 
|  | /* | 
|  | * cache last used pipe for splice | 
|  | */ | 
|  | struct pipe_inode_info *splice_pipe; | 
|  |  | 
|  | struct page_frag task_frag; | 
|  |  | 
|  | #ifdef	CONFIG_TASK_DELAY_ACCT | 
|  | struct task_delay_info *delays; | 
|  | #endif | 
|  | #ifdef CONFIG_FAULT_INJECTION | 
|  | int make_it_fail; | 
|  | #endif | 
|  | /* | 
|  | * when (nr_dirtied >= nr_dirtied_pause), it's time to call | 
|  | * balance_dirty_pages() for some dirty throttling pause | 
|  | */ | 
|  | int nr_dirtied; | 
|  | int nr_dirtied_pause; | 
|  | unsigned long dirty_paused_when; /* start of a write-and-pause period */ | 
|  |  | 
|  | #ifdef CONFIG_LATENCYTOP | 
|  | int latency_record_count; | 
|  | struct latency_record latency_record[LT_SAVECOUNT]; | 
|  | #endif | 
|  | /* | 
|  | * time slack values; these are used to round up poll() and | 
|  | * select() etc timeout values. These are in nanoseconds. | 
|  | */ | 
|  | u64 timer_slack_ns; | 
|  | u64 default_timer_slack_ns; | 
|  |  | 
|  | #ifdef CONFIG_KASAN | 
|  | unsigned int kasan_depth; | 
|  | #endif | 
|  | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 
|  | /* Index of current stored address in ret_stack */ | 
|  | int curr_ret_stack; | 
|  | /* Stack of return addresses for return function tracing */ | 
|  | struct ftrace_ret_stack	*ret_stack; | 
|  | /* time stamp for last schedule */ | 
|  | unsigned long long ftrace_timestamp; | 
|  | /* | 
|  | * Number of functions that haven't been traced | 
|  | * because of depth overrun. | 
|  | */ | 
|  | atomic_t trace_overrun; | 
|  | /* Pause for the tracing */ | 
|  | atomic_t tracing_graph_pause; | 
|  | #endif | 
|  | #ifdef CONFIG_TRACING | 
|  | /* state flags for use by tracers */ | 
|  | unsigned long trace; | 
|  | /* bitmask and counter of trace recursion */ | 
|  | unsigned long trace_recursion; | 
|  | #endif /* CONFIG_TRACING */ | 
|  | #ifdef CONFIG_KCOV | 
|  | /* Coverage collection mode enabled for this task (0 if disabled). */ | 
|  | enum kcov_mode kcov_mode; | 
|  | /* Size of the kcov_area. */ | 
|  | unsigned	kcov_size; | 
|  | /* Buffer for coverage collection. */ | 
|  | void		*kcov_area; | 
|  | /* kcov desciptor wired with this task or NULL. */ | 
|  | struct kcov	*kcov; | 
|  | #endif | 
|  | #ifdef CONFIG_MEMCG | 
|  | struct mem_cgroup *memcg_in_oom; | 
|  | gfp_t memcg_oom_gfp_mask; | 
|  | int memcg_oom_order; | 
|  |  | 
|  | /* number of pages to reclaim on returning to userland */ | 
|  | unsigned int memcg_nr_pages_over_high; | 
|  | #endif | 
|  | #ifdef CONFIG_UPROBES | 
|  | struct uprobe_task *utask; | 
|  | #endif | 
|  | #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) | 
|  | unsigned int	sequential_io; | 
|  | unsigned int	sequential_io_avg; | 
|  | #endif | 
|  | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP | 
|  | unsigned long	task_state_change; | 
|  | #endif | 
|  | int pagefault_disabled; | 
|  | #ifdef CONFIG_MMU | 
|  | struct task_struct *oom_reaper_list; | 
|  | #endif | 
|  | #ifdef CONFIG_VMAP_STACK | 
|  | struct vm_struct *stack_vm_area; | 
|  | #endif | 
|  | #ifdef CONFIG_THREAD_INFO_IN_TASK | 
|  | /* A live task holds one reference. */ | 
|  | atomic_t stack_refcount; | 
|  | #endif | 
|  | /* CPU-specific state of this task */ | 
|  | struct thread_struct thread; | 
|  | /* | 
|  | * WARNING: on x86, 'thread_struct' contains a variable-sized | 
|  | * structure.  It *MUST* be at the end of 'task_struct'. | 
|  | * | 
|  | * Do not put anything below here! | 
|  | */ | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT | 
|  | extern int arch_task_struct_size __read_mostly; | 
|  | #else | 
|  | # define arch_task_struct_size (sizeof(struct task_struct)) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_VMAP_STACK | 
|  | static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) | 
|  | { | 
|  | return t->stack_vm_area; | 
|  | } | 
|  | #else | 
|  | static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Future-safe accessor for struct task_struct's cpus_allowed. */ | 
|  | #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) | 
|  |  | 
|  | static inline int tsk_nr_cpus_allowed(struct task_struct *p) | 
|  | { | 
|  | return p->nr_cpus_allowed; | 
|  | } | 
|  |  | 
|  | #define TNF_MIGRATED	0x01 | 
|  | #define TNF_NO_GROUP	0x02 | 
|  | #define TNF_SHARED	0x04 | 
|  | #define TNF_FAULT_LOCAL	0x08 | 
|  | #define TNF_MIGRATE_FAIL 0x10 | 
|  |  | 
|  | static inline bool in_vfork(struct task_struct *tsk) | 
|  | { | 
|  | bool ret; | 
|  |  | 
|  | /* | 
|  | * need RCU to access ->real_parent if CLONE_VM was used along with | 
|  | * CLONE_PARENT. | 
|  | * | 
|  | * We check real_parent->mm == tsk->mm because CLONE_VFORK does not | 
|  | * imply CLONE_VM | 
|  | * | 
|  | * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus | 
|  | * ->real_parent is not necessarily the task doing vfork(), so in | 
|  | * theory we can't rely on task_lock() if we want to dereference it. | 
|  | * | 
|  | * And in this case we can't trust the real_parent->mm == tsk->mm | 
|  | * check, it can be false negative. But we do not care, if init or | 
|  | * another oom-unkillable task does this it should blame itself. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | extern void task_numa_fault(int last_node, int node, int pages, int flags); | 
|  | extern pid_t task_numa_group_id(struct task_struct *p); | 
|  | extern void set_numabalancing_state(bool enabled); | 
|  | extern void task_numa_free(struct task_struct *p); | 
|  | extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, | 
|  | int src_nid, int dst_cpu); | 
|  | #else | 
|  | static inline void task_numa_fault(int last_node, int node, int pages, | 
|  | int flags) | 
|  | { | 
|  | } | 
|  | static inline pid_t task_numa_group_id(struct task_struct *p) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline void set_numabalancing_state(bool enabled) | 
|  | { | 
|  | } | 
|  | static inline void task_numa_free(struct task_struct *p) | 
|  | { | 
|  | } | 
|  | static inline bool should_numa_migrate_memory(struct task_struct *p, | 
|  | struct page *page, int src_nid, int dst_cpu) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline struct pid *task_pid(struct task_struct *task) | 
|  | { | 
|  | return task->pids[PIDTYPE_PID].pid; | 
|  | } | 
|  |  | 
|  | static inline struct pid *task_tgid(struct task_struct *task) | 
|  | { | 
|  | return task->group_leader->pids[PIDTYPE_PID].pid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Without tasklist or rcu lock it is not safe to dereference | 
|  | * the result of task_pgrp/task_session even if task == current, | 
|  | * we can race with another thread doing sys_setsid/sys_setpgid. | 
|  | */ | 
|  | static inline struct pid *task_pgrp(struct task_struct *task) | 
|  | { | 
|  | return task->group_leader->pids[PIDTYPE_PGID].pid; | 
|  | } | 
|  |  | 
|  | static inline struct pid *task_session(struct task_struct *task) | 
|  | { | 
|  | return task->group_leader->pids[PIDTYPE_SID].pid; | 
|  | } | 
|  |  | 
|  | struct pid_namespace; | 
|  |  | 
|  | /* | 
|  | * the helpers to get the task's different pids as they are seen | 
|  | * from various namespaces | 
|  | * | 
|  | * task_xid_nr()     : global id, i.e. the id seen from the init namespace; | 
|  | * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of | 
|  | *                     current. | 
|  | * task_xid_nr_ns()  : id seen from the ns specified; | 
|  | * | 
|  | * set_task_vxid()   : assigns a virtual id to a task; | 
|  | * | 
|  | * see also pid_nr() etc in include/linux/pid.h | 
|  | */ | 
|  | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, | 
|  | struct pid_namespace *ns); | 
|  |  | 
|  | static inline pid_t task_pid_nr(struct task_struct *tsk) | 
|  | { | 
|  | return tsk->pid; | 
|  | } | 
|  |  | 
|  | static inline pid_t task_pid_nr_ns(struct task_struct *tsk, | 
|  | struct pid_namespace *ns) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); | 
|  | } | 
|  |  | 
|  | static inline pid_t task_pid_vnr(struct task_struct *tsk) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline pid_t task_tgid_nr(struct task_struct *tsk) | 
|  | { | 
|  | return tsk->tgid; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline int pid_alive(const struct task_struct *p); | 
|  |  | 
|  | static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, | 
|  | struct pid_namespace *ns) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); | 
|  | } | 
|  |  | 
|  | static inline pid_t task_pgrp_vnr(struct task_struct *tsk) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline pid_t task_session_nr_ns(struct task_struct *tsk, | 
|  | struct pid_namespace *ns) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); | 
|  | } | 
|  |  | 
|  | static inline pid_t task_session_vnr(struct task_struct *tsk) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); | 
|  | } | 
|  |  | 
|  | static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns); | 
|  | } | 
|  |  | 
|  | static inline pid_t task_tgid_vnr(struct task_struct *tsk) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL); | 
|  | } | 
|  |  | 
|  | static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) | 
|  | { | 
|  | pid_t pid = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (pid_alive(tsk)) | 
|  | pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return pid; | 
|  | } | 
|  |  | 
|  | static inline pid_t task_ppid_nr(const struct task_struct *tsk) | 
|  | { | 
|  | return task_ppid_nr_ns(tsk, &init_pid_ns); | 
|  | } | 
|  |  | 
|  | /* obsolete, do not use */ | 
|  | static inline pid_t task_pgrp_nr(struct task_struct *tsk) | 
|  | { | 
|  | return task_pgrp_nr_ns(tsk, &init_pid_ns); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pid_alive - check that a task structure is not stale | 
|  | * @p: Task structure to be checked. | 
|  | * | 
|  | * Test if a process is not yet dead (at most zombie state) | 
|  | * If pid_alive fails, then pointers within the task structure | 
|  | * can be stale and must not be dereferenced. | 
|  | * | 
|  | * Return: 1 if the process is alive. 0 otherwise. | 
|  | */ | 
|  | static inline int pid_alive(const struct task_struct *p) | 
|  | { | 
|  | return p->pids[PIDTYPE_PID].pid != NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * is_global_init - check if a task structure is init. Since init | 
|  | * is free to have sub-threads we need to check tgid. | 
|  | * @tsk: Task structure to be checked. | 
|  | * | 
|  | * Check if a task structure is the first user space task the kernel created. | 
|  | * | 
|  | * Return: 1 if the task structure is init. 0 otherwise. | 
|  | */ | 
|  | static inline int is_global_init(struct task_struct *tsk) | 
|  | { | 
|  | return task_tgid_nr(tsk) == 1; | 
|  | } | 
|  |  | 
|  | extern struct pid *cad_pid; | 
|  |  | 
|  | extern void free_task(struct task_struct *tsk); | 
|  | #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) | 
|  |  | 
|  | extern void __put_task_struct(struct task_struct *t); | 
|  |  | 
|  | static inline void put_task_struct(struct task_struct *t) | 
|  | { | 
|  | if (atomic_dec_and_test(&t->usage)) | 
|  | __put_task_struct(t); | 
|  | } | 
|  |  | 
|  | struct task_struct *task_rcu_dereference(struct task_struct **ptask); | 
|  | struct task_struct *try_get_task_struct(struct task_struct **ptask); | 
|  |  | 
|  | #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN | 
|  | extern void task_cputime(struct task_struct *t, | 
|  | cputime_t *utime, cputime_t *stime); | 
|  | extern void task_cputime_scaled(struct task_struct *t, | 
|  | cputime_t *utimescaled, cputime_t *stimescaled); | 
|  | extern cputime_t task_gtime(struct task_struct *t); | 
|  | #else | 
|  | static inline void task_cputime(struct task_struct *t, | 
|  | cputime_t *utime, cputime_t *stime) | 
|  | { | 
|  | if (utime) | 
|  | *utime = t->utime; | 
|  | if (stime) | 
|  | *stime = t->stime; | 
|  | } | 
|  |  | 
|  | static inline void task_cputime_scaled(struct task_struct *t, | 
|  | cputime_t *utimescaled, | 
|  | cputime_t *stimescaled) | 
|  | { | 
|  | if (utimescaled) | 
|  | *utimescaled = t->utimescaled; | 
|  | if (stimescaled) | 
|  | *stimescaled = t->stimescaled; | 
|  | } | 
|  |  | 
|  | static inline cputime_t task_gtime(struct task_struct *t) | 
|  | { | 
|  | return t->gtime; | 
|  | } | 
|  | #endif | 
|  | extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); | 
|  | extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); | 
|  |  | 
|  | /* | 
|  | * Per process flags | 
|  | */ | 
|  | #define PF_EXITING	0x00000004	/* getting shut down */ | 
|  | #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */ | 
|  | #define PF_VCPU		0x00000010	/* I'm a virtual CPU */ | 
|  | #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */ | 
|  | #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */ | 
|  | #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */ | 
|  | #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */ | 
|  | #define PF_DUMPCORE	0x00000200	/* dumped core */ | 
|  | #define PF_SIGNALED	0x00000400	/* killed by a signal */ | 
|  | #define PF_MEMALLOC	0x00000800	/* Allocating memory */ | 
|  | #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */ | 
|  | #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */ | 
|  | #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */ | 
|  | #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */ | 
|  | #define PF_FROZEN	0x00010000	/* frozen for system suspend */ | 
|  | #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */ | 
|  | #define PF_KSWAPD	0x00040000	/* I am kswapd */ | 
|  | #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */ | 
|  | #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */ | 
|  | #define PF_KTHREAD	0x00200000	/* I am a kernel thread */ | 
|  | #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */ | 
|  | #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */ | 
|  | #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */ | 
|  | #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */ | 
|  | #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */ | 
|  | #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */ | 
|  | #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */ | 
|  |  | 
|  | /* | 
|  | * Only the _current_ task can read/write to tsk->flags, but other | 
|  | * tasks can access tsk->flags in readonly mode for example | 
|  | * with tsk_used_math (like during threaded core dumping). | 
|  | * There is however an exception to this rule during ptrace | 
|  | * or during fork: the ptracer task is allowed to write to the | 
|  | * child->flags of its traced child (same goes for fork, the parent | 
|  | * can write to the child->flags), because we're guaranteed the | 
|  | * child is not running and in turn not changing child->flags | 
|  | * at the same time the parent does it. | 
|  | */ | 
|  | #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) | 
|  | #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) | 
|  | #define clear_used_math() clear_stopped_child_used_math(current) | 
|  | #define set_used_math() set_stopped_child_used_math(current) | 
|  | #define conditional_stopped_child_used_math(condition, child) \ | 
|  | do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) | 
|  | #define conditional_used_math(condition) \ | 
|  | conditional_stopped_child_used_math(condition, current) | 
|  | #define copy_to_stopped_child_used_math(child) \ | 
|  | do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) | 
|  | /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ | 
|  | #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) | 
|  | #define used_math() tsk_used_math(current) | 
|  |  | 
|  | /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags | 
|  | * __GFP_FS is also cleared as it implies __GFP_IO. | 
|  | */ | 
|  | static inline gfp_t memalloc_noio_flags(gfp_t flags) | 
|  | { | 
|  | if (unlikely(current->flags & PF_MEMALLOC_NOIO)) | 
|  | flags &= ~(__GFP_IO | __GFP_FS); | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | static inline unsigned int memalloc_noio_save(void) | 
|  | { | 
|  | unsigned int flags = current->flags & PF_MEMALLOC_NOIO; | 
|  | current->flags |= PF_MEMALLOC_NOIO; | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | static inline void memalloc_noio_restore(unsigned int flags) | 
|  | { | 
|  | current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; | 
|  | } | 
|  |  | 
|  | /* Per-process atomic flags. */ | 
|  | #define PFA_NO_NEW_PRIVS 0	/* May not gain new privileges. */ | 
|  | #define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */ | 
|  | #define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */ | 
|  | #define PFA_LMK_WAITING  3      /* Lowmemorykiller is waiting */ | 
|  | #define PFA_SPEC_SSB_DISABLE		4	/* Speculative Store Bypass disabled */ | 
|  | #define PFA_SPEC_SSB_FORCE_DISABLE	5	/* Speculative Store Bypass force disabled*/ | 
|  |  | 
|  |  | 
|  | #define TASK_PFA_TEST(name, func)					\ | 
|  | static inline bool task_##func(struct task_struct *p)		\ | 
|  | { return test_bit(PFA_##name, &p->atomic_flags); } | 
|  | #define TASK_PFA_SET(name, func)					\ | 
|  | static inline void task_set_##func(struct task_struct *p)	\ | 
|  | { set_bit(PFA_##name, &p->atomic_flags); } | 
|  | #define TASK_PFA_CLEAR(name, func)					\ | 
|  | static inline void task_clear_##func(struct task_struct *p)	\ | 
|  | { clear_bit(PFA_##name, &p->atomic_flags); } | 
|  |  | 
|  | TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) | 
|  | TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) | 
|  |  | 
|  | TASK_PFA_TEST(SPREAD_PAGE, spread_page) | 
|  | TASK_PFA_SET(SPREAD_PAGE, spread_page) | 
|  | TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) | 
|  |  | 
|  | TASK_PFA_TEST(SPREAD_SLAB, spread_slab) | 
|  | TASK_PFA_SET(SPREAD_SLAB, spread_slab) | 
|  | TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) | 
|  |  | 
|  | TASK_PFA_TEST(LMK_WAITING, lmk_waiting) | 
|  | TASK_PFA_SET(LMK_WAITING, lmk_waiting) | 
|  |  | 
|  | TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) | 
|  | TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) | 
|  | TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) | 
|  |  | 
|  | TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) | 
|  | TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) | 
|  |  | 
|  | /* | 
|  | * task->jobctl flags | 
|  | */ | 
|  | #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */ | 
|  |  | 
|  | #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */ | 
|  | #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */ | 
|  | #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */ | 
|  | #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */ | 
|  | #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */ | 
|  | #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */ | 
|  | #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */ | 
|  |  | 
|  | #define JOBCTL_STOP_DEQUEUED	(1UL << JOBCTL_STOP_DEQUEUED_BIT) | 
|  | #define JOBCTL_STOP_PENDING	(1UL << JOBCTL_STOP_PENDING_BIT) | 
|  | #define JOBCTL_STOP_CONSUME	(1UL << JOBCTL_STOP_CONSUME_BIT) | 
|  | #define JOBCTL_TRAP_STOP	(1UL << JOBCTL_TRAP_STOP_BIT) | 
|  | #define JOBCTL_TRAP_NOTIFY	(1UL << JOBCTL_TRAP_NOTIFY_BIT) | 
|  | #define JOBCTL_TRAPPING		(1UL << JOBCTL_TRAPPING_BIT) | 
|  | #define JOBCTL_LISTENING	(1UL << JOBCTL_LISTENING_BIT) | 
|  |  | 
|  | #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) | 
|  | #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) | 
|  |  | 
|  | extern bool task_set_jobctl_pending(struct task_struct *task, | 
|  | unsigned long mask); | 
|  | extern void task_clear_jobctl_trapping(struct task_struct *task); | 
|  | extern void task_clear_jobctl_pending(struct task_struct *task, | 
|  | unsigned long mask); | 
|  |  | 
|  | static inline void rcu_copy_process(struct task_struct *p) | 
|  | { | 
|  | #ifdef CONFIG_PREEMPT_RCU | 
|  | p->rcu_read_lock_nesting = 0; | 
|  | p->rcu_read_unlock_special.s = 0; | 
|  | p->rcu_blocked_node = NULL; | 
|  | INIT_LIST_HEAD(&p->rcu_node_entry); | 
|  | #endif /* #ifdef CONFIG_PREEMPT_RCU */ | 
|  | #ifdef CONFIG_TASKS_RCU | 
|  | p->rcu_tasks_holdout = false; | 
|  | INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); | 
|  | p->rcu_tasks_idle_cpu = -1; | 
|  | #endif /* #ifdef CONFIG_TASKS_RCU */ | 
|  | } | 
|  |  | 
|  | static inline void tsk_restore_flags(struct task_struct *task, | 
|  | unsigned long orig_flags, unsigned long flags) | 
|  | { | 
|  | task->flags &= ~flags; | 
|  | task->flags |= orig_flags & flags; | 
|  | } | 
|  |  | 
|  | extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, | 
|  | const struct cpumask *trial); | 
|  | extern int task_can_attach(struct task_struct *p, | 
|  | const struct cpumask *cs_cpus_allowed); | 
|  | #ifdef CONFIG_SMP | 
|  | extern void do_set_cpus_allowed(struct task_struct *p, | 
|  | const struct cpumask *new_mask); | 
|  |  | 
|  | extern int set_cpus_allowed_ptr(struct task_struct *p, | 
|  | const struct cpumask *new_mask); | 
|  | #else | 
|  | static inline void do_set_cpus_allowed(struct task_struct *p, | 
|  | const struct cpumask *new_mask) | 
|  | { | 
|  | } | 
|  | static inline int set_cpus_allowed_ptr(struct task_struct *p, | 
|  | const struct cpumask *new_mask) | 
|  | { | 
|  | if (!cpumask_test_cpu(0, new_mask)) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_COMMON | 
|  | void calc_load_enter_idle(void); | 
|  | void calc_load_exit_idle(void); | 
|  | #else | 
|  | static inline void calc_load_enter_idle(void) { } | 
|  | static inline void calc_load_exit_idle(void) { } | 
|  | #endif /* CONFIG_NO_HZ_COMMON */ | 
|  |  | 
|  | /* | 
|  | * Do not use outside of architecture code which knows its limitations. | 
|  | * | 
|  | * sched_clock() has no promise of monotonicity or bounded drift between | 
|  | * CPUs, use (which you should not) requires disabling IRQs. | 
|  | * | 
|  | * Please use one of the three interfaces below. | 
|  | */ | 
|  | extern unsigned long long notrace sched_clock(void); | 
|  | /* | 
|  | * See the comment in kernel/sched/clock.c | 
|  | */ | 
|  | extern u64 running_clock(void); | 
|  | extern u64 sched_clock_cpu(int cpu); | 
|  |  | 
|  |  | 
|  | extern void sched_clock_init(void); | 
|  |  | 
|  | #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK | 
|  | static inline void sched_clock_tick(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void sched_clock_idle_sleep_event(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void sched_clock_idle_wakeup_event(u64 delta_ns) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline u64 cpu_clock(int cpu) | 
|  | { | 
|  | return sched_clock(); | 
|  | } | 
|  |  | 
|  | static inline u64 local_clock(void) | 
|  | { | 
|  | return sched_clock(); | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * Architectures can set this to 1 if they have specified | 
|  | * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, | 
|  | * but then during bootup it turns out that sched_clock() | 
|  | * is reliable after all: | 
|  | */ | 
|  | extern int sched_clock_stable(void); | 
|  | extern void set_sched_clock_stable(void); | 
|  | extern void clear_sched_clock_stable(void); | 
|  |  | 
|  | extern void sched_clock_tick(void); | 
|  | extern void sched_clock_idle_sleep_event(void); | 
|  | extern void sched_clock_idle_wakeup_event(u64 delta_ns); | 
|  |  | 
|  | /* | 
|  | * As outlined in clock.c, provides a fast, high resolution, nanosecond | 
|  | * time source that is monotonic per cpu argument and has bounded drift | 
|  | * between cpus. | 
|  | * | 
|  | * ######################### BIG FAT WARNING ########################## | 
|  | * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # | 
|  | * # go backwards !!                                                  # | 
|  | * #################################################################### | 
|  | */ | 
|  | static inline u64 cpu_clock(int cpu) | 
|  | { | 
|  | return sched_clock_cpu(cpu); | 
|  | } | 
|  |  | 
|  | static inline u64 local_clock(void) | 
|  | { | 
|  | return sched_clock_cpu(raw_smp_processor_id()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 
|  | /* | 
|  | * An i/f to runtime opt-in for irq time accounting based off of sched_clock. | 
|  | * The reason for this explicit opt-in is not to have perf penalty with | 
|  | * slow sched_clocks. | 
|  | */ | 
|  | extern void enable_sched_clock_irqtime(void); | 
|  | extern void disable_sched_clock_irqtime(void); | 
|  | #else | 
|  | static inline void enable_sched_clock_irqtime(void) {} | 
|  | static inline void disable_sched_clock_irqtime(void) {} | 
|  | #endif | 
|  |  | 
|  | extern unsigned long long | 
|  | task_sched_runtime(struct task_struct *task); | 
|  |  | 
|  | /* sched_exec is called by processes performing an exec */ | 
|  | #ifdef CONFIG_SMP | 
|  | extern void sched_exec(void); | 
|  | #else | 
|  | #define sched_exec()   {} | 
|  | #endif | 
|  |  | 
|  | extern void sched_clock_idle_sleep_event(void); | 
|  | extern void sched_clock_idle_wakeup_event(u64 delta_ns); | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | extern void idle_task_exit(void); | 
|  | #else | 
|  | static inline void idle_task_exit(void) {} | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) | 
|  | extern void wake_up_nohz_cpu(int cpu); | 
|  | #else | 
|  | static inline void wake_up_nohz_cpu(int cpu) { } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_FULL | 
|  | extern u64 scheduler_tick_max_deferment(void); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHED_AUTOGROUP | 
|  | extern void sched_autogroup_create_attach(struct task_struct *p); | 
|  | extern void sched_autogroup_detach(struct task_struct *p); | 
|  | extern void sched_autogroup_fork(struct signal_struct *sig); | 
|  | extern void sched_autogroup_exit(struct signal_struct *sig); | 
|  | extern void sched_autogroup_exit_task(struct task_struct *p); | 
|  | #ifdef CONFIG_PROC_FS | 
|  | extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); | 
|  | extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); | 
|  | #endif | 
|  | #else | 
|  | static inline void sched_autogroup_create_attach(struct task_struct *p) { } | 
|  | static inline void sched_autogroup_detach(struct task_struct *p) { } | 
|  | static inline void sched_autogroup_fork(struct signal_struct *sig) { } | 
|  | static inline void sched_autogroup_exit(struct signal_struct *sig) { } | 
|  | static inline void sched_autogroup_exit_task(struct task_struct *p) { } | 
|  | #endif | 
|  |  | 
|  | extern int yield_to(struct task_struct *p, bool preempt); | 
|  | extern void set_user_nice(struct task_struct *p, long nice); | 
|  | extern int task_prio(const struct task_struct *p); | 
|  | /** | 
|  | * task_nice - return the nice value of a given task. | 
|  | * @p: the task in question. | 
|  | * | 
|  | * Return: The nice value [ -20 ... 0 ... 19 ]. | 
|  | */ | 
|  | static inline int task_nice(const struct task_struct *p) | 
|  | { | 
|  | return PRIO_TO_NICE((p)->static_prio); | 
|  | } | 
|  | extern int can_nice(const struct task_struct *p, const int nice); | 
|  | extern int task_curr(const struct task_struct *p); | 
|  | extern int idle_cpu(int cpu); | 
|  | extern int sched_setscheduler(struct task_struct *, int, | 
|  | const struct sched_param *); | 
|  | extern int sched_setscheduler_nocheck(struct task_struct *, int, | 
|  | const struct sched_param *); | 
|  | extern int sched_setattr(struct task_struct *, | 
|  | const struct sched_attr *); | 
|  | extern struct task_struct *idle_task(int cpu); | 
|  | /** | 
|  | * is_idle_task - is the specified task an idle task? | 
|  | * @p: the task in question. | 
|  | * | 
|  | * Return: 1 if @p is an idle task. 0 otherwise. | 
|  | */ | 
|  | static inline bool is_idle_task(const struct task_struct *p) | 
|  | { | 
|  | return p->pid == 0; | 
|  | } | 
|  | extern struct task_struct *curr_task(int cpu); | 
|  | extern void ia64_set_curr_task(int cpu, struct task_struct *p); | 
|  |  | 
|  | void yield(void); | 
|  |  | 
|  | union thread_union { | 
|  | #ifndef CONFIG_THREAD_INFO_IN_TASK | 
|  | struct thread_info thread_info; | 
|  | #endif | 
|  | unsigned long stack[THREAD_SIZE/sizeof(long)]; | 
|  | }; | 
|  |  | 
|  | #ifndef __HAVE_ARCH_KSTACK_END | 
|  | static inline int kstack_end(void *addr) | 
|  | { | 
|  | /* Reliable end of stack detection: | 
|  | * Some APM bios versions misalign the stack | 
|  | */ | 
|  | return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | extern union thread_union init_thread_union; | 
|  | extern struct task_struct init_task; | 
|  |  | 
|  | extern struct   mm_struct init_mm; | 
|  |  | 
|  | extern struct pid_namespace init_pid_ns; | 
|  |  | 
|  | /* | 
|  | * find a task by one of its numerical ids | 
|  | * | 
|  | * find_task_by_pid_ns(): | 
|  | *      finds a task by its pid in the specified namespace | 
|  | * find_task_by_vpid(): | 
|  | *      finds a task by its virtual pid | 
|  | * | 
|  | * see also find_vpid() etc in include/linux/pid.h | 
|  | */ | 
|  |  | 
|  | extern struct task_struct *find_task_by_vpid(pid_t nr); | 
|  | extern struct task_struct *find_task_by_pid_ns(pid_t nr, | 
|  | struct pid_namespace *ns); | 
|  |  | 
|  | /* per-UID process charging. */ | 
|  | extern struct user_struct * alloc_uid(kuid_t); | 
|  | static inline struct user_struct *get_uid(struct user_struct *u) | 
|  | { | 
|  | atomic_inc(&u->__count); | 
|  | return u; | 
|  | } | 
|  | extern void free_uid(struct user_struct *); | 
|  |  | 
|  | #include <asm/current.h> | 
|  |  | 
|  | extern void xtime_update(unsigned long ticks); | 
|  |  | 
|  | extern int wake_up_state(struct task_struct *tsk, unsigned int state); | 
|  | extern int wake_up_process(struct task_struct *tsk); | 
|  | extern void wake_up_new_task(struct task_struct *tsk); | 
|  | #ifdef CONFIG_SMP | 
|  | extern void kick_process(struct task_struct *tsk); | 
|  | #else | 
|  | static inline void kick_process(struct task_struct *tsk) { } | 
|  | #endif | 
|  | extern int sched_fork(unsigned long clone_flags, struct task_struct *p); | 
|  | extern void sched_dead(struct task_struct *p); | 
|  |  | 
|  | extern void proc_caches_init(void); | 
|  | extern void flush_signals(struct task_struct *); | 
|  | extern void ignore_signals(struct task_struct *); | 
|  | extern void flush_signal_handlers(struct task_struct *, int force_default); | 
|  | extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); | 
|  |  | 
|  | static inline int kernel_dequeue_signal(siginfo_t *info) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | siginfo_t __info; | 
|  | int ret; | 
|  |  | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void kernel_signal_stop(void) | 
|  | { | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | if (current->jobctl & JOBCTL_STOP_DEQUEUED) | 
|  | __set_current_state(TASK_STOPPED); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | extern void release_task(struct task_struct * p); | 
|  | extern int send_sig_info(int, struct siginfo *, struct task_struct *); | 
|  | extern int force_sigsegv(int, struct task_struct *); | 
|  | extern int force_sig_info(int, struct siginfo *, struct task_struct *); | 
|  | extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); | 
|  | extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); | 
|  | extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, | 
|  | const struct cred *, u32); | 
|  | extern int kill_pgrp(struct pid *pid, int sig, int priv); | 
|  | extern int kill_pid(struct pid *pid, int sig, int priv); | 
|  | extern int kill_proc_info(int, struct siginfo *, pid_t); | 
|  | extern __must_check bool do_notify_parent(struct task_struct *, int); | 
|  | extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); | 
|  | extern void force_sig(int, struct task_struct *); | 
|  | extern int send_sig(int, struct task_struct *, int); | 
|  | extern int zap_other_threads(struct task_struct *p); | 
|  | extern struct sigqueue *sigqueue_alloc(void); | 
|  | extern void sigqueue_free(struct sigqueue *); | 
|  | extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group); | 
|  | extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); | 
|  |  | 
|  | #ifdef TIF_RESTORE_SIGMASK | 
|  | /* | 
|  | * Legacy restore_sigmask accessors.  These are inefficient on | 
|  | * SMP architectures because they require atomic operations. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * set_restore_sigmask() - make sure saved_sigmask processing gets done | 
|  | * | 
|  | * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code | 
|  | * will run before returning to user mode, to process the flag.  For | 
|  | * all callers, TIF_SIGPENDING is already set or it's no harm to set | 
|  | * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the | 
|  | * arch code will notice on return to user mode, in case those bits | 
|  | * are scarce.  We set TIF_SIGPENDING here to ensure that the arch | 
|  | * signal code always gets run when TIF_RESTORE_SIGMASK is set. | 
|  | */ | 
|  | static inline void set_restore_sigmask(void) | 
|  | { | 
|  | set_thread_flag(TIF_RESTORE_SIGMASK); | 
|  | WARN_ON(!test_thread_flag(TIF_SIGPENDING)); | 
|  | } | 
|  | static inline void clear_restore_sigmask(void) | 
|  | { | 
|  | clear_thread_flag(TIF_RESTORE_SIGMASK); | 
|  | } | 
|  | static inline bool test_restore_sigmask(void) | 
|  | { | 
|  | return test_thread_flag(TIF_RESTORE_SIGMASK); | 
|  | } | 
|  | static inline bool test_and_clear_restore_sigmask(void) | 
|  | { | 
|  | return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); | 
|  | } | 
|  |  | 
|  | #else	/* TIF_RESTORE_SIGMASK */ | 
|  |  | 
|  | /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ | 
|  | static inline void set_restore_sigmask(void) | 
|  | { | 
|  | current->restore_sigmask = true; | 
|  | WARN_ON(!test_thread_flag(TIF_SIGPENDING)); | 
|  | } | 
|  | static inline void clear_restore_sigmask(void) | 
|  | { | 
|  | current->restore_sigmask = false; | 
|  | } | 
|  | static inline bool test_restore_sigmask(void) | 
|  | { | 
|  | return current->restore_sigmask; | 
|  | } | 
|  | static inline bool test_and_clear_restore_sigmask(void) | 
|  | { | 
|  | if (!current->restore_sigmask) | 
|  | return false; | 
|  | current->restore_sigmask = false; | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline void restore_saved_sigmask(void) | 
|  | { | 
|  | if (test_and_clear_restore_sigmask()) | 
|  | __set_current_blocked(¤t->saved_sigmask); | 
|  | } | 
|  |  | 
|  | static inline sigset_t *sigmask_to_save(void) | 
|  | { | 
|  | sigset_t *res = ¤t->blocked; | 
|  | if (unlikely(test_restore_sigmask())) | 
|  | res = ¤t->saved_sigmask; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static inline int kill_cad_pid(int sig, int priv) | 
|  | { | 
|  | return kill_pid(cad_pid, sig, priv); | 
|  | } | 
|  |  | 
|  | /* These can be the second arg to send_sig_info/send_group_sig_info.  */ | 
|  | #define SEND_SIG_NOINFO ((struct siginfo *) 0) | 
|  | #define SEND_SIG_PRIV	((struct siginfo *) 1) | 
|  | #define SEND_SIG_FORCED	((struct siginfo *) 2) | 
|  |  | 
|  | /* | 
|  | * True if we are on the alternate signal stack. | 
|  | */ | 
|  | static inline int on_sig_stack(unsigned long sp) | 
|  | { | 
|  | /* | 
|  | * If the signal stack is SS_AUTODISARM then, by construction, we | 
|  | * can't be on the signal stack unless user code deliberately set | 
|  | * SS_AUTODISARM when we were already on it. | 
|  | * | 
|  | * This improves reliability: if user state gets corrupted such that | 
|  | * the stack pointer points very close to the end of the signal stack, | 
|  | * then this check will enable the signal to be handled anyway. | 
|  | */ | 
|  | if (current->sas_ss_flags & SS_AUTODISARM) | 
|  | return 0; | 
|  |  | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | return sp >= current->sas_ss_sp && | 
|  | sp - current->sas_ss_sp < current->sas_ss_size; | 
|  | #else | 
|  | return sp > current->sas_ss_sp && | 
|  | sp - current->sas_ss_sp <= current->sas_ss_size; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int sas_ss_flags(unsigned long sp) | 
|  | { | 
|  | if (!current->sas_ss_size) | 
|  | return SS_DISABLE; | 
|  |  | 
|  | return on_sig_stack(sp) ? SS_ONSTACK : 0; | 
|  | } | 
|  |  | 
|  | static inline void sas_ss_reset(struct task_struct *p) | 
|  | { | 
|  | p->sas_ss_sp = 0; | 
|  | p->sas_ss_size = 0; | 
|  | p->sas_ss_flags = SS_DISABLE; | 
|  | } | 
|  |  | 
|  | static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) | 
|  | { | 
|  | if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | return current->sas_ss_sp; | 
|  | #else | 
|  | return current->sas_ss_sp + current->sas_ss_size; | 
|  | #endif | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Routines for handling mm_structs | 
|  | */ | 
|  | extern struct mm_struct * mm_alloc(void); | 
|  |  | 
|  | /* mmdrop drops the mm and the page tables */ | 
|  | extern void __mmdrop(struct mm_struct *); | 
|  | static inline void mmdrop(struct mm_struct *mm) | 
|  | { | 
|  | if (unlikely(atomic_dec_and_test(&mm->mm_count))) | 
|  | __mmdrop(mm); | 
|  | } | 
|  |  | 
|  | static inline void mmdrop_async_fn(struct work_struct *work) | 
|  | { | 
|  | struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work); | 
|  | __mmdrop(mm); | 
|  | } | 
|  |  | 
|  | static inline void mmdrop_async(struct mm_struct *mm) | 
|  | { | 
|  | if (unlikely(atomic_dec_and_test(&mm->mm_count))) { | 
|  | INIT_WORK(&mm->async_put_work, mmdrop_async_fn); | 
|  | schedule_work(&mm->async_put_work); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool mmget_not_zero(struct mm_struct *mm) | 
|  | { | 
|  | return atomic_inc_not_zero(&mm->mm_users); | 
|  | } | 
|  |  | 
|  | /* mmput gets rid of the mappings and all user-space */ | 
|  | extern void mmput(struct mm_struct *); | 
|  | #ifdef CONFIG_MMU | 
|  | /* same as above but performs the slow path from the async context. Can | 
|  | * be called from the atomic context as well | 
|  | */ | 
|  | extern void mmput_async(struct mm_struct *); | 
|  | #endif | 
|  |  | 
|  | /* Grab a reference to a task's mm, if it is not already going away */ | 
|  | extern struct mm_struct *get_task_mm(struct task_struct *task); | 
|  | /* | 
|  | * Grab a reference to a task's mm, if it is not already going away | 
|  | * and ptrace_may_access with the mode parameter passed to it | 
|  | * succeeds. | 
|  | */ | 
|  | extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); | 
|  | /* Remove the current tasks stale references to the old mm_struct */ | 
|  | extern void mm_release(struct task_struct *, struct mm_struct *); | 
|  |  | 
|  | #ifdef CONFIG_HAVE_COPY_THREAD_TLS | 
|  | extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, | 
|  | struct task_struct *, unsigned long); | 
|  | #else | 
|  | extern int copy_thread(unsigned long, unsigned long, unsigned long, | 
|  | struct task_struct *); | 
|  |  | 
|  | /* Architectures that haven't opted into copy_thread_tls get the tls argument | 
|  | * via pt_regs, so ignore the tls argument passed via C. */ | 
|  | static inline int copy_thread_tls( | 
|  | unsigned long clone_flags, unsigned long sp, unsigned long arg, | 
|  | struct task_struct *p, unsigned long tls) | 
|  | { | 
|  | return copy_thread(clone_flags, sp, arg, p); | 
|  | } | 
|  | #endif | 
|  | extern void flush_thread(void); | 
|  |  | 
|  | #ifdef CONFIG_HAVE_EXIT_THREAD | 
|  | extern void exit_thread(struct task_struct *tsk); | 
|  | #else | 
|  | static inline void exit_thread(struct task_struct *tsk) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | extern void exit_files(struct task_struct *); | 
|  | extern void __cleanup_sighand(struct sighand_struct *); | 
|  |  | 
|  | extern void exit_itimers(struct signal_struct *); | 
|  | extern void flush_itimer_signals(void); | 
|  |  | 
|  | extern void do_group_exit(int); | 
|  |  | 
|  | extern int do_execve(struct filename *, | 
|  | const char __user * const __user *, | 
|  | const char __user * const __user *); | 
|  | extern int do_execveat(int, struct filename *, | 
|  | const char __user * const __user *, | 
|  | const char __user * const __user *, | 
|  | int); | 
|  | extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); | 
|  | extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); | 
|  | struct task_struct *fork_idle(int); | 
|  | extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); | 
|  |  | 
|  | extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); | 
|  | static inline void set_task_comm(struct task_struct *tsk, const char *from) | 
|  | { | 
|  | __set_task_comm(tsk, from, false); | 
|  | } | 
|  | extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); | 
|  | #define get_task_comm(buf, tsk) ({			\ | 
|  | BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\ | 
|  | __get_task_comm(buf, sizeof(buf), tsk);		\ | 
|  | }) | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | void scheduler_ipi(void); | 
|  | extern unsigned long wait_task_inactive(struct task_struct *, long match_state); | 
|  | #else | 
|  | static inline void scheduler_ipi(void) { } | 
|  | static inline unsigned long wait_task_inactive(struct task_struct *p, | 
|  | long match_state) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define tasklist_empty() \ | 
|  | list_empty(&init_task.tasks) | 
|  |  | 
|  | #define next_task(p) \ | 
|  | list_entry_rcu((p)->tasks.next, struct task_struct, tasks) | 
|  |  | 
|  | #define for_each_process(p) \ | 
|  | for (p = &init_task ; (p = next_task(p)) != &init_task ; ) | 
|  |  | 
|  | extern bool current_is_single_threaded(void); | 
|  |  | 
|  | /* | 
|  | * Careful: do_each_thread/while_each_thread is a double loop so | 
|  | *          'break' will not work as expected - use goto instead. | 
|  | */ | 
|  | #define do_each_thread(g, t) \ | 
|  | for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do | 
|  |  | 
|  | #define while_each_thread(g, t) \ | 
|  | while ((t = next_thread(t)) != g) | 
|  |  | 
|  | #define __for_each_thread(signal, t)	\ | 
|  | list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) | 
|  |  | 
|  | #define for_each_thread(p, t)		\ | 
|  | __for_each_thread((p)->signal, t) | 
|  |  | 
|  | /* Careful: this is a double loop, 'break' won't work as expected. */ | 
|  | #define for_each_process_thread(p, t)	\ | 
|  | for_each_process(p) for_each_thread(p, t) | 
|  |  | 
|  | static inline int get_nr_threads(struct task_struct *tsk) | 
|  | { | 
|  | return tsk->signal->nr_threads; | 
|  | } | 
|  |  | 
|  | static inline bool thread_group_leader(struct task_struct *p) | 
|  | { | 
|  | return p->exit_signal >= 0; | 
|  | } | 
|  |  | 
|  | /* Do to the insanities of de_thread it is possible for a process | 
|  | * to have the pid of the thread group leader without actually being | 
|  | * the thread group leader.  For iteration through the pids in proc | 
|  | * all we care about is that we have a task with the appropriate | 
|  | * pid, we don't actually care if we have the right task. | 
|  | */ | 
|  | static inline bool has_group_leader_pid(struct task_struct *p) | 
|  | { | 
|  | return task_pid(p) == p->signal->leader_pid; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | bool same_thread_group(struct task_struct *p1, struct task_struct *p2) | 
|  | { | 
|  | return p1->signal == p2->signal; | 
|  | } | 
|  |  | 
|  | static inline struct task_struct *next_thread(const struct task_struct *p) | 
|  | { | 
|  | return list_entry_rcu(p->thread_group.next, | 
|  | struct task_struct, thread_group); | 
|  | } | 
|  |  | 
|  | static inline int thread_group_empty(struct task_struct *p) | 
|  | { | 
|  | return list_empty(&p->thread_group); | 
|  | } | 
|  |  | 
|  | #define delay_group_leader(p) \ | 
|  | (thread_group_leader(p) && !thread_group_empty(p)) | 
|  |  | 
|  | /* | 
|  | * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring | 
|  | * subscriptions and synchronises with wait4().  Also used in procfs.  Also | 
|  | * pins the final release of task.io_context.  Also protects ->cpuset and | 
|  | * ->cgroup.subsys[]. And ->vfork_done. | 
|  | * | 
|  | * Nests both inside and outside of read_lock(&tasklist_lock). | 
|  | * It must not be nested with write_lock_irq(&tasklist_lock), | 
|  | * neither inside nor outside. | 
|  | */ | 
|  | static inline void task_lock(struct task_struct *p) | 
|  | { | 
|  | spin_lock(&p->alloc_lock); | 
|  | } | 
|  |  | 
|  | static inline void task_unlock(struct task_struct *p) | 
|  | { | 
|  | spin_unlock(&p->alloc_lock); | 
|  | } | 
|  |  | 
|  | extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, | 
|  | unsigned long *flags); | 
|  |  | 
|  | static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, | 
|  | unsigned long *flags) | 
|  | { | 
|  | struct sighand_struct *ret; | 
|  |  | 
|  | ret = __lock_task_sighand(tsk, flags); | 
|  | (void)__cond_lock(&tsk->sighand->siglock, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void unlock_task_sighand(struct task_struct *tsk, | 
|  | unsigned long *flags) | 
|  | { | 
|  | spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * threadgroup_change_begin - mark the beginning of changes to a threadgroup | 
|  | * @tsk: task causing the changes | 
|  | * | 
|  | * All operations which modify a threadgroup - a new thread joining the | 
|  | * group, death of a member thread (the assertion of PF_EXITING) and | 
|  | * exec(2) dethreading the process and replacing the leader - are wrapped | 
|  | * by threadgroup_change_{begin|end}().  This is to provide a place which | 
|  | * subsystems needing threadgroup stability can hook into for | 
|  | * synchronization. | 
|  | */ | 
|  | static inline void threadgroup_change_begin(struct task_struct *tsk) | 
|  | { | 
|  | might_sleep(); | 
|  | cgroup_threadgroup_change_begin(tsk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * threadgroup_change_end - mark the end of changes to a threadgroup | 
|  | * @tsk: task causing the changes | 
|  | * | 
|  | * See threadgroup_change_begin(). | 
|  | */ | 
|  | static inline void threadgroup_change_end(struct task_struct *tsk) | 
|  | { | 
|  | cgroup_threadgroup_change_end(tsk); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_THREAD_INFO_IN_TASK | 
|  |  | 
|  | static inline struct thread_info *task_thread_info(struct task_struct *task) | 
|  | { | 
|  | return &task->thread_info; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When accessing the stack of a non-current task that might exit, use | 
|  | * try_get_task_stack() instead.  task_stack_page will return a pointer | 
|  | * that could get freed out from under you. | 
|  | */ | 
|  | static inline void *task_stack_page(const struct task_struct *task) | 
|  | { | 
|  | return task->stack; | 
|  | } | 
|  |  | 
|  | #define setup_thread_stack(new,old)	do { } while(0) | 
|  |  | 
|  | static inline unsigned long *end_of_stack(const struct task_struct *task) | 
|  | { | 
|  | return task->stack; | 
|  | } | 
|  |  | 
|  | #elif !defined(__HAVE_THREAD_FUNCTIONS) | 
|  |  | 
|  | #define task_thread_info(task)	((struct thread_info *)(task)->stack) | 
|  | #define task_stack_page(task)	((void *)(task)->stack) | 
|  |  | 
|  | static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) | 
|  | { | 
|  | *task_thread_info(p) = *task_thread_info(org); | 
|  | task_thread_info(p)->task = p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the address of the last usable long on the stack. | 
|  | * | 
|  | * When the stack grows down, this is just above the thread | 
|  | * info struct. Going any lower will corrupt the threadinfo. | 
|  | * | 
|  | * When the stack grows up, this is the highest address. | 
|  | * Beyond that position, we corrupt data on the next page. | 
|  | */ | 
|  | static inline unsigned long *end_of_stack(struct task_struct *p) | 
|  | { | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; | 
|  | #else | 
|  | return (unsigned long *)(task_thread_info(p) + 1); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_THREAD_INFO_IN_TASK | 
|  | static inline void *try_get_task_stack(struct task_struct *tsk) | 
|  | { | 
|  | return atomic_inc_not_zero(&tsk->stack_refcount) ? | 
|  | task_stack_page(tsk) : NULL; | 
|  | } | 
|  |  | 
|  | extern void put_task_stack(struct task_struct *tsk); | 
|  | #else | 
|  | static inline void *try_get_task_stack(struct task_struct *tsk) | 
|  | { | 
|  | return task_stack_page(tsk); | 
|  | } | 
|  |  | 
|  | static inline void put_task_stack(struct task_struct *tsk) {} | 
|  | #endif | 
|  |  | 
|  | #define task_stack_end_corrupted(task) \ | 
|  | (*(end_of_stack(task)) != STACK_END_MAGIC) | 
|  |  | 
|  | static inline int object_is_on_stack(void *obj) | 
|  | { | 
|  | void *stack = task_stack_page(current); | 
|  |  | 
|  | return (obj >= stack) && (obj < (stack + THREAD_SIZE)); | 
|  | } | 
|  |  | 
|  | extern void thread_stack_cache_init(void); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_STACK_USAGE | 
|  | static inline unsigned long stack_not_used(struct task_struct *p) | 
|  | { | 
|  | unsigned long *n = end_of_stack(p); | 
|  |  | 
|  | do { 	/* Skip over canary */ | 
|  | # ifdef CONFIG_STACK_GROWSUP | 
|  | n--; | 
|  | # else | 
|  | n++; | 
|  | # endif | 
|  | } while (!*n); | 
|  |  | 
|  | # ifdef CONFIG_STACK_GROWSUP | 
|  | return (unsigned long)end_of_stack(p) - (unsigned long)n; | 
|  | # else | 
|  | return (unsigned long)n - (unsigned long)end_of_stack(p); | 
|  | # endif | 
|  | } | 
|  | #endif | 
|  | extern void set_task_stack_end_magic(struct task_struct *tsk); | 
|  |  | 
|  | /* set thread flags in other task's structures | 
|  | * - see asm/thread_info.h for TIF_xxxx flags available | 
|  | */ | 
|  | static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) | 
|  | { | 
|  | set_ti_thread_flag(task_thread_info(tsk), flag); | 
|  | } | 
|  |  | 
|  | static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) | 
|  | { | 
|  | clear_ti_thread_flag(task_thread_info(tsk), flag); | 
|  | } | 
|  |  | 
|  | static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) | 
|  | { | 
|  | return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); | 
|  | } | 
|  |  | 
|  | static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) | 
|  | { | 
|  | return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); | 
|  | } | 
|  |  | 
|  | static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) | 
|  | { | 
|  | return test_ti_thread_flag(task_thread_info(tsk), flag); | 
|  | } | 
|  |  | 
|  | static inline void set_tsk_need_resched(struct task_struct *tsk) | 
|  | { | 
|  | set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); | 
|  | } | 
|  |  | 
|  | static inline void clear_tsk_need_resched(struct task_struct *tsk) | 
|  | { | 
|  | clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); | 
|  | } | 
|  |  | 
|  | static inline int test_tsk_need_resched(struct task_struct *tsk) | 
|  | { | 
|  | return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); | 
|  | } | 
|  |  | 
|  | static inline int restart_syscall(void) | 
|  | { | 
|  | set_tsk_thread_flag(current, TIF_SIGPENDING); | 
|  | return -ERESTARTNOINTR; | 
|  | } | 
|  |  | 
|  | static inline int signal_pending(struct task_struct *p) | 
|  | { | 
|  | return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); | 
|  | } | 
|  |  | 
|  | static inline int __fatal_signal_pending(struct task_struct *p) | 
|  | { | 
|  | return unlikely(sigismember(&p->pending.signal, SIGKILL)); | 
|  | } | 
|  |  | 
|  | static inline int fatal_signal_pending(struct task_struct *p) | 
|  | { | 
|  | return signal_pending(p) && __fatal_signal_pending(p); | 
|  | } | 
|  |  | 
|  | static inline int signal_pending_state(long state, struct task_struct *p) | 
|  | { | 
|  | if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) | 
|  | return 0; | 
|  | if (!signal_pending(p)) | 
|  | return 0; | 
|  |  | 
|  | return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cond_resched() and cond_resched_lock(): latency reduction via | 
|  | * explicit rescheduling in places that are safe. The return | 
|  | * value indicates whether a reschedule was done in fact. | 
|  | * cond_resched_lock() will drop the spinlock before scheduling, | 
|  | * cond_resched_softirq() will enable bhs before scheduling. | 
|  | */ | 
|  | #ifndef CONFIG_PREEMPT | 
|  | extern int _cond_resched(void); | 
|  | #else | 
|  | static inline int _cond_resched(void) { return 0; } | 
|  | #endif | 
|  |  | 
|  | #define cond_resched() ({			\ | 
|  | ___might_sleep(__FILE__, __LINE__, 0);	\ | 
|  | _cond_resched();			\ | 
|  | }) | 
|  |  | 
|  | extern int __cond_resched_lock(spinlock_t *lock); | 
|  |  | 
|  | #define cond_resched_lock(lock) ({				\ | 
|  | ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ | 
|  | __cond_resched_lock(lock);				\ | 
|  | }) | 
|  |  | 
|  | extern int __cond_resched_softirq(void); | 
|  |  | 
|  | #define cond_resched_softirq() ({					\ | 
|  | ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\ | 
|  | __cond_resched_softirq();					\ | 
|  | }) | 
|  |  | 
|  | static inline void cond_resched_rcu(void) | 
|  | { | 
|  | #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) | 
|  | rcu_read_unlock(); | 
|  | cond_resched(); | 
|  | rcu_read_lock(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline unsigned long get_preempt_disable_ip(struct task_struct *p) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_PREEMPT | 
|  | return p->preempt_disable_ip; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Does a critical section need to be broken due to another | 
|  | * task waiting?: (technically does not depend on CONFIG_PREEMPT, | 
|  | * but a general need for low latency) | 
|  | */ | 
|  | static inline int spin_needbreak(spinlock_t *lock) | 
|  | { | 
|  | #ifdef CONFIG_PREEMPT | 
|  | return spin_is_contended(lock); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Idle thread specific functions to determine the need_resched | 
|  | * polling state. | 
|  | */ | 
|  | #ifdef TIF_POLLING_NRFLAG | 
|  | static inline int tsk_is_polling(struct task_struct *p) | 
|  | { | 
|  | return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); | 
|  | } | 
|  |  | 
|  | static inline void __current_set_polling(void) | 
|  | { | 
|  | set_thread_flag(TIF_POLLING_NRFLAG); | 
|  | } | 
|  |  | 
|  | static inline bool __must_check current_set_polling_and_test(void) | 
|  | { | 
|  | __current_set_polling(); | 
|  |  | 
|  | /* | 
|  | * Polling state must be visible before we test NEED_RESCHED, | 
|  | * paired by resched_curr() | 
|  | */ | 
|  | smp_mb__after_atomic(); | 
|  |  | 
|  | return unlikely(tif_need_resched()); | 
|  | } | 
|  |  | 
|  | static inline void __current_clr_polling(void) | 
|  | { | 
|  | clear_thread_flag(TIF_POLLING_NRFLAG); | 
|  | } | 
|  |  | 
|  | static inline bool __must_check current_clr_polling_and_test(void) | 
|  | { | 
|  | __current_clr_polling(); | 
|  |  | 
|  | /* | 
|  | * Polling state must be visible before we test NEED_RESCHED, | 
|  | * paired by resched_curr() | 
|  | */ | 
|  | smp_mb__after_atomic(); | 
|  |  | 
|  | return unlikely(tif_need_resched()); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline int tsk_is_polling(struct task_struct *p) { return 0; } | 
|  | static inline void __current_set_polling(void) { } | 
|  | static inline void __current_clr_polling(void) { } | 
|  |  | 
|  | static inline bool __must_check current_set_polling_and_test(void) | 
|  | { | 
|  | return unlikely(tif_need_resched()); | 
|  | } | 
|  | static inline bool __must_check current_clr_polling_and_test(void) | 
|  | { | 
|  | return unlikely(tif_need_resched()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline void current_clr_polling(void) | 
|  | { | 
|  | __current_clr_polling(); | 
|  |  | 
|  | /* | 
|  | * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. | 
|  | * Once the bit is cleared, we'll get IPIs with every new | 
|  | * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also | 
|  | * fold. | 
|  | */ | 
|  | smp_mb(); /* paired with resched_curr() */ | 
|  |  | 
|  | preempt_fold_need_resched(); | 
|  | } | 
|  |  | 
|  | static __always_inline bool need_resched(void) | 
|  | { | 
|  | return unlikely(tif_need_resched()); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Thread group CPU time accounting. | 
|  | */ | 
|  | void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); | 
|  | void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); | 
|  |  | 
|  | /* | 
|  | * Reevaluate whether the task has signals pending delivery. | 
|  | * Wake the task if so. | 
|  | * This is required every time the blocked sigset_t changes. | 
|  | * callers must hold sighand->siglock. | 
|  | */ | 
|  | extern void recalc_sigpending_and_wake(struct task_struct *t); | 
|  | extern void recalc_sigpending(void); | 
|  |  | 
|  | extern void signal_wake_up_state(struct task_struct *t, unsigned int state); | 
|  |  | 
|  | static inline void signal_wake_up(struct task_struct *t, bool resume) | 
|  | { | 
|  | signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); | 
|  | } | 
|  | static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) | 
|  | { | 
|  | signal_wake_up_state(t, resume ? __TASK_TRACED : 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wrappers for p->thread_info->cpu access. No-op on UP. | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | static inline unsigned int task_cpu(const struct task_struct *p) | 
|  | { | 
|  | #ifdef CONFIG_THREAD_INFO_IN_TASK | 
|  | return p->cpu; | 
|  | #else | 
|  | return task_thread_info(p)->cpu; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int task_node(const struct task_struct *p) | 
|  | { | 
|  | return cpu_to_node(task_cpu(p)); | 
|  | } | 
|  |  | 
|  | extern void set_task_cpu(struct task_struct *p, unsigned int cpu); | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline unsigned int task_cpu(const struct task_struct *p) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); | 
|  | extern long sched_getaffinity(pid_t pid, struct cpumask *mask); | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_SCHED | 
|  | extern struct task_group root_task_group; | 
|  | #endif /* CONFIG_CGROUP_SCHED */ | 
|  |  | 
|  | extern int task_can_switch_user(struct user_struct *up, | 
|  | struct task_struct *tsk); | 
|  |  | 
|  | #ifdef CONFIG_TASK_XACCT | 
|  | static inline void add_rchar(struct task_struct *tsk, ssize_t amt) | 
|  | { | 
|  | tsk->ioac.rchar += amt; | 
|  | } | 
|  |  | 
|  | static inline void add_wchar(struct task_struct *tsk, ssize_t amt) | 
|  | { | 
|  | tsk->ioac.wchar += amt; | 
|  | } | 
|  |  | 
|  | static inline void inc_syscr(struct task_struct *tsk) | 
|  | { | 
|  | tsk->ioac.syscr++; | 
|  | } | 
|  |  | 
|  | static inline void inc_syscw(struct task_struct *tsk) | 
|  | { | 
|  | tsk->ioac.syscw++; | 
|  | } | 
|  | #else | 
|  | static inline void add_rchar(struct task_struct *tsk, ssize_t amt) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void add_wchar(struct task_struct *tsk, ssize_t amt) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void inc_syscr(struct task_struct *tsk) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void inc_syscw(struct task_struct *tsk) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef TASK_SIZE_OF | 
|  | #define TASK_SIZE_OF(tsk)	TASK_SIZE | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | extern void mm_update_next_owner(struct mm_struct *mm); | 
|  | #else | 
|  | static inline void mm_update_next_owner(struct mm_struct *mm) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_MEMCG */ | 
|  |  | 
|  | static inline unsigned long task_rlimit(const struct task_struct *tsk, | 
|  | unsigned int limit) | 
|  | { | 
|  | return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); | 
|  | } | 
|  |  | 
|  | static inline unsigned long task_rlimit_max(const struct task_struct *tsk, | 
|  | unsigned int limit) | 
|  | { | 
|  | return READ_ONCE(tsk->signal->rlim[limit].rlim_max); | 
|  | } | 
|  |  | 
|  | static inline unsigned long rlimit(unsigned int limit) | 
|  | { | 
|  | return task_rlimit(current, limit); | 
|  | } | 
|  |  | 
|  | static inline unsigned long rlimit_max(unsigned int limit) | 
|  | { | 
|  | return task_rlimit_max(current, limit); | 
|  | } | 
|  |  | 
|  | #define SCHED_CPUFREQ_RT	(1U << 0) | 
|  | #define SCHED_CPUFREQ_DL	(1U << 1) | 
|  | #define SCHED_CPUFREQ_IOWAIT	(1U << 2) | 
|  |  | 
|  | #define SCHED_CPUFREQ_RT_DL	(SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL) | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  | struct update_util_data { | 
|  | void (*func)(struct update_util_data *data, u64 time, unsigned int flags); | 
|  | }; | 
|  |  | 
|  | void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data, | 
|  | void (*func)(struct update_util_data *data, u64 time, | 
|  | unsigned int flags)); | 
|  | void cpufreq_remove_update_util_hook(int cpu); | 
|  | #endif /* CONFIG_CPU_FREQ */ | 
|  |  | 
|  | #endif |