blob: 1b19f2643f48f5c2ad934a0c571de3ec8aa47e54 [file] [log] [blame]
/*
* Copyright (C) 2015 Michael Turquette <mturquette@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/cpufreq.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/percpu.h>
#include <linux/irq_work.h>
#include <linux/delay.h>
#include <linux/string.h>
#define CREATE_TRACE_POINTS
#include <trace/events/cpufreq_sched.h>
#include "sched.h"
#define THROTTLE_DOWN_NSEC 50000000 /* 50ms default */
#define THROTTLE_UP_NSEC 500000 /* 500us default */
struct static_key __read_mostly __sched_freq = STATIC_KEY_INIT_FALSE;
static bool __read_mostly cpufreq_driver_slow;
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHED
static struct cpufreq_governor cpufreq_gov_sched;
#endif
static DEFINE_PER_CPU(unsigned long, enabled);
DEFINE_PER_CPU(struct sched_capacity_reqs, cpu_sched_capacity_reqs);
struct gov_tunables {
struct gov_attr_set attr_set;
unsigned int up_throttle_nsec;
unsigned int down_throttle_nsec;
};
/**
* gov_data - per-policy data internal to the governor
* @up_throttle: next throttling period expiry if increasing OPP
* @down_throttle: next throttling period expiry if decreasing OPP
* @up_throttle_nsec: throttle period length in nanoseconds if increasing OPP
* @down_throttle_nsec: throttle period length in nanoseconds if decreasing OPP
* @task: worker thread for dvfs transition that may block/sleep
* @irq_work: callback used to wake up worker thread
* @requested_freq: last frequency requested by the sched governor
*
* struct gov_data is the per-policy cpufreq_sched-specific data structure. A
* per-policy instance of it is created when the cpufreq_sched governor receives
* the CPUFREQ_GOV_START condition and a pointer to it exists in the gov_data
* member of struct cpufreq_policy.
*
* Readers of this data must call down_read(policy->rwsem). Writers must
* call down_write(policy->rwsem).
*/
struct gov_data {
ktime_t up_throttle;
ktime_t down_throttle;
struct gov_tunables *tunables;
struct list_head tunables_hook;
struct task_struct *task;
struct irq_work irq_work;
unsigned int requested_freq;
};
static void cpufreq_sched_try_driver_target(struct cpufreq_policy *policy,
unsigned int freq)
{
struct gov_data *gd = policy->governor_data;
/* avoid race with cpufreq_sched_stop */
if (!down_write_trylock(&policy->rwsem))
return;
__cpufreq_driver_target(policy, freq, CPUFREQ_RELATION_L);
gd->up_throttle = ktime_add_ns(ktime_get(),
gd->tunables->up_throttle_nsec);
gd->down_throttle = ktime_add_ns(ktime_get(),
gd->tunables->down_throttle_nsec);
up_write(&policy->rwsem);
}
static bool finish_last_request(struct gov_data *gd, unsigned int cur_freq)
{
ktime_t now = ktime_get();
ktime_t throttle = gd->requested_freq < cur_freq ?
gd->down_throttle : gd->up_throttle;
if (ktime_after(now, throttle))
return false;
while (1) {
int usec_left = ktime_to_ns(ktime_sub(throttle, now));
usec_left /= NSEC_PER_USEC;
trace_cpufreq_sched_throttled(usec_left);
usleep_range(usec_left, usec_left + 100);
now = ktime_get();
if (ktime_after(now, throttle))
return true;
}
}
/*
* we pass in struct cpufreq_policy. This is safe because changing out the
* policy requires a call to __cpufreq_governor(policy, CPUFREQ_GOV_STOP),
* which tears down all of the data structures and __cpufreq_governor(policy,
* CPUFREQ_GOV_START) will do a full rebuild, including this kthread with the
* new policy pointer
*/
static int cpufreq_sched_thread(void *data)
{
struct sched_param param;
struct cpufreq_policy *policy;
struct gov_data *gd;
unsigned int new_request = 0;
unsigned int last_request = 0;
int ret;
policy = (struct cpufreq_policy *) data;
gd = policy->governor_data;
param.sched_priority = 50;
ret = sched_setscheduler_nocheck(gd->task, SCHED_FIFO, &param);
if (ret) {
pr_warn("%s: failed to set SCHED_FIFO\n", __func__);
do_exit(-EINVAL);
} else {
pr_debug("%s: kthread (%d) set to SCHED_FIFO\n",
__func__, gd->task->pid);
}
do {
new_request = gd->requested_freq;
if (new_request == last_request) {
set_current_state(TASK_INTERRUPTIBLE);
if (kthread_should_stop())
break;
schedule();
} else {
/*
* if the frequency thread sleeps while waiting to be
* unthrottled, start over to check for a newer request
*/
if (finish_last_request(gd, policy->cur))
continue;
last_request = new_request;
cpufreq_sched_try_driver_target(policy, new_request);
}
} while (!kthread_should_stop());
return 0;
}
static void cpufreq_sched_irq_work(struct irq_work *irq_work)
{
struct gov_data *gd;
gd = container_of(irq_work, struct gov_data, irq_work);
if (!gd)
return;
wake_up_process(gd->task);
}
static void update_fdomain_capacity_request(int cpu)
{
unsigned int freq_new, index_new, cpu_tmp;
struct cpufreq_policy *policy;
struct gov_data *gd;
unsigned long capacity = 0;
/*
* Avoid grabbing the policy if possible. A test is still
* required after locking the CPU's policy to avoid racing
* with the governor changing.
*/
if (!per_cpu(enabled, cpu))
return;
policy = cpufreq_cpu_get(cpu);
if (IS_ERR_OR_NULL(policy))
return;
if (policy->governor != &cpufreq_gov_sched ||
!policy->governor_data)
goto out;
gd = policy->governor_data;
/* find max capacity requested by cpus in this policy */
for_each_cpu(cpu_tmp, policy->cpus) {
struct sched_capacity_reqs *scr;
scr = &per_cpu(cpu_sched_capacity_reqs, cpu_tmp);
capacity = max(capacity, scr->total);
}
/* Convert the new maximum capacity request into a cpu frequency */
freq_new = capacity * policy->max >> SCHED_CAPACITY_SHIFT;
index_new = cpufreq_frequency_table_target(policy, freq_new, CPUFREQ_RELATION_L);
freq_new = policy->freq_table[index_new].frequency;
if (freq_new > policy->max)
freq_new = policy->max;
if (freq_new < policy->min)
freq_new = policy->min;
trace_cpufreq_sched_request_opp(cpu, capacity, freq_new,
gd->requested_freq);
if (freq_new == gd->requested_freq)
goto out;
gd->requested_freq = freq_new;
/*
* Throttling is not yet supported on platforms with fast cpufreq
* drivers.
*/
if (cpufreq_driver_slow)
irq_work_queue_on(&gd->irq_work, cpu);
else
cpufreq_sched_try_driver_target(policy, freq_new);
out:
cpufreq_cpu_put(policy);
}
void update_cpu_capacity_request(int cpu, bool request)
{
unsigned long new_capacity;
struct sched_capacity_reqs *scr;
/* The rq lock serializes access to the CPU's sched_capacity_reqs. */
lockdep_assert_held(&cpu_rq(cpu)->lock);
scr = &per_cpu(cpu_sched_capacity_reqs, cpu);
new_capacity = scr->cfs + scr->rt;
new_capacity = new_capacity * capacity_margin
/ SCHED_CAPACITY_SCALE;
new_capacity += scr->dl;
if (new_capacity == scr->total)
return;
trace_cpufreq_sched_update_capacity(cpu, request, scr, new_capacity);
scr->total = new_capacity;
if (request)
update_fdomain_capacity_request(cpu);
}
static inline void set_sched_freq(void)
{
static_key_slow_inc(&__sched_freq);
}
static inline void clear_sched_freq(void)
{
static_key_slow_dec(&__sched_freq);
}
/* Tunables */
static struct gov_tunables *global_tunables;
static inline struct gov_tunables *to_tunables(struct gov_attr_set *attr_set)
{
return container_of(attr_set, struct gov_tunables, attr_set);
}
static ssize_t up_throttle_nsec_show(struct gov_attr_set *attr_set, char *buf)
{
struct gov_tunables *tunables = to_tunables(attr_set);
return sprintf(buf, "%u\n", tunables->up_throttle_nsec);
}
static ssize_t up_throttle_nsec_store(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct gov_tunables *tunables = to_tunables(attr_set);
int ret;
long unsigned int val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->up_throttle_nsec = val;
return count;
}
static ssize_t down_throttle_nsec_show(struct gov_attr_set *attr_set, char *buf)
{
struct gov_tunables *tunables = to_tunables(attr_set);
return sprintf(buf, "%u\n", tunables->down_throttle_nsec);
}
static ssize_t down_throttle_nsec_store(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct gov_tunables *tunables = to_tunables(attr_set);
int ret;
long unsigned int val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->down_throttle_nsec = val;
return count;
}
static struct governor_attr up_throttle_nsec = __ATTR_RW(up_throttle_nsec);
static struct governor_attr down_throttle_nsec = __ATTR_RW(down_throttle_nsec);
static struct attribute *schedfreq_attributes[] = {
&up_throttle_nsec.attr,
&down_throttle_nsec.attr,
NULL
};
static struct kobj_type tunables_ktype = {
.default_attrs = schedfreq_attributes,
.sysfs_ops = &governor_sysfs_ops,
};
static int cpufreq_sched_policy_init(struct cpufreq_policy *policy)
{
struct gov_data *gd;
int cpu;
int rc;
for_each_cpu(cpu, policy->cpus)
memset(&per_cpu(cpu_sched_capacity_reqs, cpu), 0,
sizeof(struct sched_capacity_reqs));
gd = kzalloc(sizeof(*gd), GFP_KERNEL);
if (!gd)
return -ENOMEM;
policy->governor_data = gd;
if (!global_tunables) {
gd->tunables = kzalloc(sizeof(*gd->tunables), GFP_KERNEL);
if (!gd->tunables)
goto free_gd;
gd->tunables->up_throttle_nsec =
policy->cpuinfo.transition_latency ?
policy->cpuinfo.transition_latency :
THROTTLE_UP_NSEC;
gd->tunables->down_throttle_nsec =
THROTTLE_DOWN_NSEC;
rc = kobject_init_and_add(&gd->tunables->attr_set.kobj,
&tunables_ktype,
get_governor_parent_kobj(policy),
"%s", cpufreq_gov_sched.name);
if (rc)
goto free_tunables;
gov_attr_set_init(&gd->tunables->attr_set,
&gd->tunables_hook);
pr_debug("%s: throttle_threshold = %u [ns]\n",
__func__, gd->tunables->up_throttle_nsec);
if (!have_governor_per_policy())
global_tunables = gd->tunables;
} else {
gd->tunables = global_tunables;
gov_attr_set_get(&global_tunables->attr_set,
&gd->tunables_hook);
}
policy->governor_data = gd;
if (cpufreq_driver_is_slow()) {
cpufreq_driver_slow = true;
gd->task = kthread_create(cpufreq_sched_thread, policy,
"kschedfreq:%d",
cpumask_first(policy->related_cpus));
if (IS_ERR_OR_NULL(gd->task)) {
pr_err("%s: failed to create kschedfreq thread\n",
__func__);
goto free_tunables;
}
get_task_struct(gd->task);
kthread_bind_mask(gd->task, policy->related_cpus);
wake_up_process(gd->task);
init_irq_work(&gd->irq_work, cpufreq_sched_irq_work);
}
set_sched_freq();
return 0;
free_tunables:
kfree(gd->tunables);
free_gd:
policy->governor_data = NULL;
kfree(gd);
return -ENOMEM;
}
static void cpufreq_sched_policy_exit(struct cpufreq_policy *policy)
{
unsigned int count;
struct gov_data *gd = policy->governor_data;
clear_sched_freq();
if (cpufreq_driver_slow) {
kthread_stop(gd->task);
put_task_struct(gd->task);
}
count = gov_attr_set_put(&gd->tunables->attr_set, &gd->tunables_hook);
if (!count) {
if (!have_governor_per_policy())
global_tunables = NULL;
kfree(gd->tunables);
}
policy->governor_data = NULL;
kfree(gd);
}
static int cpufreq_sched_start(struct cpufreq_policy *policy)
{
int cpu;
for_each_cpu(cpu, policy->cpus)
per_cpu(enabled, cpu) = 1;
return 0;
}
static void cpufreq_sched_limits(struct cpufreq_policy *policy)
{
unsigned int clamp_freq;
struct gov_data *gd = policy->governor_data;;
pr_debug("limit event for cpu %u: %u - %u kHz, currently %u kHz\n",
policy->cpu, policy->min, policy->max,
policy->cur);
clamp_freq = clamp(gd->requested_freq, policy->min, policy->max);
if (policy->cur != clamp_freq)
__cpufreq_driver_target(policy, clamp_freq, CPUFREQ_RELATION_L);
}
static void cpufreq_sched_stop(struct cpufreq_policy *policy)
{
int cpu;
for_each_cpu(cpu, policy->cpus)
per_cpu(enabled, cpu) = 0;
}
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHED
static
#endif
struct cpufreq_governor cpufreq_gov_sched = {
.name = "sched",
.init = cpufreq_sched_policy_init,
.exit = cpufreq_sched_policy_exit,
.start = cpufreq_sched_start,
.stop = cpufreq_sched_stop,
.limits = cpufreq_sched_limits,
.owner = THIS_MODULE,
};
static int __init cpufreq_sched_init(void)
{
int cpu;
for_each_cpu(cpu, cpu_possible_mask)
per_cpu(enabled, cpu) = 0;
return cpufreq_register_governor(&cpufreq_gov_sched);
}
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHED
struct cpufreq_governor *cpufreq_default_governor(void)
{
return &cpufreq_gov_sched;
}
#endif
/* Try to make this the default governor */
fs_initcall(cpufreq_sched_init);