blob: a59a7bea75a99e21aabfb8a30b6a2c2fb5c908fb [file] [log] [blame]
/*
* Synaptics RMI4 touchscreen driver
*
* Copyright (C) 2012 Synaptics Incorporated
*
* Copyright (C) 2012 Alexandra Chin <alexandra.chin@tw.synaptics.com>
* Copyright (C) 2012 Scott Lin <scott.lin@tw.synaptics.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/input/synaptics_dsx.h>
#include "synaptics_i2c_rmi4.h"
#ifdef SENSOR_ID_SUPPORT
#define SENPR_ID_PIN1 9 /* sensor id pin 1st */
#define SENPR_ID_PIN2 11 /* sensor id pin 2nd */
#define SENPR_ID_PIN_NULL (-1)
#define SENSOR_ID_PIN_MASK
#define SENSOR_ID_PULLUP_MASK
#define SENSOR_VENDOR_1 ".vendor1"
#define SENSOR_VENDOR_2 ".vendor2"
#define SENSOR_VENDOR_3 ".vendor3"
#endif
#define DEBUG_FW_UPDATE
#define SHOW_PROGRESS
#define FW_IMAGE_NAME "PR1116007_00000002.img"
#define MAX_FIRMWARE_ID_LEN 10
#define FORCE_UPDATE false
#define INSIDE_FIRMWARE_UPDATE
#define FW_IMAGE_OFFSET 0x100
#define BOOTLOADER_ID_OFFSET 0
#define FLASH_PROPERTIES_OFFSET 2
#define BLOCK_SIZE_OFFSET 3
#define FW_BLOCK_COUNT_OFFSET 5
#define REG_MAP (1 << 0)
#define UNLOCKED (1 << 1)
#define HAS_CONFIG_ID (1 << 2)
#define HAS_PERM_CONFIG (1 << 3)
#define HAS_BL_CONFIG (1 << 4)
#define HAS_DISP_CONFIG (1 << 5)
#define HAS_CTRL1 (1 << 6)
#define BLOCK_NUMBER_OFFSET 0
#define BLOCK_DATA_OFFSET 2
#define NAME_BUFFER_SIZE 128
enum flash_config_area {
UI_CONFIG_AREA = 0x00,
PERM_CONFIG_AREA = 0x01,
BL_CONFIG_AREA = 0x02,
DISP_CONFIG_AREA = 0x03
};
enum flash_command {
CMD_WRITE_FW_BLOCK = 0x2,
CMD_ERASE_ALL = 0x3,
CMD_READ_CONFIG_BLOCK = 0x5,
CMD_WRITE_CONFIG_BLOCK = 0x6,
CMD_ERASE_CONFIG = 0x7,
CMD_READ_SENSOR_ID = 0x8,
CMD_ERASE_BL_CONFIG = 0x9,
CMD_ERASE_DISP_CONFIG = 0xA,
CMD_ENABLE_FLASH_PROG = 0xF
};
enum flash_area {
NONE,
UI_FIRMWARE,
CONFIG_AREA
};
enum image_file_option {
OPTION_BUILD_INFO = 0,
OPTION_CONTAIN_BOOTLOADER = 1,
};
#define SLEEP_MODE_NORMAL (0x00)
#define SLEEP_MODE_SENSOR_SLEEP (0x01)
#define SLEEP_MODE_RESERVED0 (0x02)
#define SLEEP_MODE_RESERVED1 (0x03)
#define ENABLE_WAIT_MS (1 * 1000)
#define WRITE_WAIT_MS (3 * 1000)
#define ERASE_WAIT_MS (5 * 1000)
#define RESET_WAIT_MS (500)
#define POLLING_MODE 0
#define SLEEP_TIME_US 50
static ssize_t fwu_sysfs_show_image(struct file *data_file,
struct kobject *kobj, struct bin_attribute *attributes,
char *buf, loff_t pos, size_t count);
static ssize_t fwu_sysfs_store_image(struct file *data_file,
struct kobject *kobj, struct bin_attribute *attributes,
char *buf, loff_t pos, size_t count);
static ssize_t fwu_sysfs_do_reflash_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t fwu_sysfs_write_config_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t fwu_sysfs_read_config_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t fwu_sysfs_config_area_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t fwu_sysfs_image_size_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t fwu_sysfs_block_size_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t fwu_sysfs_firmware_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t fwu_sysfs_configuration_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t fwu_sysfs_perm_config_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t fwu_sysfs_bl_config_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t fwu_sysfs_disp_config_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf);
static int fwu_wait_for_idle(int timeout_ms);
struct image_header_data {
union {
struct {
/* 0x00-0x0F */
unsigned char file_checksum[4];
unsigned char reserved_04;
unsigned char reserved_05;
unsigned char options_firmware_id:1;
unsigned char options_contain_bootloader:1;
unsigned char options_reserved:6;
unsigned char bootloader_version;
unsigned char firmware_size[4];
unsigned char config_size[4];
/* 0x10-0x1F */
unsigned char product_id[SYNAPTICS_RMI4_PRODUCT_ID_SIZE];
unsigned char reserved_1a;
unsigned char reserved_1b;
unsigned char reserved_1c;
unsigned char reserved_1d;
unsigned char product_info[SYNAPTICS_RMI4_PRODUCT_INFO_SIZE];
/* 0x20-0x2F */
unsigned char reserved_20_2f[0x10];
/* 0x30-0x3F */
unsigned char ds_firmware_id[0x10];
/* 0x40-0x4F */
unsigned char ds_customize_info[10];
unsigned char reserved_4a_4f[6];
/* 0x50-0x53*/
unsigned char firmware_id[4];
} __packed;
unsigned char data[54];
};
};
struct image_header {
unsigned int checksum;
unsigned int image_size;
unsigned int config_size;
unsigned char options;
unsigned char bootloader_version;
unsigned char product_id[SYNAPTICS_RMI4_PRODUCT_ID_SIZE + 1];
unsigned char product_info[SYNAPTICS_RMI4_PRODUCT_INFO_SIZE];
unsigned int firmware_id;
bool is_contain_build_info;
};
struct pdt_properties {
union {
struct {
unsigned char reserved_1:6;
unsigned char has_bsr:1;
unsigned char reserved_2:1;
} __packed;
unsigned char data[1];
};
};
struct f01_device_status {
union {
struct {
unsigned char status_code:4;
unsigned char reserved:2;
unsigned char flash_prog:1;
unsigned char unconfigured:1;
} __packed;
unsigned char data[1];
};
};
struct f01_device_control {
union {
struct {
unsigned char sleep_mode:2;
unsigned char nosleep:1;
unsigned char reserved:2;
unsigned char charger_connected:1;
unsigned char report_rate:1;
unsigned char configured:1;
} __packed;
unsigned char data[1];
};
};
struct f34_flash_control {
union {
struct {
unsigned char command:4;
unsigned char status:3;
unsigned char program_enabled:1;
} __packed;
unsigned char data[1];
};
};
struct f34_flash_properties {
union {
struct {
unsigned char regmap:1;
unsigned char unlocked:1;
unsigned char has_configid:1;
unsigned char has_perm_config:1;
unsigned char has_bl_config:1;
unsigned char has_display_config:1;
unsigned char has_blob_config:1;
unsigned char reserved:1;
} __packed;
unsigned char data[1];
};
};
struct synaptics_rmi4_fwu_handle {
bool initialized;
bool force_update;
char product_id[SYNAPTICS_RMI4_PRODUCT_ID_SIZE + 1];
unsigned int image_size;
unsigned int data_pos;
unsigned char intr_mask;
unsigned char bootloader_id[2];
unsigned char productinfo1;
unsigned char productinfo2;
unsigned char *ext_data_source;
unsigned char *read_config_buf;
const unsigned char *firmware_data;
const unsigned char *config_data;
unsigned short block_size;
unsigned short fw_block_count;
unsigned short config_block_count;
unsigned short perm_config_block_count;
unsigned short bl_config_block_count;
unsigned short disp_config_block_count;
unsigned short config_size;
unsigned short config_area;
unsigned short addr_f34_flash_control;
unsigned short addr_f01_interrupt_register;
struct synaptics_rmi4_fn_desc f01_fd;
struct synaptics_rmi4_fn_desc f34_fd;
struct synaptics_rmi4_exp_fn_ptr *fn_ptr;
struct synaptics_rmi4_data *rmi4_data;
struct f34_flash_control flash_control;
struct f34_flash_properties flash_properties;
struct workqueue_struct *fwu_workqueue;
struct delayed_work fwu_work;
#ifdef SENSOR_ID_SUPPORT
unsigned short sensor_id_pin_mask;
unsigned short sensor_id_pullup_mask;
#endif
char *firmware_name;
};
static struct bin_attribute dev_attr_data = {
.attr = {
.name = "data",
.mode = (S_IRUGO | S_IWUGO),
},
.size = 0,
.read = fwu_sysfs_show_image,
.write = fwu_sysfs_store_image,
};
static struct device_attribute attrs[] = {
__ATTR(doreflash, S_IWUGO,
synaptics_rmi4_show_error,
fwu_sysfs_do_reflash_store),
__ATTR(writeconfig, S_IWUGO,
synaptics_rmi4_show_error,
fwu_sysfs_write_config_store),
__ATTR(readconfig, S_IWUGO,
synaptics_rmi4_show_error,
fwu_sysfs_read_config_store),
__ATTR(configarea, S_IWUGO,
synaptics_rmi4_show_error,
fwu_sysfs_config_area_store),
__ATTR(imagesize, S_IWUGO,
synaptics_rmi4_show_error,
fwu_sysfs_image_size_store),
__ATTR(blocksize, S_IRUGO,
fwu_sysfs_block_size_show,
synaptics_rmi4_store_error),
__ATTR(fwblockcount, S_IRUGO,
fwu_sysfs_firmware_block_count_show,
synaptics_rmi4_store_error),
__ATTR(configblockcount, S_IRUGO,
fwu_sysfs_configuration_block_count_show,
synaptics_rmi4_store_error),
__ATTR(permconfigblockcount, S_IRUGO,
fwu_sysfs_perm_config_block_count_show,
synaptics_rmi4_store_error),
__ATTR(blconfigblockcount, S_IRUGO,
fwu_sysfs_bl_config_block_count_show,
synaptics_rmi4_store_error),
__ATTR(dispconfigblockcount, S_IRUGO,
fwu_sysfs_disp_config_block_count_show,
synaptics_rmi4_store_error),
};
static struct synaptics_rmi4_fwu_handle *fwu;
static struct completion remove_complete;
static unsigned int extract_uint(const unsigned char *ptr)
{
return (unsigned int)ptr[0] +
(unsigned int)ptr[1] * 0x100 +
(unsigned int)ptr[2] * 0x10000 +
(unsigned int)ptr[3] * 0x1000000;
}
static unsigned int extract_uint_be(const unsigned char *ptr)
{
return (unsigned int)ptr[3] +
(unsigned int)ptr[2] * 0x100 +
(unsigned int)ptr[1] * 0x10000 +
(unsigned int)ptr[0] * 0x1000000;
}
static void parse_header(struct image_header *header,
const unsigned char *fw_image)
{
struct image_header_data *data = (struct image_header_data *)fw_image;
header->checksum = extract_uint(data->file_checksum);
header->bootloader_version = data->bootloader_version;
header->image_size = extract_uint(data->firmware_size);
header->config_size = extract_uint(data->config_size);
memcpy(header->product_id, data->product_id,
sizeof(data->product_id));
header->product_id[sizeof(data->product_info)] = 0;
memcpy(header->product_info, data->product_info,
sizeof(data->product_info));
header->is_contain_build_info =
(data->options_firmware_id == (1 << OPTION_BUILD_INFO));
if (header->is_contain_build_info) {
header->firmware_id = extract_uint(data->firmware_id);
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s Firwmare build id %d\n",
__func__,
header->firmware_id);
}
#ifdef DEBUG_FW_UPDATE
dev_info(&fwu->rmi4_data->i2c_client->dev,
"Firwmare size %d, config size %d\n",
header->image_size,
header->config_size);
#endif
return;
}
static int fwu_read_f01_device_status(struct f01_device_status *status)
{
int retval;
retval = fwu->fn_ptr->read(fwu->rmi4_data,
fwu->f01_fd.data_base_addr,
status->data,
sizeof(status->data));
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to read F01 device status\n",
__func__);
return retval;
}
return 0;
}
static int fwu_read_f34_queries(void)
{
int retval;
unsigned char count = 4;
unsigned char buf[10];
struct i2c_client *i2c_client = fwu->rmi4_data->i2c_client;
retval = fwu->fn_ptr->read(fwu->rmi4_data,
fwu->f34_fd.query_base_addr + BOOTLOADER_ID_OFFSET,
fwu->bootloader_id,
sizeof(fwu->bootloader_id));
if (retval < 0) {
dev_err(&i2c_client->dev,
"%s: Failed to read bootloader ID\n",
__func__);
return retval;
}
retval = fwu->fn_ptr->read(fwu->rmi4_data,
fwu->f34_fd.query_base_addr + FLASH_PROPERTIES_OFFSET,
fwu->flash_properties.data,
sizeof(fwu->flash_properties.data));
if (retval < 0) {
dev_err(&i2c_client->dev,
"%s: Failed to read flash properties\n",
__func__);
return retval;
}
dev_info(&i2c_client->dev, "%s perm:%d, bl:%d, display:%d\n",
__func__,
fwu->flash_properties.has_perm_config,
fwu->flash_properties.has_bl_config,
fwu->flash_properties.has_display_config);
if (fwu->flash_properties.has_perm_config)
count += 2;
if (fwu->flash_properties.has_bl_config)
count += 2;
if (fwu->flash_properties.has_display_config)
count += 2;
retval = fwu->fn_ptr->read(fwu->rmi4_data,
fwu->f34_fd.query_base_addr + BLOCK_SIZE_OFFSET,
buf,
2);
if (retval < 0) {
dev_err(&i2c_client->dev,
"%s: Failed to read block size info\n",
__func__);
return retval;
}
batohs(&fwu->block_size, &(buf[0]));
retval = fwu->fn_ptr->read(fwu->rmi4_data,
fwu->f34_fd.query_base_addr + FW_BLOCK_COUNT_OFFSET,
buf,
count);
if (retval < 0) {
dev_err(&i2c_client->dev,
"%s: Failed to read block count info\n",
__func__);
return retval;
}
batohs(&fwu->fw_block_count, &(buf[0]));
batohs(&fwu->config_block_count, &(buf[2]));
count = 4;
if (fwu->flash_properties.has_perm_config) {
batohs(&fwu->perm_config_block_count, &(buf[count]));
count += 2;
}
if (fwu->flash_properties.has_bl_config) {
batohs(&fwu->bl_config_block_count, &(buf[count]));
count += 2;
}
if (fwu->flash_properties.has_display_config)
batohs(&fwu->disp_config_block_count, &(buf[count]));
fwu->addr_f34_flash_control = fwu->f34_fd.data_base_addr +
BLOCK_DATA_OFFSET +
fwu->block_size;
return 0;
}
static int fwu_read_interrupt_status(void)
{
int retval;
unsigned char interrupt_status;
retval = fwu->fn_ptr->read(fwu->rmi4_data,
fwu->addr_f01_interrupt_register,
&interrupt_status,
sizeof(interrupt_status));
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to read flash status\n",
__func__);
return retval;
}
return interrupt_status;
}
static int fwu_read_f34_flash_status(void)
{
int retval;
retval = fwu->fn_ptr->read(fwu->rmi4_data,
fwu->addr_f34_flash_control,
fwu->flash_control.data,
sizeof(fwu->flash_control.data));
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to read flash status\n",
__func__);
return retval;
}
return 0;
}
static int fwu_reset_device(void)
{
int retval;
#ifdef DEBUG_FW_UPDATE
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Reset device\n",
__func__);
#endif
retval = fwu->rmi4_data->reset_device(fwu->rmi4_data);
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to reset core driver after reflash\n",
__func__);
return retval;
}
return 0;
}
static int fwu_write_f34_command(unsigned char cmd)
{
int retval;
fwu->flash_control.data[0] = cmd;
retval = fwu->fn_ptr->write(fwu->rmi4_data,
fwu->addr_f34_flash_control,
fwu->flash_control.data,
sizeof(fwu->flash_control.data));
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to write command 0x%02x\n",
__func__, fwu->flash_control.data[0]);
return retval;
}
return 0;
}
static int fwu_wait_for_idle(int timeout_ms)
{
int count = 0;
int timeout_count = ((timeout_ms * 1000) / SLEEP_TIME_US) + 1;
do {
#if POLLING_MODE
fwu_read_f34_flash_status();
#endif
if (fwu->flash_control.command == 0x00)
return 0;
usleep_range(SLEEP_TIME_US, SLEEP_TIME_US + 100);
} while (count++ < timeout_count);
fwu_read_f34_flash_status();
if (fwu->flash_control.command == 0x00)
return 0;
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Timed out waiting for idle status\n",
__func__);
return -ETIMEDOUT;
}
static enum flash_area fwu_go_nogo(struct image_header *header)
{
int retval = 0;
int index = 0;
int deviceFirmwareID;
int imageConfigID;
int deviceConfigID;
unsigned long imageFirmwareID;
unsigned char firmware_id[4];
unsigned char config_id[4];
char *strptr;
char *imagePR = kzalloc(sizeof(MAX_FIRMWARE_ID_LEN), GFP_KERNEL);
enum flash_area flash_area = NONE;
struct i2c_client *i2c_client = fwu->rmi4_data->i2c_client;
struct f01_device_status f01_device_status;
if (fwu->force_update) {
flash_area = UI_FIRMWARE;
goto exit;
}
retval = fwu_read_f01_device_status(&f01_device_status);
if (retval < 0) {
flash_area = NONE;
goto exit;
}
/* Force update firmware when device is in bootloader mode */
if (f01_device_status.flash_prog) {
dev_info(&i2c_client->dev,
"%s: In flash prog mode\n",
__func__);
flash_area = UI_FIRMWARE;
goto exit;
}
/* device firmware id */
retval = fwu->fn_ptr->read(fwu->rmi4_data,
fwu->f01_fd.query_base_addr + 18,
firmware_id,
sizeof(firmware_id));
if (retval < 0) {
dev_err(&i2c_client->dev,
"%s: Failed to read firmware ID (code %d).\n",
__func__,
retval);
goto exit;
}
firmware_id[3] = 0;
deviceFirmwareID = extract_uint(firmware_id);
/* .img firmware id */
if (header->is_contain_build_info) {
dev_err(&i2c_client->dev,
"%s: Image option contains build info.\n",
__func__);
imageFirmwareID = header->firmware_id;
} else {
strptr = strstr(fwu->firmware_name, "PR");
if (!strptr) {
dev_err(&i2c_client->dev,
"%s: No valid PR number (PRxxxxxxx)" \
"found in image file name...\n", __func__);
goto exit;
}
strptr += 2;
while (strptr[index] >= '0' && strptr[index] <= '9') {
imagePR[index] = strptr[index];
index++;
}
imagePR[index] = 0;
retval = sstrtoul(imagePR, 10, &imageFirmwareID);
if (retval == -EINVAL) {
dev_err(&i2c_client->dev,
"%s: Invalid image firmware id...\n",
__func__);
goto exit;
}
}
dev_dbg(&i2c_client->dev,
"%s: Device firmware id %d, .img firmware id %d\n",
__func__,
deviceFirmwareID,
(unsigned int)imageFirmwareID);
if (imageFirmwareID > deviceFirmwareID) {
flash_area = UI_FIRMWARE;
goto exit;
} else if (imageFirmwareID < deviceFirmwareID) {
flash_area = NONE;
dev_info(&i2c_client->dev,
"%s: Img fw is older than device fw. Skip fw update.\n",
__func__);
goto exit;
}
/* device config id */
retval = fwu->fn_ptr->read(fwu->rmi4_data,
fwu->f34_fd.ctrl_base_addr,
config_id,
sizeof(config_id));
if (retval < 0) {
dev_err(&i2c_client->dev,
"%s: Failed to read config ID (code %d).\n",
__func__,
retval);
flash_area = NONE;
goto exit;
}
deviceConfigID = extract_uint_be(config_id);
dev_dbg(&i2c_client->dev,
"%s: Device config ID 0x%02X, 0x%02X, 0x%02X, 0x%02X\n",
__func__,
config_id[0], config_id[1], config_id[2], config_id[3]);
/* .img config id */
dev_dbg(&i2c_client->dev,
"%s .img config ID 0x%02X, 0x%02X, 0x%02X, 0x%02X\n",
__func__,
fwu->config_data[0],
fwu->config_data[1],
fwu->config_data[2],
fwu->config_data[3]);
imageConfigID = extract_uint_be(fwu->config_data);
dev_dbg(&i2c_client->dev,
"%s: Device config ID %d, .img config ID %d\n",
__func__, deviceConfigID, imageConfigID);
if (imageConfigID > deviceConfigID) {
flash_area = CONFIG_AREA;
goto exit;
}
exit:
kfree(imagePR);
if (flash_area == NONE)
dev_info(&i2c_client->dev,
"%s: Nothing needs to be updated\n", __func__);
else
dev_info(&i2c_client->dev,
"%s: Update %s block\n",
__func__,
flash_area == UI_FIRMWARE ? "UI FW" : "CONFIG");
return flash_area;
}
static int fwu_scan_pdt(void)
{
int retval;
unsigned char ii;
unsigned char intr_count = 0;
unsigned char intr_off;
unsigned char intr_src;
unsigned short addr;
bool f01found = false;
bool f34found = false;
struct synaptics_rmi4_fn_desc rmi_fd;
#ifdef DEBUG_FW_UPDATE
dev_info(&fwu->rmi4_data->i2c_client->dev, "Scan PDT\n");
#endif
for (addr = PDT_START; addr > PDT_END; addr -= PDT_ENTRY_SIZE) {
retval = fwu->fn_ptr->read(fwu->rmi4_data,
addr,
(unsigned char *)&rmi_fd,
sizeof(rmi_fd));
if (retval < 0)
return retval;
if (rmi_fd.fn_number) {
dev_dbg(&fwu->rmi4_data->i2c_client->dev,
"%s: Found F%02x\n",
__func__, rmi_fd.fn_number);
switch (rmi_fd.fn_number) {
case SYNAPTICS_RMI4_F01:
f01found = true;
fwu->f01_fd = rmi_fd;
fwu->addr_f01_interrupt_register =
fwu->f01_fd.data_base_addr + 1;
break;
case SYNAPTICS_RMI4_F34:
f34found = true;
fwu->f34_fd = rmi_fd;
fwu->intr_mask = 0;
intr_src = rmi_fd.intr_src_count;
intr_off = intr_count % 8;
for (ii = intr_off;
ii < ((intr_src & MASK_3BIT) +
intr_off);
ii++)
fwu->intr_mask |= 1 << ii;
break;
}
} else
break;
intr_count += (rmi_fd.intr_src_count & MASK_3BIT);
}
if (!f01found || !f34found) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to find both F01 and F34\n",
__func__);
return -EINVAL;
}
fwu_read_interrupt_status();
return 0;
}
static int fwu_write_blocks(unsigned char *block_ptr, unsigned short block_cnt,
unsigned char command)
{
int retval;
unsigned char block_offset[] = {0, 0};
unsigned short block_num;
struct i2c_client *i2c_client = fwu->rmi4_data->i2c_client;
#ifdef SHOW_PROGRESS
unsigned int progress = (command == CMD_WRITE_CONFIG_BLOCK) ?
10 : 100;
#endif
#ifdef DEBUG_FW_UPDATE
dev_info(&i2c_client->dev,
"%s: Start to update %s blocks\n",
__func__,
command == CMD_WRITE_CONFIG_BLOCK ?
"config" : "firmware");
#endif
retval = fwu->fn_ptr->write(fwu->rmi4_data,
fwu->f34_fd.data_base_addr + BLOCK_NUMBER_OFFSET,
block_offset,
sizeof(block_offset));
if (retval < 0) {
dev_err(&i2c_client->dev,
"%s: Failed to write to block number registers\n",
__func__);
return retval;
}
for (block_num = 0; block_num < block_cnt; block_num++) {
#ifdef SHOW_PROGRESS
if (block_num % progress == 0)
dev_info(&i2c_client->dev,
"%s: update %s %3d / %3d\n",
__func__,
command == CMD_WRITE_CONFIG_BLOCK ?
"config" : "firmware",
block_num, block_cnt);
#endif
retval = fwu->fn_ptr->write(fwu->rmi4_data,
fwu->f34_fd.data_base_addr + BLOCK_DATA_OFFSET,
block_ptr,
fwu->block_size);
if (retval < 0) {
dev_err(&i2c_client->dev,
"%s: Failed to write block data (block %d)\n",
__func__, block_num);
return retval;
}
retval = fwu_write_f34_command(command);
if (retval < 0) {
dev_err(&i2c_client->dev,
"%s: Failed to write command for block %d\n",
__func__, block_num);
return retval;
}
retval = fwu_wait_for_idle(WRITE_WAIT_MS);
if (retval < 0) {
dev_err(&i2c_client->dev,
"%s: Failed to wait for idle status (block %d)\n",
__func__, block_num);
return retval;
}
if (fwu->flash_control.status != 0x00) {
dev_err(&i2c_client->dev,
"%s: Flash block %d failed, status 0x%02X\n",
__func__, block_num, retval);
return -1;
}
block_ptr += fwu->block_size;
}
#ifdef SHOW_PROGRESS
dev_info(&i2c_client->dev,
"%s: update %s %3d / %3d\n",
__func__,
command == CMD_WRITE_CONFIG_BLOCK ?
"config" : "firmware",
block_cnt, block_cnt);
#endif
return 0;
}
static int fwu_write_firmware(void)
{
return fwu_write_blocks((unsigned char *)fwu->firmware_data,
fwu->fw_block_count, CMD_WRITE_FW_BLOCK);
}
static int fwu_write_configuration(void)
{
return fwu_write_blocks((unsigned char *)fwu->config_data,
fwu->config_block_count, CMD_WRITE_CONFIG_BLOCK);
}
static int fwu_write_bootloader_id(void)
{
int retval;
#ifdef DEBUG_FW_UPDATE
dev_info(&fwu->rmi4_data->i2c_client->dev,
"Write bootloader ID 0x%02X 0x%02X\n",
fwu->bootloader_id[0],
fwu->bootloader_id[1]);
#endif
retval = fwu->fn_ptr->write(fwu->rmi4_data,
fwu->f34_fd.data_base_addr + BLOCK_DATA_OFFSET,
fwu->bootloader_id,
sizeof(fwu->bootloader_id));
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to write bootloader ID\n",
__func__);
return retval;
}
return 0;
}
static int fwu_enter_flash_prog(void)
{
int retval;
struct f01_device_status f01_device_status;
struct f01_device_control f01_device_control;
#ifdef DEBUG_FW_UPDATE
dev_info(&fwu->rmi4_data->i2c_client->dev, "Enter bootloader mode\n");
#endif
retval = fwu_read_f01_device_status(&f01_device_status);
if (retval < 0)
return retval;
if (f01_device_status.flash_prog) {
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Already in flash prog mode\n",
__func__);
return 0;
}
retval = fwu_write_bootloader_id();
if (retval < 0)
return retval;
retval = fwu_write_f34_command(CMD_ENABLE_FLASH_PROG);
if (retval < 0)
return retval;
retval = fwu_wait_for_idle(ENABLE_WAIT_MS);
if (retval < 0)
return retval;
retval = fwu_scan_pdt();
if (retval < 0)
return retval;
retval = fwu_read_f01_device_status(&f01_device_status);
if (retval < 0)
return retval;
if (!f01_device_status.flash_prog) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Not in flash prog mode\n",
__func__);
return -EINVAL;
}
retval = fwu_read_f34_queries();
if (retval < 0)
return retval;
retval = fwu->fn_ptr->read(fwu->rmi4_data,
fwu->f01_fd.ctrl_base_addr,
f01_device_control.data,
sizeof(f01_device_control.data));
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to read F01 device control\n",
__func__);
return retval;
}
f01_device_control.nosleep = true;
f01_device_control.sleep_mode = SLEEP_MODE_NORMAL;
retval = fwu->fn_ptr->write(fwu->rmi4_data,
fwu->f01_fd.ctrl_base_addr,
f01_device_control.data,
sizeof(f01_device_control.data));
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to write F01 device control\n",
__func__);
return retval;
}
return retval;
}
static int fwu_do_reflash(void)
{
int retval;
retval = fwu_enter_flash_prog();
if (retval < 0)
return retval;
dev_dbg(&fwu->rmi4_data->i2c_client->dev,
"%s: Entered flash prog mode\n",
__func__);
retval = fwu_write_bootloader_id();
if (retval < 0)
return retval;
dev_dbg(&fwu->rmi4_data->i2c_client->dev,
"%s: Bootloader ID written\n",
__func__);
retval = fwu_write_f34_command(CMD_ERASE_ALL);
if (retval < 0)
return retval;
dev_dbg(&fwu->rmi4_data->i2c_client->dev,
"%s: Erase all command written\n",
__func__);
retval = fwu_wait_for_idle(ERASE_WAIT_MS);
if (retval < 0)
return retval;
if (fwu->flash_control.status != 0x00) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Erase all command failed, status 0x%02X\n",
__func__, retval);
return -1;
}
if (fwu->firmware_data) {
retval = fwu_write_firmware();
if (retval < 0)
return retval;
pr_notice("%s: Firmware programmed\n", __func__);
}
if (fwu->config_data) {
retval = fwu_write_configuration();
if (retval < 0)
return retval;
pr_notice("%s: Configuration programmed\n", __func__);
}
return retval;
}
static int fwu_do_write_config(void)
{
int retval;
retval = fwu_enter_flash_prog();
if (retval < 0)
return retval;
dev_dbg(&fwu->rmi4_data->i2c_client->dev,
"%s: Entered flash prog mode\n",
__func__);
if (fwu->config_area == PERM_CONFIG_AREA) {
fwu->config_block_count = fwu->perm_config_block_count;
goto write_config;
}
retval = fwu_write_bootloader_id();
if (retval < 0)
return retval;
dev_dbg(&fwu->rmi4_data->i2c_client->dev,
"%s: Bootloader ID written\n",
__func__);
switch (fwu->config_area) {
case UI_CONFIG_AREA:
retval = fwu_write_f34_command(CMD_ERASE_CONFIG);
break;
case BL_CONFIG_AREA:
retval = fwu_write_f34_command(CMD_ERASE_BL_CONFIG);
fwu->config_block_count = fwu->bl_config_block_count;
break;
case DISP_CONFIG_AREA:
retval = fwu_write_f34_command(CMD_ERASE_DISP_CONFIG);
fwu->config_block_count = fwu->disp_config_block_count;
break;
}
if (retval < 0)
return retval;
dev_dbg(&fwu->rmi4_data->i2c_client->dev,
"%s: Erase command written\n",
__func__);
retval = fwu_wait_for_idle(ERASE_WAIT_MS);
if (retval < 0)
return retval;
dev_dbg(&fwu->rmi4_data->i2c_client->dev,
"%s: Idle status detected\n",
__func__);
write_config:
retval = fwu_write_configuration();
if (retval < 0)
return retval;
pr_notice("%s: Config written\n", __func__);
return retval;
}
static int fwu_start_write_config(void)
{
int retval;
struct image_header header;
switch (fwu->config_area) {
case UI_CONFIG_AREA:
break;
case PERM_CONFIG_AREA:
if (!fwu->flash_properties.has_perm_config)
return -EINVAL;
break;
case BL_CONFIG_AREA:
if (!fwu->flash_properties.has_bl_config)
return -EINVAL;
break;
case DISP_CONFIG_AREA:
if (!fwu->flash_properties.has_display_config)
return -EINVAL;
break;
default:
return -EINVAL;
}
if (fwu->ext_data_source)
fwu->config_data = fwu->ext_data_source;
else
return -EINVAL;
if (fwu->config_area == UI_CONFIG_AREA) {
parse_header(&header, fwu->ext_data_source);
if (header.config_size) {
fwu->config_data = fwu->ext_data_source +
FW_IMAGE_OFFSET +
header.image_size;
} else {
return -EINVAL;
}
}
pr_notice("%s: Start of write config process\n", __func__);
retval = fwu_do_write_config();
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to write config\n",
__func__);
}
fwu->rmi4_data->reset_device(fwu->rmi4_data);
pr_notice("%s: End of write config process\n", __func__);
return retval;
}
static int fwu_do_read_config(void)
{
int retval;
unsigned char block_offset[] = {0, 0};
unsigned short block_num;
unsigned short block_count;
unsigned short index = 0;
retval = fwu_enter_flash_prog();
if (retval < 0)
goto exit;
dev_dbg(&fwu->rmi4_data->i2c_client->dev,
"%s: Entered flash prog mode\n",
__func__);
switch (fwu->config_area) {
case UI_CONFIG_AREA:
block_count = fwu->config_block_count;
break;
case PERM_CONFIG_AREA:
if (!fwu->flash_properties.has_perm_config) {
retval = -EINVAL;
goto exit;
}
block_count = fwu->perm_config_block_count;
break;
case BL_CONFIG_AREA:
if (!fwu->flash_properties.has_bl_config) {
retval = -EINVAL;
goto exit;
}
block_count = fwu->bl_config_block_count;
break;
case DISP_CONFIG_AREA:
if (!fwu->flash_properties.has_display_config) {
retval = -EINVAL;
goto exit;
}
block_count = fwu->disp_config_block_count;
break;
default:
retval = -EINVAL;
goto exit;
}
fwu->config_size = fwu->block_size * block_count;
kfree(fwu->read_config_buf);
fwu->read_config_buf = kzalloc(fwu->config_size, GFP_KERNEL);
block_offset[1] |= (fwu->config_area << 5);
retval = fwu->fn_ptr->write(fwu->rmi4_data,
fwu->f34_fd.data_base_addr + BLOCK_NUMBER_OFFSET,
block_offset,
sizeof(block_offset));
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to write to block number registers\n",
__func__);
goto exit;
}
for (block_num = 0; block_num < block_count; block_num++) {
retval = fwu_write_f34_command(CMD_READ_CONFIG_BLOCK);
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to write read config command\n",
__func__);
goto exit;
}
retval = fwu_wait_for_idle(WRITE_WAIT_MS);
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to wait for idle status\n",
__func__);
goto exit;
}
retval = fwu->fn_ptr->read(fwu->rmi4_data,
fwu->f34_fd.data_base_addr + BLOCK_DATA_OFFSET,
&fwu->read_config_buf[index],
fwu->block_size);
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to read block data (block %d)\n",
__func__, block_num);
goto exit;
}
index += fwu->block_size;
}
exit:
fwu->rmi4_data->reset_device(fwu->rmi4_data);
return retval;
}
#ifdef SENSOR_ID_SUPPORT
static void synaptics_rmi4_fwu_config_sensor_id(void)
{
int i;
char sensor_id_pin[2] = {SENPR_ID_PIN1, SENPR_ID_PIN2};
for (i = 0; i < sizeof(sensor_id_pin); i++) {
if (sensor_id_pin[i] != SENPR_ID_PIN_NULL) {
fwu->sensor_id_pin_mask |= (0x01 << sensor_id_pin[i]);
fwu->sensor_id_pullup_mask |=
(0x01 << sensor_id_pin[i]);
} else {
break;
}
}
dev_info(&fwu->rmi4_data->i2c_client->dev,
"Sensor ID pin mask %#04X, pullup mask %#04X\n",
fwu->sensor_id_pin_mask,
fwu->sensor_id_pullup_mask);
}
static int fwu_read_sensor_id(void)
{
int retval;
unsigned char sensor_id_pin_mask[2];
unsigned char sensor_id_pullup_mask[2];
unsigned char sensor_id_data[2];
unsigned short sensor_id;
retval = fwu_enter_flash_prog();
if (retval < 0)
return retval;
dev_dbg(&fwu->rmi4_data->i2c_client->dev,
"%s: Entered flash prog mode\n",
__func__);
/* set sensor id mask */
sensor_id_pin_mask[0] = fwu->sensor_id_pin_mask & 0xFF;
sensor_id_pin_mask[1] = (fwu->sensor_id_pin_mask & 0xFF00) >> 8;
retval = fwu->fn_ptr->write(fwu->rmi4_data,
fwu->f34_fd.data_base_addr + BLOCK_DATA_OFFSET,
sensor_id_pin_mask,
2);
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to write sensor id pin mask)\n",
__func__);
return retval;
}
/* set sensor id pullup mask */
sensor_id_pullup_mask[0] = fwu->sensor_id_pullup_mask & 0xFF;
sensor_id_pullup_mask[1] = (fwu->sensor_id_pullup_mask & 0xFF00) >> 8;
retval = fwu->fn_ptr->write(fwu->rmi4_data,
fwu->f34_fd.data_base_addr + BLOCK_DATA_OFFSET + 2,
sensor_id_pullup_mask,
2);
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to write sensor id pullup mask\n",
__func__);
return retval;
}
retval = fwu_write_f34_command(CMD_READ_SENSOR_ID);
if (retval < 0)
return retval;
dev_dbg(&fwu->rmi4_data->i2c_client->dev,
"%s: Erase command written\n",
__func__);
retval = fwu_wait_for_idle(ERASE_WAIT_MS);
if (retval < 0)
return retval;
dev_dbg(&fwu->rmi4_data->i2c_client->dev,
"%s: Idle status detected\n",
__func__);
/* read sensor id */
retval = fwu->fn_ptr->read(fwu->rmi4_data,
fwu->f34_fd.data_base_addr + BLOCK_DATA_OFFSET + 4,
sensor_id_data,
2);
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to read sensor id data\n",
__func__);
return retval;
}
sensor_id = sensor_id_data[0] |
((unsigned short)sensor_id_data[1] << 8);
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Read sensor id data %#02X %#02X (%d)\n",
__func__,
sensor_id_data[0],
sensor_id_data[1],
sensor_id);
/* reset device */
fwu_reset_device();
return sensor_id;
}
#endif
static int fwu_start_reflash(void)
{
int retval = 0;
struct image_header header;
const unsigned char *fw_image;
const struct firmware *fw_entry = NULL;
struct f01_device_status f01_device_status;
enum flash_area flash_area;
#ifdef SENSOR_ID_SUPPORT
unsigned short sensor_id;
bool sensor_pin1, sensor_pin2;
char *file_name_sep;
char *cur = file_name;
#endif
char file_name[] = FW_IMAGE_NAME;
pr_notice("%s: Start of reflash process\n", __func__);
if (fwu->ext_data_source)
fw_image = fwu->ext_data_source;
else {
fwu->firmware_name =
kcalloc(NAME_BUFFER_SIZE, sizeof(char), GFP_KERNEL);
if (!fwu->firmware_name) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s Failed to allocate firmware name (%d).\n",
__func__,
NAME_BUFFER_SIZE);
goto exit;
}
#ifdef SENSOR_ID_SUPPORT
/* Sensor ID support: if firmware image file name is xxx.img
* image file name for sensor vender 1 will be
xxx.{SENSOR_VENDOR_1}.img
* image file name for sensor vender 2 will be
xxx.{SENSOR_VENDOR_2}.img
* image file name for sensor vender 3 will be
xxx.{SENSOR_VENDOR_3}.img
*/
file_name = strsep(&cur, ".");
snprintf(fwu->firmware_name,
NAME_BUFFER_SIZE, "%s", file_name_sep);
sensor_id = fwu_read_sensor_id();
sensor_pin1 = sensor_id & (0x01 << SENPR_ID_PIN1);
sensor_pin2 = sensor_id & (0x01 << SENPR_ID_PIN2);
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Sensor id %d (pin %d) %d (pin %d)\n",
__func__,
sensor_pin1,
SENPR_ID_PIN1,
sensor_pin2,
SENPR_ID_PIN2);
if ((sensor_pin1 == 0) && (sensor_pin2 == 0))
strcat(fwu->firmware_name, SENSOR_VENDOR_1);
else if ((sensor_pin1 == 0) && (sensor_pin2 == 1))
strcat(fwu->firmware_name, SENSOR_VENDOR_2);
else if ((sensor_pin1 == 1) && (sensor_pin2 == 0))
strcat(fwu->firmware_name, SENSOR_VENDOR_3);
else
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Sensor id %d %d is not available\n",
__func__,
sensor_pin1,
sensor_pin2);
strcat(fwu->firmware_name, ".img");
#else
snprintf(fwu->firmware_name, NAME_BUFFER_SIZE, "%s", file_name);
#endif
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Requesting firmware image %s\n",
__func__, fwu->firmware_name);
retval = request_firmware(&fw_entry, fwu->firmware_name,
&fwu->rmi4_data->i2c_client->dev);
if (retval != 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Firmware image %s not available\n",
__func__, fwu->firmware_name);
retval = -EINVAL;
goto exit;
}
dev_dbg(&fwu->rmi4_data->i2c_client->dev,
"%s: Firmware image size = %d\n",
__func__, fw_entry->size);
fw_image = fw_entry->data;
}
parse_header(&header, fw_image);
if (header.image_size)
fwu->firmware_data = fw_image + FW_IMAGE_OFFSET;
if (header.config_size) {
fwu->config_data = fw_image + FW_IMAGE_OFFSET +
header.image_size;
}
if (fwu->ext_data_source)
flash_area = UI_FIRMWARE;
else
flash_area = fwu_go_nogo(&header);
switch (flash_area) {
case NONE:
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: No need to do reflash.\n",
__func__);
goto exit;
case UI_FIRMWARE:
retval = fwu_do_reflash();
break;
case CONFIG_AREA:
retval = fwu_do_write_config();
break;
default:
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Unknown flash area\n",
__func__);
goto exit;
}
if (retval < 0) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to do reflash\n",
__func__);
}
/* reset device */
fwu_reset_device();
/* check device status */
retval = fwu_read_f01_device_status(&f01_device_status);
if (retval < 0)
goto exit;
dev_info(&fwu->rmi4_data->i2c_client->dev, "Device is in %s mode\n",
f01_device_status.flash_prog == 1 ? "bootloader" : "UI");
if (f01_device_status.flash_prog)
dev_info(&fwu->rmi4_data->i2c_client->dev, "Flash status %d\n",
f01_device_status.status_code);
if (f01_device_status.flash_prog) {
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Device is in flash prog mode 0x%02X\n",
__func__, f01_device_status.status_code);
retval = 0;
goto exit;
}
if (fw_entry)
release_firmware(fw_entry);
pr_notice("%s: End of reflash process\n", __func__);
exit:
kfree(fwu->firmware_name);
return retval;
}
int synaptics_fw_updater(unsigned char *fw_data)
{
int retval;
if (!fwu)
return -ENODEV;
if (!fwu->initialized)
return -ENODEV;
fwu->ext_data_source = fw_data;
fwu->config_area = UI_CONFIG_AREA;
retval = fwu_start_reflash();
return retval;
}
EXPORT_SYMBOL(synaptics_fw_updater);
static ssize_t fwu_sysfs_show_image(struct file *data_file,
struct kobject *kobj, struct bin_attribute *attributes,
char *buf, loff_t pos, size_t count)
{
ssize_t retval;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
if (!mutex_trylock(&fwu_sysfs_mutex))
return -EBUSY;
if (count < fwu->config_size) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Not enough space (%d bytes) in buffer\n",
__func__, count);
retval = -EINVAL;
goto show_image_exit;
}
memcpy(buf, fwu->read_config_buf, fwu->config_size);
retval = fwu->config_size;
show_image_exit:
mutex_unlock(&fwu_sysfs_mutex);
return retval;
}
static ssize_t fwu_sysfs_store_image(struct file *data_file,
struct kobject *kobj, struct bin_attribute *attributes,
char *buf, loff_t pos, size_t count)
{
ssize_t retval;
if (!mutex_trylock(&fwu_sysfs_mutex))
return -EBUSY;
if (count > fwu->image_size - fwu->data_pos) {
dev_err(&fwu->rmi4_data->i2c_client->dev,
"%s: Not enough space in buffer\n",
__func__);
retval = -EINVAL;
goto store_image_exit;
}
memcpy((void *)(&fwu->ext_data_source[fwu->data_pos]),
(const void *)buf,
count);
fwu->data_pos += count;
retval = count;
store_image_exit:
mutex_unlock(&fwu_sysfs_mutex);
return count;
}
static ssize_t fwu_sysfs_do_reflash_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned int input;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
if (!mutex_trylock(&fwu_sysfs_mutex))
return -EBUSY;
if (sscanf(buf, "%u", &input) != 1) {
retval = -EINVAL;
goto reflash_store_exit;
}
if (input != 1) {
retval = -EINVAL;
goto reflash_store_exit;
}
retval = synaptics_fw_updater(fwu->ext_data_source);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to do reflash\n",
__func__);
goto reflash_store_free_exit;
}
retval = count;
reflash_store_exit:
kfree(fwu->ext_data_source);
fwu->ext_data_source = NULL;
reflash_store_exit:
mutex_unlock(&fwu_sysfs_mutex);
return retval;
}
static ssize_t fwu_sysfs_write_config_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned int input;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
if (!mutex_trylock(&fwu_sysfs_mutex))
return -EBUSY;
if (sscanf(buf, "%u", &input) != 1) {
retval = -EINVAL;
goto write_config_store_exit;
}
if (input != 1) {
retval = -EINVAL;
goto write_config_store_exit;
}
retval = fwu_start_write_config();
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to write config\n",
__func__);
goto write_config_store_free_exit;
}
retval = count;
write_config_store_free_exit:
kfree(fwu->ext_data_source);
fwu->ext_data_source = NULL;
write_config_store_exit:
mutex_unlock(&fwu_sysfs_mutex);
return retval;
}
static ssize_t fwu_sysfs_read_config_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned int input;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
if (input != 1)
return -EINVAL;
if (!mutex_trylock(&fwu_sysfs_mutex))
return -EBUSY;
retval = fwu_do_read_config();
mutex_unlock(&fwu_sysfs_mutex);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to read config\n",
__func__);
return retval;
}
return count;
}
static ssize_t fwu_sysfs_config_area_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned long config_area;
retval = sstrtoul(buf, 10, &config_area);
if (retval)
return retval;
if (!mutex_trylock(&fwu_sysfs_mutex))
return -EBUSY;
fwu->config_area = config_area;
mutex_unlock(&fwu_sysfs_mutex);
return count;
}
static ssize_t fwu_sysfs_image_size_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned long size;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
retval = sstrtoul(buf, 10, &size);
if (retval)
return retval;
if (!mutex_trylock(&fwu_sysfs_mutex))
return -EBUSY;
fwu->image_size = size;
fwu->data_pos = 0;
kfree(fwu->ext_data_source);
fwu->ext_data_source = kzalloc(fwu->image_size, GFP_KERNEL);
if (!fwu->ext_data_source) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for image data\n",
__func__);
retval = -ENOMEM;
} else {
retval = count;
}
mutex_unlock(&fwu_sysfs_mutex);
return retval;
}
static ssize_t fwu_sysfs_block_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", fwu->block_size);
}
static ssize_t fwu_sysfs_firmware_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", fwu->fw_block_count);
}
static ssize_t fwu_sysfs_configuration_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", fwu->config_block_count);
}
static ssize_t fwu_sysfs_perm_config_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", fwu->perm_config_block_count);
}
static ssize_t fwu_sysfs_bl_config_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", fwu->bl_config_block_count);
}
static ssize_t fwu_sysfs_disp_config_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", fwu->disp_config_block_count);
}
static void synaptics_rmi4_fwu_attn(struct synaptics_rmi4_data *rmi4_data,
unsigned char intr_mask)
{
if (fwu->intr_mask & intr_mask)
fwu_read_f34_flash_status();
return;
}
static void synaptics_rmi4_fwu_work(struct work_struct *work)
{
fwu_start_reflash();
}
static int synaptics_rmi4_fwu_init(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char attr_count;
struct pdt_properties pdt_props;
fwu = kzalloc(sizeof(*fwu), GFP_KERNEL);
if (!fwu) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for fwu\n",
__func__);
goto exit;
}
fwu->fn_ptr = kzalloc(sizeof(*(fwu->fn_ptr)), GFP_KERNEL);
if (!fwu->fn_ptr) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for fn_ptr\n",
__func__);
retval = -ENOMEM;
goto exit_free_fwu;
}
fwu->rmi4_data = rmi4_data;
fwu->fn_ptr->read = rmi4_data->i2c_read;
fwu->fn_ptr->write = rmi4_data->i2c_write;
fwu->fn_ptr->enable = rmi4_data->irq_enable;
retval = fwu->fn_ptr->read(rmi4_data,
PDT_PROPS,
pdt_props.data,
sizeof(pdt_props.data));
if (retval < 0) {
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Failed to read PDT properties, assuming 0x00\n",
__func__);
} else if (pdt_props.has_bsr) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Reflash for LTS not currently supported\n",
__func__);
goto exit_free_mem;
}
retval = fwu_scan_pdt();
if (retval < 0)
goto exit_free_mem;
fwu->productinfo1 = rmi4_data->rmi4_mod_info.product_info[0];
fwu->productinfo2 = rmi4_data->rmi4_mod_info.product_info[1];
memcpy(fwu->product_id, rmi4_data->rmi4_mod_info.product_id_string,
SYNAPTICS_RMI4_PRODUCT_ID_SIZE);
fwu->product_id[SYNAPTICS_RMI4_PRODUCT_ID_SIZE] = 0;
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: F01 product info: 0x%04x 0x%04x\n",
__func__, fwu->productinfo1, fwu->productinfo2);
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: F01 product ID: %s\n",
__func__, fwu->product_id);
retval = fwu_read_f34_queries();
if (retval < 0)
goto exit_free_mem;
fwu->initialized = true;
fwu->force_update = FORCE_UPDATE;
#ifdef INSIDE_FIRMWARE_UPDATE
fwu->fwu_workqueue = create_singlethread_workqueue("fwu_workqueue");
INIT_DELAYED_WORK(&fwu->fwu_work, synaptics_rmi4_fwu_work);
queue_delayed_work(fwu->fwu_workqueue,
&fwu->fwu_work,
msecs_to_jiffies(1000));
#endif
retval = sysfs_create_bin_file(&rmi4_data->input_dev->dev.kobj,
&dev_attr_data);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to create sysfs bin file\n",
__func__);
goto exit_destroy_work;
}
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) {
retval = sysfs_create_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to create sysfs attributes\n",
__func__);
retval = -ENODEV;
goto exit_remove_attrs;
}
}
init_completion(&remove_complete);
return 0;
exit_remove_attrs:
for (attr_count--; attr_count >= 0; attr_count--) {
sysfs_remove_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
}
sysfs_remove_bin_file(&rmi4_data->input_dev->dev.kobj, &dev_attr_data);
exit_destroy_work:
#ifdef INSIDE_FIRMWARE_UPDATE
cancel_work_sync(&fwu->fwu_work);
flush_workqueue(fwu->fwu_workqueue);
destroy_workqueue(fwu->fwu_workqueue);
#endif
exit_free_mem:
kfree(fwu->fn_ptr);
exit_free_fwu:
kfree(fwu);
exit:
return 0;
}
static void synaptics_rmi4_fwu_remove(struct synaptics_rmi4_data *rmi4_data)
{
unsigned char attr_count;
sysfs_remove_bin_file(&rmi4_data->input_dev->dev.kobj, &dev_attr_data);
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) {
sysfs_remove_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
}
kfree(fwu->fn_ptr);
kfree(fwu);
complete(&remove_complete);
return;
}
static int __init rmi4_fw_update_module_init(void)
{
synaptics_rmi4_new_function(RMI_FW_UPDATER, true,
synaptics_rmi4_fwu_init,
synaptics_rmi4_fwu_remove,
synaptics_rmi4_fwu_attn);
return 0;
}
static void __exit rmi4_fw_update_module_exit(void)
{
synaptics_rmi4_new_function(RMI_FW_UPDATER, false,
synaptics_rmi4_fwu_init,
synaptics_rmi4_fwu_remove,
synaptics_rmi4_fwu_attn);
wait_for_completion(&remove_complete);
return;
}
module_init(rmi4_fw_update_module_init);
module_exit(rmi4_fw_update_module_exit);
MODULE_AUTHOR("Synaptics, Inc.");
MODULE_DESCRIPTION("RMI4 FW Update Module");
MODULE_LICENSE("GPL v2");