blob: d68a5220e939ef244ee348fc228f9758cf70d16e [file] [log] [blame]
/*
* DHD Bus Module for PCIE
*
* Copyright (C) 1999-2014, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
* $Id: dhd_pcie.c 477711 2014-05-14 08:45:17Z $
*/
/* include files */
#include <typedefs.h>
#include <bcmutils.h>
#include <bcmdevs.h>
#include <siutils.h>
#include <hndsoc.h>
#include <hndpmu.h>
#include <sbchipc.h>
#if defined(DHD_DEBUG)
#include <hnd_armtrap.h>
#include <hnd_cons.h>
#endif /* defined(DHD_DEBUG) */
#include <dngl_stats.h>
#include <pcie_core.h>
#include <dhd.h>
#include <dhd_bus.h>
#include <dhd_flowring.h>
#include <dhd_proto.h>
#include <dhd_dbg.h>
#include <dhd_debug.h>
#include <dhdioctl.h>
#include <sdiovar.h>
#include <bcmmsgbuf.h>
#include <pcicfg.h>
#include <dhd_pcie.h>
#include <bcmpcie.h>
#include <bcmendian.h>
#ifdef DHDTCPACK_SUPPRESS
#include <dhd_ip.h>
#endif /* DHDTCPACK_SUPPRESS */
#include <proto/bcmevent.h>
#ifdef BCMEMBEDIMAGE
#include BCMEMBEDIMAGE
#endif /* BCMEMBEDIMAGE */
#define MEMBLOCK 2048 /* Block size used for downloading of dongle image */
#define MAX_NVRAMBUF_SIZE 6144 /* max nvram buf size */
#define MAX_WKLK_IDLE_CHECK 3 /* times wake_lock checked before deciding not to suspend */
#define ARMCR4REG_BANKIDX (0x40/sizeof(uint32))
#define ARMCR4REG_BANKPDA (0x4C/sizeof(uint32))
/* Temporary war to fix precommit till sync issue between trunk & precommit branch is resolved */
#define DHD_FLOW_RING(dhdp, flowid) \
(flow_ring_node_t *)&(((flow_ring_node_t *)((dhdp)->flow_ring_table))[flowid])
int dhd_dongle_memsize;
int dhd_dongle_ramsize;
#ifdef DHD_DEBUG
static int dhdpcie_checkdied(dhd_bus_t *bus, char *data, uint size);
static int dhdpcie_bus_readconsole(dhd_bus_t *bus);
#endif
static int dhdpcie_mem_dump(dhd_bus_t *bus);
static void dhdpcie_bus_report_pcie_linkdown(dhd_bus_t *bus);
static int dhdpcie_bus_membytes(dhd_bus_t *bus, bool write, ulong address, uint8 *data, uint size);
static int dhdpcie_bus_doiovar(dhd_bus_t *bus, const bcm_iovar_t *vi, uint32 actionid,
const char *name, void *params,
int plen, void *arg, int len, int val_size);
static int dhdpcie_bus_lpback_req(struct dhd_bus *bus, uint32 intval);
static int dhdpcie_bus_dmaxfer_req(struct dhd_bus *bus,
uint32 len, uint32 srcdelay, uint32 destdelay);
static int dhdpcie_bus_download_state(dhd_bus_t *bus, bool enter);
static int _dhdpcie_download_firmware(struct dhd_bus *bus);
static int dhdpcie_download_firmware(dhd_bus_t *bus, osl_t *osh);
static int dhdpcie_bus_write_vars(dhd_bus_t *bus);
static void dhdpcie_bus_process_mailbox_intr(dhd_bus_t *bus, uint32 intstatus);
static void dhdpci_bus_read_frames(dhd_bus_t *bus);
static int dhdpcie_readshared(dhd_bus_t *bus);
static void dhdpcie_init_shared_addr(dhd_bus_t *bus);
static bool dhdpcie_dongle_attach(dhd_bus_t *bus);
static void dhdpcie_bus_intr_enable(dhd_bus_t *bus);
static void dhdpcie_bus_dongle_setmemsize(dhd_bus_t *bus, int mem_size);
static void dhdpcie_bus_release_dongle(dhd_bus_t *bus, osl_t *osh,
bool dongle_isolation, bool reset_flag);
static void dhdpcie_bus_release_malloc(dhd_bus_t *bus, osl_t *osh);
static int dhdpcie_downloadvars(dhd_bus_t *bus, void *arg, int len);
static uint8 dhdpcie_bus_rtcm8(dhd_bus_t *bus, ulong offset);
static void dhdpcie_bus_wtcm8(dhd_bus_t *bus, ulong offset, uint8 data);
static void dhdpcie_bus_wtcm16(dhd_bus_t *bus, ulong offset, uint16 data);
static uint16 dhdpcie_bus_rtcm16(dhd_bus_t *bus, ulong offset);
static void dhdpcie_bus_wtcm32(dhd_bus_t *bus, ulong offset, uint32 data);
static uint32 dhdpcie_bus_rtcm32(dhd_bus_t *bus, ulong offset);
static void dhdpcie_bus_wtcm64(dhd_bus_t *bus, ulong offset, uint64 data);
static uint64 dhdpcie_bus_rtcm64(dhd_bus_t *bus, ulong offset);
static void dhdpcie_bus_cfg_set_bar0_win(dhd_bus_t *bus, uint32 data);
#if defined(CONFIG_ARCH_MSM) && defined(CONFIG_64BIT)
static void dhdpcie_bus_cfg_set_bar1_win(dhd_bus_t *bus, uint32 data);
static ulong dhd_bus_cmn_check_offset(dhd_bus_t *bus, ulong offset);
#endif
static void dhdpcie_bus_reg_unmap(osl_t *osh, ulong addr, int size);
static int dhdpcie_cc_nvmshadow(dhd_bus_t *bus, struct bcmstrbuf *b);
static void dhdpcie_send_mb_data(dhd_bus_t *bus, uint32 h2d_mb_data);
static void dhd_fillup_ring_sharedptr_info(dhd_bus_t *bus, ring_info_t *ring_info);
#ifdef BCMEMBEDIMAGE
static int dhdpcie_download_code_array(dhd_bus_t *bus);
#endif /* BCMEMBEDIMAGE */
extern void dhd_dpc_kill(dhd_pub_t *dhdp);
#define PCI_VENDOR_ID_BROADCOM 0x14e4
/* IOVar table */
enum {
IOV_INTR = 1,
IOV_MEMBYTES,
IOV_MEMSIZE,
IOV_SET_DOWNLOAD_STATE,
IOV_DEVRESET,
IOV_VARS,
IOV_MSI_SIM,
IOV_PCIE_LPBK,
IOV_CC_NVMSHADOW,
IOV_RAMSIZE,
IOV_RAMSTART,
IOV_SLEEP_ALLOWED,
IOV_PCIE_DMAXFER,
IOV_PCIE_SUSPEND,
IOV_PCIEREG,
IOV_PCIECFGREG,
IOV_PCIECOREREG,
IOV_PCIESERDESREG,
IOV_BAR0_SECWIN_REG,
IOV_SBREG,
IOV_DONGLEISOLATION,
IOV_LTRSLEEPON_UNLOOAD,
IOV_RX_METADATALEN,
IOV_TX_METADATALEN,
IOV_TXP_THRESHOLD,
IOV_BUZZZ_DUMP,
IOV_DUMP_RINGUPD_BLOCK,
IOV_DMA_RINGINDICES,
IOV_DB1_FOR_MB,
IOV_FLOW_PRIO_MAP
};
const bcm_iovar_t dhdpcie_iovars[] = {
{"intr", IOV_INTR, 0, IOVT_BOOL, 0 },
{"membytes", IOV_MEMBYTES, 0, IOVT_BUFFER, 2 * sizeof(int) },
{"memsize", IOV_MEMSIZE, 0, IOVT_UINT32, 0 },
{"dwnldstate", IOV_SET_DOWNLOAD_STATE, 0, IOVT_BOOL, 0 },
{"vars", IOV_VARS, 0, IOVT_BUFFER, 0 },
{"devreset", IOV_DEVRESET, 0, IOVT_BOOL, 0 },
{"pcie_lpbk", IOV_PCIE_LPBK, 0, IOVT_UINT32, 0 },
{"cc_nvmshadow", IOV_CC_NVMSHADOW, 0, IOVT_BUFFER, 0 },
{"ramsize", IOV_RAMSIZE, 0, IOVT_UINT32, 0 },
{"ramstart", IOV_RAMSTART, 0, IOVT_UINT32, 0 },
{"pciereg", IOV_PCIEREG, 0, IOVT_BUFFER, 2 * sizeof(int32) },
{"pciecfgreg", IOV_PCIECFGREG, 0, IOVT_BUFFER, 2 * sizeof(int32) },
{"pciecorereg", IOV_PCIECOREREG, 0, IOVT_BUFFER, 2 * sizeof(int32) },
{"bar0secwinreg", IOV_BAR0_SECWIN_REG, 0, IOVT_BUFFER, 2 * sizeof(int32) },
{"sbreg", IOV_SBREG, 0, IOVT_BUFFER, sizeof(sdreg_t) },
{"pcie_dmaxfer", IOV_PCIE_DMAXFER, 0, IOVT_BUFFER, 3 * sizeof(int32) },
{"pcie_suspend", IOV_PCIE_SUSPEND, 0, IOVT_UINT32, 0 },
{"sleep_allowed", IOV_SLEEP_ALLOWED, 0, IOVT_BOOL, 0 },
{"dngl_isolation", IOV_DONGLEISOLATION, 0, IOVT_UINT32, 0 },
{"ltrsleep_on_unload", IOV_LTRSLEEPON_UNLOOAD, 0, IOVT_UINT32, 0 },
{"dump_ringupdblk", IOV_DUMP_RINGUPD_BLOCK, 0, IOVT_BUFFER, 0 },
{"dma_ring_indices", IOV_DMA_RINGINDICES, 0, IOVT_UINT32, 0},
{"rx_metadata_len", IOV_RX_METADATALEN, 0, IOVT_UINT32, 0 },
{"tx_metadata_len", IOV_TX_METADATALEN, 0, IOVT_UINT32, 0 },
{"txp_thresh", IOV_TXP_THRESHOLD, 0, IOVT_UINT32, 0 },
{"buzzz_dump", IOV_BUZZZ_DUMP, 0, IOVT_UINT32, 0 },
{"flow_prio_map", IOV_FLOW_PRIO_MAP, 0, IOVT_UINT32, 0 },
{NULL, 0, 0, 0, 0 }
};
#define MAX_READ_TIMEOUT 5 * 1000 * 1000
/* Register/Unregister functions are called by the main DHD entry
* point (e.g. module insertion) to link with the bus driver, in
* order to look for or await the device.
*/
int
dhd_bus_register(void)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
return dhdpcie_bus_register();
}
void
dhd_bus_unregister(void)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
dhdpcie_bus_unregister();
return;
}
/** returns a host virtual address */
uint32 *
dhdpcie_bus_reg_map(osl_t *osh, ulong addr, int size)
{
return (uint32 *)REG_MAP(addr, size);
}
void
dhdpcie_bus_reg_unmap(osl_t *osh, ulong addr, int size)
{
REG_UNMAP((void*)(uintptr)addr);
return;
}
/**
* 'regs' is the host virtual address that maps to the start of the PCIe BAR0 window. The first 4096
* bytes in this window are mapped to the backplane address in the PCIEBAR0Window register. The
* precondition is that the PCIEBAR0Window register 'points' at the PCIe core.
*
* 'tcm' is the *host* virtual address at which tcm is mapped.
*/
dhd_bus_t* dhdpcie_bus_attach(osl_t *osh, volatile char* regs, volatile char* tcm)
{
dhd_bus_t *bus;
DHD_ERROR(("%s: ENTER\n", __FUNCTION__));
do {
if (!(bus = MALLOC(osh, sizeof(dhd_bus_t)))) {
DHD_ERROR(("%s: MALLOC of dhd_bus_t failed\n", __FUNCTION__));
break;
}
bzero(bus, sizeof(dhd_bus_t));
bus->regs = regs;
bus->tcm = tcm;
bus->osh = osh;
dll_init(&bus->const_flowring);
/* Attach pcie shared structure */
bus->pcie_sh = MALLOC(osh, sizeof(pciedev_shared_t));
/* dhd_common_init(osh); */
if (dhdpcie_dongle_attach(bus)) {
DHD_ERROR(("%s: dhdpcie_probe_attach failed\n", __FUNCTION__));
break;
}
/* software resources */
if (!(bus->dhd = dhd_attach(osh, bus, PCMSGBUF_HDRLEN))) {
DHD_ERROR(("%s: dhd_attach failed\n", __FUNCTION__));
break;
}
bus->dhd->busstate = DHD_BUS_DOWN;
bus->db1_for_mb = TRUE;
bus->dhd->hang_report = TRUE;
DHD_TRACE(("%s: EXIT SUCCESS\n",
__FUNCTION__));
return bus;
} while (0);
DHD_TRACE(("%s: EXIT FAILURE\n", __FUNCTION__));
return NULL;
}
uint
dhd_bus_chip(struct dhd_bus *bus)
{
ASSERT(bus->sih != NULL);
return bus->sih->chip;
}
uint
dhd_bus_chiprev(struct dhd_bus *bus)
{
ASSERT(bus);
ASSERT(bus->sih != NULL);
return bus->sih->chiprev;
}
void *
dhd_bus_pub(struct dhd_bus *bus)
{
return bus->dhd;
}
void *
dhd_bus_sih(struct dhd_bus *bus)
{
return (void *)bus->sih;
}
void *
dhd_bus_txq(struct dhd_bus *bus)
{
return &bus->txq;
}
/* Get Chip ID version */
uint dhd_bus_chip_id(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
return bus->sih->chip;
}
/* Get Chip Rev ID version */
uint dhd_bus_chiprev_id(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
return bus->sih->chiprev;
}
/* Get Chip Pkg ID version */
uint dhd_bus_chippkg_id(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
return bus->sih->chippkg;
}
/*
Name: dhdpcie_bus_isr
Parametrs:
1: IN int irq -- interrupt vector
2: IN void *arg -- handle to private data structure
Return value:
Status (TRUE or FALSE)
Description:
Interrupt Service routine checks for the status register,
disable interrupt and queue DPC if mail box interrupts are raised.
*/
int32
dhdpcie_bus_isr(dhd_bus_t *bus)
{
do {
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
/* verify argument */
if (!bus) {
DHD_ERROR(("%s : bus is null pointer , exit \n", __FUNCTION__));
break;
}
if (bus->dhd->busstate == DHD_BUS_DOWN) {
DHD_INFO(("%s : bus is down. we have nothing to do\n",
__FUNCTION__));
break;
}
/* Overall operation:
* - Mask further interrupts
* - Read/ack intstatus
* - Take action based on bits and state
* - Reenable interrupts (as per state)
*/
/* Count the interrupt call */
bus->intrcount++;
/* read interrupt status register!! Status bits will be cleared in DPC !! */
bus->ipend = TRUE;
dhdpcie_bus_intr_disable(bus); /* Disable interrupt!! */
bus->intdis = TRUE;
#if defined(PCIE_ISR_THREAD)
DHD_TRACE(("Calling dhd_bus_dpc() from %s\n", __FUNCTION__));
DHD_OS_WAKE_LOCK(bus->dhd);
while (dhd_bus_dpc(bus));
DHD_OS_WAKE_UNLOCK(bus->dhd);
#else
bus->dpc_sched = TRUE;
dhd_sched_dpc(bus->dhd); /* queue DPC now!! */
#endif /* defined(SDIO_ISR_THREAD) */
DHD_TRACE(("%s: Exit Success DPC Queued\n", __FUNCTION__));
return TRUE;
} while (0);
DHD_TRACE(("%s: Exit Failure\n", __FUNCTION__));
return FALSE;
}
static bool
dhdpcie_dongle_attach(dhd_bus_t *bus)
{
osl_t *osh = bus->osh;
void *regsva = (void*)bus->regs;
uint16 devid = bus->cl_devid;
uint32 val;
sbpcieregs_t *sbpcieregs;
DHD_TRACE(("%s: ENTER\n",
__FUNCTION__));
bus->alp_only = TRUE;
bus->sih = NULL;
/* Set bar0 window to si_enum_base */
dhdpcie_bus_cfg_set_bar0_win(bus, SI_ENUM_BASE);
#if defined(CONFIG_ARCH_MSM) && defined(CONFIG_64BIT)
/* Read bar1 window */
bus->bar1_win_base = OSL_PCI_READ_CONFIG(bus->osh, PCI_BAR1_WIN, 4);
DHD_ERROR(("%s: PCI_BAR1_WIN = %x\n", __FUNCTION__, bus->bar1_win_base));
#endif
/* si_attach() will provide an SI handle and scan the backplane */
if (!(bus->sih = si_attach((uint)devid, osh, regsva, PCI_BUS, bus,
&bus->vars, &bus->varsz))) {
DHD_ERROR(("%s: si_attach failed!\n", __FUNCTION__));
goto fail;
}
si_setcore(bus->sih, PCIE2_CORE_ID, 0);
sbpcieregs = (sbpcieregs_t*)(bus->regs);
/* WAR where the BAR1 window may not be sized properly */
W_REG(osh, &sbpcieregs->configaddr, 0x4e0);
val = R_REG(osh, &sbpcieregs->configdata);
#if defined(CONFIG_ARCH_MSM) && defined(CONFIG_64BIT)
bus->bar1_win_mask = 0xffffffff - (bus->tcm_size - 1);
DHD_ERROR(("%s: BAR1 window val=%d mask=%x\n", __FUNCTION__, val, bus->bar1_win_mask));
#endif
W_REG(osh, &sbpcieregs->configdata, val);
/* Get info on the ARM and SOCRAM cores... */
/* Should really be qualified by device id */
if ((si_setcore(bus->sih, ARM7S_CORE_ID, 0)) ||
(si_setcore(bus->sih, ARMCM3_CORE_ID, 0)) ||
(si_setcore(bus->sih, ARMCR4_CORE_ID, 0))) {
bus->armrev = si_corerev(bus->sih);
} else {
DHD_ERROR(("%s: failed to find ARM core!\n", __FUNCTION__));
goto fail;
}
if (!si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
if (!(bus->orig_ramsize = si_socram_size(bus->sih))) {
DHD_ERROR(("%s: failed to find SOCRAM memory!\n", __FUNCTION__));
goto fail;
}
} else {
/* cr4 has a different way to find the RAM size from TCM's */
if (!(bus->orig_ramsize = si_tcm_size(bus->sih))) {
DHD_ERROR(("%s: failed to find CR4-TCM memory!\n", __FUNCTION__));
goto fail;
}
/* also populate base address */
switch ((uint16)bus->sih->chip) {
case BCM4339_CHIP_ID:
case BCM4335_CHIP_ID:
bus->dongle_ram_base = CR4_4335_RAM_BASE;
break;
case BCM4358_CHIP_ID:
case BCM4356_CHIP_ID:
case BCM4354_CHIP_ID:
case BCM43569_CHIP_ID:
case BCM4350_CHIP_ID:
case BCM43570_CHIP_ID:
bus->dongle_ram_base = CR4_4350_RAM_BASE;
break;
case BCM4360_CHIP_ID:
bus->dongle_ram_base = CR4_4360_RAM_BASE;
break;
case BCM4345_CHIP_ID:
bus->dongle_ram_base = CR4_4345_RAM_BASE;
break;
case BCM43602_CHIP_ID:
bus->dongle_ram_base = CR4_43602_RAM_BASE;
break;
case BCM4349_CHIP_GRPID:
bus->dongle_ram_base = CR4_4349_RAM_BASE;
break;
default:
bus->dongle_ram_base = 0;
DHD_ERROR(("%s: WARNING: Using default ram base at 0x%x\n",
__FUNCTION__, bus->dongle_ram_base));
}
}
bus->ramsize = bus->orig_ramsize;
if (dhd_dongle_memsize)
dhdpcie_bus_dongle_setmemsize(bus, dhd_dongle_memsize);
DHD_ERROR(("DHD: dongle ram size is set to %d(orig %d) at 0x%x\n",
bus->ramsize, bus->orig_ramsize, bus->dongle_ram_base));
bus->srmemsize = si_socram_srmem_size(bus->sih);
bus->def_intmask = PCIE_MB_D2H_MB_MASK | PCIE_MB_TOPCIE_FN0_0 | PCIE_MB_TOPCIE_FN0_1;
/* Set the poll and/or interrupt flags */
bus->intr = (bool)dhd_intr;
bus->wait_for_d3_ack = 1;
bus->suspended = FALSE;
DHD_TRACE(("%s: EXIT: SUCCESS\n",
__FUNCTION__));
return 0;
fail:
if (bus->sih != NULL)
si_detach(bus->sih);
DHD_TRACE(("%s: EXIT: FAILURE\n",
__FUNCTION__));
return -1;
}
int
dhpcie_bus_unmask_interrupt(dhd_bus_t *bus)
{
dhdpcie_bus_cfg_write_dword(bus, PCIIntmask, 4, I_MB);
return 0;
}
int
dhpcie_bus_mask_interrupt(dhd_bus_t *bus)
{
dhdpcie_bus_cfg_write_dword(bus, PCIIntmask, 4, 0x0);
return 0;
}
void
dhdpcie_bus_intr_enable(dhd_bus_t *bus)
{
DHD_TRACE(("enable interrupts\n"));
if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) ||
(bus->sih->buscorerev == 4)) {
dhpcie_bus_unmask_interrupt(bus);
}
else if (bus->sih) {
si_corereg(bus->sih, bus->sih->buscoreidx, PCIMailBoxMask,
bus->def_intmask, bus->def_intmask);
}
}
void
dhdpcie_bus_intr_disable(dhd_bus_t *bus)
{
DHD_TRACE(("%s Enter\n", __FUNCTION__));
if (bus) {
if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) ||
(bus->sih->buscorerev == 4)) {
dhpcie_bus_mask_interrupt(bus);
}
else if (bus->sih) {
si_corereg(bus->sih, bus->sih->buscoreidx, PCIMailBoxMask,
bus->def_intmask, 0);
}
}
DHD_TRACE(("%s Exit\n", __FUNCTION__));
}
/* Detach and free everything */
void
dhdpcie_bus_release(dhd_bus_t *bus)
{
bool dongle_isolation = FALSE;
osl_t *osh = NULL;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus) {
osh = bus->osh;
ASSERT(osh);
if (bus->dhd) {
dongle_isolation = bus->dhd->dongle_isolation;
if (bus->intr) {
if (bus->dhd->dongle_reset == FALSE)
dhdpcie_bus_intr_disable(bus);
dhdpcie_free_irq(bus);
}
/* Disable tasklet, already scheduled tasklet may be executed even though dongle has been released */
dhd_dpc_kill(bus->dhd);
dhd_detach(bus->dhd);
dhdpcie_bus_release_dongle(bus, osh, dongle_isolation, TRUE);
dhd_free(bus->dhd);
bus->dhd = NULL;
}
/* unmap the regs and tcm here!! */
if (bus->regs) {
dhdpcie_bus_reg_unmap(osh, (ulong)bus->regs, DONGLE_REG_MAP_SIZE);
bus->regs = NULL;
}
if (bus->tcm) {
dhdpcie_bus_reg_unmap(osh, (ulong)bus->tcm, DONGLE_TCM_MAP_SIZE);
bus->tcm = NULL;
}
dhdpcie_bus_release_malloc(bus, osh);
/* Detach pcie shared structure */
if (bus->pcie_sh)
MFREE(osh, bus->pcie_sh, sizeof(pciedev_shared_t));
#ifdef DHD_DEBUG
if (bus->console.buf != NULL)
MFREE(osh, bus->console.buf, bus->console.bufsize);
#endif
/* Finally free bus info */
MFREE(osh, bus, sizeof(dhd_bus_t));
}
DHD_TRACE(("%s: Exit\n", __FUNCTION__));
}
void
dhdpcie_bus_release_dongle(dhd_bus_t *bus, osl_t *osh, bool dongle_isolation, bool reset_flag)
{
DHD_TRACE(("%s Enter\n", __FUNCTION__));
DHD_TRACE(("%s: Enter bus->dhd %p bus->dhd->dongle_reset %d \n", __FUNCTION__,
bus->dhd, bus->dhd->dongle_reset));
if ((bus->dhd && bus->dhd->dongle_reset) && reset_flag) {
DHD_TRACE(("%s Exit\n", __FUNCTION__));
return;
}
if (bus->sih) {
if (!dongle_isolation)
pcie_watchdog_reset(bus->osh, bus->sih, (sbpcieregs_t *)(bus->regs));
if (bus->ltrsleep_on_unload) {
si_corereg(bus->sih, bus->sih->buscoreidx,
OFFSETOF(sbpcieregs_t, u.pcie2.ltr_state), ~0, 0);
}
si_detach(bus->sih);
if (bus->vars && bus->varsz)
MFREE(osh, bus->vars, bus->varsz);
bus->vars = NULL;
}
DHD_TRACE(("%s Exit\n", __FUNCTION__));
}
uint32
dhdpcie_bus_cfg_read_dword(dhd_bus_t *bus, uint32 addr, uint32 size)
{
uint32 data = OSL_PCI_READ_CONFIG(bus->osh, addr, size);
return data;
}
/* 32 bit config write */
void
dhdpcie_bus_cfg_write_dword(dhd_bus_t *bus, uint32 addr, uint32 size, uint32 data)
{
OSL_PCI_WRITE_CONFIG(bus->osh, addr, size, data);
}
void
dhdpcie_bus_cfg_set_bar0_win(dhd_bus_t *bus, uint32 data)
{
OSL_PCI_WRITE_CONFIG(bus->osh, PCI_BAR0_WIN, 4, data);
}
#if defined(CONFIG_ARCH_MSM) && defined(CONFIG_64BIT)
void
dhdpcie_bus_cfg_set_bar1_win(dhd_bus_t *bus, uint32 data)
{
OSL_PCI_WRITE_CONFIG(bus->osh, PCI_BAR1_WIN, 4, data);
}
#endif
void
dhdpcie_bus_dongle_setmemsize(struct dhd_bus *bus, int mem_size)
{
int32 min_size = DONGLE_MIN_MEMSIZE;
/* Restrict the memsize to user specified limit */
DHD_ERROR(("user: Restrict the dongle ram size to %d, min accepted %d\n",
dhd_dongle_memsize, min_size));
if ((dhd_dongle_memsize > min_size) &&
(dhd_dongle_memsize < (int32)bus->orig_ramsize))
bus->ramsize = dhd_dongle_memsize;
}
void
dhdpcie_bus_release_malloc(dhd_bus_t *bus, osl_t *osh)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus->dhd && bus->dhd->dongle_reset)
return;
if (bus->vars && bus->varsz) {
MFREE(osh, bus->vars, bus->varsz);
bus->vars = NULL;
}
DHD_TRACE(("%s: Exit\n", __FUNCTION__));
return;
}
/* Stop bus module: clear pending frames, disable data flow */
void dhd_bus_stop(struct dhd_bus *bus, bool enforce_mutex)
{
uint32 status;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (!bus->dhd)
return;
if(bus->dhd->busstate == DHD_BUS_DOWN) {
DHD_ERROR(("%s: already down by net_dev_reset\n",__FUNCTION__));
goto done;
}
bus->dhd->busstate = DHD_BUS_DOWN;
dhdpcie_bus_intr_disable(bus);
status = dhdpcie_bus_cfg_read_dword(bus, PCIIntstatus, 4);
dhdpcie_bus_cfg_write_dword(bus, PCIIntstatus, 4, status);
if (!dhd_download_fw_on_driverload)
dhd_dpc_kill(bus->dhd);
/* Clear rx control and wake any waiters */
bus->rxlen = 0;
dhd_os_ioctl_resp_wake(bus->dhd);
done:
return;
}
/* Watchdog timer function */
bool dhd_bus_watchdog(dhd_pub_t *dhd)
{
#ifdef DHD_DEBUG
dhd_bus_t *bus;
bus = dhd->bus;
dhd_os_sdlock(bus->dhd);
if (!dhd->up)
goto wd_end;
/* Poll for console output periodically */
if (dhd->busstate == DHD_BUS_DATA && dhd_console_ms != 0) {
bus->console.count += dhd_watchdog_ms;
if (bus->console.count >= dhd_console_ms) {
bus->console.count -= dhd_console_ms;
/* Make sure backplane clock is on */
if (dhdpcie_bus_readconsole(bus) < 0)
dhd_console_ms = 0; /* On error, stop trying */
}
}
wd_end:
dhd_os_sdunlock(bus->dhd);
#endif /* DHD_DEBUG */
return FALSE;
}
/* Download firmware image and nvram image */
int
dhd_bus_download_firmware(struct dhd_bus *bus, osl_t *osh,
char *pfw_path, char *pnv_path)
{
int ret;
bus->fw_path = pfw_path;
bus->nv_path = pnv_path;
ret = dhdpcie_download_firmware(bus, osh);
return ret;
}
static int
dhdpcie_download_firmware(struct dhd_bus *bus, osl_t *osh)
{
int ret = 0;
DHD_OS_WAKE_LOCK(bus->dhd);
ret = _dhdpcie_download_firmware(bus);
DHD_OS_WAKE_UNLOCK(bus->dhd);
return ret;
}
static int
dhdpcie_download_code_file(struct dhd_bus *bus, char *pfw_path)
{
int bcmerror = -1;
int offset = 0;
int len;
void *image = NULL;
uint8 *memblock = NULL, *memptr;
DHD_ERROR(("%s: download firmware %s\n", __FUNCTION__, pfw_path));
/* Should succeed in opening image if it is actually given through registry
* entry or in module param.
*/
image = dhd_os_open_image(pfw_path);
if (image == NULL)
goto err;
memptr = memblock = MALLOC(bus->dhd->osh, MEMBLOCK + DHD_SDALIGN);
if (memblock == NULL) {
DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, MEMBLOCK));
goto err;
}
if ((uint32)(uintptr)memblock % DHD_SDALIGN)
memptr += (DHD_SDALIGN - ((uint32)(uintptr)memblock % DHD_SDALIGN));
/* Download image */
while ((len = dhd_os_get_image_block((char*)memptr, MEMBLOCK, image))) {
if (len < 0) {
DHD_ERROR(("%s: dhd_os_get_image_block failed (%d)\n", __FUNCTION__, len));
bcmerror = BCME_ERROR;
goto err;
}
/* check if CR4 */
if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
/* if address is 0, store the reset instruction to be written in 0 */
if (offset == 0) {
bus->resetinstr = *(((uint32*)memptr));
/* Add start of RAM address to the address given by user */
offset += bus->dongle_ram_base;
}
}
bcmerror = dhdpcie_bus_membytes(bus, TRUE, offset, memptr, len);
if (bcmerror) {
DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, MEMBLOCK, offset));
goto err;
}
offset += MEMBLOCK;
}
err:
if (memblock)
MFREE(bus->dhd->osh, memblock, MEMBLOCK + DHD_SDALIGN);
if (image)
dhd_os_close_image(image);
return bcmerror;
}
static int
dhdpcie_download_nvram(struct dhd_bus *bus)
{
int bcmerror = -1;
uint len;
void * image = NULL;
char * memblock = NULL;
char *bufp;
char *pnv_path;
bool nvram_file_exists;
pnv_path = bus->nv_path;
nvram_file_exists = ((pnv_path != NULL) && (pnv_path[0] != '\0'));
if (!nvram_file_exists && (bus->nvram_params == NULL))
return (0);
if (nvram_file_exists) {
image = dhd_os_open_image(pnv_path);
if (image == NULL)
goto err;
}
memblock = MALLOC(bus->dhd->osh, MAX_NVRAMBUF_SIZE);
if (memblock == NULL) {
DHD_ERROR(("%s: Failed to allocate memory %d bytes\n",
__FUNCTION__, MAX_NVRAMBUF_SIZE));
goto err;
}
/* Download variables */
if (nvram_file_exists) {
len = dhd_os_get_image_block(memblock, MAX_NVRAMBUF_SIZE, image);
}
else {
/* nvram is string with null terminated. cannot use strlen */
len = bus->nvram_params_len;
ASSERT(len <= MAX_NVRAMBUF_SIZE);
memcpy(memblock, bus->nvram_params, len);
}
if (len > 0 && len < MAX_NVRAMBUF_SIZE) {
bufp = (char *)memblock;
bufp[len] = 0;
if (nvram_file_exists)
len = process_nvram_vars(bufp, len);
if (len % 4) {
len += 4 - (len % 4);
}
bufp += len;
*bufp++ = 0;
if (len)
bcmerror = dhdpcie_downloadvars(bus, memblock, len + 1);
if (bcmerror) {
DHD_ERROR(("%s: error downloading vars: %d\n",
__FUNCTION__, bcmerror));
}
}
else {
DHD_ERROR(("%s: error reading nvram file: %d\n",
__FUNCTION__, len));
bcmerror = BCME_ERROR;
}
err:
if (memblock)
MFREE(bus->dhd->osh, memblock, MAX_NVRAMBUF_SIZE);
if (image)
dhd_os_close_image(image);
return bcmerror;
}
#ifdef BCMEMBEDIMAGE
int
dhdpcie_download_code_array(struct dhd_bus *bus)
{
int bcmerror = -1;
int offset = 0;
unsigned char *p_dlarray = NULL;
unsigned int dlarray_size = 0;
unsigned int downloded_len, remaining_len, len;
char *p_dlimagename, *p_dlimagever, *p_dlimagedate;
uint8 *memblock = NULL, *memptr;
downloded_len = 0;
remaining_len = 0;
len = 0;
p_dlarray = dlarray;
dlarray_size = sizeof(dlarray);
p_dlimagename = dlimagename;
p_dlimagever = dlimagever;
p_dlimagedate = dlimagedate;
if ((p_dlarray == 0) || (dlarray_size == 0) ||(dlarray_size > bus->ramsize) ||
(p_dlimagename == 0) || (p_dlimagever == 0) || (p_dlimagedate == 0))
goto err;
memptr = memblock = MALLOC(bus->dhd->osh, MEMBLOCK + DHD_SDALIGN);
if (memblock == NULL) {
DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, MEMBLOCK));
goto err;
}
if ((uint32)(uintptr)memblock % DHD_SDALIGN)
memptr += (DHD_SDALIGN - ((uint32)(uintptr)memblock % DHD_SDALIGN));
while (downloded_len < dlarray_size) {
remaining_len = dlarray_size - downloded_len;
if (remaining_len >= MEMBLOCK)
len = MEMBLOCK;
else
len = remaining_len;
memcpy(memptr, (p_dlarray + downloded_len), len);
/* check if CR4 */
if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
/* if address is 0, store the reset instruction to be written in 0 */
if (offset == 0) {
bus->resetinstr = *(((uint32*)memptr));
/* Add start of RAM address to the address given by user */
offset += bus->dongle_ram_base;
}
}
bcmerror = dhdpcie_bus_membytes(bus, TRUE, offset, (uint8 *)memptr, len);
downloded_len += len;
if (bcmerror) {
DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, MEMBLOCK, offset));
goto err;
}
offset += MEMBLOCK;
}
#ifdef DHD_DEBUG
/* Upload and compare the downloaded code */
{
unsigned char *ularray = NULL;
unsigned int uploded_len;
uploded_len = 0;
bcmerror = -1;
ularray = MALLOC(bus->dhd->osh, dlarray_size);
if (ularray == NULL)
goto upload_err;
/* Upload image to verify downloaded contents. */
offset = bus->dongle_ram_base;
memset(ularray, 0xaa, dlarray_size);
while (uploded_len < dlarray_size) {
remaining_len = dlarray_size - uploded_len;
if (remaining_len >= MEMBLOCK)
len = MEMBLOCK;
else
len = remaining_len;
bcmerror = dhdpcie_bus_membytes(bus, FALSE, offset,
(uint8 *)(ularray + uploded_len), len);
if (bcmerror) {
DHD_ERROR(("%s: error %d on reading %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, MEMBLOCK, offset));
goto upload_err;
}
uploded_len += len;
offset += MEMBLOCK;
}
if (memcmp(p_dlarray, ularray, dlarray_size)) {
DHD_ERROR(("%s: Downloaded image is corrupted (%s, %s, %s).\n",
__FUNCTION__, p_dlimagename, p_dlimagever, p_dlimagedate));
goto upload_err;
} else
DHD_ERROR(("%s: Download, Upload and compare succeeded (%s, %s, %s).\n",
__FUNCTION__, p_dlimagename, p_dlimagever, p_dlimagedate));
upload_err:
if (ularray)
MFREE(bus->dhd->osh, ularray, dlarray_size);
}
#endif /* DHD_DEBUG */
err:
if (memblock)
MFREE(bus->dhd->osh, memblock, MEMBLOCK + DHD_SDALIGN);
return bcmerror;
}
#endif /* BCMEMBEDIMAGE */
static int
_dhdpcie_download_firmware(struct dhd_bus *bus)
{
int bcmerror = -1;
dhd_pub_t *dhd = bus->dhd;
bool embed = FALSE; /* download embedded firmware */
bool dlok = FALSE; /* download firmware succeeded */
/* Out immediately if no image to download */
if ((bus->fw_path == NULL) || (bus->fw_path[0] == '\0')) {
#ifdef BCMEMBEDIMAGE
embed = TRUE;
#else
DHD_ERROR(("%s: no fimrware file\n", __FUNCTION__));
return 0;
#endif
}
/* Keep arm in reset */
if (dhdpcie_bus_download_state(bus, TRUE)) {
DHD_ERROR(("%s: error placing ARM core in reset\n", __FUNCTION__));
goto err;
}
/* External image takes precedence if specified */
if ((bus->fw_path != NULL) && (bus->fw_path[0] != '\0')) {
if (dhdpcie_download_code_file(bus, bus->fw_path)) {
DHD_ERROR(("%s: dongle image file download failed\n", __FUNCTION__));
#ifdef BCMEMBEDIMAGE
embed = TRUE;
#else
goto err;
#endif
}
else {
embed = FALSE;
dlok = TRUE;
}
}
#ifdef BCMEMBEDIMAGE
if (embed) {
if (dhdpcie_download_code_array(bus)) {
DHD_ERROR(("%s: dongle image array download failed\n", __FUNCTION__));
goto err;
}
else {
dlok = TRUE;
}
}
#else
BCM_REFERENCE(embed);
#endif
if (!dlok) {
DHD_ERROR(("%s: dongle image download failed\n", __FUNCTION__));
goto err;
}
/* EXAMPLE: nvram_array */
/* If a valid nvram_arry is specified as above, it can be passed down to dongle */
/* dhd_bus_set_nvram_params(bus, (char *)&nvram_array); */
/* External nvram takes precedence if specified */
if (dhdpcie_download_nvram(bus)) {
DHD_ERROR(("%s: dongle nvram file download failed\n", __FUNCTION__));
goto err;
}
/* Take arm out of reset */
if (dhdpcie_bus_download_state(bus, FALSE)) {
DHD_ERROR(("%s: error getting out of ARM core reset\n", __FUNCTION__));
goto err;
}
if (dhd) {
if (!dhd->soc_ram) {
dhd->soc_ram = MALLOC(dhd->osh, bus->ramsize);
dhd->soc_ram_length = bus->ramsize;
} else {
memset(dhd->soc_ram, 0, dhd->soc_ram_length);
}
}
bcmerror = 0;
err:
return bcmerror;
}
int dhd_bus_rxctl(struct dhd_bus *bus, uchar *msg, uint msglen)
{
int timeleft;
uint rxlen = 0;
bool pending;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus->dhd->dongle_reset)
return -EIO;
/* Wait until control frame is available */
timeleft = dhd_os_ioctl_resp_wait(bus->dhd, &bus->rxlen, &pending);
if (timeleft == 0) {
DHD_ERROR(("%s: resumed on timeout\n", __FUNCTION__));
bus->ioct_resp.cmn_hdr.request_id = 0;
bus->ioct_resp.compl_hdr.status = 0xffff;
bus->rxlen = 0;
}
rxlen = bus->rxlen;
bcopy(&bus->ioct_resp, msg, sizeof(ioctl_comp_resp_msg_t));
bus->rxlen = 0;
if (rxlen) {
DHD_CTL(("%s: resumed on rxctl frame, got %d\n", __FUNCTION__, rxlen));
} else if (timeleft == 0) {
DHD_ERROR(("%s: resumed on timeout\n", __FUNCTION__));
} else if (pending == TRUE) {
DHD_CTL(("%s: canceled\n", __FUNCTION__));
return -ERESTARTSYS;
} else {
DHD_CTL(("%s: resumed for unknown reason?\n", __FUNCTION__));
}
if (timeleft == 0) {
bus->dhd->rxcnt_timeout++;
DHD_ERROR(("%s: rxcnt_timeout=%d\n", __FUNCTION__, bus->dhd->rxcnt_timeout));
}
else
bus->dhd->rxcnt_timeout = 0;
if (rxlen)
bus->dhd->rx_ctlpkts++;
else
bus->dhd->rx_ctlerrs++;
if (bus->dhd->rxcnt_timeout >= MAX_CNTL_TX_TIMEOUT) {
#ifdef MSM_PCIE_LINKDOWN_RECOVERY
bus->islinkdown = TRUE;
DHD_ERROR(("PCIe link down\n"));
#endif /* SUPPORT_LINKDOWN_RECOVERY */
return -ETIMEDOUT;
}
if (bus->dhd->dongle_trap_occured)
return -EREMOTEIO;
return rxlen ? (int)rxlen : -EIO;
}
#define CONSOLE_LINE_MAX 192
#ifdef DHD_DEBUG
static int
dhdpcie_bus_readconsole(dhd_bus_t *bus)
{
dhd_console_t *c = &bus->console;
uint8 line[CONSOLE_LINE_MAX], ch;
uint32 n, idx, addr;
int rv;
/* Don't do anything until FWREADY updates console address */
if (bus->console_addr == 0)
return -1;
/* Read console log struct */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, log);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr, (uint8 *)&c->log, sizeof(c->log))) < 0)
return rv;
/* Allocate console buffer (one time only) */
if (c->buf == NULL) {
c->bufsize = ltoh32(c->log.buf_size);
if ((c->buf = MALLOC(bus->dhd->osh, c->bufsize)) == NULL)
return BCME_NOMEM;
}
idx = ltoh32(c->log.idx);
/* Protect against corrupt value */
if (idx > c->bufsize)
return BCME_ERROR;
/* Skip reading the console buffer if the index pointer has not moved */
if (idx == c->last)
return BCME_OK;
/* Read the console buffer */
addr = ltoh32(c->log.buf);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr, c->buf, c->bufsize)) < 0)
return rv;
while (c->last != idx) {
for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) {
if (c->last == idx) {
/* This would output a partial line. Instead, back up
* the buffer pointer and output this line next time around.
*/
if (c->last >= n)
c->last -= n;
else
c->last = c->bufsize - n;
goto break2;
}
ch = c->buf[c->last];
c->last = (c->last + 1) % c->bufsize;
if (ch == '\n')
break;
line[n] = ch;
}
if (n > 0) {
if (line[n - 1] == '\r')
n--;
line[n] = 0;
printf("CONSOLE: %s\n", line);
}
}
break2:
return BCME_OK;
}
static int
dhdpcie_checkdied(dhd_bus_t *bus, char *data, uint size)
{
int bcmerror = 0;
uint msize = 512;
char *mbuffer = NULL;
char *console_buffer = NULL;
uint maxstrlen = 256;
char *str = NULL;
trap_t tr;
pciedev_shared_t *pciedev_shared = bus->pcie_sh;
struct bcmstrbuf strbuf;
uint32 console_ptr, console_size, console_index;
uint8 line[CONSOLE_LINE_MAX], ch;
uint32 n, i, addr;
int rv;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (DHD_NOCHECKDIED_ON())
return 0;
if (data == NULL) {
/*
* Called after a rx ctrl timeout. "data" is NULL.
* allocate memory to trace the trap or assert.
*/
size = msize;
mbuffer = data = MALLOC(bus->dhd->osh, msize);
if (mbuffer == NULL) {
DHD_ERROR(("%s: MALLOC(%d) failed \n", __FUNCTION__, msize));
bcmerror = BCME_NOMEM;
goto done;
}
}
if ((str = MALLOC(bus->dhd->osh, maxstrlen)) == NULL) {
DHD_ERROR(("%s: MALLOC(%d) failed \n", __FUNCTION__, maxstrlen));
bcmerror = BCME_NOMEM;
goto done;
}
if ((bcmerror = dhdpcie_readshared(bus)) < 0)
goto done;
bcm_binit(&strbuf, data, size);
bcm_bprintf(&strbuf, "msgtrace address : 0x%08X\nconsole address : 0x%08X\n",
pciedev_shared->msgtrace_addr, pciedev_shared->console_addr);
if ((pciedev_shared->flags & PCIE_SHARED_ASSERT_BUILT) == 0) {
/* NOTE: Misspelled assert is intentional - DO NOT FIX.
* (Avoids conflict with real asserts for programmatic parsing of output.)
*/
bcm_bprintf(&strbuf, "Assrt not built in dongle\n");
}
if ((bus->pcie_sh->flags & (PCIE_SHARED_ASSERT|PCIE_SHARED_TRAP)) == 0) {
/* NOTE: Misspelled assert is intentional - DO NOT FIX.
* (Avoids conflict with real asserts for programmatic parsing of output.)
*/
bcm_bprintf(&strbuf, "No trap%s in dongle",
(bus->pcie_sh->flags & PCIE_SHARED_ASSERT_BUILT)
?"/assrt" :"");
} else {
if (bus->pcie_sh->flags & PCIE_SHARED_ASSERT) {
/* Download assert */
bcm_bprintf(&strbuf, "Dongle assert");
if (bus->pcie_sh->assert_exp_addr != 0) {
str[0] = '\0';
if ((bcmerror = dhdpcie_bus_membytes(bus, FALSE,
bus->pcie_sh->assert_exp_addr,
(uint8 *)str, maxstrlen)) < 0)
goto done;
str[maxstrlen - 1] = '\0';
bcm_bprintf(&strbuf, " expr \"%s\"", str);
}
if (bus->pcie_sh->assert_file_addr != 0) {
str[0] = '\0';
if ((bcmerror = dhdpcie_bus_membytes(bus, FALSE,
bus->pcie_sh->assert_file_addr,
(uint8 *)str, maxstrlen)) < 0)
goto done;
str[maxstrlen - 1] = '\0';
bcm_bprintf(&strbuf, " file \"%s\"", str);
}
bcm_bprintf(&strbuf, " line %d ", bus->pcie_sh->assert_line);
}
if (bus->pcie_sh->flags & PCIE_SHARED_TRAP) {
bus->dhd->dongle_trap_occured = TRUE;
if ((bcmerror = dhdpcie_bus_membytes(bus, FALSE,
bus->pcie_sh->trap_addr,
(uint8*)&tr, sizeof(trap_t))) < 0)
goto done;
bcm_bprintf(&strbuf,
"Dongle trap type 0x%x @ epc 0x%x, cpsr 0x%x, spsr 0x%x, sp 0x%x,"
"lp 0x%x, rpc 0x%x Trap offset 0x%x, "
"r0 0x%x, r1 0x%x, r2 0x%x, r3 0x%x, "
"r4 0x%x, r5 0x%x, r6 0x%x, r7 0x%x\n\n",
ltoh32(tr.type), ltoh32(tr.epc), ltoh32(tr.cpsr), ltoh32(tr.spsr),
ltoh32(tr.r13), ltoh32(tr.r14), ltoh32(tr.pc),
ltoh32(bus->pcie_sh->trap_addr),
ltoh32(tr.r0), ltoh32(tr.r1), ltoh32(tr.r2), ltoh32(tr.r3),
ltoh32(tr.r4), ltoh32(tr.r5), ltoh32(tr.r6), ltoh32(tr.r7));
addr = bus->pcie_sh->console_addr + OFFSETOF(hnd_cons_t, log);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr,
(uint8 *)&console_ptr, sizeof(console_ptr))) < 0)
goto printbuf;
addr = bus->pcie_sh->console_addr + OFFSETOF(hnd_cons_t, log.buf_size);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr,
(uint8 *)&console_size, sizeof(console_size))) < 0)
goto printbuf;
addr = bus->pcie_sh->console_addr + OFFSETOF(hnd_cons_t, log.idx);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr,
(uint8 *)&console_index, sizeof(console_index))) < 0)
goto printbuf;
console_ptr = ltoh32(console_ptr);
console_size = ltoh32(console_size);
console_index = ltoh32(console_index);
if (console_size > CONSOLE_BUFFER_MAX ||
!(console_buffer = MALLOC(bus->dhd->osh, console_size)))
goto printbuf;
if ((rv = dhdpcie_bus_membytes(bus, FALSE, console_ptr,
(uint8 *)console_buffer, console_size)) < 0)
goto printbuf;
for (i = 0, n = 0; i < console_size; i += n + 1) {
for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) {
ch = console_buffer[(console_index + i + n) % console_size];
if (ch == '\n')
break;
line[n] = ch;
}
if (n > 0) {
if (line[n - 1] == '\r')
n--;
line[n] = 0;
/* Don't use DHD_ERROR macro since we print
* a lot of information quickly. The macro
* will truncate a lot of the printfs
*/
if (dhd_msg_level & DHD_ERROR_VAL)
printf("CONSOLE: %s\n", line);
}
}
}
}
printbuf:
if (bus->pcie_sh->flags & (PCIE_SHARED_ASSERT | PCIE_SHARED_TRAP)) {
DHD_ERROR(("%s: %s\n", __FUNCTION__, strbuf.origbuf));
}
/* save core dump or write to a file */
if (bus->dhd->memdump_enabled) {
dhdpcie_mem_dump(bus);
dhd_dbg_send_urgent_evt(bus->dhd, NULL, 0);
}
done:
if (mbuffer)
MFREE(bus->dhd->osh, mbuffer, msize);
if (str)
MFREE(bus->dhd->osh, str, maxstrlen);
if (console_buffer)
MFREE(bus->dhd->osh, console_buffer, console_size);
return bcmerror;
}
#endif /* DHD_DEBUG */
static void
dhdpcie_bus_report_pcie_linkdown(dhd_bus_t *bus)
{
if (bus == NULL)
return;
#ifdef MSM_PCIE_LINKDOWN_RECOVERY
bus->islinkdown = TRUE;
DHD_ERROR(("PCIe link down, Device ID and Vendor ID are 0x%x\n",
dhdpcie_bus_cfg_read_dword(bus, PCI_VENDOR_ID, 4)));
dhd_os_send_hang_message(bus->dhd);
#endif /* SUPPORT_LINKDOWN_RECOVERY */
}
static int
dhdpcie_mem_dump(dhd_bus_t *bus)
{
int ret = BCME_OK;
int size; /* Full mem size */
int start = bus->dongle_ram_base; /* Start address */
int read_size = 0; /* Read size of each iteration */
uint8 *databuf = NULL;
dhd_pub_t *dhd = bus->dhd;
if (!dhd->soc_ram) {
DHD_ERROR(("%s : dhd->soc_ram is NULL\n", __FUNCTION__));
return -1;
}
size = dhd->soc_ram_length = bus->ramsize;
/* Read mem content */
databuf = dhd->soc_ram;
while (size) {
read_size = MIN(MEMBLOCK, size);
if ((ret = dhdpcie_bus_membytes(bus, FALSE, start, databuf, read_size))) {
DHD_ERROR(("%s: Error membytes %d\n", __FUNCTION__, ret));
return BCME_ERROR;
}
DHD_TRACE(("."));
/* Decrement size and increment start address */
size -= read_size;
start += read_size;
databuf += read_size;
}
dhd_save_fwdump(bus->dhd, dhd->soc_ram, dhd->soc_ram_length);
dhd_schedule_memdump(bus->dhd, dhd->soc_ram, dhd->soc_ram_length);
return ret;
}
int
dhd_socram_dump(dhd_bus_t *bus)
{
return (dhdpcie_mem_dump(bus));
}
/**
* Transfers bytes from host to dongle using pio mode.
* Parameter 'address' is a backplane address.
*/
static int
dhdpcie_bus_membytes(dhd_bus_t *bus, bool write, ulong address, uint8 *data, uint size)
{
int bcmerror = 0;
uint dsize;
int detect_endian_flag = 0x01;
bool little_endian;
#if defined(CONFIG_ARCH_MSM) && defined(CONFIG_64BIT)
bool is_64bit_unaligned;
#endif
/* Detect endianness. */
little_endian = *(char *)&detect_endian_flag;
#if defined(CONFIG_ARCH_MSM) && defined(CONFIG_64BIT)
/* Check 64bit aligned or not. */
is_64bit_unaligned = (address & 0x7);
#endif
/* In remap mode, adjust address beyond socram and redirect
* to devram at SOCDEVRAM_BP_ADDR since remap address > orig_ramsize
* is not backplane accessible
*/
/* Determine initial transfer parameters */
dsize = sizeof(uint64);
/* Do the transfer(s) */
if (write) {
while (size) {
if (size >= sizeof(uint64) && little_endian) {
#if defined(CONFIG_ARCH_MSM) && defined(CONFIG_64BIT)
if (is_64bit_unaligned) {
DHD_INFO(("%s: write unaligned %lx\n",
__FUNCTION__, address));
dhdpcie_bus_wtcm32(bus, address, *((uint32 *)data));
data += 4;
size -= 4;
address += 4;
is_64bit_unaligned = (address & 0x7);
continue;
}
else
#endif
dhdpcie_bus_wtcm64(bus, address, *((uint64 *)data));
} else {
dsize = sizeof(uint8);
dhdpcie_bus_wtcm8(bus, address, *data);
}
/* Adjust for next transfer (if any) */
if ((size -= dsize)) {
data += dsize;
address += dsize;
}
}
} else {
while (size) {
if (size >= sizeof(uint64) && little_endian) {
#if defined(CONFIG_ARCH_MSM) && defined(CONFIG_64BIT)
if (is_64bit_unaligned) {
DHD_INFO(("%s: read unaligned %lx\n",
__FUNCTION__, address));
*(uint32 *)data = dhdpcie_bus_rtcm32(bus, address);
data += 4;
size -= 4;
address += 4;
is_64bit_unaligned = (address & 0x7);
continue;
}
else
#endif
*(uint64 *)data = dhdpcie_bus_rtcm64(bus, address);
} else {
dsize = sizeof(uint8);
*data = dhdpcie_bus_rtcm8(bus, address);
}
/* Adjust for next transfer (if any) */
if ((size -= dsize) > 0) {
data += dsize;
address += dsize;
}
}
}
return bcmerror;
}
int BCMFASTPATH
dhd_bus_schedule_queue(struct dhd_bus *bus, uint16 flow_id, bool txs)
{
flow_ring_node_t *flow_ring_node;
int ret = BCME_OK;
DHD_INFO(("%s: flow_id is %d\n", __FUNCTION__, flow_id));
/* ASSERT on flow_id */
if (flow_id >= bus->max_sub_queues) {
DHD_ERROR(("%s: flow_id is invalid %d, max %d\n", __FUNCTION__,
flow_id, bus->max_sub_queues));
return 0;
}
flow_ring_node = DHD_FLOW_RING(bus->dhd, flow_id);
{
unsigned long flags;
void *txp = NULL;
flow_queue_t *queue;
queue = &flow_ring_node->queue; /* queue associated with flow ring */
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
if (flow_ring_node->status != FLOW_RING_STATUS_OPEN) {
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
return BCME_NOTREADY;
}
while ((txp = dhd_flow_queue_dequeue(bus->dhd, queue)) != NULL) {
#ifdef DHDTCPACK_SUPPRESS
dhd_tcpack_check_xmit(bus->dhd, txp);
#endif /* DHDTCPACK_SUPPRESS */
/* Attempt to transfer packet over flow ring */
ret = dhd_prot_txdata(bus->dhd, txp, flow_ring_node->flow_info.ifindex);
if (ret != BCME_OK) { /* may not have resources in flow ring */
DHD_INFO(("%s: Reinserrt %d\n", __FUNCTION__, ret));
dhd_prot_txdata_write_flush(bus->dhd, flow_id, FALSE);
/* reinsert at head */
dhd_flow_queue_reinsert(bus->dhd, queue, txp);
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
/* If we are able to requeue back, return success */
return BCME_OK;
}
}
dhd_prot_txdata_write_flush(bus->dhd, flow_id, FALSE);
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
}
return ret;
}
/* Send a data frame to the dongle. Callee disposes of txp. */
int BCMFASTPATH
dhd_bus_txdata(struct dhd_bus *bus, void *txp, uint8 ifidx)
{
unsigned long flags;
int ret = BCME_OK;
void *txp_pend = NULL;
if (!bus->txmode_push) {
uint16 flowid;
flow_queue_t *queue;
flow_ring_node_t *flow_ring_node;
if (!bus->dhd->flowid_allocator) {
DHD_ERROR(("%s: Flow ring not intited yet \n", __FUNCTION__));
goto toss;
}
flowid = DHD_PKTTAG_FLOWID((dhd_pkttag_fr_t*)PKTTAG(txp));
flow_ring_node = DHD_FLOW_RING(bus->dhd, flowid);
DHD_TRACE(("%s: pkt flowid %d, status %d active %d\n",
__FUNCTION__, flowid, flow_ring_node->status,
flow_ring_node->active));
if ((flowid >= bus->dhd->num_flow_rings) ||
(!flow_ring_node->active) ||
(flow_ring_node->status == FLOW_RING_STATUS_DELETE_PENDING)) {
DHD_INFO(("%s: Dropping pkt flowid %d, status %d active %d\n",
__FUNCTION__, flowid, flow_ring_node->status,
flow_ring_node->active));
ret = BCME_ERROR;
goto toss;
}
queue = &flow_ring_node->queue; /* queue associated with flow ring */
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
if ((ret = dhd_flow_queue_enqueue(bus->dhd, queue, txp)) != BCME_OK)
txp_pend = txp;
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
if (flow_ring_node->status) {
DHD_INFO(("%s: Enq pkt flowid %d, status %d active %d\n",
__FUNCTION__, flowid, flow_ring_node->status,
flow_ring_node->active));
if (txp_pend) {
txp = txp_pend;
goto toss;
}
return BCME_OK;
}
ret = dhd_bus_schedule_queue(bus, flowid, FALSE);
/* If we have anything pending, try to push into q */
if (txp_pend) {
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
if ((ret = dhd_flow_queue_enqueue(bus->dhd, queue, txp_pend)) != BCME_OK) {
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
txp = txp_pend;
goto toss;
}
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
}
return ret;
} else { /* bus->txmode_push */
return dhd_prot_txdata(bus->dhd, txp, ifidx);
}
toss:
DHD_INFO(("%s: Toss %d\n", __FUNCTION__, ret));
PKTCFREE(bus->dhd->osh, txp, TRUE);
return ret;
}
void
dhd_bus_stop_queue(struct dhd_bus *bus)
{
dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, ON);
bus->bus_flowctrl = TRUE;
}
void
dhd_bus_start_queue(struct dhd_bus *bus)
{
dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, OFF);
bus->bus_flowctrl = TRUE;
}
void
dhd_bus_update_retlen(dhd_bus_t *bus, uint32 retlen, uint32 pkt_id, uint16 status,
uint32 resp_len)
{
bus->rxlen = retlen;
bus->ioct_resp.cmn_hdr.request_id = pkt_id;
bus->ioct_resp.compl_hdr.status = status;
bus->ioct_resp.resp_len = (uint16)resp_len;
}
#if defined(DHD_DEBUG)
/* Device console input function */
int dhd_bus_console_in(dhd_pub_t *dhd, uchar *msg, uint msglen)
{
dhd_bus_t *bus = dhd->bus;
uint32 addr, val;
int rv;
/* Address could be zero if CONSOLE := 0 in dongle Makefile */
if (bus->console_addr == 0)
return BCME_UNSUPPORTED;
/* Don't allow input if dongle is in reset */
if (bus->dhd->dongle_reset) {
dhd_os_sdunlock(bus->dhd);
return BCME_NOTREADY;
}
/* Zero cbuf_index */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, cbuf_idx);
val = htol32(0);
if ((rv = dhdpcie_bus_membytes(bus, TRUE, addr, (uint8 *)&val, sizeof(val))) < 0)
goto done;
/* Write message into cbuf */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, cbuf);
if ((rv = dhdpcie_bus_membytes(bus, TRUE, addr, (uint8 *)msg, msglen)) < 0)
goto done;
/* Write length into vcons_in */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, vcons_in);
val = htol32(msglen);
if ((rv = dhdpcie_bus_membytes(bus, TRUE, addr, (uint8 *)&val, sizeof(val))) < 0)
goto done;
/* generate an interurpt to dongle to indicate that it needs to process cons command */
dhdpcie_send_mb_data(bus, H2D_HOST_CONS_INT);
done:
return rv;
}
#endif /* defined(DHD_DEBUG) */
/* Process rx frame , Send up the layer to netif */
void BCMFASTPATH
dhd_bus_rx_frame(struct dhd_bus *bus, void* pkt, int ifidx, uint pkt_count, int pkt_wake)
{
dhd_rx_frame(bus->dhd, ifidx, pkt, pkt_count, 0, pkt_wake, &bus->wake_counts);
}
#if defined(CONFIG_ARCH_MSM) && defined(CONFIG_64BIT)
static ulong dhd_bus_cmn_check_offset(dhd_bus_t *bus, ulong offset)
{
uint new_bar1_wbase = 0;
ulong address = 0;
new_bar1_wbase = (uint)offset & bus->bar1_win_mask;
if (bus->bar1_win_base != new_bar1_wbase) {
bus->bar1_win_base = new_bar1_wbase;
dhdpcie_bus_cfg_set_bar1_win(bus, bus->bar1_win_base);
DHD_ERROR(("%s: offset=%lx, switch bar1_win_base to %x\n",
__FUNCTION__, offset, bus->bar1_win_base));
}
address = offset - bus->bar1_win_base;
return address;
}
#else
#define dhd_bus_cmn_check_offset(x, y) y
#endif /* defined(CONFIG_ARCH_MSM) && defined(CONFIG_64BIT) */
/** 'offset' is a backplane address */
void
dhdpcie_bus_wtcm8(dhd_bus_t *bus, ulong offset, uint8 data)
{
*(volatile uint8 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset)) = (uint8)data;
}
uint8
dhdpcie_bus_rtcm8(dhd_bus_t *bus, ulong offset)
{
volatile uint8 data;
#ifdef BCM47XX_ACP_WAR
data = R_REG(bus->dhd->osh,
(volatile uint8 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset)));
#else
data = *(volatile uint8 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset));
#endif
return data;
}
void
dhdpcie_bus_wtcm32(dhd_bus_t *bus, ulong offset, uint32 data)
{
*(volatile uint32 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset)) = (uint32)data;
}
void
dhdpcie_bus_wtcm16(dhd_bus_t *bus, ulong offset, uint16 data)
{
*(volatile uint16 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset)) = (uint16)data;
}
void
dhdpcie_bus_wtcm64(dhd_bus_t *bus, ulong offset, uint64 data)
{
*(volatile uint64 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset)) = (uint64)data;
}
uint16
dhdpcie_bus_rtcm16(dhd_bus_t *bus, ulong offset)
{
volatile uint16 data;
#ifdef BCM47XX_ACP_WAR
data = R_REG(bus->dhd->osh,
(volatile uint16 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset)));
#else
data = *(volatile uint16 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset));
#endif
return data;
}
uint32
dhdpcie_bus_rtcm32(dhd_bus_t *bus, ulong offset)
{
volatile uint32 data;
#ifdef BCM47XX_ACP_WAR
data = R_REG(bus->dhd->osh,
(volatile uint32 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset)));
#else
data = *(volatile uint32 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset));
#endif
return data;
}
uint64
dhdpcie_bus_rtcm64(dhd_bus_t *bus, ulong offset)
{
volatile uint64 data;
#ifdef BCM47XX_ACP_WAR
data = R_REG(bus->dhd->osh,
(volatile uint64 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset)));
#else
data = *(volatile uint64 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset));
#endif
return data;
}
void
dhd_bus_cmn_writeshared(dhd_bus_t *bus, void * data, uint32 len, uint8 type, uint16 ringid)
{
uint64 long_data;
ulong tcm_offset;
pciedev_shared_t *sh;
pciedev_shared_t *shmem = NULL;
sh = (pciedev_shared_t*)bus->shared_addr;
DHD_INFO(("%s: writing to msgbuf type %d, len %d\n", __FUNCTION__, type, len));
switch (type) {
case DNGL_TO_HOST_DMA_SCRATCH_BUFFER:
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)&(sh->host_dma_scratch_buffer);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
case DNGL_TO_HOST_DMA_SCRATCH_BUFFER_LEN :
tcm_offset = (ulong)&(sh->host_dma_scratch_buffer_len);
dhdpcie_bus_wtcm32(bus, tcm_offset, (uint32) HTOL32(*(uint32 *)data));
prhex(__FUNCTION__, data, len);
break;
case HOST_TO_DNGL_DMA_WRITEINDX_BUFFER:
/* ring_info_ptr stored in pcie_sh */
shmem = (pciedev_shared_t *)bus->pcie_sh;
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)shmem->rings_info_ptr;
tcm_offset += OFFSETOF(ring_info_t, h2d_w_idx_hostaddr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
case HOST_TO_DNGL_DMA_READINDX_BUFFER:
/* ring_info_ptr stored in pcie_sh */
shmem = (pciedev_shared_t *)bus->pcie_sh;
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)shmem->rings_info_ptr;
tcm_offset += OFFSETOF(ring_info_t, h2d_r_idx_hostaddr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
case DNGL_TO_HOST_DMA_WRITEINDX_BUFFER:
/* ring_info_ptr stored in pcie_sh */
shmem = (pciedev_shared_t *)bus->pcie_sh;
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)shmem->rings_info_ptr;
tcm_offset += OFFSETOF(ring_info_t, d2h_w_idx_hostaddr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
case DNGL_TO_HOST_DMA_READINDX_BUFFER:
/* ring_info_ptr stored in pcie_sh */
shmem = (pciedev_shared_t *)bus->pcie_sh;
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)shmem->rings_info_ptr;
tcm_offset += OFFSETOF(ring_info_t, d2h_r_idx_hostaddr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
case RING_LEN_ITEMS :
tcm_offset = bus->ring_sh[ringid].ring_mem_addr;
tcm_offset += OFFSETOF(ring_mem_t, len_items);
dhdpcie_bus_wtcm16(bus, tcm_offset, (uint16) HTOL16(*(uint16 *)data));
break;
case RING_MAX_ITEM :
tcm_offset = bus->ring_sh[ringid].ring_mem_addr;
tcm_offset += OFFSETOF(ring_mem_t, max_item);
dhdpcie_bus_wtcm16(bus, tcm_offset, (uint16) HTOL16(*(uint16 *)data));
break;
case RING_BUF_ADDR :
long_data = HTOL64(*(uint64 *)data);
tcm_offset = bus->ring_sh[ringid].ring_mem_addr;
tcm_offset += OFFSETOF(ring_mem_t, base_addr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8 *) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
case RING_WRITE_PTR :
tcm_offset = bus->ring_sh[ringid].ring_state_w;
dhdpcie_bus_wtcm16(bus, tcm_offset, (uint16) HTOL16(*(uint16 *)data));
break;
case RING_READ_PTR :
tcm_offset = bus->ring_sh[ringid].ring_state_r;
dhdpcie_bus_wtcm16(bus, tcm_offset, (uint16) HTOL16(*(uint16 *)data));
break;
case DTOH_MB_DATA:
dhdpcie_bus_wtcm32(bus, bus->d2h_mb_data_ptr_addr,
(uint32) HTOL32(*(uint32 *)data));
break;
case HTOD_MB_DATA:
dhdpcie_bus_wtcm32(bus, bus->h2d_mb_data_ptr_addr,
(uint32) HTOL32(*(uint32 *)data));
break;
default:
break;
}
}
void
dhd_bus_cmn_readshared(dhd_bus_t *bus, void* data, uint8 type, uint16 ringid)
{
pciedev_shared_t *sh;
ulong tcm_offset;
sh = (pciedev_shared_t*)bus->shared_addr;
switch (type) {
case RING_WRITE_PTR :
tcm_offset = bus->ring_sh[ringid].ring_state_w;
*(uint16*)data = LTOH16(dhdpcie_bus_rtcm16(bus, tcm_offset));
break;
case RING_READ_PTR :
tcm_offset = bus->ring_sh[ringid].ring_state_r;
*(uint16*)data = LTOH16(dhdpcie_bus_rtcm16(bus, tcm_offset));
break;
case TOTAL_LFRAG_PACKET_CNT :
*(uint16*)data = LTOH16(dhdpcie_bus_rtcm16(bus,
(ulong) &sh->total_lfrag_pkt_cnt));
break;
case HTOD_MB_DATA:
*(uint32*)data = LTOH32(dhdpcie_bus_rtcm32(bus, bus->h2d_mb_data_ptr_addr));
break;
case DTOH_MB_DATA:
*(uint32*)data = LTOH32(dhdpcie_bus_rtcm32(bus, bus->d2h_mb_data_ptr_addr));
break;
case MAX_HOST_RXBUFS :
*(uint16*)data = LTOH16(dhdpcie_bus_rtcm16(bus,
(ulong) &sh->max_host_rxbufs));
break;
default :
break;
}
}
uint32 dhd_bus_get_sharedflags(dhd_bus_t *bus)
{
return ((pciedev_shared_t*)bus->pcie_sh)->flags;
}
void
dhd_bus_clearcounts(dhd_pub_t *dhdp)
{
}
int
dhd_bus_iovar_op(dhd_pub_t *dhdp, const char *name,
void *params, int plen, void *arg, int len, bool set)
{
dhd_bus_t *bus = dhdp->bus;
const bcm_iovar_t *vi = NULL;
int bcmerror = 0;
int val_size;
uint32 actionid;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
ASSERT(name);
ASSERT(len >= 0);
/* Get MUST have return space */
ASSERT(set || (arg && len));
/* Set does NOT take qualifiers */
ASSERT(!set || (!params && !plen));
DHD_INFO(("%s: %s %s, len %d plen %d\n", __FUNCTION__,
name, (set ? "set" : "get"), len, plen));
/* Look up var locally; if not found pass to host driver */
if ((vi = bcm_iovar_lookup(dhdpcie_iovars, name)) == NULL) {
goto exit;
}
/* set up 'params' pointer in case this is a set command so that
* the convenience int and bool code can be common to set and get
*/
if (params == NULL) {
params = arg;
plen = len;
}
if (vi->type == IOVT_VOID)
val_size = 0;
else if (vi->type == IOVT_BUFFER)
val_size = len;
else
/* all other types are integer sized */
val_size = sizeof(int);
actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid);
bcmerror = dhdpcie_bus_doiovar(bus, vi, actionid, name, params, plen, arg, len, val_size);
exit:
return bcmerror;
}
#ifdef BCM_BUZZZ
#include <bcm_buzzz.h>
int dhd_buzzz_dump_cntrs3(char *p, uint32 *core, uint32 * ovhd, uint32 *log)
{
int bytes = 0;
uint32 ctr, curr[3], prev[3], delta[3];
/* Compute elapsed counter values per counter event type */
for (ctr = 0U; ctr < 3; ctr++) {
prev[ctr] = core[ctr];
curr[ctr] = *log++;
core[ctr] = curr[ctr]; /* saved for next log */
if (curr[ctr] < prev[ctr])
delta[ctr] = curr[ctr] + (~0U - prev[ctr]);
else
delta[ctr] = (curr[ctr] - prev[ctr]);
/* Adjust for instrumentation overhead */
if (delta[ctr] >= ovhd[ctr])
delta[ctr] -= ovhd[ctr];
else
delta[ctr] = 0;
bytes += sprintf(p + bytes, "%12u ", delta[ctr]);
}
return bytes;
}
typedef union cm3_cnts { /* export this in bcm_buzzz.h */
uint32 u32;
uint8 u8[4];
struct {
uint8 cpicnt;
uint8 exccnt;
uint8 sleepcnt;
uint8 lsucnt;
};
} cm3_cnts_t;
int dhd_buzzz_dump_cntrs6(char *p, uint32 *core, uint32 * ovhd, uint32 *log)
{
int bytes = 0;
uint32 cyccnt, instrcnt;
cm3_cnts_t cm3_cnts;
uint8 foldcnt;
{ /* 32bit cyccnt */
uint32 curr, prev, delta;
prev = core[0]; curr = *log++; core[0] = curr;
if (curr < prev)
delta = curr + (~0U - prev);
else
delta = (curr - prev);
if (delta >= ovhd[0])
delta -= ovhd[0];
else
delta = 0;
bytes += sprintf(p + bytes, "%12u ", delta);
cyccnt = delta;
}
{ /* Extract the 4 cnts: cpi, exc, sleep and lsu */
int i;
uint8 max8 = ~0;
cm3_cnts_t curr, prev, delta;
prev.u32 = core[1]; curr.u32 = * log++; core[1] = curr.u32;
for (i = 0; i < 4; i++) {
if (curr.u8[i] < prev.u8[i])
delta.u8[i] = curr.u8[i] + (max8 - prev.u8[i]);
else
delta.u8[i] = (curr.u8[i] - prev.u8[i]);
if (delta.u8[i] >= ovhd[i + 1])
delta.u8[i] -= ovhd[i + 1];
else
delta.u8[i] = 0;
bytes += sprintf(p + bytes, "%4u ", delta.u8[i]);
}
cm3_cnts.u32 = delta.u32;
}
{ /* Extract the foldcnt from arg0 */
uint8 curr, prev, delta, max8 = ~0;
buzzz_arg0_t arg0; arg0.u32 = *log;
prev = core[2]; curr = arg0.klog.cnt; core[2] = curr;
if (curr < prev)
delta = curr + (max8 - prev);
else
delta = (curr - prev);
if (delta >= ovhd[5])
delta -= ovhd[5];
else
delta = 0;
bytes += sprintf(p + bytes, "%4u ", delta);
foldcnt = delta;
}
instrcnt = cyccnt - (cm3_cnts.u8[0] + cm3_cnts.u8[1] + cm3_cnts.u8[2]
+ cm3_cnts.u8[3]) + foldcnt;
if (instrcnt > 0xFFFFFF00)
bytes += sprintf(p + bytes, "[%10s] ", "~");
else
bytes += sprintf(p + bytes, "[%10u] ", instrcnt);
return bytes;
}
int dhd_buzzz_dump_log(char * p, uint32 * core, uint32 * log, buzzz_t * buzzz)
{
int bytes = 0;
buzzz_arg0_t arg0;
static uint8 * fmt[] = BUZZZ_FMT_STRINGS;
if (buzzz->counters == 6) {
bytes += dhd_buzzz_dump_cntrs6(p, core, buzzz->ovhd, log);
log += 2; /* 32bit cyccnt + (4 x 8bit) CM3 */
} else {
bytes += dhd_buzzz_dump_cntrs3(p, core, buzzz->ovhd, log);
log += 3; /* (3 x 32bit) CR4 */
}
/* Dump the logged arguments using the registered formats */
arg0.u32 = *log++;
switch (arg0.klog.args) {
case 0:
bytes += sprintf(p + bytes, fmt[arg0.klog.id]);
break;
case 1:
{
uint32 arg1 = *log++;
bytes += sprintf(p + bytes, fmt[arg0.klog.id], arg1);
break;
}
default:
printf("Maximum one argument supported\n");
break;
}
bytes += sprintf(p + bytes, "\n");
return bytes;
}
void dhd_buzzz_dump(buzzz_t * buzzz_p, void * buffer_p, char * p)
{
int i;
uint32 total, part1, part2, log_sz, core[BUZZZ_COUNTERS_MAX];
void * log;
for (i = 0; i < BUZZZ_COUNTERS_MAX; i++)
core[i] = 0;
log_sz = buzzz_p->log_sz;
part1 = ((uint32)buzzz_p->cur - (uint32)buzzz_p->log) / log_sz;
if (buzzz_p->wrap == TRUE) {
part2 = ((uint32)buzzz_p->end - (uint32)buzzz_p->cur) / log_sz;
total = (buzzz_p->buffer_sz - BUZZZ_LOGENTRY_MAXSZ) / log_sz;
} else {
part2 = 0U;
total = buzzz_p->count;
}
if (total == 0U) {
printf("buzzz_dump total<%u> done\n", total);
return;
} else {
printf("buzzz_dump total<%u> : part2<%u> + part1<%u>\n",
total, part2, part1);
}
if (part2) { /* with wrap */
log = (void*)((size_t)buffer_p + (buzzz_p->cur - buzzz_p->log));
while (part2--) { /* from cur to end : part2 */
p[0] = '\0';
dhd_buzzz_dump_log(p, core, (uint32 *)log, buzzz_p);
printf("%s", p);
log = (void*)((size_t)log + buzzz_p->log_sz);
}
}
log = (void*)buffer_p;
while (part1--) {
p[0] = '\0';
dhd_buzzz_dump_log(p, core, (uint32 *)log, buzzz_p);
printf("%s", p);
log = (void*)((size_t)log + buzzz_p->log_sz);
}
printf("buzzz_dump done.\n");
}
int dhd_buzzz_dump_dngl(dhd_bus_t *bus)
{
buzzz_t * buzzz_p = NULL;
void * buffer_p = NULL;
char * page_p = NULL;
pciedev_shared_t *sh;
int ret = 0;
if (bus->dhd->busstate != DHD_BUS_DATA) {
return BCME_UNSUPPORTED;
}
if ((page_p = (char *)MALLOC(bus->dhd->osh, 4096)) == NULL) {
printf("Page memory allocation failure\n");
goto done;
}
if ((buzzz_p = MALLOC(bus->dhd->osh, sizeof(buzzz_t))) == NULL) {
printf("Buzzz memory allocation failure\n");
goto done;
}
ret = dhdpcie_readshared(bus);
if (ret < 0) {
DHD_ERROR(("%s :Shared area read failed \n", __FUNCTION__));
goto done;
}
sh = bus->pcie_sh;
DHD_INFO(("%s buzzz:%08x\n", __FUNCTION__, sh->buzzz));
if (sh->buzzz != 0U) { /* Fetch and display dongle BUZZZ Trace */
dhdpcie_bus_membytes(bus, FALSE, (ulong)sh->buzzz,
(uint8 *)buzzz_p, sizeof(buzzz_t));
if (buzzz_p->count == 0) {
printf("Empty dongle BUZZZ trace\n\n");
goto done;
}
if (buzzz_p->counters != 3) { /* 3 counters for CR4 */
printf("Counters<%u> mismatch\n", buzzz_p->counters);
goto done;
}
/* Allocate memory for trace buffer and format strings */
buffer_p = MALLOC(bus->dhd->osh, buzzz_p->buffer_sz);
if (buffer_p == NULL) {
printf("Buffer memory allocation failure\n");
goto done;
}
/* Fetch the trace and format strings */
dhdpcie_bus_membytes(bus, FALSE, (uint32)buzzz_p->log, /* Trace */
(uint8 *)buffer_p, buzzz_p->buffer_sz);
/* Process and display the trace using formatted output */
printf("<#cycle> <#instruction> <#ctr3> <event information>\n");
dhd_buzzz_dump(buzzz_p, buffer_p, page_p);
printf("----- End of dongle BUZZZ Trace -----\n\n");
MFREE(bus->dhd->osh, buffer_p, buzzz_p->buffer_sz); buffer_p = NULL;
}
done:
if (page_p) MFREE(bus->dhd->osh, page_p, 4096);
if (buzzz_p) MFREE(bus->dhd->osh, buzzz_p, sizeof(buzzz_t));
if (buffer_p) MFREE(bus->dhd->osh, buffer_p, buzzz_p->buffer_sz);
return BCME_OK;
}
#endif /* BCM_BUZZZ */
int
dhd_bus_devreset(dhd_pub_t *dhdp, uint8 flag)
{
dhd_bus_t *bus = dhdp->bus;
int ret = 0;
#ifdef CONFIG_ARCH_MSM
int retry = POWERUP_MAX_RETRY;
#endif /* CONFIG_ARCH_MSM */
if (dhd_download_fw_on_driverload) {
ret = dhd_bus_start(dhdp);
} else {
if (flag == TRUE) {
/* Turn off WLAN */
DHD_ERROR(("%s: == Power OFF ==\n", __FUNCTION__));
dhd_os_sdlock(dhdp);
bus->dhd->up = FALSE;
/* Prevent dhd_bus_watchdog from touching HW */
dhd_os_sdunlock(dhdp);
if (bus->dhd->busstate != DHD_BUS_DOWN) {
if (bus->intr) {
dhdpcie_bus_intr_disable(bus);
dhdpcie_free_irq(bus);
}
dhd_os_wd_timer(dhdp, 0);
dhd_dbg_start(dhdp, 0);
dhd_bus_stop(bus, TRUE);
dhd_prot_clear(dhdp);
dhd_clear(dhdp);
dhd_bus_release_dongle(bus);
dhdpcie_bus_free_resource(bus);
ret = dhdpcie_bus_disable_device(bus);
if (ret) {
DHD_ERROR(("%s: dhdpcie_bus_disable_device: %d\n",
__FUNCTION__, ret));
goto done;
}
#ifdef CONFIG_ARCH_MSM
ret = dhdpcie_bus_clock_stop(bus);
if (ret) {
DHD_ERROR(("%s: host clock stop failed: %d\n",
__FUNCTION__, ret));
goto done;
}
#endif /* CONFIG_ARCH_MSM */
bus->dhd->busstate = DHD_BUS_DOWN;
} else {
if (bus->intr) {
dhdpcie_bus_intr_disable(bus);
dhdpcie_free_irq(bus);
}
dhd_prot_clear(dhdp);
dhd_clear(dhdp);
dhd_bus_release_dongle(bus);
dhdpcie_bus_free_resource(bus);
ret = dhdpcie_bus_disable_device(bus);
if (ret) {
DHD_ERROR(("%s: dhdpcie_bus_disable_device: %d\n",
__FUNCTION__, ret));
goto done;
}
#ifdef CONFIG_ARCH_MSM
ret = dhdpcie_bus_clock_stop(bus);
if (ret) {
DHD_ERROR(("%s: host clock stop failed: %d\n",
__FUNCTION__, ret));
goto done;
}
#endif /* CONFIG_ARCH_MSM */
}
bus->dhd->dongle_reset = TRUE;
DHD_ERROR(("%s: WLAN OFF Done\n", __FUNCTION__));
} else {
if (bus->dhd->busstate == DHD_BUS_DOWN) {
/* Turn on WLAN */
DHD_ERROR(("%s: == Power ON ==\n", __FUNCTION__));
#ifdef CONFIG_ARCH_MSM
while (retry--) {
ret = dhdpcie_bus_clock_start(bus);
if (!ret) {
DHD_ERROR(("%s: dhdpcie_bus_clock_start OK\n",
__FUNCTION__));
break;
}
else
OSL_SLEEP(10);
}
if (ret && !retry) {
DHD_ERROR(("%s: host pcie clock enable failed: %d\n",
__FUNCTION__, ret));
goto done;
}
#endif /* CONFIG_ARCH_MSM */
ret = dhdpcie_bus_enable_device(bus);
if (ret) {
DHD_ERROR(("%s: host configuration restore failed: %d\n",
__FUNCTION__, ret));
goto done;
}
ret = dhdpcie_bus_alloc_resource(bus);
if (ret) {
DHD_ERROR(("%s: dhdpcie_bus_resource_alloc failed: %d\n",
__FUNCTION__, ret));
goto done;
}
ret = dhdpcie_bus_dongle_attach(bus);
if (ret) {
DHD_ERROR(("%s: dhdpcie_bus_dongle_attach failed: %d\n",
__FUNCTION__, ret));
goto done;
}
ret = dhd_bus_request_irq(bus);
if (ret) {
DHD_ERROR(("%s: dhd_bus_request_irq failed: %d\n",
__FUNCTION__, ret));
goto done;
}
bus->dhd->dongle_reset = FALSE;
ret = dhd_bus_start(dhdp);
if (ret) {
DHD_ERROR(("%s: dhd_bus_start: %d\n",
__FUNCTION__, ret));
goto done;
}
ret = dhd_dbg_start(dhdp, 1);
if (ret) {
DHD_ERROR(("%s: dhd_dbg_start: %d\n",
__FUNCTION__, ret));
goto done;
}
dhd_os_sdlock(dhdp);
bus->dhd->up = TRUE;
dhd_os_sdunlock(dhdp);
DHD_ERROR(("%s: WLAN Power On Done\n", __FUNCTION__));
} else {
DHD_ERROR(("%s: what should we do here\n", __FUNCTION__));
goto done;
}
}
}
done:
if (ret)
bus->dhd->busstate = DHD_BUS_DOWN;
return ret;
}
static int
dhdpcie_bus_doiovar(dhd_bus_t *bus, const bcm_iovar_t *vi, uint32 actionid, const char *name,
void *params, int plen, void *arg, int len, int val_size)
{
int bcmerror = 0;
int32 int_val = 0;
int32 int_val2 = 0;
int32 int_val3 = 0;
bool bool_val = 0;
DHD_TRACE(("%s: Enter, action %d name %s params %p plen %d arg %p len %d val_size %d\n",
__FUNCTION__, actionid, name, params, plen, arg, len, val_size));
if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, IOV_ISSET(actionid))) != 0)
goto exit;
if (plen >= (int)sizeof(int_val))
bcopy(params, &int_val, sizeof(int_val));
if (plen >= (int)sizeof(int_val) * 2)
bcopy((void*)((uintptr)params + sizeof(int_val)), &int_val2, sizeof(int_val2));
if (plen >= (int)sizeof(int_val) * 3)
bcopy((void*)((uintptr)params + 2 * sizeof(int_val)), &int_val3, sizeof(int_val3));
bool_val = (int_val != 0) ? TRUE : FALSE;
/* Check if dongle is in reset. If so, only allow DEVRESET iovars */
if (bus->dhd->dongle_reset && !(actionid == IOV_SVAL(IOV_DEVRESET) ||
actionid == IOV_GVAL(IOV_DEVRESET))) {
bcmerror = BCME_NOTREADY;
goto exit;
}
switch (actionid) {
case IOV_SVAL(IOV_VARS):
bcmerror = dhdpcie_downloadvars(bus, arg, len);
break;
case IOV_SVAL(IOV_PCIEREG):
si_corereg(bus->sih, bus->sih->buscoreidx, OFFSETOF(sbpcieregs_t, configaddr), ~0,
int_val);
si_corereg(bus->sih, bus->sih->buscoreidx, OFFSETOF(sbpcieregs_t, configdata), ~0,
int_val2);
break;
case IOV_GVAL(IOV_PCIEREG):
si_corereg(bus->sih, bus->sih->buscoreidx, OFFSETOF(sbpcieregs_t, configaddr), ~0,
int_val);
int_val = si_corereg(bus->sih, bus->sih->buscoreidx,
OFFSETOF(sbpcieregs_t, configdata), 0, 0);
bcopy(&int_val, arg, sizeof(int_val));
break;
case IOV_GVAL(IOV_BAR0_SECWIN_REG):
{
uint32 cur_base, base;
uchar *bar0;
volatile uint32 *offset;
/* set the bar0 secondary window to this */
/* write the register value */
cur_base = dhdpcie_bus_cfg_read_dword(bus, PCIE2_BAR0_CORE2_WIN, sizeof(uint));
base = int_val & 0xFFFFF000;
dhdpcie_bus_cfg_write_dword(bus, PCIE2_BAR0_CORE2_WIN, sizeof(uint32), base);
bar0 = (uchar *)bus->regs;
offset = (uint32 *)(bar0 + 0x4000 + (int_val & 0xFFF));
int_val = *offset;
bcopy(&int_val, arg, sizeof(int_val));
dhdpcie_bus_cfg_write_dword(bus, PCIE2_BAR0_CORE2_WIN, sizeof(uint32), cur_base);
}
break;
case IOV_SVAL(IOV_BAR0_SECWIN_REG):
{
uint32 cur_base, base;
uchar *bar0;
volatile uint32 *offset;
/* set the bar0 secondary window to this */
/* write the register value */
cur_base