|  | /* | 
|  | * Copyright (C) 1991, 1992 Linus Torvalds | 
|  | * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics | 
|  | * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE | 
|  | * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> | 
|  | * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> | 
|  | *	-  July2000 | 
|  | * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This handles all read/write requests to block devices | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/blk-mq.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/task_io_accounting_ops.h> | 
|  | #include <linux/fault-inject.h> | 
|  | #include <linux/list_sort.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/blk-cgroup.h> | 
|  | #include <linux/debugfs.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/block.h> | 
|  |  | 
|  | #include "blk.h" | 
|  | #include "blk-mq.h" | 
|  | #include "blk-mq-sched.h" | 
|  | #include "blk-wbt.h" | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | struct dentry *blk_debugfs_root; | 
|  | #endif | 
|  |  | 
|  | EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); | 
|  | EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); | 
|  | EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); | 
|  | EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); | 
|  | EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); | 
|  |  | 
|  | DEFINE_IDA(blk_queue_ida); | 
|  |  | 
|  | /* | 
|  | * For the allocated request tables | 
|  | */ | 
|  | struct kmem_cache *request_cachep; | 
|  |  | 
|  | /* | 
|  | * For queue allocation | 
|  | */ | 
|  | struct kmem_cache *blk_requestq_cachep; | 
|  |  | 
|  | /* | 
|  | * Controlling structure to kblockd | 
|  | */ | 
|  | static struct workqueue_struct *kblockd_workqueue; | 
|  |  | 
|  | static void blk_clear_congested(struct request_list *rl, int sync) | 
|  | { | 
|  | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | clear_wb_congested(rl->blkg->wb_congested, sync); | 
|  | #else | 
|  | /* | 
|  | * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't | 
|  | * flip its congestion state for events on other blkcgs. | 
|  | */ | 
|  | if (rl == &rl->q->root_rl) | 
|  | clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void blk_set_congested(struct request_list *rl, int sync) | 
|  | { | 
|  | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | set_wb_congested(rl->blkg->wb_congested, sync); | 
|  | #else | 
|  | /* see blk_clear_congested() */ | 
|  | if (rl == &rl->q->root_rl) | 
|  | set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void blk_queue_congestion_threshold(struct request_queue *q) | 
|  | { | 
|  | int nr; | 
|  |  | 
|  | nr = q->nr_requests - (q->nr_requests / 8) + 1; | 
|  | if (nr > q->nr_requests) | 
|  | nr = q->nr_requests; | 
|  | q->nr_congestion_on = nr; | 
|  |  | 
|  | nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; | 
|  | if (nr < 1) | 
|  | nr = 1; | 
|  | q->nr_congestion_off = nr; | 
|  | } | 
|  |  | 
|  | void blk_rq_init(struct request_queue *q, struct request *rq) | 
|  | { | 
|  | memset(rq, 0, sizeof(*rq)); | 
|  |  | 
|  | INIT_LIST_HEAD(&rq->queuelist); | 
|  | INIT_LIST_HEAD(&rq->timeout_list); | 
|  | rq->cpu = -1; | 
|  | rq->q = q; | 
|  | rq->__sector = (sector_t) -1; | 
|  | INIT_HLIST_NODE(&rq->hash); | 
|  | RB_CLEAR_NODE(&rq->rb_node); | 
|  | rq->tag = -1; | 
|  | rq->internal_tag = -1; | 
|  | rq->start_time = jiffies; | 
|  | set_start_time_ns(rq); | 
|  | rq->part = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_rq_init); | 
|  |  | 
|  | static const struct { | 
|  | int		errno; | 
|  | const char	*name; | 
|  | } blk_errors[] = { | 
|  | [BLK_STS_OK]		= { 0,		"" }, | 
|  | [BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" }, | 
|  | [BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" }, | 
|  | [BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" }, | 
|  | [BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" }, | 
|  | [BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" }, | 
|  | [BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" }, | 
|  | [BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" }, | 
|  | [BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" }, | 
|  | [BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" }, | 
|  | [BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" }, | 
|  |  | 
|  | /* device mapper special case, should not leak out: */ | 
|  | [BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" }, | 
|  |  | 
|  | /* everything else not covered above: */ | 
|  | [BLK_STS_IOERR]		= { -EIO,	"I/O" }, | 
|  | }; | 
|  |  | 
|  | blk_status_t errno_to_blk_status(int errno) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { | 
|  | if (blk_errors[i].errno == errno) | 
|  | return (__force blk_status_t)i; | 
|  | } | 
|  |  | 
|  | return BLK_STS_IOERR; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(errno_to_blk_status); | 
|  |  | 
|  | int blk_status_to_errno(blk_status_t status) | 
|  | { | 
|  | int idx = (__force int)status; | 
|  |  | 
|  | if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) | 
|  | return -EIO; | 
|  | return blk_errors[idx].errno; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_status_to_errno); | 
|  |  | 
|  | static void print_req_error(struct request *req, blk_status_t status) | 
|  | { | 
|  | int idx = (__force int)status; | 
|  |  | 
|  | if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) | 
|  | return; | 
|  |  | 
|  | printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", | 
|  | __func__, blk_errors[idx].name, req->rq_disk ? | 
|  | req->rq_disk->disk_name : "?", | 
|  | (unsigned long long)blk_rq_pos(req)); | 
|  | } | 
|  |  | 
|  | static void req_bio_endio(struct request *rq, struct bio *bio, | 
|  | unsigned int nbytes, blk_status_t error) | 
|  | { | 
|  | if (error) | 
|  | bio->bi_status = error; | 
|  |  | 
|  | if (unlikely(rq->rq_flags & RQF_QUIET)) | 
|  | bio_set_flag(bio, BIO_QUIET); | 
|  |  | 
|  | bio_advance(bio, nbytes); | 
|  |  | 
|  | /* don't actually finish bio if it's part of flush sequence */ | 
|  | if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) | 
|  | bio_endio(bio); | 
|  | } | 
|  |  | 
|  | void blk_dump_rq_flags(struct request *rq, char *msg) | 
|  | { | 
|  | printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, | 
|  | rq->rq_disk ? rq->rq_disk->disk_name : "?", | 
|  | (unsigned long long) rq->cmd_flags); | 
|  |  | 
|  | printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n", | 
|  | (unsigned long long)blk_rq_pos(rq), | 
|  | blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); | 
|  | printk(KERN_INFO "  bio %p, biotail %p, len %u\n", | 
|  | rq->bio, rq->biotail, blk_rq_bytes(rq)); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_dump_rq_flags); | 
|  |  | 
|  | static void blk_delay_work(struct work_struct *work) | 
|  | { | 
|  | struct request_queue *q; | 
|  |  | 
|  | q = container_of(work, struct request_queue, delay_work.work); | 
|  | spin_lock_irq(q->queue_lock); | 
|  | __blk_run_queue(q); | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_delay_queue - restart queueing after defined interval | 
|  | * @q:		The &struct request_queue in question | 
|  | * @msecs:	Delay in msecs | 
|  | * | 
|  | * Description: | 
|  | *   Sometimes queueing needs to be postponed for a little while, to allow | 
|  | *   resources to come back. This function will make sure that queueing is | 
|  | *   restarted around the specified time. | 
|  | */ | 
|  | void blk_delay_queue(struct request_queue *q, unsigned long msecs) | 
|  | { | 
|  | lockdep_assert_held(q->queue_lock); | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | if (likely(!blk_queue_dead(q))) | 
|  | queue_delayed_work(kblockd_workqueue, &q->delay_work, | 
|  | msecs_to_jiffies(msecs)); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_delay_queue); | 
|  |  | 
|  | /** | 
|  | * blk_start_queue_async - asynchronously restart a previously stopped queue | 
|  | * @q:    The &struct request_queue in question | 
|  | * | 
|  | * Description: | 
|  | *   blk_start_queue_async() will clear the stop flag on the queue, and | 
|  | *   ensure that the request_fn for the queue is run from an async | 
|  | *   context. | 
|  | **/ | 
|  | void blk_start_queue_async(struct request_queue *q) | 
|  | { | 
|  | lockdep_assert_held(q->queue_lock); | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | queue_flag_clear(QUEUE_FLAG_STOPPED, q); | 
|  | blk_run_queue_async(q); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_start_queue_async); | 
|  |  | 
|  | /** | 
|  | * blk_start_queue - restart a previously stopped queue | 
|  | * @q:    The &struct request_queue in question | 
|  | * | 
|  | * Description: | 
|  | *   blk_start_queue() will clear the stop flag on the queue, and call | 
|  | *   the request_fn for the queue if it was in a stopped state when | 
|  | *   entered. Also see blk_stop_queue(). | 
|  | **/ | 
|  | void blk_start_queue(struct request_queue *q) | 
|  | { | 
|  | lockdep_assert_held(q->queue_lock); | 
|  | WARN_ON(!in_interrupt() && !irqs_disabled()); | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | queue_flag_clear(QUEUE_FLAG_STOPPED, q); | 
|  | __blk_run_queue(q); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_start_queue); | 
|  |  | 
|  | /** | 
|  | * blk_stop_queue - stop a queue | 
|  | * @q:    The &struct request_queue in question | 
|  | * | 
|  | * Description: | 
|  | *   The Linux block layer assumes that a block driver will consume all | 
|  | *   entries on the request queue when the request_fn strategy is called. | 
|  | *   Often this will not happen, because of hardware limitations (queue | 
|  | *   depth settings). If a device driver gets a 'queue full' response, | 
|  | *   or if it simply chooses not to queue more I/O at one point, it can | 
|  | *   call this function to prevent the request_fn from being called until | 
|  | *   the driver has signalled it's ready to go again. This happens by calling | 
|  | *   blk_start_queue() to restart queue operations. | 
|  | **/ | 
|  | void blk_stop_queue(struct request_queue *q) | 
|  | { | 
|  | lockdep_assert_held(q->queue_lock); | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | cancel_delayed_work(&q->delay_work); | 
|  | queue_flag_set(QUEUE_FLAG_STOPPED, q); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_stop_queue); | 
|  |  | 
|  | /** | 
|  | * blk_sync_queue - cancel any pending callbacks on a queue | 
|  | * @q: the queue | 
|  | * | 
|  | * Description: | 
|  | *     The block layer may perform asynchronous callback activity | 
|  | *     on a queue, such as calling the unplug function after a timeout. | 
|  | *     A block device may call blk_sync_queue to ensure that any | 
|  | *     such activity is cancelled, thus allowing it to release resources | 
|  | *     that the callbacks might use. The caller must already have made sure | 
|  | *     that its ->make_request_fn will not re-add plugging prior to calling | 
|  | *     this function. | 
|  | * | 
|  | *     This function does not cancel any asynchronous activity arising | 
|  | *     out of elevator or throttling code. That would require elevator_exit() | 
|  | *     and blkcg_exit_queue() to be called with queue lock initialized. | 
|  | * | 
|  | */ | 
|  | void blk_sync_queue(struct request_queue *q) | 
|  | { | 
|  | del_timer_sync(&q->timeout); | 
|  |  | 
|  | if (q->mq_ops) { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | int i; | 
|  |  | 
|  | queue_for_each_hw_ctx(q, hctx, i) | 
|  | cancel_delayed_work_sync(&hctx->run_work); | 
|  | } else { | 
|  | cancel_delayed_work_sync(&q->delay_work); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(blk_sync_queue); | 
|  |  | 
|  | /** | 
|  | * __blk_run_queue_uncond - run a queue whether or not it has been stopped | 
|  | * @q:	The queue to run | 
|  | * | 
|  | * Description: | 
|  | *    Invoke request handling on a queue if there are any pending requests. | 
|  | *    May be used to restart request handling after a request has completed. | 
|  | *    This variant runs the queue whether or not the queue has been | 
|  | *    stopped. Must be called with the queue lock held and interrupts | 
|  | *    disabled. See also @blk_run_queue. | 
|  | */ | 
|  | inline void __blk_run_queue_uncond(struct request_queue *q) | 
|  | { | 
|  | lockdep_assert_held(q->queue_lock); | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | if (unlikely(blk_queue_dead(q))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Some request_fn implementations, e.g. scsi_request_fn(), unlock | 
|  | * the queue lock internally. As a result multiple threads may be | 
|  | * running such a request function concurrently. Keep track of the | 
|  | * number of active request_fn invocations such that blk_drain_queue() | 
|  | * can wait until all these request_fn calls have finished. | 
|  | */ | 
|  | q->request_fn_active++; | 
|  | q->request_fn(q); | 
|  | q->request_fn_active--; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); | 
|  |  | 
|  | /** | 
|  | * __blk_run_queue - run a single device queue | 
|  | * @q:	The queue to run | 
|  | * | 
|  | * Description: | 
|  | *    See @blk_run_queue. | 
|  | */ | 
|  | void __blk_run_queue(struct request_queue *q) | 
|  | { | 
|  | lockdep_assert_held(q->queue_lock); | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | if (unlikely(blk_queue_stopped(q))) | 
|  | return; | 
|  |  | 
|  | __blk_run_queue_uncond(q); | 
|  | } | 
|  | EXPORT_SYMBOL(__blk_run_queue); | 
|  |  | 
|  | /** | 
|  | * blk_run_queue_async - run a single device queue in workqueue context | 
|  | * @q:	The queue to run | 
|  | * | 
|  | * Description: | 
|  | *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf | 
|  | *    of us. | 
|  | * | 
|  | * Note: | 
|  | *    Since it is not allowed to run q->delay_work after blk_cleanup_queue() | 
|  | *    has canceled q->delay_work, callers must hold the queue lock to avoid | 
|  | *    race conditions between blk_cleanup_queue() and blk_run_queue_async(). | 
|  | */ | 
|  | void blk_run_queue_async(struct request_queue *q) | 
|  | { | 
|  | lockdep_assert_held(q->queue_lock); | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) | 
|  | mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_run_queue_async); | 
|  |  | 
|  | /** | 
|  | * blk_run_queue - run a single device queue | 
|  | * @q: The queue to run | 
|  | * | 
|  | * Description: | 
|  | *    Invoke request handling on this queue, if it has pending work to do. | 
|  | *    May be used to restart queueing when a request has completed. | 
|  | */ | 
|  | void blk_run_queue(struct request_queue *q) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | spin_lock_irqsave(q->queue_lock, flags); | 
|  | __blk_run_queue(q); | 
|  | spin_unlock_irqrestore(q->queue_lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_run_queue); | 
|  |  | 
|  | void blk_put_queue(struct request_queue *q) | 
|  | { | 
|  | kobject_put(&q->kobj); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_put_queue); | 
|  |  | 
|  | /** | 
|  | * __blk_drain_queue - drain requests from request_queue | 
|  | * @q: queue to drain | 
|  | * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV | 
|  | * | 
|  | * Drain requests from @q.  If @drain_all is set, all requests are drained. | 
|  | * If not, only ELVPRIV requests are drained.  The caller is responsible | 
|  | * for ensuring that no new requests which need to be drained are queued. | 
|  | */ | 
|  | static void __blk_drain_queue(struct request_queue *q, bool drain_all) | 
|  | __releases(q->queue_lock) | 
|  | __acquires(q->queue_lock) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | lockdep_assert_held(q->queue_lock); | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | while (true) { | 
|  | bool drain = false; | 
|  |  | 
|  | /* | 
|  | * The caller might be trying to drain @q before its | 
|  | * elevator is initialized. | 
|  | */ | 
|  | if (q->elevator) | 
|  | elv_drain_elevator(q); | 
|  |  | 
|  | blkcg_drain_queue(q); | 
|  |  | 
|  | /* | 
|  | * This function might be called on a queue which failed | 
|  | * driver init after queue creation or is not yet fully | 
|  | * active yet.  Some drivers (e.g. fd and loop) get unhappy | 
|  | * in such cases.  Kick queue iff dispatch queue has | 
|  | * something on it and @q has request_fn set. | 
|  | */ | 
|  | if (!list_empty(&q->queue_head) && q->request_fn) | 
|  | __blk_run_queue(q); | 
|  |  | 
|  | drain |= q->nr_rqs_elvpriv; | 
|  | drain |= q->request_fn_active; | 
|  |  | 
|  | /* | 
|  | * Unfortunately, requests are queued at and tracked from | 
|  | * multiple places and there's no single counter which can | 
|  | * be drained.  Check all the queues and counters. | 
|  | */ | 
|  | if (drain_all) { | 
|  | struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); | 
|  | drain |= !list_empty(&q->queue_head); | 
|  | for (i = 0; i < 2; i++) { | 
|  | drain |= q->nr_rqs[i]; | 
|  | drain |= q->in_flight[i]; | 
|  | if (fq) | 
|  | drain |= !list_empty(&fq->flush_queue[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!drain) | 
|  | break; | 
|  |  | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | msleep(10); | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * With queue marked dead, any woken up waiter will fail the | 
|  | * allocation path, so the wakeup chaining is lost and we're | 
|  | * left with hung waiters. We need to wake up those waiters. | 
|  | */ | 
|  | if (q->request_fn) { | 
|  | struct request_list *rl; | 
|  |  | 
|  | blk_queue_for_each_rl(rl, q) | 
|  | for (i = 0; i < ARRAY_SIZE(rl->wait); i++) | 
|  | wake_up_all(&rl->wait[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_queue_bypass_start - enter queue bypass mode | 
|  | * @q: queue of interest | 
|  | * | 
|  | * In bypass mode, only the dispatch FIFO queue of @q is used.  This | 
|  | * function makes @q enter bypass mode and drains all requests which were | 
|  | * throttled or issued before.  On return, it's guaranteed that no request | 
|  | * is being throttled or has ELVPRIV set and blk_queue_bypass() %true | 
|  | * inside queue or RCU read lock. | 
|  | */ | 
|  | void blk_queue_bypass_start(struct request_queue *q) | 
|  | { | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | q->bypass_depth++; | 
|  | queue_flag_set(QUEUE_FLAG_BYPASS, q); | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | /* | 
|  | * Queues start drained.  Skip actual draining till init is | 
|  | * complete.  This avoids lenghty delays during queue init which | 
|  | * can happen many times during boot. | 
|  | */ | 
|  | if (blk_queue_init_done(q)) { | 
|  | spin_lock_irq(q->queue_lock); | 
|  | __blk_drain_queue(q, false); | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | /* ensure blk_queue_bypass() is %true inside RCU read lock */ | 
|  | synchronize_rcu(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_queue_bypass_start); | 
|  |  | 
|  | /** | 
|  | * blk_queue_bypass_end - leave queue bypass mode | 
|  | * @q: queue of interest | 
|  | * | 
|  | * Leave bypass mode and restore the normal queueing behavior. | 
|  | * | 
|  | * Note: although blk_queue_bypass_start() is only called for blk-sq queues, | 
|  | * this function is called for both blk-sq and blk-mq queues. | 
|  | */ | 
|  | void blk_queue_bypass_end(struct request_queue *q) | 
|  | { | 
|  | spin_lock_irq(q->queue_lock); | 
|  | if (!--q->bypass_depth) | 
|  | queue_flag_clear(QUEUE_FLAG_BYPASS, q); | 
|  | WARN_ON_ONCE(q->bypass_depth < 0); | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_queue_bypass_end); | 
|  |  | 
|  | void blk_set_queue_dying(struct request_queue *q) | 
|  | { | 
|  | spin_lock_irq(q->queue_lock); | 
|  | queue_flag_set(QUEUE_FLAG_DYING, q); | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | /* | 
|  | * When queue DYING flag is set, we need to block new req | 
|  | * entering queue, so we call blk_freeze_queue_start() to | 
|  | * prevent I/O from crossing blk_queue_enter(). | 
|  | */ | 
|  | blk_freeze_queue_start(q); | 
|  |  | 
|  | if (q->mq_ops) | 
|  | blk_mq_wake_waiters(q); | 
|  | else { | 
|  | struct request_list *rl; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | blk_queue_for_each_rl(rl, q) { | 
|  | if (rl->rq_pool) { | 
|  | wake_up(&rl->wait[BLK_RW_SYNC]); | 
|  | wake_up(&rl->wait[BLK_RW_ASYNC]); | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_set_queue_dying); | 
|  |  | 
|  | /** | 
|  | * blk_cleanup_queue - shutdown a request queue | 
|  | * @q: request queue to shutdown | 
|  | * | 
|  | * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and | 
|  | * put it.  All future requests will be failed immediately with -ENODEV. | 
|  | */ | 
|  | void blk_cleanup_queue(struct request_queue *q) | 
|  | { | 
|  | spinlock_t *lock = q->queue_lock; | 
|  |  | 
|  | /* mark @q DYING, no new request or merges will be allowed afterwards */ | 
|  | mutex_lock(&q->sysfs_lock); | 
|  | blk_set_queue_dying(q); | 
|  | spin_lock_irq(lock); | 
|  |  | 
|  | /* | 
|  | * A dying queue is permanently in bypass mode till released.  Note | 
|  | * that, unlike blk_queue_bypass_start(), we aren't performing | 
|  | * synchronize_rcu() after entering bypass mode to avoid the delay | 
|  | * as some drivers create and destroy a lot of queues while | 
|  | * probing.  This is still safe because blk_release_queue() will be | 
|  | * called only after the queue refcnt drops to zero and nothing, | 
|  | * RCU or not, would be traversing the queue by then. | 
|  | */ | 
|  | q->bypass_depth++; | 
|  | queue_flag_set(QUEUE_FLAG_BYPASS, q); | 
|  |  | 
|  | queue_flag_set(QUEUE_FLAG_NOMERGES, q); | 
|  | queue_flag_set(QUEUE_FLAG_NOXMERGES, q); | 
|  | queue_flag_set(QUEUE_FLAG_DYING, q); | 
|  | spin_unlock_irq(lock); | 
|  | mutex_unlock(&q->sysfs_lock); | 
|  |  | 
|  | /* | 
|  | * Drain all requests queued before DYING marking. Set DEAD flag to | 
|  | * prevent that q->request_fn() gets invoked after draining finished. | 
|  | */ | 
|  | blk_freeze_queue(q); | 
|  | spin_lock_irq(lock); | 
|  | if (!q->mq_ops) | 
|  | __blk_drain_queue(q, true); | 
|  | queue_flag_set(QUEUE_FLAG_DEAD, q); | 
|  | spin_unlock_irq(lock); | 
|  |  | 
|  | /* for synchronous bio-based driver finish in-flight integrity i/o */ | 
|  | blk_flush_integrity(); | 
|  |  | 
|  | /* @q won't process any more request, flush async actions */ | 
|  | del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); | 
|  | blk_sync_queue(q); | 
|  |  | 
|  | if (q->mq_ops) | 
|  | blk_mq_free_queue(q); | 
|  | percpu_ref_exit(&q->q_usage_counter); | 
|  |  | 
|  | spin_lock_irq(lock); | 
|  | if (q->queue_lock != &q->__queue_lock) | 
|  | q->queue_lock = &q->__queue_lock; | 
|  | spin_unlock_irq(lock); | 
|  |  | 
|  | /* @q is and will stay empty, shutdown and put */ | 
|  | blk_put_queue(q); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_cleanup_queue); | 
|  |  | 
|  | /* Allocate memory local to the request queue */ | 
|  | static void *alloc_request_simple(gfp_t gfp_mask, void *data) | 
|  | { | 
|  | struct request_queue *q = data; | 
|  |  | 
|  | return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); | 
|  | } | 
|  |  | 
|  | static void free_request_simple(void *element, void *data) | 
|  | { | 
|  | kmem_cache_free(request_cachep, element); | 
|  | } | 
|  |  | 
|  | static void *alloc_request_size(gfp_t gfp_mask, void *data) | 
|  | { | 
|  | struct request_queue *q = data; | 
|  | struct request *rq; | 
|  |  | 
|  | rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, | 
|  | q->node); | 
|  | if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { | 
|  | kfree(rq); | 
|  | rq = NULL; | 
|  | } | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | static void free_request_size(void *element, void *data) | 
|  | { | 
|  | struct request_queue *q = data; | 
|  |  | 
|  | if (q->exit_rq_fn) | 
|  | q->exit_rq_fn(q, element); | 
|  | kfree(element); | 
|  | } | 
|  |  | 
|  | int blk_init_rl(struct request_list *rl, struct request_queue *q, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | if (unlikely(rl->rq_pool)) | 
|  | return 0; | 
|  |  | 
|  | rl->q = q; | 
|  | rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; | 
|  | rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; | 
|  | init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); | 
|  | init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); | 
|  |  | 
|  | if (q->cmd_size) { | 
|  | rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, | 
|  | alloc_request_size, free_request_size, | 
|  | q, gfp_mask, q->node); | 
|  | } else { | 
|  | rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, | 
|  | alloc_request_simple, free_request_simple, | 
|  | q, gfp_mask, q->node); | 
|  | } | 
|  | if (!rl->rq_pool) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (rl != &q->root_rl) | 
|  | WARN_ON_ONCE(!blk_get_queue(q)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void blk_exit_rl(struct request_queue *q, struct request_list *rl) | 
|  | { | 
|  | if (rl->rq_pool) { | 
|  | mempool_destroy(rl->rq_pool); | 
|  | if (rl != &q->root_rl) | 
|  | blk_put_queue(q); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct request_queue *blk_alloc_queue(gfp_t gfp_mask) | 
|  | { | 
|  | return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_alloc_queue); | 
|  |  | 
|  | int blk_queue_enter(struct request_queue *q, bool nowait) | 
|  | { | 
|  | while (true) { | 
|  | int ret; | 
|  |  | 
|  | if (percpu_ref_tryget_live(&q->q_usage_counter)) | 
|  | return 0; | 
|  |  | 
|  | if (nowait) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* | 
|  | * read pair of barrier in blk_freeze_queue_start(), | 
|  | * we need to order reading __PERCPU_REF_DEAD flag of | 
|  | * .q_usage_counter and reading .mq_freeze_depth or | 
|  | * queue dying flag, otherwise the following wait may | 
|  | * never return if the two reads are reordered. | 
|  | */ | 
|  | smp_rmb(); | 
|  |  | 
|  | ret = wait_event_interruptible(q->mq_freeze_wq, | 
|  | !atomic_read(&q->mq_freeze_depth) || | 
|  | blk_queue_dying(q)); | 
|  | if (blk_queue_dying(q)) | 
|  | return -ENODEV; | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | void blk_queue_exit(struct request_queue *q) | 
|  | { | 
|  | percpu_ref_put(&q->q_usage_counter); | 
|  | } | 
|  |  | 
|  | static void blk_queue_usage_counter_release(struct percpu_ref *ref) | 
|  | { | 
|  | struct request_queue *q = | 
|  | container_of(ref, struct request_queue, q_usage_counter); | 
|  |  | 
|  | wake_up_all(&q->mq_freeze_wq); | 
|  | } | 
|  |  | 
|  | static void blk_rq_timed_out_timer(unsigned long data) | 
|  | { | 
|  | struct request_queue *q = (struct request_queue *)data; | 
|  |  | 
|  | kblockd_schedule_work(&q->timeout_work); | 
|  | } | 
|  |  | 
|  | struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) | 
|  | { | 
|  | struct request_queue *q; | 
|  |  | 
|  | q = kmem_cache_alloc_node(blk_requestq_cachep, | 
|  | gfp_mask | __GFP_ZERO, node_id); | 
|  | if (!q) | 
|  | return NULL; | 
|  |  | 
|  | q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); | 
|  | if (q->id < 0) | 
|  | goto fail_q; | 
|  |  | 
|  | q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); | 
|  | if (!q->bio_split) | 
|  | goto fail_id; | 
|  |  | 
|  | q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); | 
|  | if (!q->backing_dev_info) | 
|  | goto fail_split; | 
|  |  | 
|  | q->stats = blk_alloc_queue_stats(); | 
|  | if (!q->stats) | 
|  | goto fail_stats; | 
|  |  | 
|  | q->backing_dev_info->ra_pages = | 
|  | (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; | 
|  | q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; | 
|  | q->backing_dev_info->name = "block"; | 
|  | q->node = node_id; | 
|  |  | 
|  | setup_timer(&q->backing_dev_info->laptop_mode_wb_timer, | 
|  | laptop_mode_timer_fn, (unsigned long) q); | 
|  | setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); | 
|  | INIT_LIST_HEAD(&q->queue_head); | 
|  | INIT_LIST_HEAD(&q->timeout_list); | 
|  | INIT_LIST_HEAD(&q->icq_list); | 
|  | #ifdef CONFIG_BLK_CGROUP | 
|  | INIT_LIST_HEAD(&q->blkg_list); | 
|  | #endif | 
|  | INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); | 
|  |  | 
|  | kobject_init(&q->kobj, &blk_queue_ktype); | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_IO_TRACE | 
|  | mutex_init(&q->blk_trace_mutex); | 
|  | #endif | 
|  | mutex_init(&q->sysfs_lock); | 
|  | spin_lock_init(&q->__queue_lock); | 
|  |  | 
|  | /* | 
|  | * By default initialize queue_lock to internal lock and driver can | 
|  | * override it later if need be. | 
|  | */ | 
|  | q->queue_lock = &q->__queue_lock; | 
|  |  | 
|  | /* | 
|  | * A queue starts its life with bypass turned on to avoid | 
|  | * unnecessary bypass on/off overhead and nasty surprises during | 
|  | * init.  The initial bypass will be finished when the queue is | 
|  | * registered by blk_register_queue(). | 
|  | */ | 
|  | q->bypass_depth = 1; | 
|  | __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); | 
|  |  | 
|  | init_waitqueue_head(&q->mq_freeze_wq); | 
|  |  | 
|  | /* | 
|  | * Init percpu_ref in atomic mode so that it's faster to shutdown. | 
|  | * See blk_register_queue() for details. | 
|  | */ | 
|  | if (percpu_ref_init(&q->q_usage_counter, | 
|  | blk_queue_usage_counter_release, | 
|  | PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) | 
|  | goto fail_bdi; | 
|  |  | 
|  | if (blkcg_init_queue(q)) | 
|  | goto fail_ref; | 
|  |  | 
|  | return q; | 
|  |  | 
|  | fail_ref: | 
|  | percpu_ref_exit(&q->q_usage_counter); | 
|  | fail_bdi: | 
|  | blk_free_queue_stats(q->stats); | 
|  | fail_stats: | 
|  | bdi_put(q->backing_dev_info); | 
|  | fail_split: | 
|  | bioset_free(q->bio_split); | 
|  | fail_id: | 
|  | ida_simple_remove(&blk_queue_ida, q->id); | 
|  | fail_q: | 
|  | kmem_cache_free(blk_requestq_cachep, q); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_alloc_queue_node); | 
|  |  | 
|  | /** | 
|  | * blk_init_queue  - prepare a request queue for use with a block device | 
|  | * @rfn:  The function to be called to process requests that have been | 
|  | *        placed on the queue. | 
|  | * @lock: Request queue spin lock | 
|  | * | 
|  | * Description: | 
|  | *    If a block device wishes to use the standard request handling procedures, | 
|  | *    which sorts requests and coalesces adjacent requests, then it must | 
|  | *    call blk_init_queue().  The function @rfn will be called when there | 
|  | *    are requests on the queue that need to be processed.  If the device | 
|  | *    supports plugging, then @rfn may not be called immediately when requests | 
|  | *    are available on the queue, but may be called at some time later instead. | 
|  | *    Plugged queues are generally unplugged when a buffer belonging to one | 
|  | *    of the requests on the queue is needed, or due to memory pressure. | 
|  | * | 
|  | *    @rfn is not required, or even expected, to remove all requests off the | 
|  | *    queue, but only as many as it can handle at a time.  If it does leave | 
|  | *    requests on the queue, it is responsible for arranging that the requests | 
|  | *    get dealt with eventually. | 
|  | * | 
|  | *    The queue spin lock must be held while manipulating the requests on the | 
|  | *    request queue; this lock will be taken also from interrupt context, so irq | 
|  | *    disabling is needed for it. | 
|  | * | 
|  | *    Function returns a pointer to the initialized request queue, or %NULL if | 
|  | *    it didn't succeed. | 
|  | * | 
|  | * Note: | 
|  | *    blk_init_queue() must be paired with a blk_cleanup_queue() call | 
|  | *    when the block device is deactivated (such as at module unload). | 
|  | **/ | 
|  |  | 
|  | struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) | 
|  | { | 
|  | return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_init_queue); | 
|  |  | 
|  | struct request_queue * | 
|  | blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) | 
|  | { | 
|  | struct request_queue *q; | 
|  |  | 
|  | q = blk_alloc_queue_node(GFP_KERNEL, node_id); | 
|  | if (!q) | 
|  | return NULL; | 
|  |  | 
|  | q->request_fn = rfn; | 
|  | if (lock) | 
|  | q->queue_lock = lock; | 
|  | if (blk_init_allocated_queue(q) < 0) { | 
|  | blk_cleanup_queue(q); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return q; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_init_queue_node); | 
|  |  | 
|  | static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); | 
|  |  | 
|  |  | 
|  | int blk_init_allocated_queue(struct request_queue *q) | 
|  | { | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); | 
|  | if (!q->fq) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) | 
|  | goto out_free_flush_queue; | 
|  |  | 
|  | if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) | 
|  | goto out_exit_flush_rq; | 
|  |  | 
|  | INIT_WORK(&q->timeout_work, blk_timeout_work); | 
|  | q->queue_flags		|= QUEUE_FLAG_DEFAULT; | 
|  |  | 
|  | /* | 
|  | * This also sets hw/phys segments, boundary and size | 
|  | */ | 
|  | blk_queue_make_request(q, blk_queue_bio); | 
|  |  | 
|  | q->sg_reserved_size = INT_MAX; | 
|  |  | 
|  | /* Protect q->elevator from elevator_change */ | 
|  | mutex_lock(&q->sysfs_lock); | 
|  |  | 
|  | /* init elevator */ | 
|  | if (elevator_init(q, NULL)) { | 
|  | mutex_unlock(&q->sysfs_lock); | 
|  | goto out_exit_flush_rq; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&q->sysfs_lock); | 
|  | return 0; | 
|  |  | 
|  | out_exit_flush_rq: | 
|  | if (q->exit_rq_fn) | 
|  | q->exit_rq_fn(q, q->fq->flush_rq); | 
|  | out_free_flush_queue: | 
|  | blk_free_flush_queue(q->fq); | 
|  | return -ENOMEM; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_init_allocated_queue); | 
|  |  | 
|  | bool blk_get_queue(struct request_queue *q) | 
|  | { | 
|  | if (likely(!blk_queue_dying(q))) { | 
|  | __blk_get_queue(q); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_get_queue); | 
|  |  | 
|  | static inline void blk_free_request(struct request_list *rl, struct request *rq) | 
|  | { | 
|  | if (rq->rq_flags & RQF_ELVPRIV) { | 
|  | elv_put_request(rl->q, rq); | 
|  | if (rq->elv.icq) | 
|  | put_io_context(rq->elv.icq->ioc); | 
|  | } | 
|  |  | 
|  | mempool_free(rq, rl->rq_pool); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ioc_batching returns true if the ioc is a valid batching request and | 
|  | * should be given priority access to a request. | 
|  | */ | 
|  | static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) | 
|  | { | 
|  | if (!ioc) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Make sure the process is able to allocate at least 1 request | 
|  | * even if the batch times out, otherwise we could theoretically | 
|  | * lose wakeups. | 
|  | */ | 
|  | return ioc->nr_batch_requests == q->nr_batching || | 
|  | (ioc->nr_batch_requests > 0 | 
|  | && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This | 
|  | * will cause the process to be a "batcher" on all queues in the system. This | 
|  | * is the behaviour we want though - once it gets a wakeup it should be given | 
|  | * a nice run. | 
|  | */ | 
|  | static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) | 
|  | { | 
|  | if (!ioc || ioc_batching(q, ioc)) | 
|  | return; | 
|  |  | 
|  | ioc->nr_batch_requests = q->nr_batching; | 
|  | ioc->last_waited = jiffies; | 
|  | } | 
|  |  | 
|  | static void __freed_request(struct request_list *rl, int sync) | 
|  | { | 
|  | struct request_queue *q = rl->q; | 
|  |  | 
|  | if (rl->count[sync] < queue_congestion_off_threshold(q)) | 
|  | blk_clear_congested(rl, sync); | 
|  |  | 
|  | if (rl->count[sync] + 1 <= q->nr_requests) { | 
|  | if (waitqueue_active(&rl->wait[sync])) | 
|  | wake_up(&rl->wait[sync]); | 
|  |  | 
|  | blk_clear_rl_full(rl, sync); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A request has just been released.  Account for it, update the full and | 
|  | * congestion status, wake up any waiters.   Called under q->queue_lock. | 
|  | */ | 
|  | static void freed_request(struct request_list *rl, bool sync, | 
|  | req_flags_t rq_flags) | 
|  | { | 
|  | struct request_queue *q = rl->q; | 
|  |  | 
|  | q->nr_rqs[sync]--; | 
|  | rl->count[sync]--; | 
|  | if (rq_flags & RQF_ELVPRIV) | 
|  | q->nr_rqs_elvpriv--; | 
|  |  | 
|  | __freed_request(rl, sync); | 
|  |  | 
|  | if (unlikely(rl->starved[sync ^ 1])) | 
|  | __freed_request(rl, sync ^ 1); | 
|  | } | 
|  |  | 
|  | int blk_update_nr_requests(struct request_queue *q, unsigned int nr) | 
|  | { | 
|  | struct request_list *rl; | 
|  | int on_thresh, off_thresh; | 
|  |  | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | q->nr_requests = nr; | 
|  | blk_queue_congestion_threshold(q); | 
|  | on_thresh = queue_congestion_on_threshold(q); | 
|  | off_thresh = queue_congestion_off_threshold(q); | 
|  |  | 
|  | blk_queue_for_each_rl(rl, q) { | 
|  | if (rl->count[BLK_RW_SYNC] >= on_thresh) | 
|  | blk_set_congested(rl, BLK_RW_SYNC); | 
|  | else if (rl->count[BLK_RW_SYNC] < off_thresh) | 
|  | blk_clear_congested(rl, BLK_RW_SYNC); | 
|  |  | 
|  | if (rl->count[BLK_RW_ASYNC] >= on_thresh) | 
|  | blk_set_congested(rl, BLK_RW_ASYNC); | 
|  | else if (rl->count[BLK_RW_ASYNC] < off_thresh) | 
|  | blk_clear_congested(rl, BLK_RW_ASYNC); | 
|  |  | 
|  | if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { | 
|  | blk_set_rl_full(rl, BLK_RW_SYNC); | 
|  | } else { | 
|  | blk_clear_rl_full(rl, BLK_RW_SYNC); | 
|  | wake_up(&rl->wait[BLK_RW_SYNC]); | 
|  | } | 
|  |  | 
|  | if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { | 
|  | blk_set_rl_full(rl, BLK_RW_ASYNC); | 
|  | } else { | 
|  | blk_clear_rl_full(rl, BLK_RW_ASYNC); | 
|  | wake_up(&rl->wait[BLK_RW_ASYNC]); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __get_request - get a free request | 
|  | * @rl: request list to allocate from | 
|  | * @op: operation and flags | 
|  | * @bio: bio to allocate request for (can be %NULL) | 
|  | * @gfp_mask: allocation mask | 
|  | * | 
|  | * Get a free request from @q.  This function may fail under memory | 
|  | * pressure or if @q is dead. | 
|  | * | 
|  | * Must be called with @q->queue_lock held and, | 
|  | * Returns ERR_PTR on failure, with @q->queue_lock held. | 
|  | * Returns request pointer on success, with @q->queue_lock *not held*. | 
|  | */ | 
|  | static struct request *__get_request(struct request_list *rl, unsigned int op, | 
|  | struct bio *bio, gfp_t gfp_mask) | 
|  | { | 
|  | struct request_queue *q = rl->q; | 
|  | struct request *rq; | 
|  | struct elevator_type *et = q->elevator->type; | 
|  | struct io_context *ioc = rq_ioc(bio); | 
|  | struct io_cq *icq = NULL; | 
|  | const bool is_sync = op_is_sync(op); | 
|  | int may_queue; | 
|  | req_flags_t rq_flags = RQF_ALLOCED; | 
|  |  | 
|  | lockdep_assert_held(q->queue_lock); | 
|  |  | 
|  | if (unlikely(blk_queue_dying(q))) | 
|  | return ERR_PTR(-ENODEV); | 
|  |  | 
|  | may_queue = elv_may_queue(q, op); | 
|  | if (may_queue == ELV_MQUEUE_NO) | 
|  | goto rq_starved; | 
|  |  | 
|  | if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { | 
|  | if (rl->count[is_sync]+1 >= q->nr_requests) { | 
|  | /* | 
|  | * The queue will fill after this allocation, so set | 
|  | * it as full, and mark this process as "batching". | 
|  | * This process will be allowed to complete a batch of | 
|  | * requests, others will be blocked. | 
|  | */ | 
|  | if (!blk_rl_full(rl, is_sync)) { | 
|  | ioc_set_batching(q, ioc); | 
|  | blk_set_rl_full(rl, is_sync); | 
|  | } else { | 
|  | if (may_queue != ELV_MQUEUE_MUST | 
|  | && !ioc_batching(q, ioc)) { | 
|  | /* | 
|  | * The queue is full and the allocating | 
|  | * process is not a "batcher", and not | 
|  | * exempted by the IO scheduler | 
|  | */ | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | } | 
|  | } | 
|  | blk_set_congested(rl, is_sync); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only allow batching queuers to allocate up to 50% over the defined | 
|  | * limit of requests, otherwise we could have thousands of requests | 
|  | * allocated with any setting of ->nr_requests | 
|  | */ | 
|  | if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | q->nr_rqs[is_sync]++; | 
|  | rl->count[is_sync]++; | 
|  | rl->starved[is_sync] = 0; | 
|  |  | 
|  | /* | 
|  | * Decide whether the new request will be managed by elevator.  If | 
|  | * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will | 
|  | * prevent the current elevator from being destroyed until the new | 
|  | * request is freed.  This guarantees icq's won't be destroyed and | 
|  | * makes creating new ones safe. | 
|  | * | 
|  | * Flush requests do not use the elevator so skip initialization. | 
|  | * This allows a request to share the flush and elevator data. | 
|  | * | 
|  | * Also, lookup icq while holding queue_lock.  If it doesn't exist, | 
|  | * it will be created after releasing queue_lock. | 
|  | */ | 
|  | if (!op_is_flush(op) && !blk_queue_bypass(q)) { | 
|  | rq_flags |= RQF_ELVPRIV; | 
|  | q->nr_rqs_elvpriv++; | 
|  | if (et->icq_cache && ioc) | 
|  | icq = ioc_lookup_icq(ioc, q); | 
|  | } | 
|  |  | 
|  | if (blk_queue_io_stat(q)) | 
|  | rq_flags |= RQF_IO_STAT; | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | /* allocate and init request */ | 
|  | rq = mempool_alloc(rl->rq_pool, gfp_mask); | 
|  | if (!rq) | 
|  | goto fail_alloc; | 
|  |  | 
|  | blk_rq_init(q, rq); | 
|  | blk_rq_set_rl(rq, rl); | 
|  | rq->cmd_flags = op; | 
|  | rq->rq_flags = rq_flags; | 
|  |  | 
|  | /* init elvpriv */ | 
|  | if (rq_flags & RQF_ELVPRIV) { | 
|  | if (unlikely(et->icq_cache && !icq)) { | 
|  | if (ioc) | 
|  | icq = ioc_create_icq(ioc, q, gfp_mask); | 
|  | if (!icq) | 
|  | goto fail_elvpriv; | 
|  | } | 
|  |  | 
|  | rq->elv.icq = icq; | 
|  | if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) | 
|  | goto fail_elvpriv; | 
|  |  | 
|  | /* @rq->elv.icq holds io_context until @rq is freed */ | 
|  | if (icq) | 
|  | get_io_context(icq->ioc); | 
|  | } | 
|  | out: | 
|  | /* | 
|  | * ioc may be NULL here, and ioc_batching will be false. That's | 
|  | * OK, if the queue is under the request limit then requests need | 
|  | * not count toward the nr_batch_requests limit. There will always | 
|  | * be some limit enforced by BLK_BATCH_TIME. | 
|  | */ | 
|  | if (ioc_batching(q, ioc)) | 
|  | ioc->nr_batch_requests--; | 
|  |  | 
|  | trace_block_getrq(q, bio, op); | 
|  | return rq; | 
|  |  | 
|  | fail_elvpriv: | 
|  | /* | 
|  | * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed | 
|  | * and may fail indefinitely under memory pressure and thus | 
|  | * shouldn't stall IO.  Treat this request as !elvpriv.  This will | 
|  | * disturb iosched and blkcg but weird is bettern than dead. | 
|  | */ | 
|  | printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", | 
|  | __func__, dev_name(q->backing_dev_info->dev)); | 
|  |  | 
|  | rq->rq_flags &= ~RQF_ELVPRIV; | 
|  | rq->elv.icq = NULL; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | q->nr_rqs_elvpriv--; | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | goto out; | 
|  |  | 
|  | fail_alloc: | 
|  | /* | 
|  | * Allocation failed presumably due to memory. Undo anything we | 
|  | * might have messed up. | 
|  | * | 
|  | * Allocating task should really be put onto the front of the wait | 
|  | * queue, but this is pretty rare. | 
|  | */ | 
|  | spin_lock_irq(q->queue_lock); | 
|  | freed_request(rl, is_sync, rq_flags); | 
|  |  | 
|  | /* | 
|  | * in the very unlikely event that allocation failed and no | 
|  | * requests for this direction was pending, mark us starved so that | 
|  | * freeing of a request in the other direction will notice | 
|  | * us. another possible fix would be to split the rq mempool into | 
|  | * READ and WRITE | 
|  | */ | 
|  | rq_starved: | 
|  | if (unlikely(rl->count[is_sync] == 0)) | 
|  | rl->starved[is_sync] = 1; | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_request - get a free request | 
|  | * @q: request_queue to allocate request from | 
|  | * @op: operation and flags | 
|  | * @bio: bio to allocate request for (can be %NULL) | 
|  | * @gfp_mask: allocation mask | 
|  | * | 
|  | * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, | 
|  | * this function keeps retrying under memory pressure and fails iff @q is dead. | 
|  | * | 
|  | * Must be called with @q->queue_lock held and, | 
|  | * Returns ERR_PTR on failure, with @q->queue_lock held. | 
|  | * Returns request pointer on success, with @q->queue_lock *not held*. | 
|  | */ | 
|  | static struct request *get_request(struct request_queue *q, unsigned int op, | 
|  | struct bio *bio, gfp_t gfp_mask) | 
|  | { | 
|  | const bool is_sync = op_is_sync(op); | 
|  | DEFINE_WAIT(wait); | 
|  | struct request_list *rl; | 
|  | struct request *rq; | 
|  |  | 
|  | lockdep_assert_held(q->queue_lock); | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | rl = blk_get_rl(q, bio);	/* transferred to @rq on success */ | 
|  | retry: | 
|  | rq = __get_request(rl, op, bio, gfp_mask); | 
|  | if (!IS_ERR(rq)) | 
|  | return rq; | 
|  |  | 
|  | if (op & REQ_NOWAIT) { | 
|  | blk_put_rl(rl); | 
|  | return ERR_PTR(-EAGAIN); | 
|  | } | 
|  |  | 
|  | if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) { | 
|  | blk_put_rl(rl); | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | /* wait on @rl and retry */ | 
|  | prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  |  | 
|  | trace_block_sleeprq(q, bio, op); | 
|  |  | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | io_schedule(); | 
|  |  | 
|  | /* | 
|  | * After sleeping, we become a "batching" process and will be able | 
|  | * to allocate at least one request, and up to a big batch of them | 
|  | * for a small period time.  See ioc_batching, ioc_set_batching | 
|  | */ | 
|  | ioc_set_batching(q, current->io_context); | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | finish_wait(&rl->wait[is_sync], &wait); | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | static struct request *blk_old_get_request(struct request_queue *q, | 
|  | unsigned int op, gfp_t gfp_mask) | 
|  | { | 
|  | struct request *rq; | 
|  |  | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | /* create ioc upfront */ | 
|  | create_io_context(gfp_mask, q->node); | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | rq = get_request(q, op, NULL, gfp_mask); | 
|  | if (IS_ERR(rq)) { | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | /* q->queue_lock is unlocked at this point */ | 
|  | rq->__data_len = 0; | 
|  | rq->__sector = (sector_t) -1; | 
|  | rq->bio = rq->biotail = NULL; | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | struct request *blk_get_request(struct request_queue *q, unsigned int op, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | struct request *req; | 
|  |  | 
|  | if (q->mq_ops) { | 
|  | req = blk_mq_alloc_request(q, op, | 
|  | (gfp_mask & __GFP_DIRECT_RECLAIM) ? | 
|  | 0 : BLK_MQ_REQ_NOWAIT); | 
|  | if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) | 
|  | q->mq_ops->initialize_rq_fn(req); | 
|  | } else { | 
|  | req = blk_old_get_request(q, op, gfp_mask); | 
|  | if (!IS_ERR(req) && q->initialize_rq_fn) | 
|  | q->initialize_rq_fn(req); | 
|  | } | 
|  |  | 
|  | return req; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_get_request); | 
|  |  | 
|  | /** | 
|  | * blk_requeue_request - put a request back on queue | 
|  | * @q:		request queue where request should be inserted | 
|  | * @rq:		request to be inserted | 
|  | * | 
|  | * Description: | 
|  | *    Drivers often keep queueing requests until the hardware cannot accept | 
|  | *    more, when that condition happens we need to put the request back | 
|  | *    on the queue. Must be called with queue lock held. | 
|  | */ | 
|  | void blk_requeue_request(struct request_queue *q, struct request *rq) | 
|  | { | 
|  | lockdep_assert_held(q->queue_lock); | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | blk_delete_timer(rq); | 
|  | blk_clear_rq_complete(rq); | 
|  | trace_block_rq_requeue(q, rq); | 
|  | wbt_requeue(q->rq_wb, &rq->issue_stat); | 
|  |  | 
|  | if (rq->rq_flags & RQF_QUEUED) | 
|  | blk_queue_end_tag(q, rq); | 
|  |  | 
|  | BUG_ON(blk_queued_rq(rq)); | 
|  |  | 
|  | elv_requeue_request(q, rq); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_requeue_request); | 
|  |  | 
|  | static void add_acct_request(struct request_queue *q, struct request *rq, | 
|  | int where) | 
|  | { | 
|  | blk_account_io_start(rq, true); | 
|  | __elv_add_request(q, rq, where); | 
|  | } | 
|  |  | 
|  | static void part_round_stats_single(struct request_queue *q, int cpu, | 
|  | struct hd_struct *part, unsigned long now, | 
|  | unsigned int inflight) | 
|  | { | 
|  | if (inflight) { | 
|  | __part_stat_add(cpu, part, time_in_queue, | 
|  | inflight * (now - part->stamp)); | 
|  | __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); | 
|  | } | 
|  | part->stamp = now; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * part_round_stats() - Round off the performance stats on a struct disk_stats. | 
|  | * @q: target block queue | 
|  | * @cpu: cpu number for stats access | 
|  | * @part: target partition | 
|  | * | 
|  | * The average IO queue length and utilisation statistics are maintained | 
|  | * by observing the current state of the queue length and the amount of | 
|  | * time it has been in this state for. | 
|  | * | 
|  | * Normally, that accounting is done on IO completion, but that can result | 
|  | * in more than a second's worth of IO being accounted for within any one | 
|  | * second, leading to >100% utilisation.  To deal with that, we call this | 
|  | * function to do a round-off before returning the results when reading | 
|  | * /proc/diskstats.  This accounts immediately for all queue usage up to | 
|  | * the current jiffies and restarts the counters again. | 
|  | */ | 
|  | void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part) | 
|  | { | 
|  | struct hd_struct *part2 = NULL; | 
|  | unsigned long now = jiffies; | 
|  | unsigned int inflight[2]; | 
|  | int stats = 0; | 
|  |  | 
|  | if (part->stamp != now) | 
|  | stats |= 1; | 
|  |  | 
|  | if (part->partno) { | 
|  | part2 = &part_to_disk(part)->part0; | 
|  | if (part2->stamp != now) | 
|  | stats |= 2; | 
|  | } | 
|  |  | 
|  | if (!stats) | 
|  | return; | 
|  |  | 
|  | part_in_flight(q, part, inflight); | 
|  |  | 
|  | if (stats & 2) | 
|  | part_round_stats_single(q, cpu, part2, now, inflight[1]); | 
|  | if (stats & 1) | 
|  | part_round_stats_single(q, cpu, part, now, inflight[0]); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(part_round_stats); | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static void blk_pm_put_request(struct request *rq) | 
|  | { | 
|  | if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) | 
|  | pm_runtime_mark_last_busy(rq->q->dev); | 
|  | } | 
|  | #else | 
|  | static inline void blk_pm_put_request(struct request *rq) {} | 
|  | #endif | 
|  |  | 
|  | void __blk_put_request(struct request_queue *q, struct request *req) | 
|  | { | 
|  | req_flags_t rq_flags = req->rq_flags; | 
|  |  | 
|  | if (unlikely(!q)) | 
|  | return; | 
|  |  | 
|  | if (q->mq_ops) { | 
|  | blk_mq_free_request(req); | 
|  | return; | 
|  | } | 
|  |  | 
|  | lockdep_assert_held(q->queue_lock); | 
|  |  | 
|  | blk_pm_put_request(req); | 
|  |  | 
|  | elv_completed_request(q, req); | 
|  |  | 
|  | /* this is a bio leak */ | 
|  | WARN_ON(req->bio != NULL); | 
|  |  | 
|  | wbt_done(q->rq_wb, &req->issue_stat); | 
|  |  | 
|  | /* | 
|  | * Request may not have originated from ll_rw_blk. if not, | 
|  | * it didn't come out of our reserved rq pools | 
|  | */ | 
|  | if (rq_flags & RQF_ALLOCED) { | 
|  | struct request_list *rl = blk_rq_rl(req); | 
|  | bool sync = op_is_sync(req->cmd_flags); | 
|  |  | 
|  | BUG_ON(!list_empty(&req->queuelist)); | 
|  | BUG_ON(ELV_ON_HASH(req)); | 
|  |  | 
|  | blk_free_request(rl, req); | 
|  | freed_request(rl, sync, rq_flags); | 
|  | blk_put_rl(rl); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__blk_put_request); | 
|  |  | 
|  | void blk_put_request(struct request *req) | 
|  | { | 
|  | struct request_queue *q = req->q; | 
|  |  | 
|  | if (q->mq_ops) | 
|  | blk_mq_free_request(req); | 
|  | else { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(q->queue_lock, flags); | 
|  | __blk_put_request(q, req); | 
|  | spin_unlock_irqrestore(q->queue_lock, flags); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(blk_put_request); | 
|  |  | 
|  | bool bio_attempt_back_merge(struct request_queue *q, struct request *req, | 
|  | struct bio *bio) | 
|  | { | 
|  | const int ff = bio->bi_opf & REQ_FAILFAST_MASK; | 
|  |  | 
|  | if (!ll_back_merge_fn(q, req, bio)) | 
|  | return false; | 
|  |  | 
|  | trace_block_bio_backmerge(q, req, bio); | 
|  |  | 
|  | if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) | 
|  | blk_rq_set_mixed_merge(req); | 
|  |  | 
|  | req->biotail->bi_next = bio; | 
|  | req->biotail = bio; | 
|  | req->__data_len += bio->bi_iter.bi_size; | 
|  | req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); | 
|  |  | 
|  | blk_account_io_start(req, false); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool bio_attempt_front_merge(struct request_queue *q, struct request *req, | 
|  | struct bio *bio) | 
|  | { | 
|  | const int ff = bio->bi_opf & REQ_FAILFAST_MASK; | 
|  |  | 
|  | if (!ll_front_merge_fn(q, req, bio)) | 
|  | return false; | 
|  |  | 
|  | trace_block_bio_frontmerge(q, req, bio); | 
|  |  | 
|  | if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) | 
|  | blk_rq_set_mixed_merge(req); | 
|  |  | 
|  | bio->bi_next = req->bio; | 
|  | req->bio = bio; | 
|  |  | 
|  | req->__sector = bio->bi_iter.bi_sector; | 
|  | req->__data_len += bio->bi_iter.bi_size; | 
|  | req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); | 
|  |  | 
|  | blk_account_io_start(req, false); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, | 
|  | struct bio *bio) | 
|  | { | 
|  | unsigned short segments = blk_rq_nr_discard_segments(req); | 
|  |  | 
|  | if (segments >= queue_max_discard_segments(q)) | 
|  | goto no_merge; | 
|  | if (blk_rq_sectors(req) + bio_sectors(bio) > | 
|  | blk_rq_get_max_sectors(req, blk_rq_pos(req))) | 
|  | goto no_merge; | 
|  |  | 
|  | req->biotail->bi_next = bio; | 
|  | req->biotail = bio; | 
|  | req->__data_len += bio->bi_iter.bi_size; | 
|  | req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); | 
|  | req->nr_phys_segments = segments + 1; | 
|  |  | 
|  | blk_account_io_start(req, false); | 
|  | return true; | 
|  | no_merge: | 
|  | req_set_nomerge(q, req); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_attempt_plug_merge - try to merge with %current's plugged list | 
|  | * @q: request_queue new bio is being queued at | 
|  | * @bio: new bio being queued | 
|  | * @request_count: out parameter for number of traversed plugged requests | 
|  | * @same_queue_rq: pointer to &struct request that gets filled in when | 
|  | * another request associated with @q is found on the plug list | 
|  | * (optional, may be %NULL) | 
|  | * | 
|  | * Determine whether @bio being queued on @q can be merged with a request | 
|  | * on %current's plugged list.  Returns %true if merge was successful, | 
|  | * otherwise %false. | 
|  | * | 
|  | * Plugging coalesces IOs from the same issuer for the same purpose without | 
|  | * going through @q->queue_lock.  As such it's more of an issuing mechanism | 
|  | * than scheduling, and the request, while may have elvpriv data, is not | 
|  | * added on the elevator at this point.  In addition, we don't have | 
|  | * reliable access to the elevator outside queue lock.  Only check basic | 
|  | * merging parameters without querying the elevator. | 
|  | * | 
|  | * Caller must ensure !blk_queue_nomerges(q) beforehand. | 
|  | */ | 
|  | bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, | 
|  | unsigned int *request_count, | 
|  | struct request **same_queue_rq) | 
|  | { | 
|  | struct blk_plug *plug; | 
|  | struct request *rq; | 
|  | struct list_head *plug_list; | 
|  |  | 
|  | plug = current->plug; | 
|  | if (!plug) | 
|  | return false; | 
|  | *request_count = 0; | 
|  |  | 
|  | if (q->mq_ops) | 
|  | plug_list = &plug->mq_list; | 
|  | else | 
|  | plug_list = &plug->list; | 
|  |  | 
|  | list_for_each_entry_reverse(rq, plug_list, queuelist) { | 
|  | bool merged = false; | 
|  |  | 
|  | if (rq->q == q) { | 
|  | (*request_count)++; | 
|  | /* | 
|  | * Only blk-mq multiple hardware queues case checks the | 
|  | * rq in the same queue, there should be only one such | 
|  | * rq in a queue | 
|  | **/ | 
|  | if (same_queue_rq) | 
|  | *same_queue_rq = rq; | 
|  | } | 
|  |  | 
|  | if (rq->q != q || !blk_rq_merge_ok(rq, bio)) | 
|  | continue; | 
|  |  | 
|  | switch (blk_try_merge(rq, bio)) { | 
|  | case ELEVATOR_BACK_MERGE: | 
|  | merged = bio_attempt_back_merge(q, rq, bio); | 
|  | break; | 
|  | case ELEVATOR_FRONT_MERGE: | 
|  | merged = bio_attempt_front_merge(q, rq, bio); | 
|  | break; | 
|  | case ELEVATOR_DISCARD_MERGE: | 
|  | merged = bio_attempt_discard_merge(q, rq, bio); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (merged) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned int blk_plug_queued_count(struct request_queue *q) | 
|  | { | 
|  | struct blk_plug *plug; | 
|  | struct request *rq; | 
|  | struct list_head *plug_list; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | plug = current->plug; | 
|  | if (!plug) | 
|  | goto out; | 
|  |  | 
|  | if (q->mq_ops) | 
|  | plug_list = &plug->mq_list; | 
|  | else | 
|  | plug_list = &plug->list; | 
|  |  | 
|  | list_for_each_entry(rq, plug_list, queuelist) { | 
|  | if (rq->q == q) | 
|  | ret++; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void blk_init_request_from_bio(struct request *req, struct bio *bio) | 
|  | { | 
|  | struct io_context *ioc = rq_ioc(bio); | 
|  |  | 
|  | if (bio->bi_opf & REQ_RAHEAD) | 
|  | req->cmd_flags |= REQ_FAILFAST_MASK; | 
|  |  | 
|  | req->__sector = bio->bi_iter.bi_sector; | 
|  | if (ioprio_valid(bio_prio(bio))) | 
|  | req->ioprio = bio_prio(bio); | 
|  | else if (ioc) | 
|  | req->ioprio = ioc->ioprio; | 
|  | else | 
|  | req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); | 
|  | req->write_hint = bio->bi_write_hint; | 
|  | blk_rq_bio_prep(req->q, req, bio); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_init_request_from_bio); | 
|  |  | 
|  | static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) | 
|  | { | 
|  | struct blk_plug *plug; | 
|  | int where = ELEVATOR_INSERT_SORT; | 
|  | struct request *req, *free; | 
|  | unsigned int request_count = 0; | 
|  | unsigned int wb_acct; | 
|  |  | 
|  | /* | 
|  | * low level driver can indicate that it wants pages above a | 
|  | * certain limit bounced to low memory (ie for highmem, or even | 
|  | * ISA dma in theory) | 
|  | */ | 
|  | blk_queue_bounce(q, &bio); | 
|  |  | 
|  | blk_queue_split(q, &bio); | 
|  |  | 
|  | if (!bio_integrity_prep(bio)) | 
|  | return BLK_QC_T_NONE; | 
|  |  | 
|  | if (op_is_flush(bio->bi_opf)) { | 
|  | spin_lock_irq(q->queue_lock); | 
|  | where = ELEVATOR_INSERT_FLUSH; | 
|  | goto get_rq; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we can merge with the plugged list before grabbing | 
|  | * any locks. | 
|  | */ | 
|  | if (!blk_queue_nomerges(q)) { | 
|  | if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) | 
|  | return BLK_QC_T_NONE; | 
|  | } else | 
|  | request_count = blk_plug_queued_count(q); | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  |  | 
|  | switch (elv_merge(q, &req, bio)) { | 
|  | case ELEVATOR_BACK_MERGE: | 
|  | if (!bio_attempt_back_merge(q, req, bio)) | 
|  | break; | 
|  | elv_bio_merged(q, req, bio); | 
|  | free = attempt_back_merge(q, req); | 
|  | if (free) | 
|  | __blk_put_request(q, free); | 
|  | else | 
|  | elv_merged_request(q, req, ELEVATOR_BACK_MERGE); | 
|  | goto out_unlock; | 
|  | case ELEVATOR_FRONT_MERGE: | 
|  | if (!bio_attempt_front_merge(q, req, bio)) | 
|  | break; | 
|  | elv_bio_merged(q, req, bio); | 
|  | free = attempt_front_merge(q, req); | 
|  | if (free) | 
|  | __blk_put_request(q, free); | 
|  | else | 
|  | elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); | 
|  | goto out_unlock; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | get_rq: | 
|  | wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); | 
|  |  | 
|  | /* | 
|  | * Grab a free request. This is might sleep but can not fail. | 
|  | * Returns with the queue unlocked. | 
|  | */ | 
|  | req = get_request(q, bio->bi_opf, bio, GFP_NOIO); | 
|  | if (IS_ERR(req)) { | 
|  | __wbt_done(q->rq_wb, wb_acct); | 
|  | if (PTR_ERR(req) == -ENOMEM) | 
|  | bio->bi_status = BLK_STS_RESOURCE; | 
|  | else | 
|  | bio->bi_status = BLK_STS_IOERR; | 
|  | bio_endio(bio); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | wbt_track(&req->issue_stat, wb_acct); | 
|  |  | 
|  | /* | 
|  | * After dropping the lock and possibly sleeping here, our request | 
|  | * may now be mergeable after it had proven unmergeable (above). | 
|  | * We don't worry about that case for efficiency. It won't happen | 
|  | * often, and the elevators are able to handle it. | 
|  | */ | 
|  | blk_init_request_from_bio(req, bio); | 
|  |  | 
|  | if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) | 
|  | req->cpu = raw_smp_processor_id(); | 
|  |  | 
|  | plug = current->plug; | 
|  | if (plug) { | 
|  | /* | 
|  | * If this is the first request added after a plug, fire | 
|  | * of a plug trace. | 
|  | * | 
|  | * @request_count may become stale because of schedule | 
|  | * out, so check plug list again. | 
|  | */ | 
|  | if (!request_count || list_empty(&plug->list)) | 
|  | trace_block_plug(q); | 
|  | else { | 
|  | struct request *last = list_entry_rq(plug->list.prev); | 
|  | if (request_count >= BLK_MAX_REQUEST_COUNT || | 
|  | blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { | 
|  | blk_flush_plug_list(plug, false); | 
|  | trace_block_plug(q); | 
|  | } | 
|  | } | 
|  | list_add_tail(&req->queuelist, &plug->list); | 
|  | blk_account_io_start(req, true); | 
|  | } else { | 
|  | spin_lock_irq(q->queue_lock); | 
|  | add_acct_request(q, req, where); | 
|  | __blk_run_queue(q); | 
|  | out_unlock: | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | } | 
|  |  | 
|  | return BLK_QC_T_NONE; | 
|  | } | 
|  |  | 
|  | static void handle_bad_sector(struct bio *bio) | 
|  | { | 
|  | char b[BDEVNAME_SIZE]; | 
|  |  | 
|  | printk(KERN_INFO "attempt to access beyond end of device\n"); | 
|  | printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", | 
|  | bio_devname(bio, b), bio->bi_opf, | 
|  | (unsigned long long)bio_end_sector(bio), | 
|  | (long long)get_capacity(bio->bi_disk)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIL_MAKE_REQUEST | 
|  |  | 
|  | static DECLARE_FAULT_ATTR(fail_make_request); | 
|  |  | 
|  | static int __init setup_fail_make_request(char *str) | 
|  | { | 
|  | return setup_fault_attr(&fail_make_request, str); | 
|  | } | 
|  | __setup("fail_make_request=", setup_fail_make_request); | 
|  |  | 
|  | static bool should_fail_request(struct hd_struct *part, unsigned int bytes) | 
|  | { | 
|  | return part->make_it_fail && should_fail(&fail_make_request, bytes); | 
|  | } | 
|  |  | 
|  | static int __init fail_make_request_debugfs(void) | 
|  | { | 
|  | struct dentry *dir = fault_create_debugfs_attr("fail_make_request", | 
|  | NULL, &fail_make_request); | 
|  |  | 
|  | return PTR_ERR_OR_ZERO(dir); | 
|  | } | 
|  |  | 
|  | late_initcall(fail_make_request_debugfs); | 
|  |  | 
|  | #else /* CONFIG_FAIL_MAKE_REQUEST */ | 
|  |  | 
|  | static inline bool should_fail_request(struct hd_struct *part, | 
|  | unsigned int bytes) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_FAIL_MAKE_REQUEST */ | 
|  |  | 
|  | /* | 
|  | * Remap block n of partition p to block n+start(p) of the disk. | 
|  | */ | 
|  | static inline int blk_partition_remap(struct bio *bio) | 
|  | { | 
|  | struct hd_struct *p; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Zone reset does not include bi_size so bio_sectors() is always 0. | 
|  | * Include a test for the reset op code and perform the remap if needed. | 
|  | */ | 
|  | if (!bio->bi_partno || | 
|  | (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET)) | 
|  | return 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = __disk_get_part(bio->bi_disk, bio->bi_partno); | 
|  | if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) { | 
|  | bio->bi_iter.bi_sector += p->start_sect; | 
|  | bio->bi_partno = 0; | 
|  | trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), | 
|  | bio->bi_iter.bi_sector - p->start_sect); | 
|  | } else { | 
|  | printk("%s: fail for partition %d\n", __func__, bio->bi_partno); | 
|  | ret = -EIO; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether this bio extends beyond the end of the device. | 
|  | */ | 
|  | static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) | 
|  | { | 
|  | sector_t maxsector; | 
|  |  | 
|  | if (!nr_sectors) | 
|  | return 0; | 
|  |  | 
|  | /* Test device or partition size, when known. */ | 
|  | maxsector = get_capacity(bio->bi_disk); | 
|  | if (maxsector) { | 
|  | sector_t sector = bio->bi_iter.bi_sector; | 
|  |  | 
|  | if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { | 
|  | /* | 
|  | * This may well happen - the kernel calls bread() | 
|  | * without checking the size of the device, e.g., when | 
|  | * mounting a device. | 
|  | */ | 
|  | handle_bad_sector(bio); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack bool | 
|  | generic_make_request_checks(struct bio *bio) | 
|  | { | 
|  | struct request_queue *q; | 
|  | int nr_sectors = bio_sectors(bio); | 
|  | blk_status_t status = BLK_STS_IOERR; | 
|  | char b[BDEVNAME_SIZE]; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | if (bio_check_eod(bio, nr_sectors)) | 
|  | goto end_io; | 
|  |  | 
|  | q = bio->bi_disk->queue; | 
|  | if (unlikely(!q)) { | 
|  | printk(KERN_ERR | 
|  | "generic_make_request: Trying to access " | 
|  | "nonexistent block-device %s (%Lu)\n", | 
|  | bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); | 
|  | goto end_io; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For a REQ_NOWAIT based request, return -EOPNOTSUPP | 
|  | * if queue is not a request based queue. | 
|  | */ | 
|  |  | 
|  | if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q)) | 
|  | goto not_supported; | 
|  |  | 
|  | if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) | 
|  | goto end_io; | 
|  |  | 
|  | if (blk_partition_remap(bio)) | 
|  | goto end_io; | 
|  |  | 
|  | if (bio_check_eod(bio, nr_sectors)) | 
|  | goto end_io; | 
|  |  | 
|  | /* | 
|  | * Filter flush bio's early so that make_request based | 
|  | * drivers without flush support don't have to worry | 
|  | * about them. | 
|  | */ | 
|  | if (op_is_flush(bio->bi_opf) && | 
|  | !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { | 
|  | bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); | 
|  | if (!nr_sectors) { | 
|  | status = BLK_STS_OK; | 
|  | goto end_io; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (bio_op(bio)) { | 
|  | case REQ_OP_DISCARD: | 
|  | if (!blk_queue_discard(q)) | 
|  | goto not_supported; | 
|  | break; | 
|  | case REQ_OP_SECURE_ERASE: | 
|  | if (!blk_queue_secure_erase(q)) | 
|  | goto not_supported; | 
|  | break; | 
|  | case REQ_OP_WRITE_SAME: | 
|  | if (!q->limits.max_write_same_sectors) | 
|  | goto not_supported; | 
|  | break; | 
|  | case REQ_OP_ZONE_REPORT: | 
|  | case REQ_OP_ZONE_RESET: | 
|  | if (!blk_queue_is_zoned(q)) | 
|  | goto not_supported; | 
|  | break; | 
|  | case REQ_OP_WRITE_ZEROES: | 
|  | if (!q->limits.max_write_zeroes_sectors) | 
|  | goto not_supported; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Various block parts want %current->io_context and lazy ioc | 
|  | * allocation ends up trading a lot of pain for a small amount of | 
|  | * memory.  Just allocate it upfront.  This may fail and block | 
|  | * layer knows how to live with it. | 
|  | */ | 
|  | create_io_context(GFP_ATOMIC, q->node); | 
|  |  | 
|  | if (!blkcg_bio_issue_check(q, bio)) | 
|  | return false; | 
|  |  | 
|  | if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { | 
|  | trace_block_bio_queue(q, bio); | 
|  | /* Now that enqueuing has been traced, we need to trace | 
|  | * completion as well. | 
|  | */ | 
|  | bio_set_flag(bio, BIO_TRACE_COMPLETION); | 
|  | } | 
|  | return true; | 
|  |  | 
|  | not_supported: | 
|  | status = BLK_STS_NOTSUPP; | 
|  | end_io: | 
|  | bio->bi_status = status; | 
|  | bio_endio(bio); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * generic_make_request - hand a buffer to its device driver for I/O | 
|  | * @bio:  The bio describing the location in memory and on the device. | 
|  | * | 
|  | * generic_make_request() is used to make I/O requests of block | 
|  | * devices. It is passed a &struct bio, which describes the I/O that needs | 
|  | * to be done. | 
|  | * | 
|  | * generic_make_request() does not return any status.  The | 
|  | * success/failure status of the request, along with notification of | 
|  | * completion, is delivered asynchronously through the bio->bi_end_io | 
|  | * function described (one day) else where. | 
|  | * | 
|  | * The caller of generic_make_request must make sure that bi_io_vec | 
|  | * are set to describe the memory buffer, and that bi_dev and bi_sector are | 
|  | * set to describe the device address, and the | 
|  | * bi_end_io and optionally bi_private are set to describe how | 
|  | * completion notification should be signaled. | 
|  | * | 
|  | * generic_make_request and the drivers it calls may use bi_next if this | 
|  | * bio happens to be merged with someone else, and may resubmit the bio to | 
|  | * a lower device by calling into generic_make_request recursively, which | 
|  | * means the bio should NOT be touched after the call to ->make_request_fn. | 
|  | */ | 
|  | blk_qc_t generic_make_request(struct bio *bio) | 
|  | { | 
|  | /* | 
|  | * bio_list_on_stack[0] contains bios submitted by the current | 
|  | * make_request_fn. | 
|  | * bio_list_on_stack[1] contains bios that were submitted before | 
|  | * the current make_request_fn, but that haven't been processed | 
|  | * yet. | 
|  | */ | 
|  | struct bio_list bio_list_on_stack[2]; | 
|  | blk_qc_t ret = BLK_QC_T_NONE; | 
|  |  | 
|  | if (!generic_make_request_checks(bio)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We only want one ->make_request_fn to be active at a time, else | 
|  | * stack usage with stacked devices could be a problem.  So use | 
|  | * current->bio_list to keep a list of requests submited by a | 
|  | * make_request_fn function.  current->bio_list is also used as a | 
|  | * flag to say if generic_make_request is currently active in this | 
|  | * task or not.  If it is NULL, then no make_request is active.  If | 
|  | * it is non-NULL, then a make_request is active, and new requests | 
|  | * should be added at the tail | 
|  | */ | 
|  | if (current->bio_list) { | 
|  | bio_list_add(¤t->bio_list[0], bio); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* following loop may be a bit non-obvious, and so deserves some | 
|  | * explanation. | 
|  | * Before entering the loop, bio->bi_next is NULL (as all callers | 
|  | * ensure that) so we have a list with a single bio. | 
|  | * We pretend that we have just taken it off a longer list, so | 
|  | * we assign bio_list to a pointer to the bio_list_on_stack, | 
|  | * thus initialising the bio_list of new bios to be | 
|  | * added.  ->make_request() may indeed add some more bios | 
|  | * through a recursive call to generic_make_request.  If it | 
|  | * did, we find a non-NULL value in bio_list and re-enter the loop | 
|  | * from the top.  In this case we really did just take the bio | 
|  | * of the top of the list (no pretending) and so remove it from | 
|  | * bio_list, and call into ->make_request() again. | 
|  | */ | 
|  | BUG_ON(bio->bi_next); | 
|  | bio_list_init(&bio_list_on_stack[0]); | 
|  | current->bio_list = bio_list_on_stack; | 
|  | do { | 
|  | struct request_queue *q = bio->bi_disk->queue; | 
|  |  | 
|  | if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) { | 
|  | struct bio_list lower, same; | 
|  |  | 
|  | /* Create a fresh bio_list for all subordinate requests */ | 
|  | bio_list_on_stack[1] = bio_list_on_stack[0]; | 
|  | bio_list_init(&bio_list_on_stack[0]); | 
|  | ret = q->make_request_fn(q, bio); | 
|  |  | 
|  | blk_queue_exit(q); | 
|  |  | 
|  | /* sort new bios into those for a lower level | 
|  | * and those for the same level | 
|  | */ | 
|  | bio_list_init(&lower); | 
|  | bio_list_init(&same); | 
|  | while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) | 
|  | if (q == bio->bi_disk->queue) | 
|  | bio_list_add(&same, bio); | 
|  | else | 
|  | bio_list_add(&lower, bio); | 
|  | /* now assemble so we handle the lowest level first */ | 
|  | bio_list_merge(&bio_list_on_stack[0], &lower); | 
|  | bio_list_merge(&bio_list_on_stack[0], &same); | 
|  | bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); | 
|  | } else { | 
|  | if (unlikely(!blk_queue_dying(q) && | 
|  | (bio->bi_opf & REQ_NOWAIT))) | 
|  | bio_wouldblock_error(bio); | 
|  | else | 
|  | bio_io_error(bio); | 
|  | } | 
|  | bio = bio_list_pop(&bio_list_on_stack[0]); | 
|  | } while (bio); | 
|  | current->bio_list = NULL; /* deactivate */ | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_make_request); | 
|  |  | 
|  | /** | 
|  | * submit_bio - submit a bio to the block device layer for I/O | 
|  | * @bio: The &struct bio which describes the I/O | 
|  | * | 
|  | * submit_bio() is very similar in purpose to generic_make_request(), and | 
|  | * uses that function to do most of the work. Both are fairly rough | 
|  | * interfaces; @bio must be presetup and ready for I/O. | 
|  | * | 
|  | */ | 
|  | blk_qc_t submit_bio(struct bio *bio) | 
|  | { | 
|  | /* | 
|  | * If it's a regular read/write or a barrier with data attached, | 
|  | * go through the normal accounting stuff before submission. | 
|  | */ | 
|  | if (bio_has_data(bio)) { | 
|  | unsigned int count; | 
|  |  | 
|  | if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) | 
|  | count = queue_logical_block_size(bio->bi_disk->queue); | 
|  | else | 
|  | count = bio_sectors(bio); | 
|  |  | 
|  | if (op_is_write(bio_op(bio))) { | 
|  | count_vm_events(PGPGOUT, count); | 
|  | } else { | 
|  | task_io_account_read(bio->bi_iter.bi_size); | 
|  | count_vm_events(PGPGIN, count); | 
|  | } | 
|  |  | 
|  | if (unlikely(block_dump)) { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", | 
|  | current->comm, task_pid_nr(current), | 
|  | op_is_write(bio_op(bio)) ? "WRITE" : "READ", | 
|  | (unsigned long long)bio->bi_iter.bi_sector, | 
|  | bio_devname(bio, b), count); | 
|  | } | 
|  | } | 
|  |  | 
|  | return generic_make_request(bio); | 
|  | } | 
|  | EXPORT_SYMBOL(submit_bio); | 
|  |  | 
|  | /** | 
|  | * blk_cloned_rq_check_limits - Helper function to check a cloned request | 
|  | *                              for new the queue limits | 
|  | * @q:  the queue | 
|  | * @rq: the request being checked | 
|  | * | 
|  | * Description: | 
|  | *    @rq may have been made based on weaker limitations of upper-level queues | 
|  | *    in request stacking drivers, and it may violate the limitation of @q. | 
|  | *    Since the block layer and the underlying device driver trust @rq | 
|  | *    after it is inserted to @q, it should be checked against @q before | 
|  | *    the insertion using this generic function. | 
|  | * | 
|  | *    Request stacking drivers like request-based dm may change the queue | 
|  | *    limits when retrying requests on other queues. Those requests need | 
|  | *    to be checked against the new queue limits again during dispatch. | 
|  | */ | 
|  | static int blk_cloned_rq_check_limits(struct request_queue *q, | 
|  | struct request *rq) | 
|  | { | 
|  | if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { | 
|  | printk(KERN_ERR "%s: over max size limit.\n", __func__); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * queue's settings related to segment counting like q->bounce_pfn | 
|  | * may differ from that of other stacking queues. | 
|  | * Recalculate it to check the request correctly on this queue's | 
|  | * limitation. | 
|  | */ | 
|  | blk_recalc_rq_segments(rq); | 
|  | if (rq->nr_phys_segments > queue_max_segments(q)) { | 
|  | printk(KERN_ERR "%s: over max segments limit.\n", __func__); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_insert_cloned_request - Helper for stacking drivers to submit a request | 
|  | * @q:  the queue to submit the request | 
|  | * @rq: the request being queued | 
|  | */ | 
|  | blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) | 
|  | { | 
|  | unsigned long flags; | 
|  | int where = ELEVATOR_INSERT_BACK; | 
|  |  | 
|  | if (blk_cloned_rq_check_limits(q, rq)) | 
|  | return BLK_STS_IOERR; | 
|  |  | 
|  | if (rq->rq_disk && | 
|  | should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) | 
|  | return BLK_STS_IOERR; | 
|  |  | 
|  | if (q->mq_ops) { | 
|  | if (blk_queue_io_stat(q)) | 
|  | blk_account_io_start(rq, true); | 
|  | /* | 
|  | * Since we have a scheduler attached on the top device, | 
|  | * bypass a potential scheduler on the bottom device for | 
|  | * insert. | 
|  | */ | 
|  | blk_mq_request_bypass_insert(rq); | 
|  | return BLK_STS_OK; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(q->queue_lock, flags); | 
|  | if (unlikely(blk_queue_dying(q))) { | 
|  | spin_unlock_irqrestore(q->queue_lock, flags); | 
|  | return BLK_STS_IOERR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submitting request must be dequeued before calling this function | 
|  | * because it will be linked to another request_queue | 
|  | */ | 
|  | BUG_ON(blk_queued_rq(rq)); | 
|  |  | 
|  | if (op_is_flush(rq->cmd_flags)) | 
|  | where = ELEVATOR_INSERT_FLUSH; | 
|  |  | 
|  | add_acct_request(q, rq, where); | 
|  | if (where == ELEVATOR_INSERT_FLUSH) | 
|  | __blk_run_queue(q); | 
|  | spin_unlock_irqrestore(q->queue_lock, flags); | 
|  |  | 
|  | return BLK_STS_OK; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_insert_cloned_request); | 
|  |  | 
|  | /** | 
|  | * blk_rq_err_bytes - determine number of bytes till the next failure boundary | 
|  | * @rq: request to examine | 
|  | * | 
|  | * Description: | 
|  | *     A request could be merge of IOs which require different failure | 
|  | *     handling.  This function determines the number of bytes which | 
|  | *     can be failed from the beginning of the request without | 
|  | *     crossing into area which need to be retried further. | 
|  | * | 
|  | * Return: | 
|  | *     The number of bytes to fail. | 
|  | */ | 
|  | unsigned int blk_rq_err_bytes(const struct request *rq) | 
|  | { | 
|  | unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; | 
|  | unsigned int bytes = 0; | 
|  | struct bio *bio; | 
|  |  | 
|  | if (!(rq->rq_flags & RQF_MIXED_MERGE)) | 
|  | return blk_rq_bytes(rq); | 
|  |  | 
|  | /* | 
|  | * Currently the only 'mixing' which can happen is between | 
|  | * different fastfail types.  We can safely fail portions | 
|  | * which have all the failfast bits that the first one has - | 
|  | * the ones which are at least as eager to fail as the first | 
|  | * one. | 
|  | */ | 
|  | for (bio = rq->bio; bio; bio = bio->bi_next) { | 
|  | if ((bio->bi_opf & ff) != ff) | 
|  | break; | 
|  | bytes += bio->bi_iter.bi_size; | 
|  | } | 
|  |  | 
|  | /* this could lead to infinite loop */ | 
|  | BUG_ON(blk_rq_bytes(rq) && !bytes); | 
|  | return bytes; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_rq_err_bytes); | 
|  |  | 
|  | void blk_account_io_completion(struct request *req, unsigned int bytes) | 
|  | { | 
|  | if (blk_do_io_stat(req)) { | 
|  | const int rw = rq_data_dir(req); | 
|  | struct hd_struct *part; | 
|  | int cpu; | 
|  |  | 
|  | cpu = part_stat_lock(); | 
|  | part = req->part; | 
|  | part_stat_add(cpu, part, sectors[rw], bytes >> 9); | 
|  | part_stat_unlock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void blk_account_io_done(struct request *req) | 
|  | { | 
|  | /* | 
|  | * Account IO completion.  flush_rq isn't accounted as a | 
|  | * normal IO on queueing nor completion.  Accounting the | 
|  | * containing request is enough. | 
|  | */ | 
|  | if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { | 
|  | unsigned long duration = jiffies - req->start_time; | 
|  | const int rw = rq_data_dir(req); | 
|  | struct hd_struct *part; | 
|  | int cpu; | 
|  |  | 
|  | cpu = part_stat_lock(); | 
|  | part = req->part; | 
|  |  | 
|  | part_stat_inc(cpu, part, ios[rw]); | 
|  | part_stat_add(cpu, part, ticks[rw], duration); | 
|  | part_round_stats(req->q, cpu, part); | 
|  | part_dec_in_flight(req->q, part, rw); | 
|  |  | 
|  | hd_struct_put(part); | 
|  | part_stat_unlock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | /* | 
|  | * Don't process normal requests when queue is suspended | 
|  | * or in the process of suspending/resuming | 
|  | */ | 
|  | static struct request *blk_pm_peek_request(struct request_queue *q, | 
|  | struct request *rq) | 
|  | { | 
|  | if (q->dev && (q->rpm_status == RPM_SUSPENDED || | 
|  | (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM)))) | 
|  | return NULL; | 
|  | else | 
|  | return rq; | 
|  | } | 
|  | #else | 
|  | static inline struct request *blk_pm_peek_request(struct request_queue *q, | 
|  | struct request *rq) | 
|  | { | 
|  | return rq; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void blk_account_io_start(struct request *rq, bool new_io) | 
|  | { | 
|  | struct hd_struct *part; | 
|  | int rw = rq_data_dir(rq); | 
|  | int cpu; | 
|  |  | 
|  | if (!blk_do_io_stat(rq)) | 
|  | return; | 
|  |  | 
|  | cpu = part_stat_lock(); | 
|  |  | 
|  | if (!new_io) { | 
|  | part = rq->part; | 
|  | part_stat_inc(cpu, part, merges[rw]); | 
|  | } else { | 
|  | part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); | 
|  | if (!hd_struct_try_get(part)) { | 
|  | /* | 
|  | * The partition is already being removed, | 
|  | * the request will be accounted on the disk only | 
|  | * | 
|  | * We take a reference on disk->part0 although that | 
|  | * partition will never be deleted, so we can treat | 
|  | * it as any other partition. | 
|  | */ | 
|  | part = &rq->rq_disk->part0; | 
|  | hd_struct_get(part); | 
|  | } | 
|  | part_round_stats(rq->q, cpu, part); | 
|  | part_inc_in_flight(rq->q, part, rw); | 
|  | rq->part = part; | 
|  | } | 
|  |  | 
|  | part_stat_unlock(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_peek_request - peek at the top of a request queue | 
|  | * @q: request queue to peek at | 
|  | * | 
|  | * Description: | 
|  | *     Return the request at the top of @q.  The returned request | 
|  | *     should be started using blk_start_request() before LLD starts | 
|  | *     processing it. | 
|  | * | 
|  | * Return: | 
|  | *     Pointer to the request at the top of @q if available.  Null | 
|  | *     otherwise. | 
|  | */ | 
|  | struct request *blk_peek_request(struct request_queue *q) | 
|  | { | 
|  | struct request *rq; | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held(q->queue_lock); | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | while ((rq = __elv_next_request(q)) != NULL) { | 
|  |  | 
|  | rq = blk_pm_peek_request(q, rq); | 
|  | if (!rq) | 
|  | break; | 
|  |  | 
|  | if (!(rq->rq_flags & RQF_STARTED)) { | 
|  | /* | 
|  | * This is the first time the device driver | 
|  | * sees this request (possibly after | 
|  | * requeueing).  Notify IO scheduler. | 
|  | */ | 
|  | if (rq->rq_flags & RQF_SORTED) | 
|  | elv_activate_rq(q, rq); | 
|  |  | 
|  | /* | 
|  | * just mark as started even if we don't start | 
|  | * it, a request that has been delayed should | 
|  | * not be passed by new incoming requests | 
|  | */ | 
|  | rq->rq_flags |= RQF_STARTED; | 
|  | trace_block_rq_issue(q, rq); | 
|  | } | 
|  |  | 
|  | if (!q->boundary_rq || q->boundary_rq == rq) { | 
|  | q->end_sector = rq_end_sector(rq); | 
|  | q->boundary_rq = NULL; | 
|  | } | 
|  |  | 
|  | if (rq->rq_flags & RQF_DONTPREP) | 
|  | break; | 
|  |  | 
|  | if (q->dma_drain_size && blk_rq_bytes(rq)) { | 
|  | /* | 
|  | * make sure space for the drain appears we | 
|  | * know we can do this because max_hw_segments | 
|  | * has been adjusted to be one fewer than the | 
|  | * device can handle | 
|  | */ | 
|  | rq->nr_phys_segments++; | 
|  | } | 
|  |  | 
|  | if (!q->prep_rq_fn) | 
|  | break; | 
|  |  | 
|  | ret = q->prep_rq_fn(q, rq); | 
|  | if (ret == BLKPREP_OK) { | 
|  | break; | 
|  | } else if (ret == BLKPREP_DEFER) { | 
|  | /* | 
|  | * the request may have been (partially) prepped. | 
|  | * we need to keep this request in the front to | 
|  | * avoid resource deadlock.  RQF_STARTED will | 
|  | * prevent other fs requests from passing this one. | 
|  | */ | 
|  | if (q->dma_drain_size && blk_rq_bytes(rq) && | 
|  | !(rq->rq_flags & RQF_DONTPREP)) { | 
|  | /* | 
|  | * remove the space for the drain we added | 
|  | * so that we don't add it again | 
|  | */ | 
|  | --rq->nr_phys_segments; | 
|  | } | 
|  |  | 
|  | rq = NULL; | 
|  | break; | 
|  | } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { | 
|  | rq->rq_flags |= RQF_QUIET; | 
|  | /* | 
|  | * Mark this request as started so we don't trigger | 
|  | * any debug logic in the end I/O path. | 
|  | */ | 
|  | blk_start_request(rq); | 
|  | __blk_end_request_all(rq, ret == BLKPREP_INVALID ? | 
|  | BLK_STS_TARGET : BLK_STS_IOERR); | 
|  | } else { | 
|  | printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return rq; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_peek_request); | 
|  |  | 
|  | static void blk_dequeue_request(struct request *rq) | 
|  | { | 
|  | struct request_queue *q = rq->q; | 
|  |  | 
|  | BUG_ON(list_empty(&rq->queuelist)); | 
|  | BUG_ON(ELV_ON_HASH(rq)); | 
|  |  | 
|  | list_del_init(&rq->queuelist); | 
|  |  | 
|  | /* | 
|  | * the time frame between a request being removed from the lists | 
|  | * and to it is freed is accounted as io that is in progress at | 
|  | * the driver side. | 
|  | */ | 
|  | if (blk_account_rq(rq)) { | 
|  | q->in_flight[rq_is_sync(rq)]++; | 
|  | set_io_start_time_ns(rq); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_start_request - start request processing on the driver | 
|  | * @req: request to dequeue | 
|  | * | 
|  | * Description: | 
|  | *     Dequeue @req and start timeout timer on it.  This hands off the | 
|  | *     request to the driver. | 
|  | */ | 
|  | void blk_start_request(struct request *req) | 
|  | { | 
|  | lockdep_assert_held(req->q->queue_lock); | 
|  | WARN_ON_ONCE(req->q->mq_ops); | 
|  |  | 
|  | blk_dequeue_request(req); | 
|  |  | 
|  | if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { | 
|  | blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req)); | 
|  | req->rq_flags |= RQF_STATS; | 
|  | wbt_issue(req->q->rq_wb, &req->issue_stat); | 
|  | } | 
|  |  | 
|  | BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); | 
|  | blk_add_timer(req); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_start_request); | 
|  |  | 
|  | /** | 
|  | * blk_fetch_request - fetch a request from a request queue | 
|  | * @q: request queue to fetch a request from | 
|  | * | 
|  | * Description: | 
|  | *     Return the request at the top of @q.  The request is started on | 
|  | *     return and LLD can start processing it immediately. | 
|  | * | 
|  | * Return: | 
|  | *     Pointer to the request at the top of @q if available.  Null | 
|  | *     otherwise. | 
|  | */ | 
|  | struct request *blk_fetch_request(struct request_queue *q) | 
|  | { | 
|  | struct request *rq; | 
|  |  | 
|  | lockdep_assert_held(q->queue_lock); | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | rq = blk_peek_request(q); | 
|  | if (rq) | 
|  | blk_start_request(rq); | 
|  | return rq; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_fetch_request); | 
|  |  | 
|  | /** | 
|  | * blk_update_request - Special helper function for request stacking drivers | 
|  | * @req:      the request being processed | 
|  | * @error:    block status code | 
|  | * @nr_bytes: number of bytes to complete @req | 
|  | * | 
|  | * Description: | 
|  | *     Ends I/O on a number of bytes attached to @req, but doesn't complete | 
|  | *     the request structure even if @req doesn't have leftover. | 
|  | *     If @req has leftover, sets it up for the next range of segments. | 
|  | * | 
|  | *     This special helper function is only for request stacking drivers | 
|  | *     (e.g. request-based dm) so that they can handle partial completion. | 
|  | *     Actual device drivers should use blk_end_request instead. | 
|  | * | 
|  | *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees | 
|  | *     %false return from this function. | 
|  | * | 
|  | * Return: | 
|  | *     %false - this request doesn't have any more data | 
|  | *     %true  - this request has more data | 
|  | **/ | 
|  | bool blk_update_request(struct request *req, blk_status_t error, | 
|  | unsigned int nr_bytes) | 
|  | { | 
|  | int total_bytes; | 
|  |  | 
|  | trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); | 
|  |  | 
|  | if (!req->bio) | 
|  | return false; | 
|  |  | 
|  | if (unlikely(error && !blk_rq_is_passthrough(req) && | 
|  | !(req->rq_flags & RQF_QUIET))) | 
|  | print_req_error(req, error); | 
|  |  | 
|  | blk_account_io_completion(req, nr_bytes); | 
|  |  | 
|  | total_bytes = 0; | 
|  | while (req->bio) { | 
|  | struct bio *bio = req->bio; | 
|  | unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); | 
|  |  | 
|  | if (bio_bytes == bio->bi_iter.bi_size) | 
|  | req->bio = bio->bi_next; | 
|  |  | 
|  | /* Completion has already been traced */ | 
|  | bio_clear_flag(bio, BIO_TRACE_COMPLETION); | 
|  | req_bio_endio(req, bio, bio_bytes, error); | 
|  |  | 
|  | total_bytes += bio_bytes; | 
|  | nr_bytes -= bio_bytes; | 
|  |  | 
|  | if (!nr_bytes) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * completely done | 
|  | */ | 
|  | if (!req->bio) { | 
|  | /* | 
|  | * Reset counters so that the request stacking driver | 
|  | * can find how many bytes remain in the request | 
|  | * later. | 
|  | */ | 
|  | req->__data_len = 0; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | req->__data_len -= total_bytes; | 
|  |  | 
|  | /* update sector only for requests with clear definition of sector */ | 
|  | if (!blk_rq_is_passthrough(req)) | 
|  | req->__sector += total_bytes >> 9; | 
|  |  | 
|  | /* mixed attributes always follow the first bio */ | 
|  | if (req->rq_flags & RQF_MIXED_MERGE) { | 
|  | req->cmd_flags &= ~REQ_FAILFAST_MASK; | 
|  | req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; | 
|  | } | 
|  |  | 
|  | if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { | 
|  | /* | 
|  | * If total number of sectors is less than the first segment | 
|  | * size, something has gone terribly wrong. | 
|  | */ | 
|  | if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { | 
|  | blk_dump_rq_flags(req, "request botched"); | 
|  | req->__data_len = blk_rq_cur_bytes(req); | 
|  | } | 
|  |  | 
|  | /* recalculate the number of segments */ | 
|  | blk_recalc_rq_segments(req); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_update_request); | 
|  |  | 
|  | static bool blk_update_bidi_request(struct request *rq, blk_status_t error, | 
|  | unsigned int nr_bytes, | 
|  | unsigned int bidi_bytes) | 
|  | { | 
|  | if (blk_update_request(rq, error, nr_bytes)) | 
|  | return true; | 
|  |  | 
|  | /* Bidi request must be completed as a whole */ | 
|  | if (unlikely(blk_bidi_rq(rq)) && | 
|  | blk_update_request(rq->next_rq, error, bidi_bytes)) | 
|  | return true; | 
|  |  | 
|  | if (blk_queue_add_random(rq->q)) | 
|  | add_disk_randomness(rq->rq_disk); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_unprep_request - unprepare a request | 
|  | * @req:	the request | 
|  | * | 
|  | * This function makes a request ready for complete resubmission (or | 
|  | * completion).  It happens only after all error handling is complete, | 
|  | * so represents the appropriate moment to deallocate any resources | 
|  | * that were allocated to the request in the prep_rq_fn.  The queue | 
|  | * lock is held when calling this. | 
|  | */ | 
|  | void blk_unprep_request(struct request *req) | 
|  | { | 
|  | struct request_queue *q = req->q; | 
|  |  | 
|  | req->rq_flags &= ~RQF_DONTPREP; | 
|  | if (q->unprep_rq_fn) | 
|  | q->unprep_rq_fn(q, req); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_unprep_request); | 
|  |  | 
|  | void blk_finish_request(struct request *req, blk_status_t error) | 
|  | { | 
|  | struct request_queue *q = req->q; | 
|  |  | 
|  | lockdep_assert_held(req->q->queue_lock); | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | if (req->rq_flags & RQF_STATS) | 
|  | blk_stat_add(req); | 
|  |  | 
|  | if (req->rq_flags & RQF_QUEUED) | 
|  | blk_queue_end_tag(q, req); | 
|  |  | 
|  | BUG_ON(blk_queued_rq(req)); | 
|  |  | 
|  | if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) | 
|  | laptop_io_completion(req->q->backing_dev_info); | 
|  |  | 
|  | blk_delete_timer(req); | 
|  |  | 
|  | if (req->rq_flags & RQF_DONTPREP) | 
|  | blk_unprep_request(req); | 
|  |  | 
|  | blk_account_io_done(req); | 
|  |  | 
|  | if (req->end_io) { | 
|  | wbt_done(req->q->rq_wb, &req->issue_stat); | 
|  | req->end_io(req, error); | 
|  | } else { | 
|  | if (blk_bidi_rq(req)) | 
|  | __blk_put_request(req->next_rq->q, req->next_rq); | 
|  |  | 
|  | __blk_put_request(q, req); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(blk_finish_request); | 
|  |  | 
|  | /** | 
|  | * blk_end_bidi_request - Complete a bidi request | 
|  | * @rq:         the request to complete | 
|  | * @error:      block status code | 
|  | * @nr_bytes:   number of bytes to complete @rq | 
|  | * @bidi_bytes: number of bytes to complete @rq->next_rq | 
|  | * | 
|  | * Description: | 
|  | *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq. | 
|  | *     Drivers that supports bidi can safely call this member for any | 
|  | *     type of request, bidi or uni.  In the later case @bidi_bytes is | 
|  | *     just ignored. | 
|  | * | 
|  | * Return: | 
|  | *     %false - we are done with this request | 
|  | *     %true  - still buffers pending for this request | 
|  | **/ | 
|  | static bool blk_end_bidi_request(struct request *rq, blk_status_t error, | 
|  | unsigned int nr_bytes, unsigned int bidi_bytes) | 
|  | { | 
|  | struct request_queue *q = rq->q; | 
|  | unsigned long flags; | 
|  |  | 
|  | WARN_ON_ONCE(q->mq_ops); | 
|  |  | 
|  | if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) | 
|  | return true; | 
|  |  | 
|  | spin_lock_irqsave(q->queue_lock, flags); | 
|  | blk_finish_request(rq, error); | 
|  | spin_unlock_irqrestore(q->queue_lock, flags); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __blk_end_bidi_request - Complete a bidi request with queue lock held | 
|  | * @rq:         the request to complete | 
|  | * @error:      block status code | 
|  | * @nr_bytes:   number of bytes to complete @rq | 
|  | * @bidi_bytes: number of bytes to complete @rq->next_rq | 
|  | * | 
|  | * Description: | 
|  | *     Identical to blk_end_bidi_request() except that queue lock is | 
|  | *     assumed to be locked on entry and remains so on return. | 
|  | * | 
|  | * Return: | 
|  | *     %false - we are done with this request | 
|  | *     %true  - still buffers pending for this request | 
|  | **/ | 
|  | static bool __blk_end_bidi_request(struct request *rq, blk_status_t error, | 
|  | unsigned int nr_bytes, unsigned int bidi_bytes) | 
|  | { | 
|  | lockdep_assert_held(rq->q->queue_lock); | 
|  | WARN_ON_ONCE(rq->q->mq_ops); | 
|  |  | 
|  | if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) | 
|  | return true; | 
|  |  | 
|  | blk_finish_request(rq, error); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_end_request - Helper function for drivers to complete the request. | 
|  | * @rq:       the request being processed | 
|  | * @error:    block status code | 
|  | * @nr_bytes: number of bytes to complete | 
|  | * | 
|  | * Description: | 
|  | *     Ends I/O on a number of bytes attached to @rq. | 
|  | *     If @rq has leftover, sets it up for the next range of segments. | 
|  | * | 
|  | * Return: | 
|  | *     %false - we are done with this request | 
|  | *     %true  - still buffers pending for this request | 
|  | **/ | 
|  | bool blk_end_request(struct request *rq, blk_status_t error, | 
|  | unsigned int nr_bytes) | 
|  | { | 
|  | WARN_ON_ONCE(rq->q->mq_ops); | 
|  | return blk_end_bidi_request(rq, error, nr_bytes, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_end_request); | 
|  |  | 
|  | /** | 
|  | * blk_end_request_all - Helper function for drives to finish the request. | 
|  | * @rq: the request to finish | 
|  | * @error: block status code | 
|  | * | 
|  | * Description: | 
|  | *     Completely finish @rq. | 
|  | */ | 
|  | void blk_end_request_all(struct request *rq, blk_status_t error) | 
|  | { | 
|  | bool pending; | 
|  | unsigned int bidi_bytes = 0; | 
|  |  | 
|  | if (unlikely(blk_bidi_rq(rq))) | 
|  | bidi_bytes = blk_rq_bytes(rq->next_rq); | 
|  |  | 
|  | pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); | 
|  | BUG_ON(pending); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_end_request_all); | 
|  |  | 
|  | /** | 
|  | * __blk_end_request - Helper function for drivers to complete the request. | 
|  | * @rq:       the request being processed | 
|  | * @error:    block status code | 
|  | * @nr_bytes: number of bytes to complete | 
|  | * | 
|  | * Description: | 
|  | *     Must be called with queue lock held unlike blk_end_request(). | 
|  | * | 
|  | * Return: | 
|  | *     %false - we are done with this request | 
|  | *     %true  - still buffers pending for this request | 
|  | **/ | 
|  | bool __blk_end_request(struct request *rq, blk_status_t error, | 
|  | unsigned int nr_bytes) | 
|  | { | 
|  | lockdep_assert_held(rq->q->queue_lock); | 
|  | WARN_ON_ONCE(rq->q->mq_ops); | 
|  |  | 
|  | return __blk_end_bidi_request(rq, error, nr_bytes, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(__blk_end_request); | 
|  |  | 
|  | /** | 
|  | * __blk_end_request_all - Helper function for drives to finish the request. | 
|  | * @rq: the request to finish | 
|  | * @error:    block status code | 
|  | * | 
|  | * Description: | 
|  | *     Completely finish @rq.  Must be called with queue lock held. | 
|  | */ | 
|  | void __blk_end_request_all(struct request *rq, blk_status_t error) | 
|  | { | 
|  | bool pending; | 
|  | unsigned int bidi_bytes = 0; | 
|  |  | 
|  | lockdep_assert_held(rq->q->queue_lock); | 
|  | WARN_ON_ONCE(rq->q->mq_ops); | 
|  |  | 
|  | if (unlikely(blk_bidi_rq(rq))) | 
|  | bidi_bytes = blk_rq_bytes(rq->next_rq); | 
|  |  | 
|  | pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); | 
|  | BUG_ON(pending); | 
|  | } | 
|  | EXPORT_SYMBOL(__blk_end_request_all); | 
|  |  | 
|  | /** | 
|  | * __blk_end_request_cur - Helper function to finish the current request chunk. | 
|  | * @rq: the request to finish the current chunk for | 
|  | * @error:    block status code | 
|  | * | 
|  | * Description: | 
|  | *     Complete the current consecutively mapped chunk from @rq.  Must | 
|  | *     be called with queue lock held. | 
|  | * | 
|  | * Return: | 
|  | *     %false - we are done with this request | 
|  | *     %true  - still buffers pending for this request | 
|  | */ | 
|  | bool __blk_end_request_cur(struct request *rq, blk_status_t error) | 
|  | { | 
|  | return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); | 
|  | } | 
|  | EXPORT_SYMBOL(__blk_end_request_cur); | 
|  |  | 
|  | void blk_rq_bio_prep(struct request_queue *q, struct request *rq, | 
|  | struct bio *bio) | 
|  | { | 
|  | if (bio_has_data(bio)) | 
|  | rq->nr_phys_segments = bio_phys_segments(q, bio); | 
|  |  | 
|  | rq->__data_len = bio->bi_iter.bi_size; | 
|  | rq->bio = rq->biotail = bio; | 
|  |  | 
|  | if (bio->bi_disk) | 
|  | rq->rq_disk = bio->bi_disk; | 
|  | } | 
|  |  | 
|  | #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE | 
|  | /** | 
|  | * rq_flush_dcache_pages - Helper function to flush all pages in a request | 
|  | * @rq: the request to be flushed | 
|  | * | 
|  | * Description: | 
|  | *     Flush all pages in @rq. | 
|  | */ | 
|  | void rq_flush_dcache_pages(struct request *rq) | 
|  | { | 
|  | struct req_iterator iter; | 
|  | struct bio_vec bvec; | 
|  |  | 
|  | rq_for_each_segment(bvec, rq, iter) | 
|  | flush_dcache_page(bvec.bv_page); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * blk_lld_busy - Check if underlying low-level drivers of a device are busy | 
|  | * @q : the queue of the device being checked | 
|  | * | 
|  | * Description: | 
|  | *    Check if underlying low-level drivers of a device are busy. | 
|  | *    If the drivers want to export their busy state, they must set own | 
|  | *    exporting function using blk_queue_lld_busy() first. | 
|  | * | 
|  | *    Basically, this function is used only by request stacking drivers | 
|  | *    to stop dispatching requests to underlying devices when underlying | 
|  | *    devices are busy.  This behavior helps more I/O merging on the queue | 
|  | *    of the request stacking driver and prevents I/O throughput regression | 
|  | *    on burst I/O load. | 
|  | * | 
|  | * Return: | 
|  | *    0 - Not busy (The request stacking driver should dispatch request) | 
|  | *    1 - Busy (The request stacking driver should stop dispatching request) | 
|  | */ | 
|  | int blk_lld_busy(struct request_queue *q) | 
|  | { | 
|  | if (q->lld_busy_fn) | 
|  | return q->lld_busy_fn(q); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_lld_busy); | 
|  |  | 
|  | /** | 
|  | * blk_rq_unprep_clone - Helper function to free all bios in a cloned request | 
|  | * @rq: the clone request to be cleaned up | 
|  | * | 
|  | * Description: | 
|  | *     Free all bios in @rq for a cloned request. | 
|  | */ | 
|  | void blk_rq_unprep_clone(struct request *rq) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | while ((bio = rq->bio) != NULL) { | 
|  | rq->bio = bio->bi_next; | 
|  |  | 
|  | bio_put(bio); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); | 
|  |  | 
|  | /* | 
|  | * Copy attributes of the original request to the clone request. | 
|  | * The actual data parts (e.g. ->cmd, ->sense) are not copied. | 
|  | */ | 
|  | static void __blk_rq_prep_clone(struct request *dst, struct request *src) | 
|  | { | 
|  | dst->cpu = src->cpu; | 
|  | dst->__sector = blk_rq_pos(src); | 
|  | dst->__data_len = blk_rq_bytes(src); | 
|  | dst->nr_phys_segments = src->nr_phys_segments; | 
|  | dst->ioprio = src->ioprio; | 
|  | dst->extra_len = src->extra_len; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_rq_prep_clone - Helper function to setup clone request | 
|  | * @rq: the request to be setup | 
|  | * @rq_src: original request to be cloned | 
|  | * @bs: bio_set that bios for clone are allocated from | 
|  | * @gfp_mask: memory allocation mask for bio | 
|  | * @bio_ctr: setup function to be called for each clone bio. | 
|  | *           Returns %0 for success, non %0 for failure. | 
|  | * @data: private data to be passed to @bio_ctr | 
|  | * | 
|  | * Description: | 
|  | *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. | 
|  | *     The actual data parts of @rq_src (e.g. ->cmd, ->sense) | 
|  | *     are not copied, and copying such parts is the caller's responsibility. | 
|  | *     Also, pages which the original bios are pointing to are not copied | 
|  | *     and the cloned bios just point same pages. | 
|  | *     So cloned bios must be completed before original bios, which means | 
|  | *     the caller must complete @rq before @rq_src. | 
|  | */ | 
|  | int blk_rq_prep_clone(struct request *rq, struct request *rq_src, | 
|  | struct bio_set *bs, gfp_t gfp_mask, | 
|  | int (*bio_ctr)(struct bio *, struct bio *, void *), | 
|  | void *data) | 
|  | { | 
|  | struct bio *bio, *bio_src; | 
|  |  | 
|  | if (!bs) | 
|  | bs = fs_bio_set; | 
|  |  | 
|  | __rq_for_each_bio(bio_src, rq_src) { | 
|  | bio = bio_clone_fast(bio_src, gfp_mask, bs); | 
|  | if (!bio) | 
|  | goto free_and_out; | 
|  |  | 
|  | if (bio_ctr && bio_ctr(bio, bio_src, data)) | 
|  | goto free_and_out; | 
|  |  | 
|  | if (rq->bio) { | 
|  | rq->biotail->bi_next = bio; | 
|  | rq->biotail = bio; | 
|  | } else | 
|  | rq->bio = rq->biotail = bio; | 
|  | } | 
|  |  | 
|  | __blk_rq_prep_clone(rq, rq_src); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_and_out: | 
|  | if (bio) | 
|  | bio_put(bio); | 
|  | blk_rq_unprep_clone(rq); | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_rq_prep_clone); | 
|  |  | 
|  | int kblockd_schedule_work(struct work_struct *work) | 
|  | { | 
|  | return queue_work(kblockd_workqueue, work); | 
|  | } | 
|  | EXPORT_SYMBOL(kblockd_schedule_work); | 
|  |  | 
|  | int kblockd_schedule_work_on(int cpu, struct work_struct *work) | 
|  | { | 
|  | return queue_work_on(cpu, kblockd_workqueue, work); | 
|  | } | 
|  | EXPORT_SYMBOL(kblockd_schedule_work_on); | 
|  |  | 
|  | int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, | 
|  | unsigned long delay) | 
|  | { | 
|  | return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); | 
|  | } | 
|  | EXPORT_SYMBOL(kblockd_mod_delayed_work_on); | 
|  |  | 
|  | int kblockd_schedule_delayed_work(struct delayed_work *dwork, | 
|  | unsigned long delay) | 
|  | { | 
|  | return queue_delayed_work(kblockd_workqueue, dwork, delay); | 
|  | } | 
|  | EXPORT_SYMBOL(kblockd_schedule_delayed_work); | 
|  |  | 
|  | int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, | 
|  | unsigned long delay) | 
|  | { | 
|  | return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); | 
|  | } | 
|  | EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); | 
|  |  | 
|  | /** | 
|  | * blk_start_plug - initialize blk_plug and track it inside the task_struct | 
|  | * @plug:	The &struct blk_plug that needs to be initialized | 
|  | * | 
|  | * Description: | 
|  | *   Tracking blk_plug inside the task_struct will help with auto-flushing the | 
|  | *   pending I/O should the task end up blocking between blk_start_plug() and | 
|  | *   blk_finish_plug(). This is important from a performance perspective, but | 
|  | *   also ensures that we don't deadlock. For instance, if the task is blocking | 
|  | *   for a memory allocation, memory reclaim could end up wanting to free a | 
|  | *   page belonging to that request that is currently residing in our private | 
|  | *   plug. By flushing the pending I/O when the process goes to sleep, we avoid | 
|  | *   this kind of deadlock. | 
|  | */ | 
|  | void blk_start_plug(struct blk_plug *plug) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | /* | 
|  | * If this is a nested plug, don't actually assign it. | 
|  | */ | 
|  | if (tsk->plug) | 
|  | return; | 
|  |  | 
|  | INIT_LIST_HEAD(&plug->list); | 
|  | INIT_LIST_HEAD(&plug->mq_list); | 
|  | INIT_LIST_HEAD(&plug->cb_list); | 
|  | /* | 
|  | * Store ordering should not be needed here, since a potential | 
|  | * preempt will imply a full memory barrier | 
|  | */ | 
|  | tsk->plug = plug; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_start_plug); | 
|  |  | 
|  | static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) | 
|  | { | 
|  | struct request *rqa = container_of(a, struct request, queuelist); | 
|  | struct request *rqb = container_of(b, struct request, queuelist); | 
|  |  | 
|  | return !(rqa->q < rqb->q || | 
|  | (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If 'from_schedule' is true, then postpone the dispatch of requests | 
|  | * until a safe kblockd context. We due this to avoid accidental big | 
|  | * additional stack usage in driver dispatch, in places where the originally | 
|  | * plugger did not intend it. | 
|  | */ | 
|  | static void queue_unplugged(struct request_queue *q, unsigned int depth, | 
|  | bool from_schedule) | 
|  | __releases(q->queue_lock) | 
|  | { | 
|  | lockdep_assert_held(q->queue_lock); | 
|  |  | 
|  | trace_block_unplug(q, depth, !from_schedule); | 
|  |  | 
|  | if (from_schedule) | 
|  | blk_run_queue_async(q); | 
|  | else | 
|  | __blk_run_queue(q); | 
|  | spin_unlock(q->queue_lock); | 
|  | } | 
|  |  | 
|  | static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) | 
|  | { | 
|  | LIST_HEAD(callbacks); | 
|  |  | 
|  | while (!list_empty(&plug->cb_list)) { | 
|  | list_splice_init(&plug->cb_list, &callbacks); | 
|  |  | 
|  | while (!list_empty(&callbacks)) { | 
|  | struct blk_plug_cb *cb = list_first_entry(&callbacks, | 
|  | struct blk_plug_cb, | 
|  | list); | 
|  | list_del(&cb->list); | 
|  | cb->callback(cb, from_schedule); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, | 
|  | int size) | 
|  | { | 
|  | struct blk_plug *plug = current->plug; | 
|  | struct blk_plug_cb *cb; | 
|  |  | 
|  | if (!plug) | 
|  | return NULL; | 
|  |  | 
|  | list_for_each_entry(cb, &plug->cb_list, list) | 
|  | if (cb->callback == unplug && cb->data == data) | 
|  | return cb; | 
|  |  | 
|  | /* Not currently on the callback list */ | 
|  | BUG_ON(size < sizeof(*cb)); | 
|  | cb = kzalloc(size, GFP_ATOMIC); | 
|  | if (cb) { | 
|  | cb->data = data; | 
|  | cb->callback = unplug; | 
|  | list_add(&cb->list, &plug->cb_list); | 
|  | } | 
|  | return cb; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_check_plugged); | 
|  |  | 
|  | void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) | 
|  | { | 
|  | struct request_queue *q; | 
|  | unsigned long flags; | 
|  | struct request *rq; | 
|  | LIST_HEAD(list); | 
|  | unsigned int depth; | 
|  |  | 
|  | flush_plug_callbacks(plug, from_schedule); | 
|  |  | 
|  | if (!list_empty(&plug->mq_list)) | 
|  | blk_mq_flush_plug_list(plug, from_schedule); | 
|  |  | 
|  | if (list_empty(&plug->list)) | 
|  | return; | 
|  |  | 
|  | list_splice_init(&plug->list, &list); | 
|  |  | 
|  | list_sort(NULL, &list, plug_rq_cmp); | 
|  |  | 
|  | q = NULL; | 
|  | depth = 0; | 
|  |  | 
|  | /* | 
|  | * Save and disable interrupts here, to avoid doing it for every | 
|  | * queue lock we have to take. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | while (!list_empty(&list)) { | 
|  | rq = list_entry_rq(list.next); | 
|  | list_del_init(&rq->queuelist); | 
|  | BUG_ON(!rq->q); | 
|  | if (rq->q != q) { | 
|  | /* | 
|  | * This drops the queue lock | 
|  | */ | 
|  | if (q) | 
|  | queue_unplugged(q, depth, from_schedule); | 
|  | q = rq->q; | 
|  | depth = 0; | 
|  | spin_lock(q->queue_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Short-circuit if @q is dead | 
|  | */ | 
|  | if (unlikely(blk_queue_dying(q))) { | 
|  | __blk_end_request_all(rq, BLK_STS_IOERR); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rq is already accounted, so use raw insert | 
|  | */ | 
|  | if (op_is_flush(rq->cmd_flags)) | 
|  | __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); | 
|  | else | 
|  | __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); | 
|  |  | 
|  | depth++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This drops the queue lock | 
|  | */ | 
|  | if (q) | 
|  | queue_unplugged(q, depth, from_schedule); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | void blk_finish_plug(struct blk_plug *plug) | 
|  | { | 
|  | if (plug != current->plug) | 
|  | return; | 
|  | blk_flush_plug_list(plug, false); | 
|  |  | 
|  | current->plug = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_finish_plug); | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | /** | 
|  | * blk_pm_runtime_init - Block layer runtime PM initialization routine | 
|  | * @q: the queue of the device | 
|  | * @dev: the device the queue belongs to | 
|  | * | 
|  | * Description: | 
|  | *    Initialize runtime-PM-related fields for @q and start auto suspend for | 
|  | *    @dev. Drivers that want to take advantage of request-based runtime PM | 
|  | *    should call this function after @dev has been initialized, and its | 
|  | *    request queue @q has been allocated, and runtime PM for it can not happen | 
|  | *    yet(either due to disabled/forbidden or its usage_count > 0). In most | 
|  | *    cases, driver should call this function before any I/O has taken place. | 
|  | * | 
|  | *    This function takes care of setting up using auto suspend for the device, | 
|  | *    the autosuspend delay is set to -1 to make runtime suspend impossible | 
|  | *    until an updated value is either set by user or by driver. Drivers do | 
|  | *    not need to touch other autosuspend settings. | 
|  | * | 
|  | *    The block layer runtime PM is request based, so only works for drivers | 
|  | *    that use request as their IO unit instead of those directly use bio's. | 
|  | */ | 
|  | void blk_pm_runtime_init(struct request_queue *q, struct device *dev) | 
|  | { | 
|  | /* not support for RQF_PM and ->rpm_status in blk-mq yet */ | 
|  | if (q->mq_ops) | 
|  | return; | 
|  |  | 
|  | q->dev = dev; | 
|  | q->rpm_status = RPM_ACTIVE; | 
|  | pm_runtime_set_autosuspend_delay(q->dev, -1); | 
|  | pm_runtime_use_autosuspend(q->dev); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_pm_runtime_init); | 
|  |  | 
|  | /** | 
|  | * blk_pre_runtime_suspend - Pre runtime suspend check | 
|  | * @q: the queue of the device | 
|  | * | 
|  | * Description: | 
|  | *    This function will check if runtime suspend is allowed for the device | 
|  | *    by examining if there are any requests pending in the queue. If there | 
|  | *    are requests pending, the device can not be runtime suspended; otherwise, | 
|  | *    the queue's status will be updated to SUSPENDING and the driver can | 
|  | *    proceed to suspend the device. | 
|  | * | 
|  | *    For the not allowed case, we mark last busy for the device so that | 
|  | *    runtime PM core will try to autosuspend it some time later. | 
|  | * | 
|  | *    This function should be called near the start of the device's | 
|  | *    runtime_suspend callback. | 
|  | * | 
|  | * Return: | 
|  | *    0		- OK to runtime suspend the device | 
|  | *    -EBUSY	- Device should not be runtime suspended | 
|  | */ | 
|  | int blk_pre_runtime_suspend(struct request_queue *q) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (!q->dev) | 
|  | return ret; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | if (q->nr_pending) { | 
|  | ret = -EBUSY; | 
|  | pm_runtime_mark_last_busy(q->dev); | 
|  | } else { | 
|  | q->rpm_status = RPM_SUSPENDING; | 
|  | } | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_pre_runtime_suspend); | 
|  |  | 
|  | /** | 
|  | * blk_post_runtime_suspend - Post runtime suspend processing | 
|  | * @q: the queue of the device | 
|  | * @err: return value of the device's runtime_suspend function | 
|  | * | 
|  | * Description: | 
|  | *    Update the queue's runtime status according to the return value of the | 
|  | *    device's runtime suspend function and mark last busy for the device so | 
|  | *    that PM core will try to auto suspend the device at a later time. | 
|  | * | 
|  | *    This function should be called near the end of the device's | 
|  | *    runtime_suspend callback. | 
|  | */ | 
|  | void blk_post_runtime_suspend(struct request_queue *q, int err) | 
|  | { | 
|  | if (!q->dev) | 
|  | return; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | if (!err) { | 
|  | q->rpm_status = RPM_SUSPENDED; | 
|  | } else { | 
|  | q->rpm_status = RPM_ACTIVE; | 
|  | pm_runtime_mark_last_busy(q->dev); | 
|  | } | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_post_runtime_suspend); | 
|  |  | 
|  | /** | 
|  | * blk_pre_runtime_resume - Pre runtime resume processing | 
|  | * @q: the queue of the device | 
|  | * | 
|  | * Description: | 
|  | *    Update the queue's runtime status to RESUMING in preparation for the | 
|  | *    runtime resume of the device. | 
|  | * | 
|  | *    This function should be called near the start of the device's | 
|  | *    runtime_resume callback. | 
|  | */ | 
|  | void blk_pre_runtime_resume(struct request_queue *q) | 
|  | { | 
|  | if (!q->dev) | 
|  | return; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | q->rpm_status = RPM_RESUMING; | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_pre_runtime_resume); | 
|  |  | 
|  | /** | 
|  | * blk_post_runtime_resume - Post runtime resume processing | 
|  | * @q: the queue of the device | 
|  | * @err: return value of the device's runtime_resume function | 
|  | * | 
|  | * Description: | 
|  | *    Update the queue's runtime status according to the return value of the | 
|  | *    device's runtime_resume function. If it is successfully resumed, process | 
|  | *    the requests that are queued into the device's queue when it is resuming | 
|  | *    and then mark last busy and initiate autosuspend for it. | 
|  | * | 
|  | *    This function should be called near the end of the device's | 
|  | *    runtime_resume callback. | 
|  | */ | 
|  | void blk_post_runtime_resume(struct request_queue *q, int err) | 
|  | { | 
|  | if (!q->dev) | 
|  | return; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | if (!err) { | 
|  | q->rpm_status = RPM_ACTIVE; | 
|  | __blk_run_queue(q); | 
|  | pm_runtime_mark_last_busy(q->dev); | 
|  | pm_request_autosuspend(q->dev); | 
|  | } else { | 
|  | q->rpm_status = RPM_SUSPENDED; | 
|  | } | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_post_runtime_resume); | 
|  |  | 
|  | /** | 
|  | * blk_set_runtime_active - Force runtime status of the queue to be active | 
|  | * @q: the queue of the device | 
|  | * | 
|  | * If the device is left runtime suspended during system suspend the resume | 
|  | * hook typically resumes the device and corrects runtime status | 
|  | * accordingly. However, that does not affect the queue runtime PM status | 
|  | * which is still "suspended". This prevents processing requests from the | 
|  | * queue. | 
|  | * | 
|  | * This function can be used in driver's resume hook to correct queue | 
|  | * runtime PM status and re-enable peeking requests from the queue. It | 
|  | * should be called before first request is added to the queue. | 
|  | */ | 
|  | void blk_set_runtime_active(struct request_queue *q) | 
|  | { | 
|  | spin_lock_irq(q->queue_lock); | 
|  | q->rpm_status = RPM_ACTIVE; | 
|  | pm_runtime_mark_last_busy(q->dev); | 
|  | pm_request_autosuspend(q->dev); | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_set_runtime_active); | 
|  | #endif | 
|  |  | 
|  | int __init blk_dev_init(void) | 
|  | { | 
|  | BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); | 
|  | BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * | 
|  | FIELD_SIZEOF(struct request, cmd_flags)); | 
|  | BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * | 
|  | FIELD_SIZEOF(struct bio, bi_opf)); | 
|  |  | 
|  | /* used for unplugging and affects IO latency/throughput - HIGHPRI */ | 
|  | kblockd_workqueue = alloc_workqueue("kblockd", | 
|  | WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); | 
|  | if (!kblockd_workqueue) | 
|  | panic("Failed to create kblockd\n"); | 
|  |  | 
|  | request_cachep = kmem_cache_create("blkdev_requests", | 
|  | sizeof(struct request), 0, SLAB_PANIC, NULL); | 
|  |  | 
|  | blk_requestq_cachep = kmem_cache_create("request_queue", | 
|  | sizeof(struct request_queue), 0, SLAB_PANIC, NULL); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | blk_debugfs_root = debugfs_create_dir("block", NULL); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } |