blob: 020931fc9f7d2205723869acf732ba4998030c30 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* keyslot-manager.c
*
* Copyright 2019 Google LLC
*/
/**
* DOC: The Keyslot Manager
*
* Many devices with inline encryption support have a limited number of "slots"
* into which encryption contexts may be programmed, and requests can be tagged
* with a slot number to specify the key to use for en/decryption.
*
* As the number of slots are limited, and programming keys is expensive on
* many inline encryption hardware, we don't want to program the same key into
* multiple slots - if multiple requests are using the same key, we want to
* program just one slot with that key and use that slot for all requests.
*
* The keyslot manager manages these keyslots appropriately, and also acts as
* an abstraction between the inline encryption hardware and the upper layers.
*
* Lower layer devices will set up a keyslot manager in their request queue
* and tell it how to perform device specific operations like programming/
* evicting keys from keyslots.
*
* Upper layers will call keyslot_manager_get_slot_for_key() to program a
* key into some slot in the inline encryption hardware.
*/
#include <linux/keyslot-manager.h>
#include <linux/atomic.h>
#include <linux/mutex.h>
#include <linux/wait.h>
#include <linux/blkdev.h>
struct keyslot {
atomic_t slot_refs;
struct list_head idle_slot_node;
};
struct keyslot_manager {
unsigned int num_slots;
atomic_t num_idle_slots;
struct keyslot_mgmt_ll_ops ksm_ll_ops;
void *ll_priv_data;
/* Protects programming and evicting keys from the device */
struct rw_semaphore lock;
/* List of idle slots, with least recently used slot at front */
wait_queue_head_t idle_slots_wait_queue;
struct list_head idle_slots;
spinlock_t idle_slots_lock;
/* Per-keyslot data */
struct keyslot slots[];
};
/**
* keyslot_manager_create() - Create a keyslot manager
* @num_slots: The number of key slots to manage.
* @ksm_ll_ops: The struct keyslot_mgmt_ll_ops for the device that this keyslot
* manager will use to perform operations like programming and
* evicting keys.
* @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops.
*
* Allocate memory for and initialize a keyslot manager. Called by e.g.
* storage drivers to set up a keyslot manager in their request_queue.
*
* Context: May sleep
* Return: Pointer to constructed keyslot manager or NULL on error.
*/
struct keyslot_manager *keyslot_manager_create(unsigned int num_slots,
const struct keyslot_mgmt_ll_ops *ksm_ll_ops,
void *ll_priv_data)
{
struct keyslot_manager *ksm;
int slot;
if (num_slots == 0)
return NULL;
/* Check that all ops are specified */
if (ksm_ll_ops->keyslot_program == NULL ||
ksm_ll_ops->keyslot_evict == NULL ||
ksm_ll_ops->crypto_mode_supported == NULL ||
ksm_ll_ops->keyslot_find == NULL)
return NULL;
ksm = kvzalloc(struct_size(ksm, slots, num_slots), GFP_KERNEL);
if (!ksm)
return NULL;
ksm->num_slots = num_slots;
atomic_set(&ksm->num_idle_slots, num_slots);
ksm->ksm_ll_ops = *ksm_ll_ops;
ksm->ll_priv_data = ll_priv_data;
init_rwsem(&ksm->lock);
init_waitqueue_head(&ksm->idle_slots_wait_queue);
INIT_LIST_HEAD(&ksm->idle_slots);
for (slot = 0; slot < num_slots; slot++) {
list_add_tail(&ksm->slots[slot].idle_slot_node,
&ksm->idle_slots);
}
spin_lock_init(&ksm->idle_slots_lock);
return ksm;
}
EXPORT_SYMBOL(keyslot_manager_create);
static void remove_slot_from_lru_list(struct keyslot_manager *ksm, int slot)
{
unsigned long flags;
spin_lock_irqsave(&ksm->idle_slots_lock, flags);
list_del(&ksm->slots[slot].idle_slot_node);
spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
atomic_dec(&ksm->num_idle_slots);
}
static int find_and_grab_keyslot(struct keyslot_manager *ksm, const u8 *key,
enum blk_crypto_mode_num crypto_mode,
unsigned int data_unit_size)
{
int slot;
slot = ksm->ksm_ll_ops.keyslot_find(ksm->ll_priv_data, key,
crypto_mode, data_unit_size);
if (slot < 0)
return slot;
if (WARN_ON(slot >= ksm->num_slots))
return -EINVAL;
if (atomic_inc_return(&ksm->slots[slot].slot_refs) == 1) {
/* Took first reference to this slot; remove it from LRU list */
remove_slot_from_lru_list(ksm, slot);
}
return slot;
}
/**
* keyslot_manager_get_slot_for_key() - Program a key into a keyslot.
* @ksm: The keyslot manager to program the key into.
* @key: Pointer to the bytes of the key to program. Must be the correct length
* for the chosen @crypto_mode; see blk_crypto_modes in blk-crypto.c.
* @crypto_mode: Identifier for the encryption algorithm to use.
* @data_unit_size: The data unit size to use for en/decryption.
*
* Get a keyslot that's been programmed with the specified key, crypto_mode, and
* data_unit_size. If one already exists, return it with incremented refcount.
* Otherwise, wait for a keyslot to become idle and program it.
*
* Context: Process context. Takes and releases ksm->lock.
* Return: The keyslot on success, else a -errno value.
*/
int keyslot_manager_get_slot_for_key(struct keyslot_manager *ksm,
const u8 *key,
enum blk_crypto_mode_num crypto_mode,
unsigned int data_unit_size)
{
int slot;
int err;
struct keyslot *idle_slot;
down_read(&ksm->lock);
slot = find_and_grab_keyslot(ksm, key, crypto_mode, data_unit_size);
up_read(&ksm->lock);
if (slot != -ENOKEY)
return slot;
for (;;) {
down_write(&ksm->lock);
slot = find_and_grab_keyslot(ksm, key, crypto_mode,
data_unit_size);
if (slot != -ENOKEY) {
up_write(&ksm->lock);
return slot;
}
/*
* If we're here, that means there wasn't a slot that was
* already programmed with the key. So try to program it.
*/
if (atomic_read(&ksm->num_idle_slots) > 0)
break;
up_write(&ksm->lock);
wait_event(ksm->idle_slots_wait_queue,
(atomic_read(&ksm->num_idle_slots) > 0));
}
idle_slot = list_first_entry(&ksm->idle_slots, struct keyslot,
idle_slot_node);
slot = idle_slot - ksm->slots;
err = ksm->ksm_ll_ops.keyslot_program(ksm->ll_priv_data, key,
crypto_mode,
data_unit_size,
slot);
if (err) {
wake_up(&ksm->idle_slots_wait_queue);
up_write(&ksm->lock);
return err;
}
atomic_set(&ksm->slots[slot].slot_refs, 1);
remove_slot_from_lru_list(ksm, slot);
up_write(&ksm->lock);
return slot;
}
EXPORT_SYMBOL(keyslot_manager_get_slot_for_key);
/**
* keyslot_manager_get_slot() - Increment the refcount on the specified slot.
* @ksm - The keyslot manager that we want to modify.
* @slot - The slot to increment the refcount of.
*
* This function assumes that there is already an active reference to that slot
* and simply increments the refcount. This is useful when cloning a bio that
* already has a reference to a keyslot, and we want the cloned bio to also have
* its own reference.
*
* Context: Any context.
*/
void keyslot_manager_get_slot(struct keyslot_manager *ksm, unsigned int slot)
{
if (WARN_ON(slot >= ksm->num_slots))
return;
WARN_ON(atomic_inc_return(&ksm->slots[slot].slot_refs) < 2);
}
EXPORT_SYMBOL(keyslot_manager_get_slot);
/**
* keyslot_manager_put_slot() - Release a reference to a slot
* @ksm: The keyslot manager to release the reference from.
* @slot: The slot to release the reference from.
*
* Context: Any context.
*/
void keyslot_manager_put_slot(struct keyslot_manager *ksm, unsigned int slot)
{
unsigned long flags;
if (WARN_ON(slot >= ksm->num_slots))
return;
if (atomic_dec_and_lock_irqsave(&ksm->slots[slot].slot_refs,
&ksm->idle_slots_lock, flags)) {
list_add_tail(&ksm->slots[slot].idle_slot_node,
&ksm->idle_slots);
spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
atomic_inc(&ksm->num_idle_slots);
wake_up(&ksm->idle_slots_wait_queue);
}
}
EXPORT_SYMBOL(keyslot_manager_put_slot);
/**
* keyslot_manager_crypto_mode_supported() - Find out if a crypto_mode/data
* unit size combination is supported
* by a ksm.
* @ksm - The keyslot manager to check
* @crypto_mode - The crypto mode to check for.
* @data_unit_size - The data_unit_size for the mode.
*
* Calls and returns the result of the crypto_mode_supported function specified
* by the ksm.
*
* Context: Process context.
* Return: Whether or not this ksm supports the specified crypto_mode/
* data_unit_size combo.
*/
bool keyslot_manager_crypto_mode_supported(struct keyslot_manager *ksm,
enum blk_crypto_mode_num crypto_mode,
unsigned int data_unit_size)
{
if (!ksm)
return false;
return ksm->ksm_ll_ops.crypto_mode_supported(ksm->ll_priv_data,
crypto_mode,
data_unit_size);
}
EXPORT_SYMBOL(keyslot_manager_crypto_mode_supported);
bool keyslot_manager_rq_crypto_mode_supported(struct request_queue *q,
enum blk_crypto_mode_num crypto_mode,
unsigned int data_unit_size)
{
return keyslot_manager_crypto_mode_supported(q->ksm, crypto_mode,
data_unit_size);
}
EXPORT_SYMBOL(keyslot_manager_rq_crypto_mode_supported);
/**
* keyslot_manager_evict_key() - Evict a key from the lower layer device.
* @ksm - The keyslot manager to evict from
* @key - The key to evict
* @crypto_mode - The crypto algorithm the key was programmed with.
* @data_unit_size - The data_unit_size the key was programmed with.
*
* Finds the slot that the specified key, crypto_mode, data_unit_size combo
* was programmed into, and evicts that slot from the lower layer device if
* the refcount on the slot is 0. Returns -EBUSY if the refcount is not 0, and
* -errno on error.
*
* Context: Process context. Takes and releases ksm->lock.
*/
int keyslot_manager_evict_key(struct keyslot_manager *ksm,
const u8 *key,
enum blk_crypto_mode_num crypto_mode,
unsigned int data_unit_size)
{
int slot;
int err = 0;
down_write(&ksm->lock);
slot = ksm->ksm_ll_ops.keyslot_find(ksm->ll_priv_data, key,
crypto_mode,
data_unit_size);
if (slot < 0) {
up_write(&ksm->lock);
return slot;
}
if (atomic_read(&ksm->slots[slot].slot_refs) == 0) {
err = ksm->ksm_ll_ops.keyslot_evict(ksm->ll_priv_data, key,
crypto_mode,
data_unit_size,
slot);
} else {
err = -EBUSY;
}
up_write(&ksm->lock);
return err;
}
EXPORT_SYMBOL(keyslot_manager_evict_key);
void keyslot_manager_destroy(struct keyslot_manager *ksm)
{
kvfree(ksm);
}
EXPORT_SYMBOL(keyslot_manager_destroy);